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1. Introduction and preliminaries

The classical Dirichlet problem associated with a differential operator L is the prob-
lem of finding a function u on a domain Ω that satisfies the equation Lu = 0 on
Ω and u = f on ∂Ω for a given boundary function f : ∂Ω → R. This problem has
classically been well-studied for the linear operator L = ∆ by Oskar Perron in [52],
and more recently for its nonlinear counterpart L = ∆p. For the most general class
of boundary functions f the problem has a (perhaps not unique) solution, called the
Perron solution (see for example [28] and the notes therein). In the setting of metric
measure spaces whose measures are doubling and support a p-Poincaré inequality,
the method of Perron, has been extended in [11].

The Dirichlet problem, as posed above, is in many cases quite restrictive. For
example, in the case of a slit disc in the plane, one should consider points on
the slit not as single points in the boundary of the slit disc domain, but as two
different points on an appropriate boundary, as seen by approaching the point from
one side as opposed to the other side. Indeed, in the setting of a wide class of
Euclidean and Riemannian domains, if the boundary of the domain is sufficiently
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regular (for example, rectifiable), then the Dirichlet problem for the operator L = ∆
can be posed to take into account this notion of different ways of ”approaching” the
boundary points. This is the method of Martin boundary developed by, for example,
Anderson–Schoen [8], Ancona [6], [7]. The minimal Martin kernel functions, which
compose the Martin boundary of the domain, are analogs of Poisson kernels to more
irregular setting and provide us with integral representations of the solution to the
corresponding Dirichlet problem. In the setting of a slit disc one can see that there
are two distinct minimal Martin kernels corresponding to each point on the slit
(except for the tip of the slit).

Although the notion of Martin boundary does make sense even for nonlinear
subelliptic operators such as L = ∆p (see for example Holopainen–Shanmugalingam–
Tyson [31], Lewis–Nyström [40]), because the operator is not linear we cannot hope
to use the Martin boundary as a kernel to solve the corresponding Dirichlet prob-
lem. The goal of this paper is to instead use an alternative notion of boundary,
called the prime end boundary, to pose a more general Dirichlet problem. The last
two sections of this paper will focus on modifying the Perron method for the setting
of prime end boundary.

The notion of prime end boundary was first proposed by Carathéodory [16],
and used successfully by Ahlfors [3], Beurling [9], Näkki [49], Minda–Näkki [45],
Ohtsuka [51] in some settings to study problems related to boundary regularity
of conformal and quasiconformal mappings. Others who formulated versions of
prime ends include Epstein [21], Mazurkiewicz [43], and Kaufmann [36]. More
recently prime ends have been used by others including Ancona [5] and Rempe [53]
in various settings to study problems related to potential theory and dynamical
systems. These studies are set in Euclidean domains or domains in a topological
manifold (as in [43]), and generally require that the domain be simply connected (in
the planar case) or, at least, be locally connected at the boundary (quasiconformally
collared domains). The literature on prime ends is quite substantial, and we cannot
hope to provide an exhaustive list of references here; we recommend the interested
reader to also consider papers cited in the above references.

In this note we construct a modified version of prime ends in the setting of
general domains in metric setting, for the purpose of studying Dirichlet problems
for p-harmonic functions (L = ∆p in the Euclidean setting) on domains. The
results of this paper are new even in the Euclidean setting, for example when the
Euclidean domain is a nonsimply connected one. In the future authors intend to
use the prime ends constructed in this paper to further study the Dirichlet problem
potential theory of various metric measure spaces such as Riemannian manifolds,
Heisenberg groups, and more general sub-Riemannian manifolds.

The rest of this section is devoted to the preliminary notions and definitions
needed in the paper. In Section [1.1: label! We have to use labels! /A] we
set up the definition of prime end boundary of domains in metric measure spaces
and the associated topology. In Section [1.2: label! We have to use labels!
/A] we study the structure of prime end boundary in relation to a more metric-
driven boundary called the inner diameter boundary, and prove that if the domain
is a John domain then the prime end boundary is equivalent to the inner diameter
boundary and has single-point impressions. In some circumstances a domain might
have some points in its topological boundary that may not be covered by prime
ends; thus it is beneficial for us to also understand the more general notion of ends
– which prime ends are in some sense the minimal ones (this is analogous to the fact
that not all Martin kernels are minimal Martin kernels). In some circumstances as
in Example 5.1 it is more beneficial to consider the wider class of ends than just
prime ends; however, in this note we will focus solely on the prime end boundary.
[1.3: Put descriptions of sections here once reorganized.]
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2. Preliminaries

Let (X, d, µ) be a metric measure space equipped with a metric d and a measure µ
(and containing more than one point). We will assume that µ is a Borel measure
such that 0 < µ(B) <∞ for all balls B in X.

We also let p ≥ 1 be fixed. We shall later impose additional assumptions on
p, in particular, we shall require that 1 ≤ p ∈ Q(x), where Q(x) is the pointwise
dimension set defined below.

Throughout the paper, Ω will be a proper bounded domain in X, i.e. a proper
bounded nonempty connected open subset of X.

A wide class of metric measure spaces of current interest, including weighted
and unweighted Euclidean spaces, Riemannian manifolds, Heisenberg groups, and
other Carnot–Carathéodory spaces, all have locally doubling measures that support
a Poincaré inequality locally. Since we are interested in unifying the potential theory
on all these spaces, we will assume these properties for the metric spaces considered
in this paper. Because the domain under consideration is assumed to be bounded,
there is no loss of generality in assuming the doubling and Poincaré inequality
properties as global properties, with only simple modifications needed to go from
spaces with globally held properties to spaces with locally held properties.

A measure µ is said to be doubling if there is a constant Cµ > 0 [2.1: I changed
to Cµ as the constant dep. on µ. /A] such that for all balls B = B(x, r) =
{y ∈ X : d(x, y) < r},

µ(2B) ≤ Cµµ(B),

where λB(x, r) = B(x, λr). A consequence of the doubling property is the following
polynomial-type lower mass bound on the decay of measures of balls. There are
constants C,Q > 0 such that for all x ∈ X, 0 < r ≤ R and y ∈ B(x,R),

µ(B(y, r))
µ(B(x,R))

≥ 1
C

( r
R

)Q
. (2.1) lower-mass-bound

Indeed, Q = log2 Cµ will do, but there may be a better exponent. Note also that if
(2.1) is satisfied then µ is doubling, so that µ is doubling if and only if there is an
exponent Q such that (2.1) holds.

If µ is doubling, then X is complete if and only if it is proper (i.e. every closed
bounded set is compact), see Björn–Björn [10], Proposition 3.1.

The following lemma is an easy consequence of the doubling property. It will
often be used without further notice; see for example Heinonen [26], [2.2: Provide
specific ref. /A], or Lemma 3.6 in [10].
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lem-comp-B’-B Lemma 2.1. Assume that µ is doubling. Let B = B(x, r) and B′ = B(x′, r′) be
two balls such that d(x, x′) ≤ ar and r/a ≤ r′ ≤ ar. Then µ(B′) ' µ(B) with the
comparison constant depending only on a > 1 and the doubling constant Cµ.

If X is also connected then there exist constants C > 0 and q > 0 such that for
all x ∈ X, 0 < r ≤ R and y ∈ B(x,R),

µ(B(y, r))
µ(B(x,R))

≤ C
( r
R

)q
. (2.2) upper-mass-bound

Note that we always have 0 < q ≤ Q and that any 0 < q′ < q and Q′ > Q will
do as well.

X is Ahlfors Q0-regular if there is a constant C such that

1
C
rQ0 ≤ µ(B(x, r)) ≤ CrQ0

for all balls B(x, r) ⊂ X with r < 2 diamX. In this case, the best choices for q
and Q are to let q = Q = Q0. We emphasize that in this paper we do not restrict
ourselves to Ahlfors regular metric spaces.

Garofalo–Marola [22] introduced the pointwise dimension q0(x) as the supremum
of all q > 0 such that

µ(B(x, r))
µ(B(x,R))

≤ Cq
( r
R

)q
.

for some Cq > 0 and all 0 < r ≤ R. Since the analysis considered in this paper
is local, we do not need the global nature associated with requiring the above
inequality for all R > 0.

ptwise-dim Definition 2.2. Given x ∈ X we consider the pointwise dimension set Q(x) of all
possible q > 0 for which there are constants Cq > 0 and Rq > 0 such that

µ(B(y, r))
µ(B(x,R))

≤ Cq
( r
R

)q
. (2.3) upper-mass-bound-q

for all 0 < r ≤ R ≤ Rq and all y ∈ B(x,R).

Notice that Q(x) now denotes a set of positive numbers, and that Q(x) is a
bounded interval, and indeed Q(x) = (0, q0) or Q(x) = (0, q0] for some positive
number q0. If the measure µ is Ahlfors Q0-regular at x, then q0 = Q0 and Q(x) =
(0, Q0].

The pointwise dimension Q(x) will appear in some of our results in connection
with the capacity and the modulus of curve families, see Section 6. Note that

q ≤ q0 ≤ Q,

where q and Q are as in (2.1) and (2.2).

Example 2.3. Let X = Rn be equipped with the doubling measure dµ(x) = |x|α dx
for some fixed α > −n. Then µ(B(0, r)) is comparable to rn+α, while for x 6= 0,
µ(B(x, r)) is comparable to rn with comparison constants depending on |x|, and µ
is globally doubling. It follows that (2.1) and (2.2) hold with q = min{n, n + α}
and Q = max{n, n+ α}. Note that for α close to −n we have q close to 0.

We follow Heinonen–Koskela [27] in introducing upper gradients as below ([27]
calls upper gradients as very weak gradients).

[2.3: I changed path to curve throughout (not in pathconnected) as
we used curve more often than path. /A]
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Definition 2.4. A nonnegative Borel measurable function g on X is an upper
gradient of an extended real-valued function u : X → [−∞,∞] if for all rectifiable
curves γ : [0, lγ)→ X, parameterized by arc length ds, we have

|u(γ(0))− u(γ(lγ))| ≤
∫
γ

g ds, (2.4) eq:upperGrad

whenever both f(γ(0)) and f(γ(lγ)) are finite, and
∫
γ
g ds =∞ otherwise. If g is a

nonnegative measurable function on X and if (2.4) holds for p-a.e. rectifiable curve,
then g is a p-weak upper gradient of f .

By saying that (2.4) holds for p-a.e. rectifiable curve, we mean that it fails only
for a curve family with zero p-modulus, see (6.1) below. It is implicitly assumed
that

∫
γ
g ds is defined (with a value in [0,∞]) for p-a.e. rectifiable curve.

Here and throughout the paper we require curves to be nonconstant, unless
otherwise stated explicitly.

The p-weak upper gradients were introduced in Koskela–MacManus [39]. They
also showed that if g ∈ Lp(X) is a p-weak upper gradient of f , then one can find a
sequence {gj}∞j=1 of upper gradients of f such that gj → g in Lp(X). If f has an
upper gradient in Lp(X), then it has a minimal p-weak upper gradient gf ∈ Lp(X)
in the sense that for every p-weak upper gradient g ∈ Lp(X) of f , gf ≤ g a.e., see
Corollary 3.7 in Shanmugalingam [56].

Next we define a version of Sobolev spaces on the metric space X due to Shan-
mugalingam [55].

def:Np Definition 2.5. Whenever u ∈ Lp(X), let

‖u‖N1,p(X) =
(∫

X

|u|p dµ+ inf
g

∫
X

gp dµ

)1/p

,

where the infimum is taken over all upper gradients of u. The Newtonian space on
X is the quotient space

N1,p(X) = {u : ‖u‖N1,p(X) <∞}/∼,

where u ∼ v if and only if ‖u− v‖N1,p(X) = 0.

We say that X supports a p-Poincaré inequality, i.e. there exist constants C > 0
and λ ≥ 1 such that for all balls B ⊂ X, all integrable functions f on X and for all
upper gradients g of f ,

∫
B

|f − fB | dµ ≤ C(diamB)
(∫

λB

gp dµ

)1/p

, (2.5) PI-ineq

where fB :=
∫
B
f dµ :=

∫
B
f dµ/µ(B).

Such Poincaré inequalities are often called weak since we allow for λ > 1.
By the Hölder inequality, it is easy to see that if X supports a p-Poincaré

inequality, then it supports a q-Poincaré inequality for every q > p. A deep theorem
of Keith–Zhong [37] shows that if X is complete, p > 1 and µ is doubling, then it
even supports a p-Poincaré inequality for some p < p. Such a q-Poincaré inequality
for some q < p was earlier a standard assumption for the theory of p-harmonic
functions on metric spaces. In the definition of the Poincaré inequality we can
equivalently assume that g is a p-weak upper gradient.
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3. Carathéodory ends and prime ends
sect-Car

Let us take a quick look at how Carathéodory [16] defined ends and prime ends
when he introduced the topic in 1913 (for simply connected planar domains).

Let Ω ⊂ R2 be a simply connected domain. A cross cut of Ω is a closed Jordan
arc in Ω with endpoints on the boundary of Ω. A sequence {ck}∞k=1 of cross cuts is
called a chain if for every k, (1) ck ∩ ck+1 = ∅, and (2) every cross cut ck separates
Ω into exactly two subdomains, one containing ck−1 another containing ck+1, let
Dk be the latter subdomain. The impression of the chain is

⋂∞
k=1Dk, which is a

nonempty connected compact set.
Carathéodory then defines when a chain divides another chain, and says that two

chains are equivalent if they divide each other. This leads to an equivalence relation
for which the equivalence classes are called ends. The impression is independent of
the representing [3.1: representing/representative? (also elsewhere)] chain.

The ends are then naturally partially ordered by division, and he says that a
prime end is an end which is only divided by itself, or in other terms is minimal
with respect to the partial ordering. The impression of a prime end is always a
subset of ∂Ω.

Later it was realised that if one imposes some extra condition on the chains,
such as an extremal length condition, then the corresponding ends are automatically
minimal, and they are therefore called prime ends, so that when this approach is
used there are no ends (other than prime ends) and no need for weeding out bad
ends. This approach leads to the same prime ends as in Carathéodory’s approach.
According to our investigations, the first use of extremal length in connection with
prime ends is due to Schlesinger [54].

Prime ends are an important tool in various situations, and the theory works very
well for simply (and finitely) connected planar domains. For infinitely connected
domains, as well as in higher dimensions, the theory is not working quite so well,
at least not for general domains. However, when restricting to certain domains it
has proved useful also in higher dimensions.

We want to study prime ends in quite general situations, and see how far the
theory can be developed. We therefore give two approaches. In the first we start by
defining ends and then say that the prime ends are the ends which are minimal (with
respect to the partial order). In the other approach we require the ends initially to
satisfy a p-modulus condition, and to distinguish these ends from the earlier ones
we call them Modp-ends. Here we have a choice of p (a real number larger than
1), leading us to different notions. The p-modulus condition is a generalization of
extremal length, the latter being connected with the 2-modulus, and thus seems
natural to consider.

In our generality it is possible that the Modp-ends are not minimal, and we
therefore also introduce Modp-prime ends.

4. Ends and prime ends

From now on we assume that X is complete and supports a p-Poincaré inequality,
and that µ is doubling.

We are now ready to give our definition of ends and prime ends.

Definition 4.1. A bounded connected set E  Ω is an acceptable set of Ω if E∩∂Ω
is nonempty.

Since an acceptable set E is bounded, E is compact, and as E is connected, E is
connected as well. Moreover, E is infinite, as otherwise we would have E = E ⊂ Ω.



LATEXed November 10, 2011 14:43

Prime ends on metric spaces 7

Therefore, E is a continuum. Recall that a continuum is a connected compact set
containing more than one point.

deff-chain Definition 4.2. A sequence {Ek}∞k=1 of acceptable sets is a chain if
it-subset (a) Ek+1 ⊂ Ek for all k = 1, 2, . . .;

pos-dist (b) dist(Ω ∩ ∂Ek+1,Ω ∩ ∂Ek) > 0 for all k = 1, 2, . . .;

impr (c) The impression
⋂∞
k=1Ek ⊂ ∂Ω.

rmk-interior Remark 4.3. As {Ek}∞k=1 is a decreasing sequence of continua, the impression is ei-
ther a point or a continuum. Moreover, (a) and (b) above imply that Ek+1 ⊂ intEk.
In particular intEk 6= ∅. [4.1: I deduce this without using connectedness.
/A]

Definition 4.4. We say that a chain {Ek}∞k=1 divides the chain {Fk}∞k=1 if for each
k there exists l such that El ⊂ Fk. Two chains are equivalent if they divide each
other, in which case we write {Ek}∞k=1 ∼ {Fk}∞k=1.

A class of equivalent chains is called an end and denoted [Ek], where {Ek}∞k=1 is
any of the chains in the equivalence class. The impression of [Ek], denoted I[Ek],
is defined as the impression of any representative chain.

The collection of all ends is called the end boundary and is denoted by ∂EΩ.

(In this definition we implicitly assumed that k and l are positive integers. We
make similar implicit assumptions throughout the paper to enhance readability.)

Note that if a chain {Fk}∞k=1 divides {Ek}∞k=1, then it divides every chain equiv-
alent to {Ek}∞k=1. Furthermore, if {Fk}∞k=1 divides {Ek}∞k=1, then every chain
equivalent to {Fk}∞k=1 also divides {Ek}∞k=1. Therefore, the relations of dividing
and equivalence extend in a natural way from chains to ends, the former becomes
a partial order and the second becomes equality. Note also that the impression is
independent of the choice of representing chain. Indeed, if {Ek}∞k=1 divides {Fk}∞k=1

then I[Ek] ⊂ I[Fk] and the opposite inclusion holds similarly.

rmk-open Remark 4.5. Let {Ek}∞k=1 be a chain. By Remark 4.3, Ek+1 ⊂ intEk. Unfortu-
nately intEk is not necessarily connected, but if we let Gk be the component of
intEk containing Ek+1, then Gk is an open acceptable set. As ∂Gk ⊂ ∂Ek we get
that {Gk}∞k=1 is a chain. Since Ek+1 ⊂ Gk for all k, we see that {Gk}∞k=1 is divisible
by {Ek}∞k=1. On the other hand, {Gk}∞k=1 clearly divides {Ek}∞k=1, and thus they
are equivalent and [Gk] = [Ek].

As a consequence we could have required that acceptable sets are open without
any consequences whatsoever for our theory. On the other hand, with our definition
we have a bit more freedom when we construct examples.

[4.2: Is there any point not requiring that acceptable sets be open?
/A]

Let us next show that there is a certain redundancy in the collection of ends.
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needPrime1 Example 4.6. Let Ω = (0, 10) × (0, 1) be the unit square in the plane and let
Ek = (0, 1) × (0, 1/k) and Fk = Ω ∩ B

(
1
2 , 1/2k

)
, k = 1, 2, . . .. (For simplicity we

often see R as a subset of Rn.) Then the chain {Ek}∞k=1 is divisible by the chain
{Fk}∞k=1, but {Fk}∞k=1 is not divisible by {Ek}∞k=1. The above figure illustrates this
example.

Such a redundancy might not cause a problem in some applications (see e.g.
Miklyukov [44], where the analogs of acceptable sets are not even required to be
connected), but since one of our aims is to use the notion of ends to construct a
more general boundary of a domain such a redundancy creates a difficulty in using
the collection of all ends as boundary. To overcome this type of redundancy, we
consider the smallest ends in the following sense.

prime-end Definition 4.7. An end [Ek] is a prime end if the only end dividing it is [Ek] itself.
The collection of all prime ends is called the prime end boundary and is denoted by
∂PΩ.

Prime ends are minimal with respect to the division partial order on the collec-
tion of ends.

5. Examples and comparison with Carathéodory’s
definition

We shall see later that in nice domains, every boundary point corresponds to at least
one prime end. However, the following example illustrates that in some situations
one may need to also consider ends which are not prime ends.

comb Example 5.1. Let Ω be the topologist’s comb, i.e. the unit square (0, 1)2 ⊂ R2 with
the segments Sk =

(
1
2 , 1
)
×{2−k} removed. Let x0 =

(
1
2 , 0
)

and let I =
(

1
2 , 1
]
×{0}

be the set of inaccessible points, see Definition 7.5. Then the sets

Ek = {(x, y) ∈ Ω : 1
2 < x < 1 and 0 < y < 2−k} ∪

(
B(x0, 2−k) ∩ Ω

)
,

k = 1, 2, . . ., define an end with the impression I ∪ {x0}. However, this is not
a prime end, as it is divided by the chain {B(x0, 2−k) ∩ Ω}∞k=1, which defines a
prime end with impression {x0}. Note that there is no prime end with impression
containing a point from I, cf. Corollary 7.12. We point out here that the prime
ends of this domain are also Modp-prime ends, for 1 ≤ p ≤ 2, in the sense defined
in Definition 6.2, by Proposition 7.4.
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It should be observed that with Carathéodory’s prime ends the situation is
different. In this case {x0} is not the impression of any prime end, instead I ∪{x0}
is the impression of a Carathéodory prime end.

The following example is a major motivation for us.

ex-slit-disc Example 5.2. Let Ω be the slit disc B(0, 1) \ (−1, 0] ⊂ R2. Then for each x ∈
[−1, 0) there are two prime ends with the impression {x} (one coming from the
positive half-space and one from the negative half-space). For x ∈ ∂Ω\ [−1, 0) there
is exactly one prime end with the impression {x}, and these are all prime ends.

prop-car-our-end Proposition 5.3. Let Ω be a bounded simply-connected domain in the plane. If
{ck}∞k=1 is a Carathéodory prime end, then [Dk] is an end, where Dk are defined as
in Section 3.

In fact the proof below shows that the corresponding result is true for all
Carathéodory ends with impression in the boundary. (Of course, conversely if
{ck}∞k=1 is a Carathéodory end with impression containing some point in Ω, then
[Dk] is not an end.)

[5.1: In Section 3 I’ve remarked that all Caratéodory prime ends have
impressions in the boundary, which is a well-known fact and I don’t see
a reason for us proving it. Using this made the proof below considerably
shorter than Tomasz’s proof in the extra notes. /A]

Proof. As the impression is a nonempty subset of ∂Ω, see Section 3, each Dk is
an acceptable set. It thus follows that {Dk}∞k=1 is a chain, the condition (b) in
Definition 4.2 being satisfied since the cross cuts are disjoint. Hence [Dk] is an
end.

Observe that not every Carathéodory prime end gives a prime end. This is due
to the fact that we have more ends in some cases, see Example 5.1, which again
depends on the fact that we only require that an acceptable set E is connected, not
that its boundary Ω ∩ ∂E is connected.

That we do not recover Carathéodory’s prime ends in the simply connected
planar case is a drawback with our theory, and in many situations our theory is
inferior to Carathéodory’s. On the other hand, it is well known that Carathéodory’s
theory to it is full extent is limited to simply and finitely connected planar domains.
We will see in Section 7 that there is a close connection between our prime ends and
accessibility of boundary points, a connection lost with Carathéodory’s definition,
as shown by Example 5.1 (x0 is an accessible point but there is no Carathéodory
prime end with impression equal to {x0}). This connection is crucial for our results
in Sections 9–11.

Example 5.4. Let us give one more example, the double equilateral comb shows
(see picture below). From the point of view of Carathéodory’s theory the limiting
bottom segment is the impression of the prime end, while for us the prime end
is associated only with the subinterval corresponding to the limit of the ”common
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parts” of the comb’s teeth.

[5.2: The text below was too early, before we had defined our ends.
As you can see I have now discussed the relation between our theory
and Carathéodory’s both in this section and in Section 3. The reason for
just comparing with Carathéodory’s theory is that it is very well known,
while the theories of others like Näkki are much less known.

I’m leaving the text below here for now. We should clearly compare
our definition with Näkki, Ohtsuka, Karmazin . . . , but perhaps in much
less detail than what I’ve done with Carathéodory’s theory. I’m also
not sure where this should be put, possibly already in the introduction.
Maybe we should leave this as point to be decided later rather than right
now. /A]

Carathéodory [16] first developed a theory of prime ends in the setting of simply
connected planar domains, see Section 3, and Näkki [49] developed a theory of prime
ends in the higher-dimensional Euclidean setting using techniques of extremal length
(related to our notion of Modp-ends in Section 6).

The boundaries of our acceptable sets correspond to Carathéodory’s cross-cuts,
and our acceptable sets correspond to the components Dn. Our definition differs
from earlier definitions of prime ends. [5.3: Has anyone defined prime ends
using acceptable sets as we do? Probably Karmazin. /A] There are several
reasons for this. First, the topology of a metric space is more complicated than
that of Rn. (The reader should think of Rn with a number of holes removed as
a particular example of a metric space under consideration.) If we require the
boundary of an acceptable set to be connected, then it is not easy to construct
ends using metric balls for example because boundaries of such balls need not be
connected, and so it is not clear that there will be any end in the metric setting.
Therefore, we have replaced cross-sets by acceptable sets. Analogs of cross-sets in
our setting are the boundaries of the acceptable sets.

(1) Carathéodory and Näkki’s cross-cuts are connected, while boundaries of ac-
ceptable sets need not be.

(2) Cross-cuts break the domain into exactly two components, whereas the bound-
aries of acceptable sets break the underlying domain into at least two compo-
nents.

[5.4: I have referred to Kaufmann; his papers are in German there are
no reviews, and Epstein’s constructions do not seem to be so good, since
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he a priori requires the chain to have ”shrinking to zero” diameters, and
so is too restrictive. These have been put in introduction, together with
Ancona. /N]

6. Modulus ends and modulus prime ends
sect-Modp-ends

The notion of ends and prime ends discussed in the previous section does not take
into account the potential theory associated with the domain. In this section we
give a subclass of ends and prime ends associated with the potential theory, using
the notion of p-modulus. Here, 1 ≤ p <∞.

Let Γ be a family of rectifiable curves in X. The p-modulus of the family Γ is

Modp(Γ) := inf
ρ

∫
X

ρp dµ, (6.1) eq-deff-modulus

where the infimum is taken over all nonnegative Borel measurable functions ρ on X
such that

∫
γ
ρ ds ≥ 1 for every γ ∈ Γ. (As usual inf ∅ :=∞.) It is straightforward

to verify that Modp is an outer measure on the collection of all rectifiable curves on
X. If Γ1 and Γ2 are two families of rectifiable curves in X such that Γ1 ⊂ Γ2, then
Modp(Γ1) ≤ Modp(Γ2), this monotonicity will be useful in this paper. For more on
p-modulus we refer the interested reader to Heinonen [26] and Väisälä [58].

For nonempty sets E, F and U in X, we let Γ(E,F, U) denote the family of all
rectifiable curves γ : [0, lγ ] → U ∪ E ∪ F such that γ(0) ∈ E and γ(lγ) ∈ F . As
in [58], the modulus of the curve family Γ(E,F, U) is the number

Modp(E,F, U) := Modp({γ ∩ U : γ ∈ Γ(E,F, U)}).

[6.1: Do we need this with E,F 6⊂ U . In that case I don’t see how to
use γ ∩ U as it isn’t a curve in general. I hope we don’t need that. My
hope is that we may define Γ(E,F, U) to be the family of all rectifiable
curves γ : [0, lγ ]→ U (not → U ∪E∪F ) such that γ(0) ∈ E and γ(lγ) ∈ F ./A]

Definition 6.1. A chain {Ek}∞k=1 is a Modp-chain if

lim
k→∞

Modp(K,Ek,Ω) = 0 (6.2)

for every compact set K ⊂ Ω.

Note that if {Ek}∞k=1 is a Modp-chain and {Fk}∞k=1 divides {Ek}∞k=1, then
{Fk}∞k=1 is also a Modp-chain; this follows from the fact that whenever K ⊂ Ω
is a compact set, then for each k there exists nk such that Fnk

⊂ Ek. Thus
Γ(K,Fnk

,Ω) ⊂ Γ(K,Ek,Ω) and Modp(K,Fnk
,Ω) ≤ Modp(K,Ek,Ω).

deff-Modp-end Definition 6.2. An end [Ek] is a Modp-end if there is a Modp-chain representing
it. A Modp-end [Ek] is a Modp-prime end if the only Modp-end dividing it is [Ek]
itself.

As above it follows that any chain representing a Modp-end is a Modp-chain.

it-div-Modplem-enum-prime-end Lemma 6.3. (a) An end dividing a Modp-end is also a Modp-end.
it-prime-end-eq (b) A Modp-end is a prime end if and only if it is a Modp-prime end.

Proof. (a) The first part follows just as above from the monotonicity of Modp.
(b) Let E be a Modp-end. If E is a prime end, then there is no other end dividing

it, let alone any other Modp-end dividing it. Thus E must be a Modp-prime end.
Conversely, if E is a Modp-prime end and F is an end dividing E, then F is a

Modp-end, by (a). Hence F = E, and thus E is a prime end.



12 Tomasz Adamowicz, Anders Björn, Jana Björn and Nageswari Shanmugalingam

LATEXed November 10, 2011 14:43

needPrime Example 6.4. Let Ω be the unit ball in Rn, n ≥ 3, with a radius removed. Then
for every boundary point x ∈ ∂Ω there is a prime end Px with it as impression, see
Proposition 7.1 and Corollary 7.7.

Let I be a closed subsegment of the removed radius and let

Ek = {x ∈ Ω : dist(x, I) < 1/k}.

Then [Ek] is an end with I as impression. This is not a prime end as it is divided
by Px for x ∈ I. If p ≤ n− 1, then Modp(K,Ek,Ω) → 0 as k → ∞, and thus [Ek]
is a Modp-end but not a Modp-prime end.

Under some conditions [6.2: I don’t think one can use the word “cir-
cumstance” here. Also in some other places the word “might” was used
where I think that it logically more correct to write “may”. /A] all Modp-
ends are Modp-prime ends, and in this case one does not need to do the further
subdivisions, see e.g. Section 11.

The notion of Modp-prime end is similar in flavour to the concept of p-parabolic
prime ends discussed in Miklyukov [44] and Karmazin [35]. The name p-parabolicity
has been used in the literature to denote spaces where there is not enough room out
at infinity (in the sense that the collection of all curves that start from a fixed ball
in the space and leave every compact subset of the space has p-modulus zero). See
[6.3: Is this list good? Let us leave this question to later. /A] [29], [30],
[18], [41], [23], [24] [42], [47], [33], and [19] for some applications of the notion of
parabolic ends. A prime end is a Modp-prime end if there is insufficient room close
to the impression of the prime end. In this sense one could think of a Modp-prime
end as a p-parabolic end of the domain.

Recall that if {Ek}∞k=1 is a chain, then {Ek}∞k=1 is a decreasing sequence of
continua, and so the impression is either a point or a continuum. Corollary A.7
implies that condition (c) in Definition 4.2 follows if {Ek}∞k=1 is a Modp-chain and
Q − 1 < p [6.4: This doesn’t make sense now. What did we want to say
in this sentence? Is it still relevant? /A].

The condition limk→∞Modp(K,Ek,Ω) = 0 depends heavily on p. For example,
if 1 ≤ p /∈ Q(x), then the collection of all curves in X passing through x has positive
p-modulus, and hence in general there are no chains with x in their impressions.
(Here, Q(x) denotes the pointwise dimension set from Definition 2.2.) However, it
can happen that for some x ∈ ∂Ω, and every K b Ω we have Modp(K, {x},Ω) = 0,
even if 1 ≤ p /∈ Q(x). This is the case e.g. if Ω ⊂ Rn (unweighted) has an outward
polynomial cusp of degree m and p ≤ m+ n− 1, see [20, Example 2.2].
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importante Remark 6.5. Many p-modulus estimates are not available in the nonconformal
case. In Rn, Näkki [49] uses the condition

0 < Modn(Ω \ Ek, Ek+1,Ω) <∞ (6.3) eq-Modn

instead of condition (b) in Definition 4.2. For p = n in the Euclidean setting,
the conditions are equivalent. In Ahlfors Q-regular metric spaces, formula (3.9)
in Theorem 3.6 of Heinonen–Koskela [27] shows the same equivalence (with n re-
placed by Q in (6.3)). See also the discussion on p. 16 and Remark 3.28 of [27].
In more general metric spaces there is no value of p for which the corresponding
equivalence is true (see Example 2.7 of [1] and Example 6.6 below), and so we
have explicitly required that chains {Ek}∞k=1 satisfy dist(Ω ∩ ∂Ek,Ω ∩ ∂Ek+1) > 0.
This modification automatically implies that Modp(Ω \ Ek, Ek+1,Ω) < ∞, since
the function ρ = χΩ/τ , with τ = dist(Ω ∩ ∂Ek,Ω ∩ ∂Ek+1), is admissible in the
definition of Modp(Ω \ Ek, Ek+1,Ω). By Definition 4.2, the sets Ω \ Ek and Ek+1

are disjoint and have nonempty interiors. It therefore follows from Lemma A.3 that
Modp(Ω \ Ek, Ek+1,Ω) > 0.

rem_p_n Example 6.6. [6.5: (For Anders: I still need to check this example.)]
Let Ω = B(0, 2) ⊂ R2, E = [−1, 0]×{0} and F = [0, 1]×{0}. If 1 < p < 2, then

dist(E,F ) = 0 even though Modp(E,F,Ω) <∞, as we shall next see.
Let Γ0 be the family of curves in Ω passing through the origin. Since singletons

have zero p-capacity in R2, we have Modp(Γ0) = 0. We shall therefore in this
example only consider curves which do not pass through the origin. Let γ : [a, b]→
Ω be such a curve connecting E to F in Ω. Joining γ with its reflection in the real
axis makes a closed curve γ̃ in Ω around the origin. The residue theorem now yields
that ∫

γ̃

z̄dz

|z|2
=
∫
γ̃

dz

z
= 2πi

and considering the imaginary part of z̄ dz, we obtain using symmetry and the
Cauchy–Schwarz inequality that

π =
∫
γ

x dy − y dx
x2 + y2

≤
∫ b

a

|γ′(t)|
|γ(t)|

dt =
∫
γ

ds

|γ(s)|
,

where ds is the arc length parameterization of γ. It follows that the function
ρ(z) = 1/π|z| is admissible in the definition of Modp(E,F,Ω) and hence

Modp(E,F,Ω) ≤
∫

Ω

ρp dx dy = 2π1−p
∫ 2

0

r1−p dr =
23−pπ1−p

2− p
<∞.

7. Singleton impressions and accessibility
sect-access

It is clearly useful to have criteria for when ends are prime ends and Modp-prime
ends.

The ends are naturally divided into two classes, those with singleton impressions
and those with larger (continuum) impressions. The former are not surprisingly
simpler to handle, and our many focus in the later sections will be on singleton-
impression ends.

It turns out that ends with singleton impressions are always prime ends.

prop-end-single Proposition 7.1. If an end has a singleton impression, then it is a prime end.

[7.1: This was a corollary, but the essence of the proposition before
was this, and I couldn’t see any reason to leave the statement as it was.
/A]
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Note, however, that there are prime ends with nonsingleton impressions, see also
below for more details.

Before proving this result let us give a characterization of singleton-impression
ends.

prop-single-char Proposition 7.2. Let [Ek] be an end. Then it has a singleton impression if and
only if diamEk → 0 as k →∞.

Proof. Assume first that diamEk → 0. As diam I[Ek] ≤ diamEk = diamEk for all
k it follows that diam I[Ek] = 0, i.e. that I[Ek] contains at most one point. Since
I[Ek] is nonempty it must be a singleton.

Conversely, assume that diamEk > 4δ > 0 for all k, and let x ∈ I[Ek]. Then
Ak := Ek \ B(x, δ), k = 1, 2, . . ., are nonempty compact sets. Hence there is
y ∈

⋂∞
k=1Ak. Thus also y ∈ I[Ek] and the impression is nonsingleton.

The following observation will also be useful.

rem-connected-diam Remark 7.3. If a connected set F ⊂ Ω intersects both A and Ω\A, then F ∩ (Ω∩
∂A) is nonempty.

A direct consequence is that if Ek, Ek+1 and F are connected subsets of Ω with
Ek+1 ⊂ Ek, Ek+1 ∩ F 6= ∅ and F \ Ek 6= ∅, then F meets both Ω ∩ ∂Ek+1 and
Ω ∩ ∂Ek, which implies in turn that dist(Ω ∩ ∂Ek+1,Ω ∩ ∂Ek) ≤ diamF .

Proof of Proposition 7.1. Let [Fk] be an end with a singleton impression. Assume
that [Fk] is not a prime end. Then there exists an end [Ek] dividing [Fk] such that
[Fk] does not divide [Ek]. It follows that there is l such that for each n there is
mn ≥ n with Fmn

\ El 6= ∅. By the nested property of the chain {Fk}∞k=1 we get
that Fk \El 6= ∅ for all k. From this we infer that for all k there exists yk ∈ Fk \El.

As [Ek] divides [Fk], for every k there exists jk ≥ l+ 1 such that Ejk ⊂ Fk. Let
xk ∈ Ejk be arbitrary. Then xk ∈ Fk ∩El+1 and yk ∈ Fk \El. As Fk is connected,
Remark 7.3 implies that

dist(Ω ∩ ∂El+1,Ω ∩ ∂El) ≤ diamFk → 0 as k →∞,

by Proposition 7.2. Thus dist(Ω ∩ ∂El+1,Ω ∩ ∂El) = 0, contradicting the fact that
{Ek}∞k=1 is a chain.

For Modp-prime ends we have the following result.

prop-single-Modp Proposition 7.4. If [Ek] is an end with singleton impression I[Ek] = x and 1 ≤
p ∈ Q(x), then [Ek] is a Modp-prime end.

Proof. By Proposition 7.2, diamEk → 0 as k →∞, and thus [Ek] is a Modp-end by
Lemma A.2. Moreover, Proposition 7.1 shows that [Ek] is a prime end, and hence
it is a Modp-prime end.

deff-access-pt Definition 7.5. We say that a point x ∈ ∂Ω is an accessible boundary point if
there is a (possibly nonrectifiable) curve γ : [0, 1] → X such that γ(1) = x and
γ([0, 1)) ⊂ Ω.

Moreover, if [Ek] is an end and there is a curve γ as above such that for every
k there is 0 < tk < 1, with γ([tk, 1)) ⊂ Ek, then x ∈ ∂Ω is accessible through [Ek].

lem-curve-imp-prime-end Lemma 7.6. Let γ : [0, 1]→ X be a curve such that γ([0, 1)) ⊂ Ω and γ(1) = x ∈
∂Ω. Let also {rk}∞k=1 be a strictly decreasing sequence converging to zero as k →∞.
Then there exist a sequence {δk}∞k=1 of positive numbers smaller than 1 and a prime
end [Fk] such that I[Fk] = {x}, γ([δk, 1)) ⊂ Fk and Fk is a connected component
of Ω ∩ B(x, rk) for all k = 1, 2, . . .. If 1 ≤ p ∈ Q(x), then this prime end is also a
Modp-prime end.
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Proof. Note first that by the continuity of γ, for each k = 1, 2, . . . , there exists
0 < δk < 1 such that

γ([δk, 1)) ⊂ Ω ∩B(x, rk).

Let Fk be the connected component of Ω ∩ B(x, rk) containing γ(δk). It follows
directly that γ([δk, 1)) ⊂ Fk and hence x ∈ F k, showing that Fk is an acceptable
set. Also, by construction, Fk+1 ⊂ Fk for all k = 1, 2, . . . .

Since Ω ∩ ∂Fk ⊂ ∂B(x, rk), it follows that for all k = 1, 2, . . . ,

dist(Ω ∩ ∂Fk,Ω ∩ ∂Fk+1) > 0.

Also, as Fk ⊂ B(x, rk), we have that I[Fk] = {x}.
Finally, Proposition 7.1 implies that [Fk] is a prime end. Moreover, if 1 ≤ p ∈

Q(x), then by Proposition 7.4 it is also a Modp-prime end.

access1 Corollary 7.7. Let x be an accessible boundary point of Ω. Then there is a prime
end [Fk] with I[Fk] = {x}. If p ≤ Q(x), then this prime end is a Modp-prime end.

prop-prime-end-iff-diam-0 Proposition 7.8. Let [Ek] be an end and x ∈ I[Ek] be accessible through [Ek].
Then the following are equivalent :

it-prime (a) [Ek] is a prime end ;
it-x (b) I[Ek] = {x};

it-diam (c) limk→∞ diamEk = 0.
If 1 ≤ p ∈ Q(x), then also the following statement is equivalent to the statements

above:
it-Modp (d) [Ek] is a Modp-prime end.

Proof. (c)⇒ (b) This also follows from Proposition 7.2, as x ∈ I[Ek] by assumption.
(b) ⇒ (a) This follows from Proposition 7.1.
(a)⇒ (c) As x is accessible through [Ek], there exists a curve γ : [0, 1]→ X and

an increasing sequence of positive numbers tk → 1, as k → ∞, such that γ(1) = x
and for k = 1, 2 . . ., γ([tk, 1)) ⊂ Ek. Lemma 7.6 with e.g. rk = 2−k provides us with
a prime end [Fk] such that I[Fk] = {x} and γ([δk, 1)) ⊂ Fk for some 0 < δk < 1,
k = 1, 2, . . . .

We shall show that [Fk] divides [Ek]. If not, then there exists k such that for
every l ≥ k + 1 there is a point xl ∈ Fl \ Ek. Since tj → 1 as j → ∞, for every
l ≥ k+1 we can find jl ≥ l+1 such that tjl ≥ δl and hence yl := γ(tjl) ∈ Ejl ⊂ Ek+1.
As xl /∈ Ek and yl ∈ Ek+1, Remark 7.3 yields

dist(Ω ∩ ∂Ek,Ω ∩ ∂Ek+1) ≤ diamFl → 0 as l→∞,

which contradicts the definition of chains.
Hence, [Fk] divides [Ek], and as [Ek] is a prime end, it follows that [Ek] = [Fk],

and in particular, diamEk → 0 as k →∞.
Let us finally assume that 1 ≤ p ∈ Q(x).
(b) ⇒ (d) This follows from Proposition 7.4.
(d) ⇒ (a) This follows from Lemma 6.3 (b).

The following example shows that the assumption of accessibility is essential in
Proposition 7.8.
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maze Example 7.9. Let Ω ⊂ R2 be the domain obtained from the unit square (0, 1) ×
(0, 1) by removing the line segments (0, 1− 1/k)× {1/k} for positive even integers
k and removing the line segments (1/k, 1) × {1/k} for odd integers k ≥ 3. The
end [Ek] given by Ek = (0, 1) × (0, 1/(k + 2)) [7.2: Ek changed. Ok? /A] is a
Modp-prime end for all 1 ≤ p < ∞ with the impression I[Ek] = [0, 1] × {0} and
limk→∞ diamEk = 1.

In fact, we have the following result.

prop1A-A Proposition 7.10. If [Ek] is an end and I[Ek] = {x}, then x is accessible through
[Ek].

Proof. By Remark 4.5, we can assume that each Ek is open. As X is quasiconvex
[7.3: We should define and talk about this at some point, but let us
decide where later. /A], Lemma 4.38 in Björn–Björn [10] then implies that Ek
is pathconnected. Choose xk ∈ Ek \Ek+1 for k = 1, 2, . . . . Since both xk and xk+1

belong to Ek and Ek is pathconnected, there exists a curve γk : [1− 1/k, 1− 1/(k+
1)] → Ek connecting xk to xk+1. Let γ be the union of all these curves. More
precisely, let γ : [0, 1] → X be given by γ(t) = γk(t) if t ∈ [1 − 1/k, 1 − 1/(k + 1)],
k = 1, 2, . . ., and γ(1) = x. As diamEk → 0, γ is continuous at 1, and hence x is
accessible along γ through [Ek].

cor1A Corollary 7.11. If [Ek] is a prime end and x ∈ I[Ek], then the following are
equivalent :

ii-x (a) I[Ek] = {x};
ii-acc (b) x is accessible through [Ek];
ii-diam (c) limk→∞ diamEk = 0.

Proof. (a) ⇒ (b) This follows directly from Proposition 7.10.
(b) ⇒ (c) This follows from Proposition 7.8.
(c) ⇒ (a) This follows from Proposition 7.2 as x ∈ I[Ek].

cor-access-equiv-end Corollary 7.12. Let x ∈ ∂Ω. Then the following are equivalent :
i2-acc (a) x is accessible;
i2-end (b) there is an end [Ek] with I[Ek] = {x};

i2-prime-end (c) there is a prime end [Ek] with I[Ek] = {x}.
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If 1 ≤ p ∈ Q(x), then also the following statements are equivalent to the state-
ments above:

i2-Modp (d) there is a Modp-end [Ek] with I[Ek] = {x};
i2-Modp-prime (e) there is a Modp-prime end [Ek] with I[Ek] = {x}.

Proof. (a) ⇒ (c) This follows from Corollary 7.7.
(c) ⇒ (b) This is trivial.
(b) ⇒ (a) This follows from Proposition 7.10.
Let us finally assume that 1 ≤ p ∈ Q(x).
(b) ⇒ (e) This follows from Proposition 7.4
(e) ⇒ (d) ⇒ (b) These implications are trivial.

8. The topology on ends and prime ends
sect-top

We would like to find homeomorphisms between ∂PΩ and other boundaries. To do
so we need to have a topology on ∂PΩ, or really on Ω ∪ ∂PΩ. Let us be a little
more general and introduce a topology on Ω ∪ ∂EΩ. It then naturally induces a
topology on Ω ∪ ∂PΩ and also on the boundaries connected with Modp-prime ends
introduced in Section 6.

seqtoprime Definition 8.1. We say that a sequence of points {xn}∞n=1 in Ω converges to the
end [Ek], and write xn → [Ek], as n → ∞, if for all k there exists nk such that
xn ∈ Ek whenever n ≥ nk.

[8.1: I have avoided using limxn as the limits here need not be unique.
See also comment to the reader below. /A]

Observe that if xn → [Ek] and [Ek] divides [Fk], then xn also converges to [Fk].
Thus the limit of a sequence need not be unique, and we therefore avoid writing
limn→∞ xn. It is less obvious that this problem remains even if we restrict our
attention to prime ends, see Example 8.6 below.

conv Definition 8.2. We say that a sequence of ends {[Enk ]}∞n=1 converges to the end
[E∞k ] if for every k, there is nk such that for each n ≥ nk there exists ln,k such that
Enln,k

⊂ E∞k .

Note that the integers nk and ln,k in Definitions 8.1 and 8.2 depend on the rep-
resentative chain of the corresponding ends. However, both notions of convergence
are independent of the choice of representative chain.

Definition 8.3. Convergence of points and ends defines a topology on Ω∪ ∂EΩ by
saying that a family C ⊂ Ω∪ ∂EΩ of points and ends is closed if whenever (a point
or an end) y ∈ Ω ∪ ∂EΩ is a limit of a sequence in C, then y ∈ C.

Here, a sequence {xn}∞n=1 of points in Ω converges to a point y ∈ Ω as given by
the metric space.

It is not hard to verify that the open sets in the topology are given as G1 ∪GE2 ,
where G1 and G2 are open subsets of Ω and GE2 ⊂ Ω∪ ∂EΩ is the union of G2 and
all the ends [Ek] such that Ek ⊂ G2 for some k.

Theorem 8.4. The topology defined above is indeed a topology on Ω ∪ ∂EΩ.

Proof. (1) The empty set and the collection of all ends are clearly closed.
(2) Let C1 and C2 be closed subsets of Ω ∪ ∂EΩ. Assume that {yn}∞n=1 is a

sequence in C1 ∪ C2 such that yn → y∞. There is either a subsequence, ynk
in

C1, or else a subsequence ynk
lies in C2. Since a subsequence of a convergent

sequence converges to the same limit, it follows that y∞ ∈ C1 or y∞ ∈ C2. Hence
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y∞ ∈ C1 ∪ C2. By induction, for any positive integer N we have that
⋃N
n=1 Cn is

closed whenever C1, . . . , CN are closed.
(3) Now let {Ci}i∈I be a collection of closed subsets of Ω ∪ ∂EΩ. Consider a

sequence {yn}∞n=1 ∈
⋂
i∈I Ci. If yn → y∞, as n→∞, then, since the Ci are closed,

y∞ ∈ Ci for all i ∈ I. Therefore, y∞ ∈
⋂
i∈I Ci and the intersection is closed.

If E and F are two distinct ends such that E divides F , then any neighbourhood
of F contains E, and thus the topology does not satisfy the T1 separation condition.

If we however restrict ourselves to prime ends, i.e. to Ω ∪ ∂PΩ, then the T1
separation condition is satisfied.

Proposition 8.5. The topology on Ω ∪ ∂PΩ satisfies the T1 separation condition.

Proof. If x ∈ Ω, then {x} is closed in our topology. Thus to verify the T1 separation
condition we need to show that {P} is closed for any prime end P . We thus need
to consider the sequence {Pn}∞n=1, with Pn = P for all n. Assume that Pn → P∞
as n→∞, where P∞ is a prime end. As the sequence is constant it is not hard to
see that P must divide P∞. Since P∞ is a prime end, we thus must have P = P∞.
Hence {P} is closed.

The topology obtained on Ω ∪ ∂PΩ does not need to satisfy the T2 separation
condition, and can thus be nonmetrizable, as shown by the following example. In
Section [8.2: label! We have to use labels! /A] we will study a condition
under which this topology is metrizable.

ex-Jana-two-limits Example 8.6. Let Ω ⊂ R3 be obtained from removing the following 2-dimensional
sets from the cube (−1, 1)× (0, 2)× (0, 2):

[−1,−1/(2k + 1)]× {1/(2k + 1)} × [0, 2]
and [1/(2k + 1), 1]× {1/(2k + 1)} × [0, 2] for k = 1, 2, ...,

and
[1/2k − 1, 1− 1/2k]× {1/2k} × [1/2k, 2] for k = 2, 4, 6, ...

and
[1/2k − 1, 1− 1/2k]× {1/2k} × [0, 2− (1/2k)] for k = 1, 3, 5, ...

There are two prime ends, with impressions [−1, 0]×{0}×{1} and [0, 1]×{0}×{1},
but the sequence {(0, 1/n, 1)}∞n=1 converges to both of them.

It follows that any neighbourhood of any of these two prime ends contains all
but a finite number of points from this sequence. Hence these two prime ends do
not have disjoint neighbourhoods, or in other terms the T2 separation condition
fails.

Observe that Ω is simply connected.

[8.3: I’ve moved the following convergence discussion. I’m not sure
we’re we should have it. Do we really need it? Should we delete it? /A]

Definition 8.2 implies that there are sequences {xni }∞i=1 in Ω, n = 1, 2, . . . , and
a sequence {x∞i }∞i=1 in Ω with the properties:

(1) xni → [Enk ], as i→∞;

(2) x∞i → [E∞k ], as i→∞;

(3) lim supn→∞ lim supi→∞ d(xni , x
∞
i ) = 0. [8.4: Why? /A]
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However, even with the additional assumption that diam(Ek) → 0, this sequential
criterion does not imply convergence of prime ends — consider e.g. the slit disc, see
Example 5.2, and let xni converge to a point on the slit from one side and x∞i from
the other side.

Instead we should use the Mazurkiewicz distance.

Definition 8.7. We define the Mazurkiewicz distance dM on Ω by

dM (x, y) = inf diamE,

where the infimum is over all connected sets E ⊂ Ω containing x, y ∈ Ω.

Lemma 8.8. The sequence of ends {[Enk ]}∞n=1 converges to the end [E∞k ] with
limk→∞ diam(E∞k ) = 0 if and only if whenever {xni }∞i=1, n = 1, 2, . . . , and {x∞i }∞i=1

are sequences in Ω such that
(a) xni → [Enk ], as i→∞;
(b) x∞i → [E∞k ], as i→∞;

we must have
lim sup
n→∞

lim sup
i→∞

dM (xni , x
∞
i ) = 0.

Proof. Assume that a sequence of ends {[Enk ]}∞n=1 converges to the end [E∞k ]. Let
{xni }∞i=1 and {x∞i }∞i=1 converge to [Enk ] and [E∞k ], respectively. By the definition of
convergence of a sequence we have that for each k and n there exists mk,n such that
for all i ≥ mk,n we have xni ∈ Enk . Similarly there is Nk such that for j ≥ Nk we have
that x∞j ∈ E∞k . The definition of convergence of a sequence of ends to an end implies
that there exists nk such that for all n > nk we can find ln,k with the property that
if l > ln,k, then Enl ⊂ E∞k . We may take ln,k ≥ max{mk,n, Nk} and therefore there
are xnl ∈ Enl ⊂ E∞k and x∞l ∈ E∞k such that dM (xnl , x

∞
l ) ≤ diam(E∞k ) whenever

l ≥ ln,k. Since diam(E∞k )→ 0 we have that

0 ≤ lim sup
n→∞

lim sup
l→∞

dM (xnl , x
∞
l ) ≤ diam(E∞k )→ 0.

To prove the opposite implication we proceed by reductio ad absurdum. Let
{x∞i }∞i=1 converge to an end [E∞k ] and assume {[Enk ]}∞n=1 does not converge to the
end [E∞k ]. Then there exists k0 such that for all n there is mn ≥ n with the property
that Emn

l \E∞k0 6= ∅ for all l. For each positive integer n we can construct a sequence
{xni }∞i=1 by choosing xni ∈ Eni \E∞k0 if this set is not empty and xni ∈ Eni otherwise.
Clearly limi→∞ xni = [Enk ], and so by hypothesis we must have

lim sup
n→∞

lim sup
i→∞

dM (xni , x
∞
i ) = 0,

contradicting the assumption that Emn

l \ E∞k0 6= ∅, since then for large i we
have that dM (x∞i , x

l
i) > c > 0 for a constant c depending on diam(E∞k0 ) [8.5:

Why? /A]. Furthermore, to see that diam(E∞k ) → 0, we notice that otherwise
lim supk→∞ diam(E∞k ) > 0. We can choose sequences {x∞k }∞k=1 and {y∞k }∞k=1 such
that x∞k , y

∞
k ∈ E∞k and dist(x∞k , y

∞
k ) ≥ 1

2 diam(E∞k ). For each positive integer n
take any sequence {ank}∞k=1 with ank ∈ Enk . With such a choice of sequences we have
by the triangle inequality that

lim sup
n→∞

lim sup
k→∞

dM (ank , x
∞
k ) 6= 0 or lim sup

n→∞
lim sup
k→∞

dM (ank , y
∞
k ) 6= 0,

resulting in a contradiction.
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9. Prime ends and the Mazurkiewicz boundary
sect-Mazur

We now focus on describing the relations between the prime end boundary and two
other boundaries, the topological boundary and the Mazurkiewicz boundary. Our
investigations are motivated by the fact that having established homeomorphism or
embedding between two kinds of boundaries one may discuss the correspondence
between ends (or prime ends) and their impressions.

Let us mention that in Björn–Björn–Shanmugalingam [13] the Dirichlet problem
for p-harmonic functions with respect to the Mazurkiewicz boundary is studied in
domains which are finitely connected at the boundary (see the next section for
the definition of finite connectivity on the boundary). By Theorem 10.8 this is
equivalent to studying the Dirichlet problem with respect to the prime end boundary
for such domains. We refer to [13] for further details on the Dirichlet problem, but
this is another important motivation for this and the next section.

The discussion in the previous section indicates that path accessibility of a
boundary point determines whether there is a prime end with a singleton impres-
sion. Motivated by this, we consider the following Mazurkiewicz metric associated
with the connectedness properties of the domain at the boundary points. Recall also
from the previous section that if [Ek] is a singleton end, then it is always a prime
end, and moreover, if 1 ≤ p ∈ Q(x), then it is also automatically a Modp-prime
end.

innerDiam Definition 9.1. We define the Mazurkiewicz distance dM on Ω by

dM (x, y) = inf diamE,

where the infimum is over all connected sets E ⊂ Ω containing x, y ∈ Ω.
The completion of the metric space (Ω, dM ) is denoted Ω

M
and dM extends in

the usual way to Ω
M

. Namely, for dM -Cauchy sequences {xn}∞n=1, {yn}∞n=1 ∈ Ω we
define the equivalence relation

{xn}∞n=1 ∼ {yn}∞n=1 if lim
n→∞

dM (xn, yn) = 0.

The collection of all equivalence classes of dM -Cauchy sequences can be formally
considered to be Ω

M
, but we will identify equivalence classes of dM -Cauchy se-

quences that have a limit in Ω with that limit point. By considering equivalence
classes of dM -Cauchy sequences without limits in Ω we define the boundary of Ω
with respect to dM as ∂MΩ = Ω

M \ Ω. Because X is quasiconvex, we know that
Ω is locally compact; it follows that Ω is an open subset of Ω

M
. We extend the

original metric dM on Ω to Ω
M

by letting

dM (x∗, y∗) = lim
n→∞

dM (xn, yn),

if x∗ = {xn}∞n=1 ∈ Ω
M

and y∗ = {yn}∞n=1 ∈ Ω
M

. This is well defined and an
extension of dM .

preserveLength Remark 9.2. Clearly, dM is a metric on Ω. When x, y ∈ Ω, we have dM (x, y) ≥
d(x, y). Observe that if B(x, r) ⊂ Ω, then by the L-quasiconvexity of X, we have for
all y ∈ B(x, r/L) that dM (x, y) ≤ Ld(x, y). Thus, dM and d are locally biLipschitz
equivalent in Ω and define the same topology inside Ω.

By Remark 9.2, every point in Ω can be identified with exactly one equivalence
class of dM -Cauchy sequences in Ω. This is, of course, not true on the boundary of
Ω in general.
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lem-M-bdry-to-bdry Lemma 9.3. There is a continuous map Ψ : ∂MΩ→ ∂Ω.
In fact, there is a continuous map Ψ : Ω

M → Ω such that Ψ|Ω is the identity
map and Ψ|∂M Ω : ∂MΩ→ ∂Ω.

This mapping need not be surjective nor injective in general, as demonstrated
by the topologist’s comb considered in Example 5.1 and the slit disc considered in
Example 5.2, respectively.

Proof. Let {xn}∞n=1 be a dM -Cauchy sequence in Ω representing a point in Ω
M

.
Since d(xi, xj) ≤ dM (xi, xj), it follows that {xn}∞n=1 is a Cauchy sequence in the
given metric d [9.1: We say given metric here as in our other papers. /A]
as well, and so by the completeness of X, we can set

Ψ ({xn}∞n=1) := lim
n→∞

xn ∈ Ω.

The map Ψ is well defined, since every sequence representing the same point in Ω
M

converges to the same limit in the given metric d.
To prove the continuity of Ψ, consider {xn}∞n=1, {yn}∞n=1 ∈ Ω

M
and let x =

Ψ ({xn}∞n=1) and y = Ψ ({yn}∞n=1). Then by definition we have that

dM ({xn}∞n=1, {yn}∞n=1) = lim
n→∞

dM (xn, yn) ≥ lim
n→∞

d(xn, yn) = d(x, y).

Therefore d(Ψ({xn}∞n=1),Ψ({yn}∞n=1)) ≤ dM ({xn}∞n=1, {yn}∞n=1), that is, Ψ is 1-
Lipschitz continuous.

Next, we show that under rather general assumptions, the prime end boundary
and the Mazurkiewicz boundary coincide. Recall Remark 7.3. [9.2: Should the
last sentence be deleted? It doesn’t make sense to me to have it here.
/A]

thm-homeo-primeends Theorem 9.4. Assume that every prime end in Ω has a singleton impression.
Then there is a homeomorphism Φ : ∂PΩ→ ∂MΩ.

This is a special case of the following result.

thm-homeo-primeends-2 Theorem 9.5. Let ∂SPΩ be the set of all singleton ends (which are automatically
prime ends by Proposition 7.1).

Then there is a homeomorphism Φ : Ω ∪ ∂SPΩ → Ω
M

such that Φ|Ω is the
identity map and Φ|∂SPΩ : ∂SPΩ→ ∂MΩ.

Recall that by Proposition 7.2 an end [Ek] has a singleton impression if and only
if limk→∞ diamEk = 0. We will use this fact (implicitly) several times in the proof
below.

Proof. Step 1. Definition of Φ. Let [Ek] ∈ ∂SPΩ. For each k choose xk ∈ Ek. Then
for l ≥ k we have that xk, xl ∈ Ek and as Ek is connected, this implies that

dM (xk, xl) ≤ diamEk → 0, as k →∞.

Thus, {xk}∞k=1 is a dM -Cauchy sequence and corresponds to a point y ∈ Ω
M

. If y
belonged to Ω, then we would have y ∈

⋂∞
k=1Ek = I[Ek], which is a contradiction.

Thus y ∈ ∂MΩ, and we define
Φ([Ek]) = y.

For x ∈ Ω we, of course, define Φ(x) = x.
Step 2. Φ is well defined. [9.3: This step had two parts. However, the

first was a special case of the second, hence I deleted it. Ok? /A] To see



22 Tomasz Adamowicz, Anders Björn, Jana Björn and Nageswari Shanmugalingam

LATEXed November 10, 2011 14:43

this, we assume that {Ek}∞k=1 ∼ {E′k}∞k=1 are equivalent chains and let xk ∈ Ek and
x′k ∈ E′k, k = 1, 2, . . . . Then for every k, there exists lk such that Elk ⊂ E′k. Hence
for all j ≥ k and l ≥ lk, we have that xl ∈ El ⊂ Elk ⊂ E′k and x′j ∈ E′j ⊂ E′k. Thus

dM (xl, x′j) ≤ diamE′k → 0, as k →∞,

and it follows that {xk}∞k=1 and {x′k}∞k=1 are equivalent as dM -Cauchy sequences.
Hence Φ is well-defined.

Step 3. Φ is surjective. Let {xn}∞n=1 be a dM -Cauchy sequence in Ω, corre-
sponding to a point in ∂MΩ. We can assume that for all j, k ≥ n,

d(xj , xk) ≤ dM (xj , xk) < 2−n−1. (9.1) eq-surjective

It follows that {xn}∞n=1 is a d-Cauchy sequence and converges to some x ∈ ∂Ω.
Moreover,

d(xk, x) ≤ 2−k−1. (9.2) eq-x_k-x

For each k = 1, 2, . . . , let Ek be the connected component of Ω∩B(x, 2−k) containing
xk. Then for all j ≥ k, (9.1) implies that there exists a connected set F ⊂ Ω such
that xj , xk ∈ F and diamF < 2−k−1. Using (9.2), it follows that F ⊂ Ω∩B(x, 2−k)
and as F is connected and xk ∈ Ek, we obtain that F ⊂ Ek and xj ∈ Ek for all
j ≥ k. Letting j →∞ shows that x ∈ Ek for k = 1, 2, . . ..

This also shows that xk+1 ∈ Ek and as Ek+1 is connected, we obtain that
Ek+1 ⊂ Ek for all k.

Since Ω ∩ ∂Ek ⊂ ∂B(x, 2−k), we obtain that

dist(Ω ∩ ∂Ek+1,Ω ∩ ∂Ek) ≥ 2−k−1 > 0.

By construction we know that diamEk → 0, and hence {Ek}∞k=1 is a chain with
impression {x}. By Proposition 7.1, [Ek] is a prime end. Moreover, Φ([Ek]) =
{xn}∞n=1. Thus Φ is surjective. (That Φ|Ω is bijective is clear.)

Step 4. Φ is injective. Let [Ek] and [Fk] be two distinct singleton prime ends.
So {Fk}∞k=1 does not divide {Ek}∞k=1. Hence, there exists k such that for each l
we can find a point yl ∈ Fl \ Ek. We need to show that {yl}∞l=1 is not equivalent
to any sequence representing Φ([Ek]). Let xn ∈ En for each n, and assume that
{xn}∞n=1 ∼ {yl}∞l=1. Then for all sufficiently large n, l ≥ k + 1,

dM (xn, yl) < dist(Ω ∩ ∂Ek+1,Ω ∩ ∂Ek),

and so there exist connected sets Kn,l ⊂ Ω such that xn, yl ∈ Kn,l and

diamKn,l < dist(Ω ∩ ∂Ek+1,Ω ∩ ∂Ek).

As xn ∈ Ek+1 ⊂ Ek and yl ∈ Ω \ Ek ⊂ Ω \ Ek+1, the sets Kn,l must meet both
Ω ∩ ∂Ek+1 and Ω ∩ ∂Ek. Remark 7.3 yields that

dist(Ω ∩ ∂Ek+1,Ω ∩ ∂Ek) ≤ diamKn,l < dist(Ω ∩ ∂Ek+1,Ω ∩ ∂Ek),

which is a contradiction. Thus {xn}∞n=1 and {yl}∞l=1 cannot be equivalent, and Φ is
injective.

Step 5. Φ is continuous. [9.4: Is it clear that continuity can be shown
by sequential continuity? Similarly for Φ−1. /A] As Φ|Ω is continuous, it is
enough to show that the image of every sequence with a limit in ∂SPΩ has the right
limit. There are two such types of sequences we need to consider.

Assume first that the sequence of singleton prime ends {[Enk ]}∞n=1 converges to
the singleton prime end [E∞k ]. This means that for each k there exists nk such that
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whenever n ≥ nk we can find ln,k ≥ k so that Enln,k
⊂ E∞k . Let Φ([Enk ]) = {xnk}∞k=1

and Φ([E∞k ]) = {x∞k }∞k=1.
If ε > 0, then there exists k such that diamE∞k < ε. Then for all m ≥ n ≥ nk

we have xmln,k
∈ Enln,k

⊂ E∞k and x∞ln,k
⊂ E∞ln,k

⊂ E∞k . Hence

dM (xmln,k
, x∞ln,k

) ≤ diamE∞k < ε.

This shows that {Φ([Enk ])}∞n=1 converges in dM to Φ([E∞k ]) as n→∞.
Assume next that Ω 3 yn → [Ek] ∈ ∂SPΩ, as n → ∞. Thus for each k there is

nk such that yn ∈ Ek if n ≥ nk. As Ek is connected we see that

dM (yl, ym) ≤ diamEk if l,m ≥ nk.

Since diamEk → 0, as k →∞, this shows that {yn}∞n=1 is a dM -Cauchy sequence.
Letting xk = ynk

shows that Φ([Ek]) = {xk}∞k=1 ∼ {yn}∞n=1, which is the limit of
{yn}∞n=1 in Ω

M
.

Thus we conclude that Φ is continuous.
Step 6. Φ−1 is continuous. As in Step 5 there are two types of sequence we need

to consider.
Assume first that the sequence of singleton prime ends {[Enk ]}∞n=1 does not con-

verge to the singleton prime end [E∞k ]. This means that there exists k and an
increasing sequence ni → ∞ (depending on k) such that for all i, l = 1, 2, . . . , we
have Eni

l 6⊂ E∞k . For l ≥ k + 1, choose xni

l ∈ E
ni

l \ E∞k and x∞l ∈ E∞l ⊂ E∞k+1.
Remark 7.3 implies that for all i = 1, 2, . . . and l ≥ k + 1,

δ := dist(Ω ∩ ∂Ek+1,Ω ∩ ∂Ek) ≤ dM (xni

l , x
∞
l ).

It follows that for all i = 1, 2, . . .,

dM (Φ([Eni

l ]),Φ([E∞l ])) ≥ δ > 0.

Thus, Φ([Eni

l ]) cannot converge to Φ([E∞l ]) as i → ∞, and hence the sequence
{Φ([Enk ])}∞n=1 does not converge to Φ([E∞k ]) either.

Assume next that {yn}∞n=1 is a sequence of points in Ω which does not converge
to the singleton prime end [E∞k ]. [9.5: Details need to be added. /A]

This shows that Φ−1 is continuous and so Φ is a homeomorphism.

10. Finitely connected domains
sect-finconn

In general not all prime ends have singleton impressions. In this and the next
section we explore conditions under which all prime ends have this property.

Here we present a condition which guarantees that all prime ends have singleton
impressions, and moreover is equivalent to compactness of the prime end closure
Ω
P

:= Ω ∪ ∂PΩ in this case, see Theorem 10.10. (See the topologist comb in
Example 5.1 for an example when Ω

P
is not compact. Observe that all the prime

ends have singleton impression in this case example.)

Definition 10.1. We say that Ω is finitely connected at x0 if for every r > 0 there
is an open set G (open in X) such that x0 ∈ G ⊂ B(x0, r) and G ∩ Ω has only
finitely many components.

The terminology above follows Näkki [48] who seems to have first used it in print
(for Rn). (Näkki [50] has informed us that he learned about the terminology from
Väisälä, who however first seems to have used it in print in [58].)
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Let us introduce some further notation. Fix x0 ∈ ∂Ω (we do not assume that
Ω is finitely connected yet). For each r > 0 let {Gj(r)}N(r)

j=1 be the components of
B(x0, r) ∩ Ω which have x0 in their boundary, i.e. x0 ∈ Gj(r). Here N(r) is either
a nonnegative integer or ∞. Let further

H(r) = (B(x0, r) ∩ Ω) \
N(r)⋃
j=1

Gj(r)

be the union of the remaining components (if any). (The sets Gj(r) and H(r) of
course depends on x0.)

[10.1: There was an example here with N(r) = 1 for all r, but still not
finitely connected, that I deleted. It fits more into mbdy. /A]

The following characterization of finite connectedness is useful.

prop1-fin Proposition 10.2. The set Ω is finitely connected at x0 if and only if for all r > 0,
N(r) <∞ and x0 /∈ H(r).

See Björn–Björn–Shanmugalingam [14] for a proof.

lem-ex-G-j Lemma 10.3. Assume that Ω is finitely connected at a boundary point x0. Let
[Ek] be an end with x0 ∈ I[Ek]. Then there exists a decreasing sequence of positive
numbers rk < 2−k such that for each k = 1, 2, . . . , there is a connected component
Gjk(rk) of B(x0, rk) satisfying x0 ∈ Gjk(rk) and Gjk(rk) ⊂ Ek.

Proof. As dist(Ω∩∂Ek,Ω∩∂Ek+1) > 0, at least one of the two distances dist(x0,Ω∩
∂Ek) > 0, dist(x0,Ω∩∂Ek+1) must be positive. If dist(x0,Ω∩∂Ek) > 0, then there
exists 0 < rk < 2−k such that rk < dist(x0,Ω ∩ ∂Ek). Consider the connected
components G1(rk), . . . , GN(rk)(rk) of B(x0, rk)∩Ω that have x0 in their boundary.
Let H(rk) = Ω ∩ B(x0, rk) \

⋃N(rk)
j=1 Gj(rk). As Ω is finitely connected at x0,

Lemma 10.2 shows that x0 /∈ H(rk), so at least one of G1(rk), . . . , GN(rk)(rk) has
a nonempty intersection with Ek, say G1(rk). Since G1(rk) is connected and rk <
dist(x0,Ω ∩ ∂Ek), we must have G1(rk) ⊂ Ek.

If instead dist(x0,Ω ∩ ∂Ek+1) > 0, then we find in the same way G1(rk+1) ⊂
Ek+1 ⊂ Ek and let rk = rk+1.

By constructing the above sequence of positive numbers rk inductively, we can
also ensure that the sequence is a decreasing sequence.

prop-ex-chain Proposition 10.4. Assume that Ω is finitely connected at x0. Let [Ek] be an end
with x0 ∈ I[Ek]. Then there is a sequence of positive numbers rk that decreases
to 0, and a prime end [Fk] which divides [Ek], such that Fk = Gjk(rk) for some
1 ≤ jk ≤ N(rk), and I[Fk] = {x0}.

If moreover [Ek] is a prime end, then [Ek] = [Fk] and I[Ek] = {x0}

[10.2: The proof below needs to be rewritten, who wrote it? It is
said that the metric is on the tree, but it is defined for curves on the
tree. Moreover, which curves are considered is not specified, I guess
curves going down the tree. Also no motivation for why the completion
is compact is given. /A]

Proof. Let the decreasing sequence of positive numbers rk be as in Lemma 10.3, and
T be the tree whose vertices are the components Gj(rk) provided by Lemma 10.3.
Two vertices in this tree are connected by an edge if and only if the two vertices
are Gj(rk) and Gm(rk+1) for some k ∈ N and 1 ≤ j ≤ N(rk), 1 ≤ m ≤ N(rk+1)
and Gm(rk+1) ⊂ Gj(rk).
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We introduce a metric on the tree T by t(p, q) = 2−n, where n is the level where
the curves p and q branch, i.e. they have a common ancestor Gj(rn) but belong to
different branches corresponding to Gm(rn+1) and Gj(rn+1). This is a metric on T
that turns T into a bounded metric space whose completion is compact.

For each positive integer k, let Pk be the collection of all vertices on geodesic
curves in T which pass through the vertex corresponding to the component Gj(rk) ⊂
Ek. By Lemma 10.3, each Pk is nonempty. Clearly, Pk ⊃ Pk+1 and each Pk is
closed in the above metric. It follows that there exists a curve p ∈

⋂∞
k=1 Pk. The

vertices of this curve p correspond to a chain {Gjk(rk)}∞k=1, and by Lemma 10.3 it
divides [Ek]. Since diamGjk(rk) ≤ 2rk ≤ 21−k, the obtained end is a prime end by
Proposition 7.1.

If [Ek] is a prime end, then we must have [Ek] = [Fk] and thus I[Ek] = {x0}.

Definition 10.5. If Ω is finitely connected at x0 ∈ ∂Ω and N(r) = 1 for all suffi-
ciently small r in the definition of finite connectedness, then Ω is locally connected
at x0. If Ω is finitely (or locally) connected at every boundary point, then it is
called finitely (or locally) connected at the boundary.

The following results are direct consequences of Proposition 10.4.

Corollary 10.6. If Ω is finitely connected at x0 ∈ ∂Ω, then there exists a prime end
[Fk] with I[Fk] = {x0}. Furthermore, if [Ek] is a prime end such that x0 ∈ I[Ek]
then I[Ek] = {x0}.

[10.3: I don’t see how the existence is a direct consequence. However
it may follow from the proof when it has been clarified. /A]

Corollary 10.7. If Ω is locally connected at the boundary and [Ek] is a prime end
in Ω, then I[Ek] = {x} for some x ∈ ∂Ω and there exist radii rxk > 0, such that

B(x, rxk) ∩ Ω ⊂ Ek, k = 1, 2, . . . .

thm-fin-con-homeo Theorem 10.8. If Ω is finitely connected at the boundary, then there is a homeo-
morphism Φ : Ω

P → Ω
M

such that Φ|Ω is the identity map. Furthermore, if

1 ≤ p ∈ Q(∂Ω) := {q : q ∈ Q(x) for all x ∈ ∂Ω},

then ∂PΩ is also the Modp-prime end boundary.

[10.4: I defined Q(∂Ω) above. This should maybe be defined earlier.
/A]

Proof. This first part follows immediately from Theorem 9.5 and Proposition 10.4,
while the last part follows from Proposition 7.4.

metric-lemma-5-12 Corollary 10.9. If Ω is finitely connected at the boundary, then the prime end
closure Ω

P
is metrizable with metric mP defined as follows. If y, z ∈ Ω

P
, then

mP (y, z) := dM (Φ(y),Φ(z)).

The topology on Ω
P

given by this metric is equivalent to the topology given by the
sequential convergence discussed in Section 8.

[10.5: The following is a more general result than before, taking into
account the new discussion of ∂SPΩ. /A]

thm-clOmm-cpt-new Theorem 10.10. The following are equivalent :
i3-fin (a) Ω is finitely connected at the boundary ;
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i3-P (b) Ω
P

is compact and all prime ends have singleton impressions;
i3-SP (c) Ω ∪ ∂SPΩ is compact ;
i3-m (d) Ω

M
is compact.

Proof. (a) ⇔ (d) This is shown in Björn–Björn–Shanmugalingam [14].
(c) ⇔ (d) This follows directly from Theorem 9.5.
(a)⇒ (b) By Proposition 10.4 all prime ends have singleton impressions. Hence

Ω
P

= Ω ∪ ∂SPΩ, which is compact by the already shown implication (a) ⇒ (c).
(b) ⇒ (c) Since all prime ends have singleton impressions, we have that Ω ∪

∂SPΩ = Ω
P

, which is compact by assumption.

We say that Ω is N -connected at a point x0 ∈ ∂Ω if Ω is finitely connected
at x0 and for sufficiently small r > 0 we have N(r) = N , see also Björn–Björn–
Shanmugalingam [14].

lem-N-conn Lemma 10.11. Assume that Ω is N -connected at x0 ∈ ∂Ω. Then there are exactly
N distinct prime ends, [E1

k], . . . , [ENk ] with impression {x0}. Furthermore, there
are no other prime ends with x0 in their impressions.

This follows from Theorem 9.5 together with a result in Björn–Björn–Shanmugalingam [14],
but let us give a more direct proof.

Proof. Without loss of generality assume that N(1) = N . Then for positive integers
k we consider Gj(1/k), the connected components of B(x0, 1/k) ∩ Ω that have x0

in their boundaries, for j = 1, . . . , N . We can label them in such a way that for
j = 1, . . . , N we have Gj(1/m) ⊂ Gj(1/k) if m ≥ k. It can be directly checked that
the choice of Ejk = Gj(1/k) for j = 1, . . . , N and for positive integers k gives us
ends [Ejk] with impression {x0} for j = 1, . . . , N . If j1 6= j2, then for every choice of
positive integers k1, k2 we have Ej1k1 ∩ E

j2
k2

= ∅. Thus the ends [Ejk], j = 1, . . . , N ,
are pairwise distinct, neither dividing the other. By Proposition 7.1, these ends are
prime ends.

[10.6: I added the following part of the proof which was entirely
missing. /A]

It remains to show that there are no more prime ends with x0 in the impression.
Let [Ek] be a prime end with x0 ∈ I[Ek]. By Proposition 10.4, there is a sequence
of positive numbers rk that decreases to 0, and a singleton prime end [Fk] which
divides [Ek], such that Fk = Gjk(rk) for some 1 ≤ jk ≤ N(rk) = N . As Gjk(rk) =
Fk ⊂ F1 = Gj1(r1) we must have jk = j1. Hence [Fk] = [Ej1k ]. Since [Ek] is a prime
end we must have [Ek] = [Ej1k ] showing that there are no more prime ends.

cor-Upsilon Corollary 10.12. If Ω is locally connected at the boundary, then there is a home-
omorphism Υ : Ω

P → Ω such that Υ|Ω is the identity map.

Proof. Let Ψ : Ω
M → Ω be the continuous mapping defined in Lemma 9.3. By

Lemma 10.11, Ψ is bijective. [10.7: Show that Ψ−1 is continuous. /A]
Letting Υ = Ψ ◦ Φ, where Φ is from Theorem 10.8, and using Theorem 10.8

completes the proof.

In Karmazin [34] another definition of prime ends is considered using curves in
the domain Ω that accumulate towards some part of ∂Ω; see also Suvorov [57]. Us-
ing such curves, they construct a chain of sets (not quite [10.8: What does “not
quite” mean? /A] similar to our acceptable sets), and give a characterization (in
terms of the Mazurkiewicz metric) of the curve for which the corresponding chain
gives a prime end. We point out that their construction is for simply connected Eu-
clidean domains, and hence are different from our construction of ends and prime
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ends. In their investigations ends play a crucial role in analysis of various compact-
ifications, quasiconformal extension problem as well as in boundary behaviour of
quasiregular mappings.

11. John and uniform domains
Johnsect-John

In this section δΩ(x) stands for the distance of the point x ∈ Ω to X \Ω with respect
to the given metric d.

Definition 11.1. A domain Ω ⊂ X is a John domain if there is a constant CΩ > 0,
called a John constant, and a point x0 ∈ Ω, called a John centre, such that for every
x ∈ Ω there exists a rectifiable curve γ : [0, l(γ)]→ Ω parameterized by arc length,
such that x = γ(0), x0 = γ(l(γ)) and for every t ∈ [0, l(γ)], we have

t ≤ CΩδΩ(γ(t)). (11.1) eq-def-John

A domain Ω ⊂ X is a uniform domain if there is a constant C > 0, called
a uniform constant, such that whenever x, y ∈ Ω there is a rectifiable curve γ :
[0, l(γ)] → Ω, parameterized by arc length, connecting x to y and satisfying the
following two conditions:

l(γ) ≤ Cd(x, y),

and for all points z in the trajectory of γ,

min{l(γx,z), l(γy,z)} ≤ CδΩ(z).

Here γx,z denotes the subcurve of γ with end points x and z.

Observe that uniform domains are necessarily John domains.
In this section we will show that under some assumptions all Modp-ends are

prime ends. Let us however first draw some consequences of the results in the
previous section.

thm-John-Ncon Theorem 11.2. Let Ω be a John domain. Then there is a constant N depending
only on the doubling constant Cµ and the John constant, such that Ω is at most
N -connected at every boundary point.

This follows from Lemma 4.3 in Aikawa–Shanmugalingam [4].

Corollary 11.3. Let Ω be a John domain. Then the following are true:
(a) Every prime end has a singleton impression.
(b) There is a homeomorphism Φ : Ω

P → Ω
M

such that Φ|Ω is the identity map.
(c) If

1 ≤ p ∈ Q(∂Ω) := {q : q ∈ Q(x) for all x ∈ ∂Ω},

then ∂PΩ is also the Modp-prime end boundary.
(d) The prime end closure Ω

P
is metrizable and compact.

(e) There is a positive integer N , depending only on the doubling constant Cµ and
the John constant, such that for every x ∈ ∂Ω there are at most N prime ends
of Ω that contain x in their impressions.

This corollary follows directly from Theorem 11.2 together with the results from
Section 10. Let us also point out the following special case of Corollary 10.12.

cor-John+loc-conn Corollary 11.4. Let Ω be a John domain, which is locally connected at the bound-
ary. Then there is a homeomorphism Υ : Ω

P → Ω such that Υ|Ω is the identity
map.

In particular, this holds for every uniform domain Ω.
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[11.1: Why are uniform domains locally connected at the boundary?
Provide reference? /A]

Note that there are plenty of John domains which are locally connected at the
boundary, but which are not uniform.

Example 11.5. Let Ω be the inward cusp domain in R2. Clearly, Ω is a John
domain, but not uniform. However, it satisfies the hypotheses of Corollary 11.4.

Example 11.6. Let Ω be the unit disc in R2 from which the closed discs B(xj , rj)
with xj = (1− 1/j, 0) and rj = 1/2j(j + 1), j = 1, 2, . . . , have been removed.

Then the distance between two consecutive balls is 1/j(j+1)(j+2), showing that
any curve in Ω connecting the north and the south pole of some Bj has distance to
R2 \Ω comparable to 1/j(j+ 1)(j+ 2), while its length is comparable to 1/j(j+ 1).

We are now ready to formulate and prove one of our main results.

thm-b-John-cor Theorem 11.7. If Ω is a John domain and p > Q− 1, then every Modp-end is a
prime end with singleton impression.

Note that the conclusion of the above theorem fails if [Ek] is merely known to be
an end. Furthermore, this theorem does not tell us that singleton Modp-ends exist,
but as we will see later, if in addition 1 ≤ p ∈ Q(∂Ω), then singleton Modp-ends
exist for every x ∈ ∂Ω.

[11.2: I still need to go through everything from here on. /A]
For this we need the following lemma about chains of balls in John domains.

lem-John-chain Lemma 11.8. Let Ω be a John domain with a John centre x0 and a John constant
CΩ. Let ρ0 ≤ δΩ(x0)/4λ and A = CΩδΩ(x0)/ρ0 ≥ 4CΩλ. Then every x ∈ Ω can be
connected to the ball B0,0 := B(x0, ρ0) by a chain of balls {Bi,j : i = 0, 1, . . . ; j =
0, 1, . . . ,mi} satisfying the conditions (a)–(e) of Lemma A.4 with M = 2A.

Proof. Let γ be a John curve connecting x to x0 in Ω. Assume that γ is parame-
terized by its arc length and that γ(0) = x and γ(L) = x0, where L = l(γ) is the
length of γ. Choose ix ∈ N such that 4λCΩρix ≤ δΩ(x)/2. Recall that ρix = 2−ixρ0.

The first ball B0,0 = B(x0, ρ0) in the chain clearly satisfies 4λB0,0 ⊂ Ω. Also,
by (11.1),

d(x0, x) ≤ L ≤ CΩδΩ(x0) = Aρ0.

Assume that the ball Bi,j has already been constructed and that it satisfies (a).
Let

c = inf{t ∈ [0, L] : γ(t) ∈ Bi,j}.

Assume first that i < ix. If c ≥ 4λCΩρi, then let Bi,j+1 = B(xi,j+1, ρi) with
xi,j+1 = γ(c) be the successor of Bi,j . Note that by construction and by (11.1),

4λCΩρi ≤ c ≤ CΩδΩ(xi,j+1), (11.2) eq-de-Om-j

i.e. 4λBi,j+1 ⊂ Ω.
If c < 4λCΩρi, then let mi = j and let Bi+1,0 = B(xi+1,0, ρi+1) with xi+1,0 =

γ(c) be the successor of Bi,j . Note that (11.2) implies

δΩ(xi+1,0) ≥ δΩ(xi,mi)− ρi ≥ 4λρi − ρi ≥ 4λρi+1

and hence 4λBi+1,0 ⊂ Ω.
For i = ix and c > 0, let Bix,j+1 = B(xix,j+1, ρix) with xix,j+1 = γ(c) be the

successor of Bix,j . Note that if c ≥ 4λCΩρix , then (11.2) implies that 4λBix,j+1 ⊂ Ω.
On the other hand, if 0 < c < 4λCΩρix , then the same conclusion follows from the
fact that

d(xix,j+1, x) ≤ c < 4λCΩρix ≤
1
2
δΩ(x)



LATEXed November 10, 2011 14:43

Prime ends on metric spaces 29

and hence

δΩ(xix,j+1) ≥ δΩ(x)− d(xix,j+1, x) ≥ 1
2
δΩ(x) ≥ 4λρix .

If i = ix and c = 0 or if i > ix, then let Bi+1,0 = B(x, ρi+1) be the successor of
Bi,j . Then clearly

4λρi ≤ 4λρix ≤
1
2
δΩ(x)

and thus 4λBi+1,0 ⊂ Ω.
The balls {Bi,j : i = 0, 1, . . . ; j = 0, 1, . . . ,mi} cover γ in the direction from

x0 to x and neighbouring balls always have nonempty intersection. Thus, (e) is
satisfied. Also, (a) is satisfied by construction and the comments above.

As for the other properties, note first that if i > ix, then there is only one ball
with radius ρi and that ball is centred at x. This proves (d), so it remains to prove
(b) and (c).

For i = 0 and all j ≤ m0 we have that

0 ≤ d(x0,j , x) ≤ c < L− jρ0 ≤ CΩδΩ(x0)− jρ0 = (A− j)ρ0,

showing that m0 ≤ A and d(x0,j , x) ≤ Aρ0.
Similarly, for 0 < i ≤ ix we have by construction that

0 ≤ d(xi,j , x) ≤ c < 4λCΩρi−1 − jρi = (8λCΩ − j)ρi

and hence j < 8λCΩ ≤ 2A. This also shows that d(xi,j , x) < 2Aρi.
For i > i0, (b)–(d) are obvious.

cor-John-H<Mod Corollary 11.9. Let Ω be a John domain with a John centre x0 and a John con-
stant CΩ. Let ρ0 ≤ δΩ(x0)/4λ and B = B(x0, ρ0). If p > Q− 1, then there exists a
constant C > 0 depending only on CΩ, B, p, the doubling constant and the constants
in the p-Poincaré inequality, such that for all E ⊂ Ω \B,

H∞1 (E) ≤ C Modp(E,B(x0, r),Ω).

Proof. This follows directly from Lemmas A.4 and 11.8.

Proof of Theorem 11.7. As each Ek, k = 1, 2, . . . , is a connected set, Corollary 11.9
and Definition 4.2 then imply

diam(Ek) ≤ H∞1 (Ek) ≤ C Modp(Ek, B,Ω)→ 0 as k →∞,

where the ball B is as in Corollary 11.9. Proposition 7.1 then shows that [Ek] is a
prime end.

The conclusion of Theorem 11.7 holds for somewhat more general domains as
well.

thm-singleton-gen Theorem 11.10. Let p > Q − 1. Assume that for all 0 < r < diam(Ω), there
exists a closed set F ⊂ Ω such that H∞1 (F ) ≤ r and Ω \ F is a John domain, with
a John constant depending on r. Then every Modp-end [Ek] in Ω has a singleton
impression and is a prime end and, if in addition max{1, Q − 1} ≤ p ∈ Q(x), a
Modp-prime end.

Proof. Let 0 < r < diam Ω and F be the set associated with r as in the assumption
of the theorem. Given an end (Ek) of Ω, let E′k = Ek \ F and Ω′ = Ω \ F . Let x0
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be the John centre of Ω′ and B = B(x0, ρ) b Ω′. Every curve connecting B to E′k
in Ω′ connects B to Ek ⊃ E′k in Ω and hence

Modp(B,E′k,Ω
′) ≤ Modp(B,Ek,Ω).

As Ω′ is a John domain, this together with Corollary 11.9 implies that

H∞1 (E′k) ≤ C Modp(B,E′k,Ω
′) ≤ C Modp(B,Ek,Ω),

where C depends on r but not on Ek. Since Ek is connected, it follows that

diamEk ≤ H∞1 (Ek) ≤ H∞1 (F ) +H∞1 (E′k) ≤ r + C Modp(B,Ek,Ω).

Since [Ek] is an end, limk Modp(B,Ek,Ω) = 0. Hence, we have

lim sup
k→∞

diamEk ≤ r.

Letting r → 0 shows that limk diamEk = 0, and an application of Proposition 7.1
completes the proof.

The following lemma is a consequence of Lemma 7.6 and Theorem 11.10.

Lemma 11.11. Under the assumptions of Theorem 11.10, every prime end is a
Modp-prime end and has a singleton impression.

Our final result relates prime ends to the Mazurkiewicz boundary from Sec-
tion 9. The conclusion about metrizability and compactness will be important in
our forthcoming paper on Dirichlet problems with respect to prime end boundaries.

Theorem 11.12. Let Ω be a John domain. If max{1, Q − 1} ≤ p ∈ Q(∂Ω), then
the Modp-end boundary and the prime end boundary coincide.

Proof. [11.3: Give proof or reference to above. /A]

Appendix A. Modulus and capacity estimates
appendix

In this section, we will provide several estimates for the modulus and capacity
needed in our study of prime ends. While the proofs of these results are note directly
pertinent to the discussion on prime ends developed in this paper, we include them
here for completeness, since these results do not appear elsewhere in literature.

[A.1: I moved this lemma here. /A]

MP Lemma A.1. For any choice of disjoint sets E,F ⊂ Ω we have

Modp(E,F,Ω) = capp(E,F,Ω), (A.1) eq-capp=modp

where capp(E,F,Ω) is the relative p-capacity of the condenser (E,F,Ω) defined by

capp(E,F,Ω) := inf
u

∫
Ω

gpu dµ,

with the infimum taken over all u ∈ N1,p(Ω) satisfying 0 ≤ u ≤ 1 on Ω, u = 1 on
E, and u = 0 on F .

If, moreover, X is quasiconvex then the infimum in the definition of capp can
equivalently be taken over continuous u ∈ N1,p(Ω) alone. [A.2: I think it is
necessary to have E and F closed for this to be true. /A]
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Proof. To see the validity of (A.1), note that clearly by (2.4) and the fact that for
u ∈ N1,p(Ω) there are upper gradients gj → gu in Lp(Ω), we have capp(E,F,Ω) ≥
Modp(E,F,Ω). On the other hand, if ρ is an admissible function used for computing
Modp(E,F,Ω), then we define a function f on X by

f(x) = min

{
1, inf
γE,x

∫
γE,x

ρ ds

}
,

where we let ρ = 0 in X \ Ω and the infimum is taken over all rectifiable curves
connecting E to x (including constant ones). Observe that f = 0 on E, f = 1 on F
and ρ is an upper gradient of f , by Lemma 3.1 in Björn–Björn–Shanmugalingam [12]
(or Lemma 5.25 in Björn–Björn [10]). By Järvenpää–Järvenpää–Rogovin–Rogovin–
Shanmugalingam [32] the function f is measurable on X, and since |f | ≤ 1 it follows
that f ∈ N1,p(Ω) and

capp(E,F,Ω) ≤
∫

Ω

gpu dµ ≤
∫

Ω

ρp dµ.

Hence, by taking infimum over all such ρ we get that

capp(E,F,Ω) ≤ Modp(E,F,Ω).

lem-cap-0-mod-0 Lemma A.2. Let x ∈ Ω. If 1 ≤ p ∈ Q(x), then for every compact K ⊂ Ω \ {x},

lim
r→0

Modp(B(x, r),K,Ω) = 0.

[A.3: I think we need this for x ∈ ∂Ω in the proof of Proposition 7.4,
in which case the proof at least needs to be rewritten. I don’t know if
we also need it for x ∈ Ω. /A]

Proof. Let ρ > 0 be such that B(x, 2ρ) ⊂ Ω \K and ε > 0 be arbitrary. As 1 ≤ p ∈
Q(x), Theorems 3.2 and 3.3 in Garofalo–Marola [22] imply that capp({x}, B) = 0
for every ball B containing x.

Since capp is an outer capacity, by e.g. Theorem 6.16 in Björn–Björn [10], there
exists 0 < r < δ such that capp(B(x, r), B) < ε. This means that there exists
u ∈ N1,p

0 (B) such that u = 1 on B(x, r), 0 ≤ u ≤ 1, and
∫
B
gpu dµ < ε, where gu is

the minimal p-weak upper gradient of u.
Let η(y) = (1 − dist(y,B(x, ρ))/ρ)+. Then v = uη ∈ N1,p

0 (B(x, 2ρ)) and v = 1
on B(x, r). It follows that for a.e. curve γ in Ω with endpoints y ∈ B(x, r) and
z ∈ K,

1 = |u(y)− u(z)| ≤
∫
γ

gv ds.

Hence Modp(B(x, r),K,Ω) ≤
∫
X
gpv dµ.

Since gv ≤ ηgu + gη the Poincaré inequality for N1,p
0 -functions then yields∫

X

gpv dµ ≤ 2p−1

∫
B

gpu dµ+
2p−1

δp

∫
B

up dµ ≤ C(δ,B)
∫
B

gpu dµ ≤ C(δ,B)ε.

Since ε was arbitrary, this finishes the proof.

lem-mod>0 Lemma A.3. Let E,F ⊂ Ω be disjoint and with nonempty interiors. Then

Modp(E,F,Ω) = capp(E,F,Ω) > 0.
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Proof. By (A.1), it is enough to show that∫
Ω

gpu dµ ≥ c > 0

for every u ∈ N1,p(Ω) such that u = 1 on E and u = 0 on F . Note that if there are
no admissible functions u, then theorem trivially holds since then both quantities
under study are infinite, and hence equal.

Let x and y be points in the interiors of E and F , respectively, and let γ :
[0, lγ ] → Ω be a rectifiable curve connecting x to y. Let 0 < r < dist(γ,X \ Ω)
be such that both B(x, r) ⊂ E and B(y, r) ⊂ F . Cover γ by balls Bj = B(xj , r),
j = 0, 1, . . . , n, such that B0 = B(x, r), Bn = B(y, r) and Bj ∩ Bj+1 is nonempty,
j = 0, 1, . . . , n− 1.

Then Bj+1 ⊂ 2Bj ⊂ 3Bj+1, j = 0, 1, . . . , n− 1 and hence

|uBj − uBj+1 | ≤ |uBj − u2Bj |+ |uBj+1 − u2Bj | ≤ C
∫

2Bj

|u− u2Bj |.

The p-Poincaré inequality and Lemma 2.1 then yield

1 = |uB0 − uBn | ≤
n−1∑
j=0

|uBj − uBj+1 | ≤ C
n−1∑
j=0

∫
2Bj

|u− u2Bj |

≤ C
n−1∑
j=0

r

(∫
2λBi

gpu

)1/p

≤ Crn

µ(B0)

(∫
Ω

gpu

)1/p

,

where C is independent of u. Taking infimum over all admissible functions u yields
the desired result.

Next, we shall relate the modulus to the Hausdorff content.
Recall that the s-dimensional Hausdorff content Hs∞(E) of a set E ⊂ X is the

number

Hs∞(E) := inf
{ ∞∑
j=1

rsi : E ⊂
∞⋃
j=1

B(xi, ri)
}
.

lem-chain-imp-length-est Lemma A.4. Let E ⊂ Ω and B(x0, r) ⊂ Ω\E. Assume that there exists a constant
M > 0 such that for every x ∈ E there exists 0 < ρ0 ≤ r such that x can be connected
to the ball B0,0 = B(x0, ρ0) by a chain of balls {Bi,j : i = 0, 1, . . . ; j = 0, 1, . . . ,mi}
with the following properties:

first (a) For all balls B in the chain, we have 3λB ⊂ Ω.
second (b) For all i and j, the ball Bi,j has radius ρi = 2−iρ0 and centre xi,j such that

d(xi,j , x) ≤Mρi.
third (c) For all i, we have mi ≤M .
fourth (d) For large i, we have mi = 0 and the balls Bi,0 are centred at x.
last (e) The balls Bi,j are ordered lexicographically, i.e. Bi,j comes before Bi′,j′ if and

only if i < i′ or i = i′ and j < j′. If Bi,j and Bi′,j′ are two neighbours with
respect to this ordering, then Bi,j ∩Bi′,j′ is nonempty.

Let s > 0 and p > Q− s. Then there exists a constant C depending only on M , p,
s, Q, r, the doubling constant Cd and on the constants in the Poincaré inequality
such that

Hs∞(E) ≤ C capp(E,B(x0, r),Ω) = C Modp(E,B(x0, r),Ω).

Proof. By (A.1) and the comment after it, we can test capp(E,B(x0, r),Ω) by
continuous functions. Let therefore u ∈ N1,p(Ω) be continuous and such that u = 0
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on B(x0, r) and u = 1 on E. Consider x ∈ E and let Cx = {Bi,j : i = 0, 1, . . . ; j =
0, 1, . . . ,mi} be the corresponding chain. For each ball B in the chain let B∗ be its
immediate successor. Since B ∩B∗ is nonempty, we have B∗ ⊂ 3B. Note also that
properties (b) and (c) above imply that for all i = 0, 1, . . . and j = 0, 1, . . . ,mi, we
have

Bi,j ⊂ (M + 1)B(x, ρi) ⊂ (M + 1)B(x, ρ0) ⊂ (2M + 1)B0,0. (A.2) eq-Bij-subset-Boo

Since x is a Lebesgue point of u, a telescopic argument together with assumption (d)
implies

1 = |u(x)− uB0,0 | = lim
i→∞

|uBi,0 − uB0,0 |

≤
∑
B∈Cx

|uB − uB∗ | ≤
∑
B∈Cx

(|uB − u3B |+ |uB∗ − u3B |). (A.3) eq-telescopic

Lemma 2.1 and the p-Poincaré inequality yield

|uB∗ − u3B | ≤ C
∫

3B

|u− u3B | dµ ≤ Cr(B)
(∫

3λB

gpu dµ

)1/p

,

where r(B) is the radius of the ball B. The difference |uB − u3B | is estimated
similarly and inserting both estimates into (A.3) together with (2.1) and (A.2)
implies

1 ≤ C
∑
B∈Cx

r(B)
µ(3λB)1/p

(∫
3λB

gpu dµ

)1/p

≤ Cρ
Q
p

0

µ(B0,0)1/p

∑
B∈Cx

r(B)1−Q/p
(∫

3λB

gpu dµ

)1/p

,

where C depends only on M , p, Q, the doubling constant Cd and on the constants
in the Poincaré inequality.

Since p > Q− s, we have p−Q+ s > 0 and hence

1 = C

∞∑
i=1

2−i(p−Q+s)/p ≥ C

M

∑
B∈Cx

(
r(B)
ρ0

)(p−Q+s)/p

,

where C depends only on p and Q. Comparing the last two estimates we see that
there exists a ball Bx ∈ Cx such that(

r(Bx)
r

)(p−Q+s)/p

≤
(
r(Bx)
ρ0

)(p−Q+s)/p

≤ Cr
Q
p

µ(B0,0)1/p
r(Bx)1−Q/p

(∫
3λBx

gpu dµ

)1/p

,

where C depends on the same constants as before, but not on u or x.
Repeating this argument for every x ∈ E, we obtain balls Bx, x ∈ E, such that

r(Bx)s ≤ Crp+s

µ(B0,0)

∫
3λBx

gpu dµ.

The balls {3λBx}x∈E cover E and hence the 5-covering lemma allows us to choose
pairwise disjoint balls 3λBxi , i = 1, 2 . . . , so that E ⊂

⋃∞
i=1 15λBxi . Thus we get

Hs∞(F ) ≤
∞∑
i=1

r(15λBxi
)s = 15sλs

∞∑
i=1

r(Bxi
)s

≤ Crp+s

µ(B0,0)

∞∑
i=1

∫
3λBx

gpu dµ ≤
Crp+s

µ(B0,0)

∫
Ω

gpu.
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Taking infimum over all admissible functions u finishes the proof.

lem-ex-chain Lemma A.5. Let F b Ω and B = B(x0, r) b Ω \ F . Then there exists 0 < ρ0 < r
such that every x ∈ F can be connected to the ball B0,0 = B(x0, ρ0) by a chain Cx
satisfying the conditions (a)–(e) of Lemma A.4.

Proof. Since Ω is connected, there exists 0 < ε < r such that both B and F belong
to the same connected component of

Ωε := {x ∈ Ω ∩B(x0, 1/ε) : dist(x,X \ Ω) > ε}.

Choose 0 < ρ0 ≤ ε/4λ and let Bi = B(xi, ρ0/2), i = 1, . . . , N, be a maximal
pairwise disjoint collection of balls with centres in Ωε. By the doubling property,
there are only finitely many such balls and their number N depends only on ε, ρ0

and the doubling constant. The balls 2Bi, i = 1, 2, . . . , N, cover Ωε and 4λBi ⊂ Ω
for all i = 1, 2, . . . , N.

Let x ∈ F be arbitrary. By connectedness, there exists a curve in Ωε from x0 to
x. We can therefore from 2Bi, i = 1, 2, . . . , N, choose a chain of balls covering γ.
Number these balls in the direction from x0 to x and call them B0,j , j = 1, 2, . . . ,m0.
Clearly, m0 ≤ N and neighbouring balls in the chain have nonempty intersection.
Complete the chain by the balls Bi,0 = B(x, ρi), where ρi = 2−iρ0, i = 1, 2, . . . .

It remains to verify that the conditions (a)–(e) of Lemma A.4 are satisfied. The
only property that needs some justification is that d(xi,j , x) ≤ Mρi with M =
max{N, 2/ερ0}. For i ≥ 1, this is trivial and for i = 0 we have d(x0,j , x) ≤
diam Ωε ≤ 2/ε. The other properties follow by construction.

Remark A.6. The proof of Lemma A.5 shows that M = max{N, 2/ερ0}. It follows
that M (and hence also C in Lemma A.4) depends on dist(F,X \Ω). The estimate
in Lemma A.4 therefore does not apply if we only know that F ⊂ Ω. Indeed, in
the topologist’s comb from Example 5.1, the interval I ⊂ Ω is not accessible by
any curve and hence Modp(I,K,Ω) = 0 for all K b Ω. See, however, Lemma 11.8
below.

cor-modp-Q-1 Corollary A.7. Let F ⊂ Ω be a continuum and B = B(x0, r) b Ω\F . If p > Q−1,
then Modp(F,B,Ω) > 0.

Proof. Since F is a continuum, we have 0 < diamF ≤ H1
∞(F ) and the result follows

directly from Lemmas A.4 and A.5.
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