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Geometric Properties of Planar
BV -Extension Domains

Pekka Koskela, Michele Miranda Jr., and
Nageswari Shanmugalingam

Dedicated to Professor Vladimir G. Maz’ya

Abstract We investigate geometric properties of those planar domains that
are extension for functions with bounded variation. We start from a character-
ization of such domains given by Burago–Maz’ya and prove that a bounded,
simply connected domain is a BV -extension domain if and only if its com-
plement is quasiconvex. We further prove that the extension property is a
bi-Lipschitz invariant and give applications to Sobolev extension domains.

1 Introduction

Let Ω ⊂ R
2 be a domain and 1 � p � ∞. Recall that

BV (Ω) = {u ∈ L1(Ω) : |Du|(Ω) < ∞},
where

|Du|(Ω) = sup
{∫

Ω

u div v dx : v = (v1, v2) ∈ C∞
0 (Ω; R2), |v| � 1}
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and
W 1,p(Ω) = {u ∈ Lp(Ω) : ∇u ∈ Lp(Ω, R2)}.

Here, ∇u is the distributional gradient of u. We employ these spaces with
the norms

‖u‖BV (Ω) = ‖u‖L1(Ω) + |Du|(Ω)

and
‖u‖W 1,p(Ω) = ‖u‖Lp(Ω) + ‖∇u‖Lp(Ω).

From the discussion in [3] and [11]

|Du|(Ω) = inf
{
lim inf
k→∞

∫

Ω

|∇uk|dx : uk ∈ W 1,1
loc (Ω), uk → u in L1(Ω)

}
,

(1.1)
where we also may replace W 1,1(Ω) with C∞(Ω).

In this paper, we study geometric properties of those bounded, simply
connected planar domains Ω that are extension domains for BV or for W 1,1.
We say that a domain Ω ⊂ R

2 is a BV -extension domain if there exists a
constant c and an extension operator T : BV (Ω) → BV (R2), not necessarily
linear, so that Tu|Ω = u and ‖Tu‖BV (R2) � c‖u‖BV (Ω) for each u ∈ BV (Ω).
Replacing BV by W 1,p above gives the definition of a W 1,p-extension domain.
In the case p > 1, W 1,p-extension domains admit a linear extension operator,
but it appears to be unknown if this holds for p = 1 or for BV -extension
domains. For other possible definitions of extension domains see Section 2
below.

The geometry of bounded, simply connected W 1,p-extension domains for
p = 2 is well understood. Indeed, this class of domains coincides with the
thoroughly investigated class of quasidisks (cf. [14, 4, 5, 8]) that allows us
for a number of geometric characterizations. For p > 2, one also has rather
good geometric criteria for the extension property [9]. In the remaining range
1 � p < 2 for bounded, simply connected domains, it is known that Ω has
to be a so-called John domain (cf. [4, 12]), but no geometric characterization
is available. Finally, Burago and Maz’ya [2] have given a characterization
for an extension property related to BV in terms of extendability of sets of
finite perimeter in the domain. In fact, this seminal result by Burago and
Maz’ya was the first characterization for Sobolev type extensions and should
be viewed as the predecessor of all the results mentioned above.

Our first result that partly relies on the work of Burago and Maz’ya [2]
(cf. also [11, Section 6.3.5]) gives a concrete characterization for bounded,
simply connected BV -extension domains.

Theorem 1.1. Let Ω ⊂ R
2 be a bounded, simply connected domain. Then Ω

is a BV -extension domain if and only if there exists a constant C > 0 such
that for all x, y ∈ R

2 \Ω there is a rectifiable curve γ ⊂ R
2 \Ω connecting x

and y with length �(γ) � C |x − y|. That is, Ω is a BV -extension domain if
and only if the complement of Ω is quasiconvex.
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As a corollary of this theorem and Lemma 2.4 we obtain a new necessary
condition for a bounded, simply connected domain to be a W 1,1-extension
domain.

Corollary 1.2. Let Ω ⊂ R
2 be a bounded, simply connected domain that is

a W 1,1-extension domain. Then the complement of Ω is quasiconvex.

Simple examples such as a slit disk show that the quasiconvexity of the
complement does not characterize W 1,1-exendability. However, it is easy to
check that the quasiconvexity of the complement of Ω is a stronger require-
ment than Ω being a John domain or the complement of Ω being of bounded
turning [4]. Note also that the complement of a quasidisk is quasiconvex.
Consequently, the claim of Corollary 1.2 holds also in the W 1,2-extension
setting. We conjecture that it, in fact, holds for all 1 � p � 2.

Our second corollary deals with the invariance of the extension property
under bi-Lipschitz mappings of Ω onto Ω′. This may seem trivial as bi-
Lipschitz mappings preserve the spaces in question. The novelty here is that
our bi-Lipschitz mapping is a priori only defined in the domain in question
and extendability requires information in the entire plane.

Corollary 1.3. Let Ω ⊂ R
2 be a bounded, simply connected domain that is a

BV -extension domain (or a W 1,1-extension domain), and let f : Ω → Ω′ ⊂
R

n be a bi-Lipschitz mapping. Then Ω′ is also a BV -extension domain (or a
W 1,1-extension domain).

Corollary 1.3 leaves open the case 1 < p � ∞, but the analog holds also
in this case by a recent result from [6]. We conjecture that the assumption
that Ω be simply connected in Corollary 1.3 is superfluous.

This paper is organized as follows. In Section 2, we give necessary prelim-
inaries and discuss an alternative definition for an extension domain. Section
3 contains proofs of the main results stated above. Finally, in Section 4, we
discuss the meaning of Theorem 1.1 in a special case and briefly comment on
possible generalizations of our result.

2 Preliminaries

The notation used in this paper is as follows. Given x ∈ R
2 and r > 0,

the (open) disk centered at x with radius r is denoted by Br(x), and S(x, r)
denotes its boundary ∂Br(x). The 2-dimensional Lebesgue measure of a mea-
surable set A ⊂ R

2 is denoted by |A|.
Burago and Maz’ya [2] consider extension operators for

BVl(Ω) = {u ∈ L1
loc(Ω) : |Du|(Ω) < +∞}.
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They provide a necessary and sufficient condition for the existence of an
extension operator Tl : BVl(Ω) → BVl(R2) such that for all u ∈ BVl(Ω)

|DTl(u)|(R2) � c|Du|(Ω). (2.1)

We call such a domain a BVl-extension domain. If E ⊂ R
2 is a measurable set

whose characteristic function χE lies in BVl(Ω), then we say that E has finite
perimeter in Ω and denote P (E, Ω) := |DχE |(Ω). From the Burago–Maz’ya
characterization and the subadditivity property of the perimeter measure of
a given set it follows that it is necessary and sufficient to know that for every
set E ⊂ Ω of finite perimeter P (E, Ω) in Ω there is a set F ⊂ R

2 of finite
perimeter such that F ∩ Ω = E and P (F, R2) � C P (E, Ω).

Let us begin by pointing out that a bounded domain is a BV -extension do-
main in our sense if and only if it is a BVl-extension domain. This can be seen,
for example, via a modification of an argument of Herron and Koskela [7].

Lemma 2.1. A bounded domain Ω ⊂ R
2 is a BV -extension domain if and

only if it is a BVl-extension domain.

Towards the proof, we record a Poincaré type inequality resulting from the
compactness of a suitable embedding. It can be obtained by combining some
results in [11, Secs.6.1.7, 3.2.3, 3.5.2] For the convenience of the reader we
give a simple proof below. Recall that a normed space X is said to be embed
compactly into another normed space Y if there is a bounded embedding
map ι : X → Y such that whenever (ak)k is a norm-bounded sequence in
X , the limit limj ι(akj ) exists in Y for some subsequence (akj )j . We call this
embedding natural if ι can be taken to be the identity map.

We continue with a simple observation.

Lemma 2.2. Suppose that Ω ⊂ R
2 is a domain such that BV (Ω) embeds

naturally compactly in L1(Ω). Then |Ω| < ∞.

Proof. We define a function mΩ : [0,∞) → R by setting

mΩ(r) = |Ω ∩ Br(0)|. (2.2)

Then mΩ ∈ Liploc([0, +∞)) (with mΩ(r) � πr2). Therefore, mΩ is differen-
tiable almost everywhere and, by the coarea formula applied to the function
u(x) = (|x| − r)/h in the annular region Ω ∩ Br+h(0) \ Br(0), at almost all
points r of differentiability of mΩ we have

m′
Ω(r) = P (Br(0), Ω). (2.3)

Let I be the set of all r > 0 that are points of differentiability of mΩ and for
which (2.3) holds. We claim that

lim inf
I�r→+∞

m′
Ω(r)

mΩ(r)
= 0.
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In fact, if there are positive numbers M and rM so that m′
Ω(r)/mΩ(r) � M

for all r � rM , then mΩ(r) � mΩ(rM )eM(r−rM ), which contradicts (2.2).
From the above discussion it follows that there exists C > 0 and a sequence

(rn)n from I with rn → ∞ such that P (Brn(0), Ω) = m′
Ω(rn) � CmΩ(rn).

We define a sequence of functions by setting

un =
1

mΩ(rn)
χΩ∩Brn(0).

Then ‖un‖L1(Ω) = 1 and

|Dun|(Ω) =
1

mΩ(rn)
P (Brn , Ω) � C.

If the area of Ω were infinite, the sequence (un)n would converge uniformly
to the zero function, and so this would be the only potential L1-limit of a
subsequence of (un)n. Since ‖un‖L1(Ω) = 1, we would conclude that there is
no subsequence that converges in L1(Ω), which contradicts our assumption.

�	
In the next result and in what follows, for sets A with 0 < |A| < +∞ we

write
uA =

∫

A

u dx =
1
|A|

∫

A

u dx,

whenever u ∈ L1(A).

Lemma 2.3. If Ω ⊂ R
2 is a domain and BV (Ω) embeds naturally compactly

into L1(Ω), then there is a constant C > 0 such that whenever u ∈ BV (Ω),
∫

Ω

|u − uΩ| dx � C |Du|(Ω). (2.4)

Proof. By Lemma 2.2 and the hypothesis of this lemma, the measure of Ω
must necessarily be finite. Suppose that for every positive integer n there is
a function un ∈ BV (Ω) such that

∫

Ω

|un − (un)Ω| dx � n |Dun|(Ω).

Replacing un with

(∫

Ω

|un − (un)Ω| dx

)−1

(un − (un)Ω),

we may also assume that
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‖un‖L1(Ω) = 1 and (un)Ω =
∫

Ω

un dx = 0.

Then, by the above assumption, |Dun|(Ω) � n−1, and so the sequence (un)
is bounded in BV (Ω), and hence there exists w ∈ L1(Ω) such that unj → w
in L1(Ω) for some subsequence (unj )j . Because

lim
n→∞ |Dun|(Ω) = 0,

we have w ∈ BV (Ω) with |Dw|(Ω) = 0. As Ω is connected, it follows (using
the Poincaré inequality for BV cf. [3, 11]) that w is constant on Ω. On the
other hand, ∫

Ω

w dx = lim
n

∫

Ω

un dx = 0,

but ∫

Ω

|w| dx = lim
n

∫

Ω

|un| dx = 1,

which is impossible if w is a constant function. This leads to a contradiction.
�	

Proof of Lemma 2.1. First suppose that Ω is a bounded BVl-extension do-
main, and let Tl : BVl(Ω) → BVl(R2) be the bounded extension operator.
Since BV (Ω) ⊂ BVl(Ω), for every f ∈ BV (Ω) the function Tlf belongs to
BVl(R2), with |DTlf |(R2) � C|Df |(Ω). Let B be a ball in R

2 such that Ω
is a relatively compact subdomain of B. Let c0 = (Tlf)B. By the Poincaré
inequality,

∫

B

|Tlf − c0| dx � C diam(B)|DTlf |(B) � C diam(B)|Df |(Ω).

Thus,

|c0| �
∫

Ω

|f − c0| dx +
∫

Ω

|f | dx

� 1
|Ω|

∫

B

|Tlf − c0| dx +
∫

Ω

|f | dx

� C|Ω|−1 diam(B)
(
|Df |(Ω) +

∫

Ω

|f | dx

)
.

Fix a Lipschitz function η : R
2 → [0, 1] with compact support in B such that

η = 1 on Ω. We define our extension operator E : BV (Ω) → BV (R2) by
setting Ef = η Tlf . Now,
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∫

R2
|Ef | dx �

∫

B

|Tlf | dx

�
∫

B

|Tlf − c0| dx + |B| |c0|

� C diam(B)
(
|Df |(Ω) + |B||Ω|−1|Df |(Ω) + |B|

∫

Ω

|f | dx
)

� C0 ‖f‖BV (Ω).

Furthermore,

|DEf |(R2) � |DTlf |(B) +
∫

R2
|Tlf‖∇η| dx

� C |Df |(Ω) + C

∫

B

|Tlf − c0| dx + C|B| |c0|
� C1 ‖f‖BV (Ω).

This proves that E is bounded, and hence Ω is a BV -extension domain.
Now suppose that Ω is a bounded BV -extension domain. Let T : BV (Ω) →

BV (R2) be an extension operator. Fix a ball B so that Ω ⊂ B. By the Rellich
theorem for BV (cf. [3, 11]), T (BV (Ω))

∣∣
B

embeds naturally compactly into
L1(B). Especially, BV (Ω) embeds naturally compactly into L1(Ω). Hence,
by Lemma 2.3, we have a constant C > 0 for which the inequality (2.4)
is satisfied by every u ∈ BV (Ω). For u ∈ BVl(Ω) and every positive in-
teger n we set un(x) = max{−n, min{n, u(x)}}. Then un ∈ BV (Ω) with
|Dun|(Ω) � |Du|(Ω) and un → u pointwise. Let

cn =
∫

Ω

un dx.

Then un − cn ∈ BV (Ω), and, by the inequality (2.4),

‖un − cn‖BV (Ω) � C |Dun|(Ω) � C |Du|(Ω).

Hence, by the compactness of the embedding BV (Ω) into L1(Ω), there is
a subsequence (unk

− cnk
)k converging in L1(Ω) to a function w ∈ L1(Ω).

Passing to a further subsequence if necessary, we may also assume that unk
−

cnk
→ w pointwise almost everywhere in Ω as well. Since unk

→ u pointwise
in Ω, it follows that the sequence (cnk

)k of real numbers converges to some
c0 ∈ R. Therefore, w = u − c0, u ∈ L1(Ω) and hence u ∈ BV (Ω), and
unk

− cnk
→ u − c0 in L1(Ω). Furthermore,

c0 =
∫

Ω

u dx.
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Because u ∈ BV (Ω), we have Tu ∈ BV (R2), but it is not clear if we can
control the BVl norm of Tu purely in terms of the BVl norm of u. To fix this,
we modify our extension operator by setting by E(u) = T (u− c0)+ c0, where

c0 =
∫

Ω

u dx.

Then E : BVl(Ω) → BVl(R2). Moreover,

|DE(u)|(R2) = |DT (u − c0)|(R2) � C ‖u − c0‖BV (Ω) � C |Du|(Ω),

where we again used the inequality (2.4) to obtain the last inequality. This
completes the proof. �	

For the sake of completeness, we include a simple proof for the following
connection between Sobolev- and BV -extension domains.

Lemma 2.4. A W 1,1-extension domain is necessarily a BV -extension do-
main.

Proof. Let Ω be a W 1,1-extension domain, with a bounded extension operator
T : W 1,1(Ω) → W 1,1(R2), and let u ∈ BV (Ω). Then there is a sequence
(uk)k ⊂ W 1,1(Ω) such that uk → u in L1(Ω),

∫

Ω

|∇uk|dx � 2|Du|(Ω),
∫

Ω

|uk|dx � 2
∫

Ω

|u|dx,

lim
k

∫

Ω

|∇uk|dx = |Du|(Ω).

Let vk = Tuk ∈ W 1,1(R2).
Since ‖uk‖W 1,1(Ω) � 2‖u‖BV (Ω), we see that ‖vk‖W 1,1(R2) � C ‖u‖BV (Ω).

Again, fix a ball Bj(0) so that Ω is a relatively compact subdomain of Bj(0).
By the Rellich theorem, there is a subsequence (v(j)

k )k that converges in
L1(Bj(0)) and almost everywhere in Bj(0) to some function wj ∈ L1(Bj(0)).
We repeat the argument for this subsequence and Bj+1(0), and continue by
induction. Then the diagonal sequence (v(k)

k )k converges almost everywhere
to a function w with w = wl on Bl(0), l > j, and the convergence holds also
with respect to L1(Bl(0)). It follows that ‖vk‖L1(Bl(0)) � C ‖u‖BV (Ω) for all
l � j and, consequently, w ∈ L1(R2) with the same bound. Secondly,

∫

R2
|∇vk

k | � 2‖u‖BV (Ω),
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and it thus easily follows that w ∈ BV (R2) with the desired norm bound.
The claim follows when we set E(u) = w. �	

In [2], Burago and Maz’ya gave a characterization of BVl-extension do-
mains. A general Euclidean spaces version of the following result can be found
in [2] or [11, p. 314]. A more general metric space version of this statement
was recently given in [1].

Theorem 2.5 (Burago–Maz’ya). A domain Ω ⊂ R
2 is a BVl-extension

domain if and only if there is a constant C > 0 such that whenever E ⊂ Ω
is a Borel set of finite perimeter in Ω,

τΩ(E) � C P (E, Ω), (2.5)

where τΩ(E) = inf{P (F, R2 \ Ω) : F ∩ Ω = E}.
Note that

P (F, R2 \ Ω) = inf{P (F, U) : U is open and R
2 \ Ω ⊂ U}.

The following lemma of Burago–Maz’ya [2] gives an analogous charac-
terization for a variant of bounded BV -extension domains (cf. also [11,
Sec. 6.3.5]). For a self-contained proof of this lemma in a more general setting,
also see [1].

Lemma 2.6. If Ω ⊂ R
2 is a bounded domain, then there is a bounded exten-

sion map T : BV (Ω) → BVl(R2) if and only if there exist constants C, δ > 0
such that for all Borel sets E ⊂ Ω of finite perimeter in Ω with diam(E) � δ

τΩ(E) � C P (E, Ω).

The next lemma allows us to approximate sets of finite perimeter by
smooth sets of finite perimeter. The statement and proof of this theorem
for domains in R

n can be found in [11, Sec. 6.1.3]. Recall that for sets F and
G their symmetric difference is denoted by F∆G.

Lemma 2.7. If F ⊂ R
2 is a set of finite perimeter, then there exist sets Fk ⊂

R
2 such that ∂Fk is smooth, χFk

→ χE in L1
loc(R

2), and limk P (Fk, R2) =
P (F, R2). Furthermore, this sequence can be chosen so that

Fk∆F ⊂
⋃

x∈∂F

B1/k(x). (2.6)

Recall that by the isoperimetric inequality in R
2, if F is a set of finite

perimeter, then either |F | or |R2 \ F | is finite. If |F | is finite, the expres-
sion (2.6) follows from the construction in [11] of Fk as certain level sets of
smooth convolution approximations of χF . If |R2 \ F | is finite, then (2.6)
follows from setting Fk to be the complement of the construction in [11] that
approximates R

2 \ F .
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Suppose that ∂Fk is smooth in R
2. If Fk is bounded (or its complement

is bounded), then the number of connected components of ∂Fk is finite. If
both Fk and its complement are unbounded, then there can be infinitely (but
countably) many components, but only finitely many ones can intersect any
given disc. If ∂Fk is only assumed to be smooth in a domain Ω, then the
corresponding analog is that the connected components cannot accumulate
in any compact part of Ω, though they could accumulate toward ∂Ω.

From now on, we use the abbreviation ∂F ∩ Ω ∈ C∞ for the statement
that ∂F ∩ Ω is smooth.

Lemma 2.8. Let Ω ⊂ R
2 be a bounded domain. Suppose that there is a

constant C > 0 such that for every closed set F ⊂ R
2 with ∂F ∩ Ω ∈ C∞

there exists a set F̂ ⊂ R
2 with F̂ ∩ Ω = F ∩ Ω and

|DχF̂ |(R2) � C|DχF |(Ω).

Then Ω is a BV -extension domain.

Proof. By Lemma 2.1, it suffices to show that Ω is a BVl-extension domain,
i.e., Ω satisfies the Burago–Maz’ya condition of Lemma 2.5.

Let E be any set such that χΩ 
= χE ∈ BV (Ω). Then, by [11, Sec. 6.1.3],
there exists a sequence (Fk)k of sets in Ω so that ∂Fk ∩ Ω ∈ C∞ and

χFk
→ χE in L1(Ω), |DχFk

|(Ω) → |DχE |(Ω). (2.7)

By the regularity of Fk, we may assume that Fk is closed. Now, by hypothesis,
there exist sets F̂k so that F̂k ∩ Ω = Fk ∩ Ω and

|DχF̂k
|(R2) � C|DχFk

|(Ω). (2.8)

By (2.7) and (2.8), we get

lim sup
k

|DχF̂k
|(R2) � C|DχE |(Ω).

By the Rellich theorem applied to balls containing Ω and an application
of a diagonalization argument, we may assume that there is F∞ such that
χF̂k

→ χF∞ in L1
loc(R

2). For this set, by the lower semicontinuity of the BVl

norm, we have

|DχF∞ |(R2) � lim sup
k

|DχF̂k
|(R2) � C|DχE |(Ω).

Since for every k we have F̂k ∩ Ω = Fk ∩ Ω, we conclude that χF∞∩Ω = χE

almost everywhere. Thus, such an extension χF∞ of χE proves that Ω satisfies
the Burago–Maz’ya condition (2.5). �	
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We will need a lower bound for the perimeters of certain sets. The following
lemma provides a suitable one.

Lemma 2.9. Let E ⊂ R
2 be an open set with finite perimeter. Suppose that

there exist two curves γ1, γ2 : [0, 1] → R
2 with γ1([0, 1]) ⊂ E and γ2([0, 1]) ⊂

R
2 \ E with min{|γ1(1) − γ1(0)|, |γ2(1) − γ2(0)|} � τ . Then P (E, R2) � 2τ .

Proof. Let us first assume that E is an open, bounded, connected smooth
subset of R

2, and let x, y ∈ E. Then P (E) � 2|x − y|. In fact, if we consider

t1 = inf{t ∈ R : x + t(y − x) ∈ E},
t2 = sup{t ∈ R : x + t(y − x) ∈ E}

with our hypothesis on E, the points xi = x + ti(y − x), i = 1, 2, are belong
to the same connected component β of ∂E and they divide it into two curves
β1 and β2 each with length l(βi) � |x1 − x2|, and then

P (E) � l(β1) + l(β2) � 2|x1 − x2| � 2|x − y|.

If now E is any open set with finite perimeter, then either E or R
2 \ E

has finite area. Let us assume that |R2 \ E| < +∞. We then consider F =
R

2 \ E and the curve γ2 (in the case |E| < +∞, we have to consider γ1).
By assumption, δ = dist (γ2, E) > 0. Let Fk be an approximation of F
obtained as in Lemma 2.7, with k > 2/δ. With this choice, the curve γ2 is
eventually contained in one of the connected components F̃ε of Fε. Now, by
the discussion in the previous paragraph,

P (E) = P (F ) = lim
k→∞

P (Fk) � lim sup
k→∞

P (F̃k) � 2τ. �	

Lemma 2.10. Let Ω ⊂ R
2 be a BVl-extension domain. Then there exist

constants c, c1, c2 ∈ (0, 1) and r0 > 0 such that for any x ∈ ∂Ω and 0 < r < r0

|Ω ∩ Br(x)| � c|Br(x)|. (2.9)

Moreover, for each connected component E of Ω ∩ Br(x) that intersects
Br/5(x)

|E| � c1|Br(x)| and H1(Ω ∩ ∂E) � c2 r.

Proof. We choose r0 > 0 such that whenever x ∈ ∂Ω and 0 < r < r0,
Ω \ Br(x) contains a connected subset of diameter at least r0.

Suppose that there exists a sequence (xk)k ⊂ ∂Ω, 0 < rk < r0, and a
sequence εk → 0 such that there is a connected component Ek of Ω∩Brk

(xk)
intersecting Brk/5(xk) with

|Ek| = εk|Brk
(xk)| = πεkr2

k.
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Since
|Ek| =

∫ rk

0

H1(Ek ∩ ∂Bt(xk))dt,

there exists t ∈ [rk/2, rk] such that

P (Bt(xk) ∩ Ek, Ω) = H1(Ek ∩ ∂Bt(xk)) � 2πεkrk. (2.10)

Observe that as Ek contains a curve connecting a point in S(xk, rk) to some
point in S(xk, rk/5), it is clear that Ek ∩Bt(xk) contains a curve connecting
some point in S(xk, t) to a point in S(xk, rk/5). Hence the extension Êk of
Ek∩Bt(xk) has a connected component of diameter at least 3rk/10. Further-

more, as rk < r0 and Êk ∩Ω = Ek ∩Bt(xk) ⊂ Br(xk), it follows that R
2 \ Êk

also contains a connected set of diameter at least 3rk/10. It therefore follows
by Lemma 2.9 that P (Êk, R2) � 3rk/10. This means that

P (Êk, R2)
P (Ek ∩ Bt(xk), Ω)

=
P (Êk, R2)

H1(Ek ∩ ∂Bt(xk))
� 3rk

20πεkrk
=

3
20πεk

.

Letting k → ∞ and recalling that εk → 0, we obtain a contradiction with
the extension property.

Now, fix a connected component E of Br(x) ∩ Ω that intersects Br/5(x).
Then, by the above argument and the BV -extension property with an exten-
sion Ê of E given by the BV -extension property,

C � P (Ê, R2)
H1(Ω ∩ ∂E)

=
P (Ê, R2)
P (E, Ω)

� 3r

10P (E, Ω)
,

which completes the proof. �	
We complete this section by pointing out that Lemmas 2.1, 2.3–2.8, as

well as their proofs given here, hold in higher dimensional Euclidean spaces
as well.

3 Proofs of the Results

Proof of Theorem 1.1. We first prove the quasiconvexity of a bounded, sim-
ply connected BVl-extension domain. The same for BV -extension domains
then follows from Lemma 2.1.

Suppose that Ω is a bounded, simply connected BVl-extension domain.
It suffices to prove the quasiconvexity estimate for all x, y ∈ ∂Ω such that
d(x, y) � r0 for some fixed r0 > 0 (recall that we assume the domain to
be bounded). Let δ0 > 0 be the constant from Lemma 2.6, and let r0 =
min{δ0, diam(Ω)}/(2C), where C is the maximum of all the constants from
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the previous section. We denote by Lxy the line segment joining x and y. If
Lxy ∩ Ω is empty, then we can set γ = Lxy. Hence we may assume that Lxy

intersects Ω.
Since Ω is an open set, Lxy∩Ω is the disjoint union of countably many line

segments Lxiyi , i ∈ I ⊂ N, with end points xi, yi ∈ ∂Ω. Let Lxiyi be one of
them. Because Ω is simply connected, Ω \Lxiyi has exactly two components,
say E1 and E2. Assume that |E1| � |E2|. Since Ω ∩ ∂E1 = Lxiyi and hence
P (E1, Ω) = H1(Lxiyi) = |xi − yi|, by Theorem 2.5 and subadditivity of
the perimeter measure, there is a set F ⊂ R

2 of finite perimeter such that
F ∩ Ω = E1 and

P (F, R2) � C |xi − yi|. (3.1)

By Lemma 2.7, there is a sequence of smooth sets Fk with χFk
→ χF

both in L1
loc(R

2) and pointwise almost everywhere, P (Fk, R2) → P (F, R2),
Fk∆F ⊂ ⋃

x∈∂F B(x, 1/k), and as vector-valued signed Radon measures,
DχFk

converge weakly to DχF .
Since Fk is smooth, ∂Fk consists of countably many smooth simple loops

βk,1, . . . (these curves are loops because they are of finite length). Recall from
the discussion following the statement of Lemma 2.7 that the sets Fk are
certain level sets of convolution approximations to χF . Hence for sufficiently
large k (by passing to a subsequence if necessary) we may assume that ∂Fk ⊂⋃

x∈∂F B(x, 1/k) and one of the loops βk,1, . . ., say βk,1, has the property that
all of the line segment Lxi,yi except perhaps a 1/k-neighborhood of xi and
yi lies in a 1/k-neighborhood of βk,1, i.e.,

βk,1 ⊂
⋃

x∈∂F

B(x, 1/k) (3.2)

and
Lxi,yi \ (B(xi, 1/k) ∪ B(yi, 1/k)) ⊂

⋃
x∈βk,1

B(x, 1/k). (3.3)

Furthermore,
�(βk,1) � P (Fk, R2) � 2 P (F, R2),

and so we can use the Arzela–Ascoli theorem (and pass to a further subse-
quence if necessary) to obtain a loop β such that βk,1 → β uniformly and
�(β) � 2P (F, R2). By (3.2) and (3.3), it follows that Lxi,yi ⊂ β and β ⊂ ∂F .
Hence β ∩ Ω = Lxi,yi . Furthermore, by the inequality (3.1),

�(β) � 2P (F, R2) � 2C P (E, Ω) = 2C |xi − yi|.

Since β is a loop containing E1 and not containing E2, by [10, Theorem 5.
p. 513]) there is a simple subloop β0 containing Lxi,yi . The curve γi :=
β0 \ Lxi,yi ⊂ R

2 \ Ω with �(γi) � (2C − 1)|xi − yi| is a curve in R
2 \ Ω

connecting xi to yi.
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The concatenated curve γ = (Lxy\Ω)∗i∈I βi is a curve in R
2\Ω connecting

x and y, with

�(γ) � �(Lxy) +
∑
i∈I

�(βi) � |x − y| +
∑
i∈I

C |xi − yi| � (1 + C) |x − y|.

Next suppose that R
2 \Ω is quasiconvex. By Lemma 2.8, we only need to

verify the extension property for the characteristic functions of sets E ⊂ R
2

such that ∂E ∩Ω is smooth. Therefore, P (E, Ω) = P (E, Ω) = P (int(E), Ω),
and so without loss of generality we may assume that int(E)∩Ω = E ∩Ω is
open. Again, without loss of generality we may assume that E ⊂ Ω and that
E is connected; recall that only a finite number of the components of ∂E∩Ω
can intersect a given relatively compact open set U ⊂ Ω and P (E, Ω) can
be computed as the supremum of the perimeters P (E, U) over all such U.
From the smoothness of E it follows that Ω ∩ ∂E consists of a collection of
closed curves in Ω and a collection of at most a countable union of smooth
curves γi, i ∈ I ⊂ N, with end points xi, yi ∈ ∂Ω (indeed, if ∂E ∩ ∂Ω is
empty, i.e., no such points xi, yi exist, then E or R

2 \ E is the extension of
E or Ω \ E respectively, and we need not do anything). Again, without loss
of generality, we may assume that |E| � |Ω \ E| since otherwise we replace
E with Ω \ E. By assumption, there is a curve βi ⊂ R

2 \ Ω connecting xi

and yi with �(βi) � C|xi − yi|. The concatenated curve γi ∗ βi is a simple
loop (Jordan curve) in R

2. Let Fi be the bounded subset of R
2 enclosed by

this loop. Since E is connected, if E ∩ Fi 
= ∅, then E ⊂ Fi. Let J be the
collection of all indices i ∈ I for which this holds. If J is not empty, then we
define

F :=
( ⋂

i∈J

Fi

)
\

( ⋃
i∈I\J

Fi

)
\ (all regions bounded by loops lying in Ω).

If J is empty, then we set

F := R
2 \

( ⋃
i∈I

Fi

)
\ (all regions bounded by loops lying in Ω).

With the above selection of F , we see that F∩Ω = E, and, by the construction
of the curves βi, we have

P (F, R2) �
∑
i∈I

�(γi ∗ βi) =
∑
i∈I

�(γi) +
∑
i∈I

�(βi)

�
∑
i∈I

�(γi) + C
∑
i∈I

|xi − yi|

�
∑
i∈I

�(γi) + C
∑
i∈I

�(γi) = (1 + C)P (E, Ω),
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which completes the proof. �	

Proof of Corollary 1.2. The claim follows from Lemma 2.4 and Theorem 1.1.
�	

We record the following recent result by Väisälä [13, Sec. 2.8].

Lemma 3.1 (Väisälä, 2008). If Ω is a bounded, simply connected planar
domain whose complement is quasiconvex, and if Ω′ is a planar domain with
f : Ω → Ω′ a bi-Lipschitz mapping, then there are open sets U ⊃ Ω, V ⊃ Ω′,
and a bi-Lipschitz mapping F : U → V such that F = f on Ω.

Proof of Corollary 1.3. By Theorem 1.1 and Corollary 1.2, the complement
of Ω is quasiconvex. Hence, by the above lemma, the bi-Lipschitz map f on Ω
can be extended to a bi-Lipschitz map F on a neighborhood U of the compact
set Ω. Hence if Ω is a BV -extension domain (or W 1,1-extension domain) and
u is a function in BV (Ω′) (or W 1,1(Ω′) respectively), then u◦f is in the class
BV (Ω) (or W 1,1(Ω) respectively), and hence can be extended to a function
T (u ◦ f) that lies in the class BV (R2) (or W 1,1(R2) respectively), with norm
controlled by the norm of u. Thus, T (u ◦ f) ◦F−1 lies in the class BV (V ) (or
W 1,1(V ) respectively), where V = F (U) is a neighborhood of the compact
set Ω′, with norm controlled by the norm of T (u ◦ f), and hence by the norm
of u.

Let η : R
2 → [0, 1] be an L-Lipschitz function with compact support in V

such that η = 1 on Ω′. Let E(u) := η T (u ◦ f) ◦ F−1. Then E(u) ∈ BV (R2)
(or in W 1,1(R2) respectively). Note that

‖E(u)‖L1(R2) � ‖T (u ◦ f) ◦ F−1‖L1(V ) � C‖u‖X ,

where X = BV (Ω′) (or X = W 1,1(Ω′) respectively). Furthermore,

|DE(u)|(V ) � Lip(η)‖T (u ◦ f) ◦ F−1‖L1(V ) + |DT (u ◦ f) ◦ F−1|(V )
� C‖u‖X ,

where Lip η = sup |η(x)− η(y)|/|x− y|, the supremum taken over all distinct
pairs of points x, y ∈ R

2. This completes the proof. �	

4 Examples

The characterization given by Theorem 1.1 is easy to verify for planar Jordan
domains. We now explore some specific examples of bounded, simply con-
nected planar BV -extension domains by answering the following question.
Suppose that Ω ⊂ R

2 is a bounded BVl-extension domain. Let γ ⊂ Ω be a
curve such that Ω \ γ is also a domain. When is Ω \ γ also a BV -extension
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domain? It follows from Theorem 1.1 that γ has to be a rectifiable curve.
However, the rectifiability of γ by itself does not guarantee the BV -extension
property of Ω \ γ, as the following example demonstrates.

Example 4.1. Let Ω = (−a, a)× (−2, 2) be a rectangular region centered at
the origin, where a =

∑∞
j=1

1
j3 . Further, let γ : [0, 1) → Ω with γ(0) = (1, 0)

be defined as follows: for each n ∈ N with n � 2

γ(1 − 1/n) =
( n∑

j=1

1/j3, 0
)
,

and the open interval (1− 1/n, 1− 1/(n+ 1)) ⊂ [0, 1] is mapped to the curve
obtained by joining two segments, the line segment joining (

∑n
j=1 1/j3, 0)

and (1/(2n + 2)3 +
∑n

j=1 1/j3, 1/n2), and the line segment joining (1/(2n +
2)3 +

∑n
j=1 1/j3, 1/n2) and (

∑n+1
j=1 1/j3, 0). This γ is a saw-tooth curve for

which the height of the nth tooth, 1/n2, is substantially larger than the
width 1/n3 of the tooth. It can be seen that γ is rectifiable and Ω \ γ is not
a BV -extension domain.

Example 4.2. Let Ω = (0, 2) × (−2, 2), and let γ be the curve given by
γ : (0, 1] → Ω, γ(t) = (t2, t). Again it can be seen, via the use of sets

Et = {(x, y) ∈ Ω : 0 < y < t, 0 < x < y2},

that Ω \ γ is not a BV -extension domain, even though γ is rectifiable.
The following answer to the above question is a corollary to Theorem 1.1.

Here, δΩ(x) = dist(x, ∂Ω) for x ∈ Ω.

Corollary 4.3. Suppose that Ω ⊂ R
2 is a bounded, simply connected BV -

extension domain and γ is a curve in Ω so that Ω\γ is also a simply connected
domain. Then Ω \ γ is a BV -extension domain if and only if the following
two conditions hold for γ.

(i) There is a constant C > 0 such that for all x, y ∈ γ and for all subcurves
γxy of γ with end points x and y, we have �(γxy) � C |x − y| (i.e., γ is
quasiconvex).

(ii) There is a constant C > 0 such that for all x, y ∈ γ and a subcurve
γxy of γ with end points x and y, we have |x − y| � C max{δΩ(x), δΩ(y)}
(i.e., γ satisfies a double cone condition in Ω).

If γ is not rectifiable, then Ω\γ is not a BV -extension domain as R
2\(Ω\γ),

and hence γ, has to be quasiconvex. This is in contrast to the fact that ∂Ω
need not be rectifiable even if Ω is a BV -extension domain; as shown by the
von Koch snowflake domain, which is a uniform domain and hence (cf. [8])
is a W 1,1- and further a BV -extension domain. It should be noted that the
assumption that Ω \ γ is a domain ensures that γ does not have loops. The
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first condition above ensures that γ is quasiconvex. Observe that the curve in
Example 4.1 fails to satisfy this condition, though it does satisfy the second
condition. Note also that the curve in Example 4.2 fails to satisfy the second
condition of the above corollary, but does satisfy the first condition. Hence
both conditions above are essential in the above result, though if γ does not
intersect the boundary of Ω, the second condition will follow from the first
condition.

The conclusion of the corollary remains valid if we replace the condition
that Ω \ γ is a simply connected domain with the condition that Ω \ γ is
a domain; however, in this case, the result is not a direct consequence of
Theorem 1.1.

Remark 4.4. Lemma 2.1 fails for some unbounded domains. For example,
the domain

Ω = {(x, y) ∈ R
2 : |y| > x if x � 0 and |y| + 1 > −x if x � −1}

is a BV -extension domain because it has uniformly Lipschitz boundary, but
is not a BVl-extension domain as the set E = {(x, y) ∈ Ω : y > 0} has
no extension satisfying the Burago–Mazya characterization. Therefore, The-
orem 1.1 might fail for unbounded, simply connected domains. However, the
actual proof of this theorem demonstrates that the complement of a planar
simply connected domain is quasiconvex if and only if the domain itself is
a BVl-extension domain. The above example also shows that if Ω is an un-
bounded, simply connected planar domain, the conclusion of Corollary 1.2
may fail. The domain in the above counterexample has the property that
the complement of the domain in R

2 is not connected; however, the exam-
ple Ω = (0,∞) × (0, 1) ⊂ R

2 also is a BV -extension domain, but is not a
BVl-extension domain, even though R

2 \ Ω is indeed connected. If Ω ⊂ R
2

is such that R
2 \ Ω is connected, then the proof of Theorem 1.1 also shows

that R
2 \ Ω is quasiconvex if and only if Ω is a BVl-extension domain. We

point out here that, in this case, there is no reason to assume that Ω needs
to be simply connected.
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de domaines plans (French). C. R. Acad. Sci. Paris Ser. I Math. 293, 581-584
(1981)

6. Haj�lasz, P., Koskela, P., Tuominen, H.: Sobolev embeddings, extensions and
measure density condition. J. Funct. Anal. 254, 197–205 (2008)

7. Herron, D., Koskela, P.: Uniform, Sobolev extension and quasiconformal circle
domains. J. Anal. Math. 57, 172–202 (1991)

8. Jones, P.W.: Quasiconformal mappings and extendability of Sobolev functions.
Acta Math. 47, 71–88 (1981)

9. Koskela, P.: Extensions and imbeddings. J. Funct. Anal. 159, 1-15 (1998)

10. Kuratowski, K.: Topology. Vol. II. Acad. Press, New York (1968)

11. Maz’ya, V.G.: Sobolev Spaces. Springer-Verlag, Berlin (1985)
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