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Abstract

We develop various upper and lower estimates for p-modulus of curve families
on ring domains in the setting of abstract metric measure spaces and derive p-
Loewner type estimates for continua. These estimates are obtained for doubling
metric measure spaces or Q-Ahlfors regular metric measure spaces supporting
(1, p)-Poincaré inequality for the situations of 1 ≤ p ≤ Q and p > Q. We also
study p-modulus estimates with respect to Riesz potentials.
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1 Introduction and preliminaries

Recently there has been increasing interest in the geometry of the p-harmonic world.
If p = n, the relations between n-harmonics and conformal and quasiconformal maps
allow us to discover a variety of properties of n-harmonic functions and mappings (see
e.g. Chapters 14, 15 in [HKM] or [MV1, MV2] and references therein). The situation
changes when p 6= n. In such a case either new methods and approaches have to be
developed or when applying the existing methods one has to carefully analyze the steps
of reasoning. Unfortunately, the use of quasiconformal mappings as tools in the study
of the p-modulus provides us mainly with qualitative results. Thus, the cases where the
precise estimates can be obtained are worth contemplation. That is the main purpose
of this note. We extend the well known classical results of Gehring [Ge] and Väisälä
[Vä] on the n-modulus of the family of curves to the setting of p-modulus considered in
abstract metric measure spaces.
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Additional motivation for our studies comes from the problem of generalizing the
notion of prime ends to the setting of p-modulus. To accomplish this goal the deeper
understanding of p-modulus is necessary (see [Nä, Oh] for more on prime ends).

The paper is organized as follows. In this section we give the needed definitions,
state the key technical lemmas and explain the notation. In Section 2 we present various
known results about lower and upper estimates for the p-modulus of curves in Rn

from
Väisälä’s book [Vä] and Caraman’s papers [C1, C2, C3, C4] to conclude with a Loewner
type theorem for p-modulus. Section 3 is devoted to studying the upper estimates for
p-modulus in the abstract setting of metric measure spaces. In Section 4 we develop the
lower estimates in the same setting. In Section 5 we discuss the p-modulus in relation
to Riesz potentials.

The ring domains will be for us the fundamental category of sets to deal with. An
important point is that the modulus estimates for ring domains even in the Euclidean
setting are not so widely known for p > n− 1. Also, our discussion emphasizes the role
of the borderline value p = n − 1: for p ≤ n − 1 the curves have p-capacity zero and
therefore the modulus analysis does not result in a viable theory.

We start by recalling selected definitions and notation commonly appearing in anal-
ysis on metric spaces.

Given a metric measure space (X, d, µ), with µ a locally finite Borel measure sup-
ported on X, and Γ a family of rectifiable curves in X, by F (Γ) we denote the collection
of all non-negative Borel measurable functions ρ on X such that

∫
γ
ρ ds ≥ 1 for every

γ ∈ Γ. The p-modulus of the family Γ, denoted Mp(Γ), is the number

Mp(Γ) := inf
ρ∈F (Γ)

∫
X

ρp dµ.

Should F (Γ) be empty, we set Mp(Γ) = ∞.
One of the fundamental concepts of analysis on metric spaces is that of the upper

gradient (see [He, HK]). Following [He, Section 7.22] we say that a Borel function
% : X → [0,∞] is an upper gradient of a function u : X → R if for all rectifiable curves
γ

|u(x)− u(y)| ≤
∫

γ

% ds, (1.1)

where x and y denote the endpoints of γ.
Observe that % ≡ ∞ is the upper gradient of every function on X and if there are no
rectifiable curves in X then % ≡ 0 is an upper gradient of every function on X. If
condition (1.1) holds except for a fixed family of curves with zero p-modulus, then % is
called a p-weak upper gradient.
We say that a metric measure space X supports a (1, p)-Poincaré inequality if there are
constants C > 0 and τ ≥ 1 so that for each ball B ⊂ X and each function u : X → R
and every upper gradient % of u the following inequality holds:∫

B

− |u− uB| ≤ C(diam(B))

(∫
τB

− %p

) 1
p

,

where uB denotes the mean value of u over B, that is uB =
∫

B
− u = 1

µ(B)

∫
B

u. If

a metric space X supports (1, p)-Poincaré inequality, then X has plenty of rectifiable
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curves analogous to the Loewner property for the p-modulus. For instance the Euclidean
space Rn supports a Poincaré inequality for any 1 ≤ p < ∞, while the snowflake spaces
do not support such inequality for any p. A doubling space (see below), supporting
Poincaré inequality enables us to establish a first order Calculus (see e.g. [He, HK]).
Given a set Ω ⊂ X we will denote its complement in X by Ωc. For nonempty sets
E, F, K in X, Γ = ∆(E, F, K) will denote the family of rectifiable curves from E to F
in K. More precisely, ∆(E, F, K) consists of compact curves γ with one endpoint in
E, the other in F , and γ \ (E ∪ F ) ⊂ K. As in [Vä], the modulus of the curve family
Mp(∆(E, F, K)) is the number

Mp(∆(E, F, K)) = Mp({γ|K : γ ∈ ∆(E, F, K)}).

In what follows we will also appeal to the notion of p-capacity and its relation to p-
modulus. Let 1 < p < ∞ and let the triple (E, F, K) be as above. Consider the family
of functions u such that u|E ≥ 1 and u|F ≤ 0. Following [He] we define the p-capacity
of the triple (E, F, K) as

Capp(E, F, K) = inf
%
‖%‖p

Lp(K),

where the infimum is taken over the set of non-negative Borel-measurable functions %
that are upper gradients (or weak upper gradients) of some function u as above. One
can obtain various capacities by considering different degrees of regularity for functions
u, e.g. by requiring u to be continuous, locally Lipshitz. With self-explanatory notation
it is immediate that

Mp(∆(E, F, K)) ≤ Capp(E, F, K) ≤ Cont−Capp(E, F, K) ≤ locLip−Capp(E, F, K).

As a matter of fact a stronger result is true. Namely, the following theorem provides us
with the sufficient conditions for equalities to hold above.

Theorem 1.1 (Theorem 1.1 in [KSh]). If X is a proper φ-convex metric measure space
equipped with a doubling measure and supporting (1, p)-Poincaré inequality with 1 < p <
∞, and Ω is a domain in X, then for all disjoint non-empty subsets E and F of Ω,

Mp(∆(E, F, Ω)) = Capp(E, F, Ω) = Cont− Capp(E, F, Ω) = locLip− Capp(E, F, Ω).

(The first equality holds for all compact metric spaces, [HK, Proposition 2.17]).

The assumption on φ-convexity can be easily bypassed by the observation that a
complete doubling metric measure space supporting (1, p)-Poincaré inequality is quasi-
convex (a result due to Semmes, see also [Ko] and references therein).

The sphere in Rn, of radius r > 0 and centered at x0, is denoted S = S(r) =
Sn−1(x0, r), and ωn = mn(S) denotes the Lebesgue measure of S(1). Suppose that
Γ is a curve family in S(r). Following Section 10.1 in [Vä] we denote by MS

p the p-
modulus of Γ with respect to the metric space S equipped with the (n− 1)-dimensional
Lebesgue measure dmn−1. Let Γ be a family of curves in D ⊂ Rn

and let f : D → Rn

be continuous. Then fΓ := { f ◦ γ : γ ∈ Γ }. Consider fk(x) = kx for k > 0 and
fk(∞) = ∞. In what follows we will appeal to
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Proposition 1.2 (Thm 8.2 in [Vä]). With kΓ := fkΓ, we have Mp(kΓ) = kn−p Mp(Γ).

Remark 1.3. Proposition 1.2 holds also for the spherical modulus MS
p with n replaced

by n− 1, the natural dimension of sphere S. More specifically, if Γ is a family of curves
in S and Fk = fk|S, then

MFk(S)
p (FkΓ) = kn−1−pMS

p (Γ).

In what follows we will need to know the p-modulus of the family of non-constant
rectifiable curves passing through a given point. The result stating that it is zero is
known for p = n (see [Vä, Section 7.9]). Below we discuss the counterpart of this result
for the general doubling metric measure spaces with p ≥ 1. We also provide upper and
lower estimates for Mp.
We say that a metric measure space is doubling if µ is a Borel regular measure on the
metric space (X, d) and there exists C > 0 such that for all x ∈ X and every r > 0,

µ(B(x, 2r)) ≤ Cµ(B(x, r)).

As a consequence of the doubling property, if in addition X is path connected, then
there exist constants Q1 ≥ Q2 ≥ 1 and C ≥ 1 such that for all points x0 and 0 < r ≤
R < diam(X),

1

C

( r

R

)Q1

≤ µ(B(x0, r))

µ(B(x0, R))
≤ C

( r

R

)Q2

. (?)

Before we proceed, let us recall the following (Definition 6.3 in [Vä]).

Definition 1.4. Let Γ1 and Γ2 be curve families in X. We say that Γ2 is minorized by
Γ1 and denote Γ1 < Γ2 if every γ ∈ Γ2 has a subcurve in Γ1.

It can be seen directly from the definition of p-modulus that if Γ1 < Γ2, then
Mp(Γ2) ≤ Mp(Γ1).

Let us also recall some other concepts and results from the metric measure space
theory that will be needed in further discussion.
Given x and y in X we denote by Γxy the family of compact rectifiable curves in X
joining x and y. To show the measurability of certain functions in Proposition 4.1 and
Theorem 5.1 we will appeal to the following result.

Proposition 1.5 (Corollary 1.10 in [JJRRS]). Let X be a complete separable metric
space equipped with a σ-finite Borel measure µ, and let % : X → [0,∞] be a Borel
function. Then for each x0 ∈ X, the function u : X → [0,∞], defined for all x ∈ X by

u(x) = inf

{∫
γ

% ds : γ ∈ Γx0x

}
,

is measurable with respect to the σ-algebra generated by analytic sets, and therefore, it
is µ-measurable.
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2 p-Modulus estimates in Rn

The purpose of this section is to recall upper and lower (p-Loewner type) estimates in
Rn. Our goal is also to present known results in Euclidean setting for the purpose of
comparing and contrasting with the situation in more general metric measure spaces.
In order to obtain upper bounds for the p-modulus it suffices to consider one choice of
admissible function % ∈ F (Γ). Such estimates in Rn

are nowadays classical (see e.g.
2.11 in [HKM]). However, to get a lower bound one needs to consider all admissible
functions in F (Γ), and hence lower bounds are more difficult to obtain.
We recall the following result proved by P. Caraman.

Theorem 2.1 (Theorem 3 in [C1]). Let n ≥ 2, n− 1 < p and let E and F be nonempty
nonintersecting subsets of the sphere S = Sn−1(x0, r). Consider the curve family Γ =
∆(E, F, S). Then

MS
p (Γ) ≥

cn
p

rp−n+1
. (2.1)

The equality holds when E = {a} and F = {b} with a and b antipodal points on S.

Before stating the next result let us recall the definition of a ring (see Section 11 in
[Vä]).

Definition 2.2. A domain A in Rn
is called a ring if Ac has exactly two components.

In what follows components of the complement of a ring will be denoted by C0, C1

and the ring by R(C0, C1).
The next lemma is a direct consequence of Theorem 2.1 and is used to investigate the
p-modulus on the ring domains.

Lemma 2.3 (Theorem 4 in [C1]). Suppose that 0 < a < b and that E and F are
disjoint sets in Rn

such that every sphere Sn−1(t) for a < t < b meets both E and F .
If G contains the spherical ring A = Bn(b) \ B

n
(a) and if Γ = ∆(E, F, G), then for

n− 1 < p < n or p > n,

Mp(Γ) ≥
cn
p

n− p

(
bn−p − an−p

)
, (2.2)

where cn
p is the constant in Theorem 2.1. The equality holds if G = A and E and F are

the components of L ∩ A for L being a line through 0.

In order to further analyze the p-modulus of ring domains we introduce the following
family of rings (compare with Definition 11.6 in [Vä]). For positive r and R, let

Φn(r, R) = {A = R(C0, C1) ⊂ Rn
: 0 ∈ C0, ∃a ∈ C0 with |a| = R,

∞ ∈ C1, ∃b ∈ C1 with |b| = r }. (2.3)

For a ring A = R(C0, C1) we set ΓA = ∆(C0 ∩ A, C1 ∩ A, A). We are in a position to
define

Hp(r, R) := inf
A∈Φ(r,R)

Mp(ΓA). (2.4)
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Note that by Proposition 1.2, 1
Rn−p Hp(r, R) = Hp(

r
R
, 1). For this reason it suffices to

consider
Hp(r) := Hp(r, 1) and Φn(r) := Φn(r, 1).

Theorem 2.4 (Theorem 8 in [C2]). The function Hp(r) has the following properties.

(1) Hp is a decreasing function,

(2) lim
r→∞ Hp(r) = 0 for p ≥ n, while lim

r→∞ Hp(r) = ωn−1

(
|n−p|
p−1

)p−1

for p < n; moreover

Hp(r) < ∞ for all r > 0,

(3) lim
r→0

Hp(r) = ∞ for p ≥ n, while lim
r→0

Hp(r) ≥
cn
p

n−p
> 0 for n − 1 < p < n with cn

p

as in Theorem 2.1,

(4) Hp(r) > 0 for p > n− 1 and for all r > 0.

Remark 2.5. One may expect that in the general setting of metric measure spaces the
lower bound for Hp in (4) above follows from a (1, p)-Poincaré inequality.

The optimality in cases (2) and (3) for p < n is demonstrated by the following
examples.

Example 2.6. By Corollary 1 in [C3] we have that lim
r→∞ Mp(ΓAG(r)) ≤ ωn−1

(
|n−p|
p−1

)p−1

,

where for r > 1, ΓAG(r) = ∆
(
B(0, 1), {x : r ≤ x1 < ∞, x2 = . . . = xn = 0, }, Rn

)
rep-

resents the path family corresponding to Grötzsch ring. The optimality of case (2) for
p < n now follows immediately from Hp(r) ≤ Mp(ΓAG(r)).

A weak optimality in the case (3) for p < n, that is lim
r→0

Hp(r) < ∞, is a consequence
of the following example.

Example 2.7. Fix 0 < r < 1, n = 2, and let E = [−1, 0], F = [r,∞]. Then R(E, F ) ∈
Φ2(r), and so Hp(r) ≤ Mp(∆(E, F, R2)). Let Γr be the collection of all rectifiable
curves connecting E to F in the disc B(0, 2), and Γ1 be the collection of all rectifiable
curves connecting the circle S(0, 1) to the circle S(0, 2). Then Γr ⊂ ∆(E, F, R2), and
Γ1 < ∆(E, F, R2) \ Γr. It follows that

Mp(∆(E, F, R2)) ≤ Mp(Γr) + Mp(Γ1).

Since the function ρ(z) = (π|z|)−1χB(0,2)(z) is in F (Γr), we have when p < 2,

Mp(Γr) ≤
2π1−p

2− p

1− r2−p

(1− r)2−p
.

Since every curve in Γ1 has length at least 1, we also have

Mp(Γ1) ≤ |B(0, 2) \B(0, 1)| = 3π.

It follows that

Hp(r) ≤
2π1−p

2− p

1− r2−p

(1− r)2−p
+ 3π.

Hence when p < 2 we have lim
r→0

Hp(r) ≤ 2π1−p

2−p
+ 3π < ∞.
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In the next observation we express the lower bound for the p-modulus in terms of
Hp (compare to Theorem 11.9 in [Vä] for the case of n-modulus).

Proposition 2.8 (Theorem 9 in [C2]). Let A = R(C0, C1) be a ring such that a, b ∈ C0

and c,∞ ∈ C1. Then

Mp(ΓA) ≥ Hp

(
|c− a|
|b− a|

)
|b− a|n−p, for p > 1.

The above proposition together with Theorem 3.1 result in the following characteri-
zation of rings with zero p-modulus (the proof in the Euclidean setting is similar to the
case p = n, Theorem 11.0 in [Vä]).

Proposition 2.9. Let A = R(C0, C1) be a ring. Then if n− 1 < p ≤ n,

Mp(ΓA) = 0 ⇐⇒ #C0 = 1 or #C1 = 1.

3 Upper p-modulus estimates in the abstract setting

Recall from Section 1 (see (?)) that one of the consequences of the doubling property
for path connected spaces X, is that there exist constants Q1 ≥ Q2 ≥ 1 and C ≥ 1 such
that for all points x0 and 0 < r ≤ R < diam(X),

1

C

( r

R

)Q1

≤ µ(B(x0, r))

µ(B(x0, R))
≤ C

( r

R

)Q2

. (?)

Theorem 3.1. Let X be a path connected doubling space with Q2 > 1. Let x0 ∈ X
and Γ be a collection of non-constant paths that pass through x0. If 1 ≤ p ≤ Q2, then
Mp(Γ) = 0.
Let 0 < 2r < R and denote by

Γ(r, R) = ∆(B(x0, r), X \B(x0, R), B(x0, R)) (3.1)

the family of curves joining B(x0, r) and X \B(x0, R). If 1 ≤ p < Q2 we have the upper
estimate

Mp(Γ) ≤ C(R0, Q1)
CR, r

4

Cp
R,2r

RQ1−Q2 ,

with

CR,r =
1

2α − 2

(
1

rα−1
− 1

Rα−1

)
, α =

Q2 − 1

p− 1
and constant R0 > 0 such that r < R0 < R.

If p = Q2, the corresponding estimate reads

MQ2(Γ) ≤ C ′(R0, Q1)
RQ1−Q2

CQ2−1
R,r

, where CR,r = ln

(
R

r

)
.

In the Euclidean setting Q1 = Q2 = n and we retrieve the p-capacity estimates for
the Euclidean annuli (see for example [HKM, Lemma 2.11]).
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Proof. We will first apply the telescoping argument to estimate the modulus of Γ(r, R)
and then obtain the first part of the lemma by letting r → 0. The proof is divided into
two cases. First, let p < Q2. Consider

%(x) =
1

CR,2r

1

d(x0, x)α
, α =

Q2 − 1

p− 1
> 1, (3.2)

where CR,2r = 1
2α−2

( 1
(2r)α−1 − 1

Rα−1 ). Choose k0 to be the smallest positive integer such
that

2−k0R ≤ r < 21−k0R.

Divide the annulus into dyadic annular regions Ri = B(x0, 2
−iR) \ B(x0, 2

−i−1R) with
radii 2−i−1R < 2−iR, for i = 0, . . . , k0 − 1. Consider any curve γ ∈ Γ(r, R) and denote
by γi the part of γ in the i-th subring Ri (note that γi might be disconnected consisting
of a family of arcs). Let βi be a subarc of γi connecting the inner sphere of Ri with its
outer sphere. Next, we show that % is an admissible function for Γ(r, R).∫

γ

% ds =

k0∑
i=0

∫
γi

% ds ≥
k0−1∑
i=0

∫
βi

% ds ≥
k0−1∑
i=0

l(βi)

CR,2r(2−iR)α
≥ 1

2

k0−1∑
i=0

1

CR,2r(2−iR)α−1

=
1

2CR,2r Rα−1

k0−1∑
i=0

2i(α−1) =
1

2CR,2r Rα−1

2(α−1)(k0−1) − 1

2α−1 − 1

≥ 1

CR,2r(2α − 2) Rα−1

((
R

2r

)α−1

− 1

)

≥ 1

CR,2r(2α − 2)

(
1

(2r)α−1
− 1

Rα−1

)
= 1, (3.3)

and hence % ∈ F (Γ(r, R)). Below the constant CR,r may change from line to line, but
always has the form CR,r = C( 1

rα−1− 1
Rα−1 ), for C depending on α, p, Q2 and the doubling

constant in (?). The following chain of inequalities leads us to the upper estimate for
Mp(Γ(r, R)).

Mp(Γ(r, R)) ≤
∫
B(x0,R)\B(x0,r)

%p dµ =

k0−1∑
i=0

∫
B(x0,2−iR)\B(x0,2−i−1R)

%p dµ

≤
k0−1∑
i=0

µ(B(x0, 2
−iR))

Cp
R,2r

1

(2−(i+1)R)αp

≤ 2αp

Cp
R,2r

µ(B(x0, R))

Rαp

k0−1∑
i=0

2−i(Q2−αp) (by (?))

≤ 1

Cp
R,2r

µ(B(x0, R))

Rαp

2(αp−Q2)(k0+1) − 1

2αp−Q2 − 1

≤ 1

Cp
R,2r

µ(B(x0, R))

Rαp

(
4αp−Q2

(
R

r

)αp−Q2

− 1

)
(3.4)
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≤ 1

Cp
R,2r

µ(B(x0, R))

RQ2

((
4

r

)αp−Q2

− 1

Rαp−Q2

)

≤
CR, r

4

Cp
R,2r

µ(B(x0, R))

RQ2
, ( as αp−Q2 = α− 1.)

By (?) again,

Mp(Γ(r, R)) ≤
CR, r

4

Cp
R,2r

µ(B(x0, R0))

RQ1

0

RQ1−Q2 .

Now let p = Q2 and hence α = 1. Computations similar to these at (3.3) result in∫
γ

% ds ≥
k0∑
i=0

l(βi)

CR,r2−iR
≥

k0∑
i=0

1

CR,r

=
k0

CR,r

≥ 1, (3.5)

for a suitable choice of constant C in CR,r = C ln(R
r
). By the reasoning analogous to

(3.4) we arrive at the following estimate.∫
B(x0,R)\B(x0,r)

%p dµ ≤ µ(B(x0, R))

Cp
R,r

k0∑
i=0

2−iQ2

(2−iR)αp
(by doubling condition)

≤ µ(B(x0, R))

Cp
R,rR

αp

k0∑
i=0

2−i(Q2−αp)

≤ µ(B(x0, R))

Cp
R,rR

Q2
k0

≤ µ(B(x0, R))

RQ2

1

Cp
R,r

ln

(
R

r

)
≤ µ(B(x0, R0))

R0
Q1

RQ1−Q2

CQ2−1
R,r

. (3.6)

Note that if Q1 = Q2 = p, then as R → ∞ the expression on the right hand side
approaches 0. On the other hand, if Q1 = Q2 > p, we can only conclude that

lim
R→∞

Mp(Γ(r, R)) ≤ C(R0, Q1)r
Q2−p.

Since our main goal is to estimate the modulus either for r → 0 (with r < R) or
for large values of R, we may assume without loss of generality that R > R0 for some
positive constant R0. The above estimates for 1 ≤ p < Q2 imply that

Mp(Γ(r, R)) ≤
CR, r

4

Cp
R,2r

µ(B(x0, R0))

R0
Q1

RQ1−Q2 . (3.7)

Denote by Γ(R) =
⋂

0<r<R
Γ(r, R). Then Γ >

⋃
n∈N Γ(1/n) (see Definition 1.4), that

is, every curve in Γ has a subcurve that belongs to
⋃

n∈N Γ(1/n). Hence Mp(Γ) ≤
Mp(

⋃
n∈N Γ(1/n)). Observe that

CR, r
4

Cp
R,2r

= C
(4

r
)α−1 − 1

Rα−1

( 1
(2r)α−1 − 1

Rα−1 )p
→ 0, for r → 0. (3.8)
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Therefore, if 1 ≤ p < Q2 the first part of the lemma follows immediately from the fact
that

Mp(Γ(R)) = lim
r→0

Mp(Γ(r, R)) = 0, and hence Mp(Γ) ≤
∞∑

n=0

Mp(Γ (1/n)) = 0.

Similar argument allows us to handle the case p = Q2. Namely, by (3.6) we have that

1

Cp−1
R,r

= C
1

(ln R − ln r)p−1
→ 0, for r → 0.

This completes the argument in the case p = Q2.

Remark 3.2. Another type of upper estimates have been recently obtained by Garofalo
and Marola, see Theorem 3.4 in [GM]. In our setting and notation this result states
that for a bounded open subset Ω ⊂ X and x0 ∈ Ω, if 0 < r < R < R0(Ω), then

Capp( B(x0, r), B(x0, R) ) ≤

{
C(p, Ω) µ(B(x0,r))

rp 1 < p < Q2,

C(p, Ω) µ(B(x0,r))
rp

(
ln R

r

)1−Q2 p = Q2.

These estimates are not equivalent to ours. For instance if p ≈ Q2, the above inequalities
give the upper bound for Mp ≈ C while we have the upper estimate for Mp ≈ RQ1−Q2 .
Similar discrepancies appear when p = Q2. For example, if space X is Q2-Ahlfors
regular, then for small R our estimate is stronger.

Remark 3.3. If Q1 = Q2, that is, if X is locally Ahlfors regular, then as a byproduct
of the computations (3.4), we get the upper bound for the p-modulus for large values of
R:

Mp(Γ(r, R)) ≤
CR, r

4

Cp
R,2r

µ(B(x0, R0))

R0
Q1

→ C
4αp−Q2

r(αp−Q2)(p−1)
= C(p, Q2)r

Q2−p, for R →∞.

(3.9)

Remark 3.4. The above arguments allow us to prove part (2) of Theorem 2.4 without
appealing to Euclidean techniques. Namely, using the discussion of (3.8), Remark 3.3
and estimate (3.6) with R0 = 1, R = 1+r and r = 1 we arrive at the following estimates:

p < Q2 = Q1 = n : Hp(r) ≤ Mp(Γ(1, 1 + r)) ≤
C1+r, 1

4

C1+r,2

≤ C
4α−1 − 1

(1+r)α−1

(1
2
− 1

(1+r)α−1 )p
→ C(p, n), for r →∞,

p = Q2 = Q1 = n : Hp(r) ≤ C(n)

( ln(1 + r) )Q2−1
→ 0, for r →∞.

However, in this general non-Euclidean setting, we do not have explicit sharp expressions
for the constants C(p, n), C(n).
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4 Lower p-modulus estimates in the abstract setting

The purpose of this section is to discuss the counterparts of Theorem 2.1 and Lemma 2.3
in the abstract setting. The essence of the calculations below reveals that a viable theory
of p-Loewner spaces can be successfully developed beyond the Euclidean setting. The
explicit expressions for the constants involved in the estimates however are lacking in
the metric setting. Our approach is very much in the spirit of Heinonen–Koskela [HK].

Let X be a metric measure space supporting a (1, p)-Poincaré inequality (see e.g.
Chapter 4 in [He] for information on Poincaré inequality). Assume that the following
Ahlfors regularity type condition holds: for every ball BR in X of radius R < diamX,

1

C
RQ ≤ µ(B(R)) ≤ CRQ, (4.1)

with Q ≥ 1 and C ≥ 1. Note that (4.1) implies the previously discussed condition (?).
For distinct points x, y ∈ X denote by Γxy the collection of all compact rectifiable

curves in X connecting x to y.
For k ∈ N such that k > 2009

d(x,y)
let Γk

xy denote the collection of curves in X connecting

B(x, 1/k) to B(y, 1/k).

Proposition 4.1. With the above notation, if p > Q, the space X is Q-Ahlfors regular
and supports a (1, p)-Poincaré inequality, then

Mp(Γxy) ≥ C d(x, y)Q−p. (4.2)

Proof. Let k > 2009/d(x, y) and %k ∈ F (Γk
xy). Define a function uk : X → R by

uk(z) = min
{

inf
γ connecting
B(x,1/k) to z

∫
γ

%k ds, 1
}

. (4.3)

The same argument as in [JJRRS, Corollary 1.10] gives us that uk is measurable and
since ρk ∈ Lp(X) is an upper gradient of uk, by the Poincaré inequality uk ∈ N1,p

loc (X).
Note that uk ≡ 1 on B(y, 1

k
), whereas uk ≡ 0 on B(x, 1

k
).

Let B0 = B(x, 2d(x, y)) and for i ∈ N consider the family of balls

Bi = B(x, 21−id(x, y)), B−i = B(y, 21−id(x, y)).

Since x and y are Lebesgue points of uk, we have by Ahlfors regularity and (1, p)-Poincaré
inequality,

1 = |uk(x)− uk(y)| ≤
∑
i∈Z

|(uk)Bi
− (uk)Bi+1

|

≤ C
∑
i∈Z

∫
Bi

− |uk − (uk)Bi
| dµ

≤ C
∑
i∈Z

d(x, y) 2−|i|
(∫

Bi

− %p
k dµ

) 1
p

11



≤ C
∑
i∈Z

(
d(x, y) 2−|i|

)1−Q
p

(∫
X

%p
k dµ

) 1
p

≤ C d(x, y)1−Q
p

(∫
X

%p
k dµ

) 1
p

. (4.4)

Therefore
∫

X
%p

k dµ ≥ C d(x, y)Q−p and therefore Mp(Γ
k
xy) ≥ C d(x, y)Q−p. The assump-

tion that p > Q has been used to ensure the convergence of the geometric series in (4.4).
The proof is now completed by invoking Proposition 4.2 below.

Note that Γxy =
⋂

k∈N Γk
xy. Since Γk+1

xy ⊆ Γk
xy, the subadditivity of modulus implies

that Mp(Γ
1
xy) ≥ Mp(Γ

2
xy) ≥ · · · ≥ Mp(Γ

k
xy) ≥ Mp(Γ

k+1
xy ) ≥ · · · . This together with

Proposition 4.1 give us that limk→∞ Mp(Γ
k
xy) exists and

lim
k→∞

Mp(Γ
k
xy) ≥ C d(x, y)Q−p. (4.5)

Proposition 4.2. Let X be a locally compact doubling metric measure space. Then

lim
k→∞

Mp(Γ
k
xy) = Mp(Γxy). (4.6)

Proof. First suppose that µ(X) < ∞. Since for every k we have Mp(Γ
k
xy) ≥ Mp(Γxy), it

suffices to prove that Mp(Γxy) ≥ limk→∞ Mp(Γ
k
xy). To do so, let us consider % ∈ F (Γxy)

such that ∫
X

%p dµ ≤ Mp(Γxy) + η. (4.7)

Since X is locally compact and % ∈ Lp(X), the Vitali-Carathéodory Theorem implies
that without loss of generality % can be assumed to be lower semicontinuous on X
(see page 57 in [Ru]). Fix ε > 0 such that with %ε = max{%, ε}, we have

∫
X

%p
ε dµ ≤∫

X
%p dµ+ η. We will show that for all δ > 0, there exists kδ ∈ N such that for all k ∈ N

with k > kδ, we have that for all curves γ ∈ Γk
xy,∫

γ

%ε ds ≥ 1− δ. (4.8)

Suppose this is not true. Then there exists 0 < δ < 1 such that for all k ∈ N there is
nk > k, so that for some γnk

∈ Γnk
xy it holds that∫

γnk

%ε ds < 1− δ. (4.9)

Since %ε ≥ ε on X,

ε`(γnk
) ≤

∫
γnk

%ε ds < 1− δ, so l(γnk
) <

1− δ

ε
,

and so for all k, `(γnk
) < (1 − δ)/ε. Note that γnk

connects a point in B(x, 1
nk

) to a

point in B(y, 1
nk

). The Arzela-Ascoli theorem implies that γnk
→ γ uniformly (on a

12



subsequence if necessary) so that `(γ) ≤ 1−δ
ε

and γ ∈ Γxy. Computations similar to
these on page 14 of [HK] gives us that by the lower semicontinuity of %ε,

lim
k→∞

∫
γnk

%ε ds ≥
∫

γ

%ε ds.

Therefore, for the above γ it holds that∫
γ

%ε ds ≤ lim
k→∞

∫
γnk

%ε ds ≤ 1− δ < 1,

which contradicts with % ∈ F (Γxy). Hence condition (4.8) holds. From this we infer
that 1

1−δ
% ∈ F (Γk

xy) for k > kδ. Hence by (4.7)

Mp(Γ
k
xy) ≤

1

(1− δ)p

∫
X

%p
ε dµ ≤ 1

(1− δ)p
( Mp(Γxy) + 2η ) , if k > kδ.

Hence

lim
k→∞

Mp(Γ
k
xy) ≤

1

(1− δ)p
( Mp(Γxy) + 2η ) .

The assertion of Proposition 4.2 follows by letting δ → 0 and then η → 0.
When µ(X) = ∞, the above argument can be conducted on families of curves re-

stricted to balls in X. Fixing x0 ∈ X, for n ∈ N let Γxy,n be the family of curves
in Γxy that lie in the ball B(x0, n), and Γk

xy,n the family of curves in Γk
xy in B(x0, n);

the above argument yields that Mp(Γxy,n) = lim
k→∞

Mp(Γ
k
xy,n). Now an application of the

fact that whenever (ΓN)N is a sequence of curve families such that ΓN ⊂ ΓN+1, then
lim
N→∞

Mp(ΓN) = Mp(∪NΓN) gives the desired conclusion.

Given a point x0 ∈ X and 0 < r < R, we consider the curve family

Γ(r, R) = ∆(B(x0, r), X \B(x0, R), B(x0, R)).

Theorem 4.3. Let X be a Q-Ahlfors regular metric measure space supporting (1, p)-
Poincaré inequality. Assume that p > Q. If X \B(x0, 2R) is non-empty, then

Mp(Γ(r, R)) ≥ 1

C

µ(B(x0, R))

Rp
≥ 1

C
RQ−p, (4.10)

with constant C depending quantitatively on space X.

Remark 4.4. Note that this result is false for p ≤ Q, since in such a case Theorem 3.1
gives us that Mp(Γ(r, R)) → 0 for r → 0.

Remark 4.5. Note that Theorem 4.3 together with Proposition 4.1 imply that Mp(Γ) =
∞ for p > Q, where Γ stands for the family of non-constant curves passing through a
given point in X.
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Proof of Theorem 4.3. Let % ∈ F (Γ(r, R)). Analogously to Proposition 4.1 we define
u : X → R by

u(z) = min
{

inf
γ connecting

z to X\B(x0,R)

∫
γ

% ds, 1
}

. (4.11)

The proof splits into two cases.
Case 1. There exists x ∈ B(x0, r) and y ∈ B(x0, 2R) \B(x0, R) such that

|u(x)− uB(x,R)| ≤
1

4
and |u(y)− uB(y,R)| ≤

1

4
. (4.12)

Then

1 = |u(x)− u(y)| ≤ 1

4
+ |uB(x,R) − uB(y,R)| +

1

4
,

and so
1

2
≤ |uB(x,R) − uB(y,R)|.

Therefore, by the doubling property of the measure µ, and by the (1, p)-Poincaré in-
equality,

1 ≤ C

∫
B(x0,10R)

− |u− uB(x0,10R)| ≤ CR

(∫
B(x0,10R)

− %p dµ

) 1
p

.

Hence ∫
X

%p dµ ≥
∫

B(x0,10R)

%p dµ ≥ 1

C

µ(B(x0, R))

Rp
. (4.13)

By assumption, X \ B(x0, 2R) is non-empty. Because of the Poincaré inequality,
X is path-connected. Therefore there is a point y ∈ B(x0, 2R) \ B(x0, R) such that
d(x0, y) = 3R/2. As u = 0 on X \B(x0, R), it follows that

|u(y)− uB(y,R)| = uB(y,R) < 1/4.

Hence the only remaining case is the following.
Case 2. For all x ∈ B(x0, r) we have |u(x)− uB(x,R)| > 1

4
. As x is a Lebesgue point

of u we have by the Poincaré inequality with Bi = B(x, 21−iR)

1

4
< |u(x)− uB(x,R)| ≤

∑
i∈N

|uBi
− uBi+1

|

≤ C
∑
i∈N

∫
Bi

− |u− uBi
| dµ

≤ C
∑
i∈N

2−iR

(∫
Bi

− %p dµ

) 1
p

≤ C
∑
i∈N

(
2−iR

)1−Q
p

(∫
Bi

%p dµ

) 1
p
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≤ CR1−Q
p

∑
i∈N

2−i(1−Q
p

)

(∫
X

%p dµ

) 1
p

≤ C R1−Q
p

(∫
X

%p dµ

) 1
p

.

To ensure that the above sum is finite we need the assumption that p > Q. As observed
in Remark 4.4 this assumption is also necessary. The above estimate implies that∫

X

%pdµ ≥ 1

C

RQ

Rp
≥ 1

C

µ(B(x0, R))

Rp
.

By the above two cases, for all % ∈ F (Γ(r, R)),∫
X

%p dµ ≥ 1

C

µ(B(x0, R))

Rp
.

Taking the infemum over all such %, we get

Mp(Γ(r, R)) ≥ 1

C

µ(B(x0, R))

Rp
.

Our discussion of lower bounds for the p-modulus will be complete if we handle the
case Q − 1 < p < Q. This will be obtained using the following result of Heinonen–
Koskela [HK].

Theorem 4.6 (Theorem 5.9 in [HK]). Suppose that (X, µ) is a doubling space where
the lower mass bound in (4.1) holds for some Q ≥ 1. Suppose further that X admits
a weak (1, p)-Poincaré inequality for some 1 ≤ p ≤ Q. Let E and F be two compact
subsets of a ball BR in X and assume that, for some Q ≥ s ≥ Q− p and 1 ≥ λ > 0, we
have

min{Hs
∞(E), Hs

∞(F )} ≥ λRs−Qµ(BR). (4.14)

Then there is a constant C ≥ 1, depending only on s and on the data associated with
X, so that ∫

BCR

%pdµ ≥ 1

C
λµ(BR)R−p, (4.15)

whenever u is continuous function in the ball BCR with u|E ≤ 0 and u|F ≥ 1, and % is
a weak upper gradient of u in BCR.

HereHs
∞(E) denotes the Hausdorff s-content of a set E. Recall that if E is connected,

then H1
∞(E) ≈ diamE.

Proposition 4.7. Let X be a Q-Ahlfors regular metric measure space that supports
(1, p)-Poincaré inequality for some p > 1 such that Q − 1 ≤ p ≤ Q and Q ≥ 1. Let E
and F be continua contained in a ball BR ⊂ X. Then

Mp(∆(E, F, X)) ≥ 1

C

min{diamE, diamF}
R1+p−Q

, (4.16)

for C a constant in Theorem 4.6.

15



Proof. Take s = 1 and define

λ = min

{
1,

1

C

min{H1
∞(E), H1

∞(F )}
R1−Qµ(BR)

}
for given continua E and F . If λ = 1, then by the Ahlfors regularity,

1 ≤ 1

C

min{H1
∞(E), H1

∞(F )}
R1−Qµ(BR)

≤ 2C,

and so

λ ≈ 1

C

min{H1
∞(E), H1

∞(F )}
R1−Qµ(BR)

.

An application of Theorem 4.6 together with Ahlfors regularity yields∫
BCR

%pdµ ≥ 1

C

min{diamE, diamF}
R1+p−Q

(4.17)

and the theorem now follows from the fact that Mp(∆(E, F, X)) = Cont− Capp(E, F, X),
see Theorem 1.1 in Section 1.

The immediate consequence is a p-Loewner type result for Q− 1 < p ≤ Q:

Corollary 4.8. Under the assumptions of Proposition 4.7 on X, let E and F be continua
with min{diamE, diamF} > 0. If Q− 1 < p ≤ Q, then

Mp(∆(E, F, X)) > 0. (4.18)

In order to have complete analogy with the case p > Q we would like to find a lower
bound for Mp(Γ(r, R)) when 1 ≤ p ≤ Q.

Theorem 4.9. Let X be Q-Ahlfors regular metric measure space supporting (1, p)-
Poincaré inequality. Assume also that 1 ≤ p ≤ Q. Then we have for 0 < r < R
such that X \B(x0, 2R) 6= ∅,

Mp(Γ(r, R)) ≥ 1

C

rQp

RQp+p−Q
. (4.19)

Indeed, we can replace the condition that X \ B(x0, 2R) is non-empty with the
condition that there is a point y ∈ X with d(x0, y) = 3R/2.

Proof. Let x0 ∈ X and % ∈ F (Γ(r, R)) be such that % ≥ ε > 0 on B(x0, R) \ B(x0, r).
Also assume that % is l.s.c. Let u : X → R be given by

u(z) = min

{
inf

γ connecting
X\B(x0,R) to z

∫
γ

% ds, 1

}
. (4.20)

Observe that as % ∈ F (Γ(r, R)), we have u ≡ 0 on X \B(x0, R), u ≡ 1 on B(x0, r), and
0 ≤ u ≤ 1.

16



Let B = B(x0, 2R). Note that

uB =
1

µ(B)

∫
B

u dµ ≥ µ(B(x0, r))

µ(B(x0, 2R))
.

Because X \ B(x0, 2R) 6= ∅, by the path-connectedness of X (which follows from the
Poincaré inequality) there exists y ∈ B(x0, 2R) \ B(x0, R) such that d(x0, y) = 3

2
R,

B(y, R
2
) ⊂ B(x0, 2R) \B(x0, R) and

1

C
≤

µ(B(y, R
2
))

µ(B(x0, R))
≤ C.

The definition of u, the choice of y, and the Ahlfors regularity imply∫
B

−|u− uB|p dµ ≥ 1

µ(B)

∫
B(y, R

2 )

up
B dµ ≥

µ(B(y, R
2
)) µ(B(x0, r))

p

µ(B(x0, 2R))1+p
≥ 1

C

µ(B(x0, r))
p

µ(B(x0, R))p
.

Hence by the (1, p)-Poincaré inequality,

1

C

µ(B(x0, r))

µ(B(x0, R))
≤ CR

(∫
B

− %p dµ

) 1
p

≤ CR

µ(B(x0, R))
1
p

(∫
X

%p dµ

) 1
p

. (4.21)

From this we get ∫
X

%p dµ ≥ 1

CRp

µ(B(x0, r))
p

µ(B(x0, R))p−1
.

Inequality (4.19) now follows by taking infimum over all such % and by applying the
Ahlfors regularity condition.

Remark 4.10. Following Remark 3.2 we compare the estimates obtained in [GM] to
estimates derived in Theorem 4.3 and in Theorem 4.9. In our setting and notation
Theorem 3.2 in [GM] states that with constant C = C(p, Q, Ω) if 0 < r < R < R0(Ω),
then

Capp( B(x0, r), B(x0, R) ) ≥
C
(
1− r

R

)p(p−1) µ(B(x0,r))
rp 1 < p < Q,

C µ(B(x0,r))
rp

(
1− r

R

)Q(Q−1) (
log R

r

)1−Q
p = Q,

C µ(B(x0,r))
rp

(
1− r

R

)p(p−1)
∣∣∣(2R)

p−Q
p−1 − r

p−Q
p−1

∣∣∣1−p

p > Q.

However, note that if p > Q and r is comparable to R then (4.10) is stronger than
the corresponding estimate in [GM], since (4.10) does not involve r at all. Moreover, if
1 ≤ p ≤ Q then inequality (4.19) for the cases r ≈ R or r/R ≈ 0 gives a more delicate
lower estimate than the corresponding part of Theorem 3.2 in [GM].
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5 p-Modulus of curves passing through the point

and Riesz potentials

In Theorem 3.1 we showed that if X is a doubling metric measure space, then Mp(Γ) = 0,
for 1 ≤ p ≤ Q2, where Γ stands for the collection of all non-constant curves passing
through x0 ∈ X. If p > Q2, then Mp(Γ) = ∞, see Remark 4.5. The purpose of this
section is to show that for the weighted Riesz measure, the p-modulus of Γ remains
positive for p ≥ 1.
Another motivation for our studies comes from Theorem 2 in Keith’s paper [K]. Let
(X, d, µ) be a complete doubling metric measure space. The property of X of supporting
a (1, p)-Poincaré inequality with respect to compactly supported Lipschitz functions and
their compactly supported Lipschitz upper gradients is equivalent to the property of
existing a constant C ≥ 1 such that

Mp(Γxy, µ
C
xy) ≥

1

C

1

d(x, y)p−1

for almost every pair of distinct points x, y ∈ X. Here µC
xy denotes the symmetric Riesz

kernel of µ (dµC
xy = dνx + dνy in the notation below).

Let (X, d, µ) be a doubling measure space. Consider the Riesz potential of a nonnegative
function f on X (see e.g. Chapter 9 in [He])

I1,B(f)(z) =

∫
B

f(z) d(x, z)

µ(B(x, d(x, z)))
dµ(z). (5.1)

For a given point x ∈ X define the measure νx(z) as follows:

dνx(z) =
d(x, z)

µ(B(x, d(x, z)))
dµ(z). (5.2)

By [He, Theorem 9.5] we know that if X supports a (1, p)-Poincaré inequality for some
1 ≤ p < ∞, then for all balls B in X and all bounded continuous functions u on B and
for all upper gradients % of u,

|u(x)− uB| ≤ C(diamB)p−1I1,B (%p)(x), (5.3)

whenever x ∈ 1
2
B.

Theorem 5.1. Let (X, d, µ) be a doubling measure space supporting Poincaré inequality
for 1 ≤ p < ∞. For a given point x0 ∈ X consider measure νx0(z) defined as in (5.2).
Then

Mx0
p (Γ(r, R)) := inf

%∈F (Γ)

∫
%(z)p dνx0(z) > C, (5.4)

where 0 < r < R such that X \B(x0, 2R) is non-empty and the constant C depends only
on the constants associated with the doubling property and the Poincaré inequality.
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Proof. Take 0 < r < R and consider the family of curves Γ(r, R). As in Theorem 4.3
we define u : X → R by

u(z) = min
{

inf
γ connecting

z to X\B(x0,R)

∫
γ

% ds, 1
}

. (5.5)

From [JJRRS, Corollary 1.10], the function u is measurable. Observe that as % ∈
F (Γ(r, R)), we have u ≡ 0 on X \ B(x0, R) and u ≡ 1 on B(x0, r). Consider y ∈
B(x0, 2R) \ B(x0, R) such that d(x0, y) = 3

2
R and consider a family of balls defined

inductively

B0 = B(x0, 2d(x0, y)), B1 = B(x0, d(x0, y)) = B(x0, 3R/2), Bi =
1

2
Bi−1, for i > 1,

B−1 = B(y, 3R/2), B−i =
1

2
B−i+1, for i > 1. (5.6)

By construction uB−i
≡ 0, for i ≥ 3. Then by the doubling property of the measure and

the Poincaré inequality we get the following estimate.

1 = |u(x0)− u(y)| ≤
∑
i∈Z

|uBi
− uBi+1

|

≤ C

∞∑
i=0

∫
Bi

− |u(z)− uBi
| dz +

∑
i≤−1

|uBi
− uBi+1

|

= C
∞∑
i=0

∫
Bi

− |u(z)− uBi
| dz +

3∑
i=1

|uB−i
− uB−i+1

|

≤ C
∞∑
i=0

diamBi

(∫
Bi

− %p dz

) 1
p

(5.7)

+ C
3∑

i=1

d(x0, y)2−i

(∫
B−i

− %p dz

) 1
p

. (5.8)

Next we apply the Ahlfors regularity and Definition 5.1 to the term (5.7).

C

∞∑
i=0

diamBi µ(Bi)
− 1

p

(∫
Bi

%pd(x0, z)

µ(B(x0, d(x0, z)))

µ(B(x0, d(x0, z)))

d(x0, z)
dz

) 1
p

≤ C
∞∑
i=0

diamBi µ(Bi)
− 1

p

(∫
Bi

%pd(x0, z)

µ(B(x0, d(x0, z)))
d(x0, z)Q2−1 dz

) 1
p

≤ C

∞∑
i=0

(3 · 2−i+1R) (3 · 2−i+1R)
−Q2

p (3 · 2−i+1R)
Q2−1

p

(∫
Bi

%pd(x0, z)

µ(B(x0, d(x0, z)))
dz

) 1
p

≤ CR
p−1

p

∞∑
i=0

2−i p−1
p

(∫
X

%p dνx0

) 1
p

≤ CR
p−1

p

(∫
X

%p dνx0

) 1
p

. (5.9)
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Similar approach applied to (5.8) gives the following:

3∑
i=1

d(x0, y)2−i

(∫
B−i

− %p dz

) 1
p

≤ 3CR
p−1

p

(∫
X

%p dνx0

) 1
p

. (5.10)

Therefore, (5.9) and (5.10) result in the inequality:

1

C
R1−p ≤

∫
X

%p dνx0 .

Take R = 1. The proof of Proposition 5.1 now follows from the fact that the modulus
is an outer measure on the space of all curves in X, and so for every 0 < r < 1 < R we
have:

Mx0
p (Γ(r, R)) ≥ Mx0

p (Γ(r, 1)) ≥ 1

C
.

References

[Ah] L. V. Ahlfors Lectures on Quasiconformal Mappings, Second Edition, University
Lecture Series, Vol. 38, AMS, 2006.

[C1] P. Caraman Relations between p-capacity and p-module (I), Rev. Roumaine
Math. Pures Appl., 39, 6, (1994), 509–553.

[C2] P. Caraman Relations between p-capacity and p-module (II), Rev. Roumaine
Math. Pures Appl., 39, 6, (1994), 555–577.
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[Vä] J. Väisälä Lectures on n-Dimensional Quasiconformal Mappings, Lecture Notes
in Mathematics 229, Springer-Verlag Berlin, Heidelberg, New York 1971.

21


