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Abstract

We study relations between the variational Sobolev 1-capacity and versions of variational
BV-capacity in a complete metric space equipped with a doubling measure and support-
ing a weak (1, 1)-Poincaré inequality. We prove the equality of 1-modulus and 1-capacity,
extending the known results for 1 < p <∞ to also cover the more geometric case p = 1.
Then we give alternative definitions for variational BV-capacities and obtain equivalence
results between them. Finally we study relations between total 1-capacity and versions
of BV-capacity.
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1. Introduction

In this article we study connections between different 1-capacities and BV-capacities
in the setting of metric measure spaces. We obtain characterizations for the 1-capacity
of a condenser, extending results known for p > 1 to also cover the more geometric case
p = 1. Furthermore, we study how the different versions of BV-capacity, corresponding
to various pointwise requirements that the capacity test functions need to fulfill, relate
to each other.

One difficulty that occurs when working with minimization problems on the space
W 1,1(Rn) is the lack of reflexivity. Indeed, the methods used to develop the theory of
p-capacity are closely related to those used in certain variational minimization problems;
in such problems reflexivity or the weak compactness property of the function space
W 1,p(Rn) when p > 1 usually plays an important role. One possible way to deal with
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this lack of reflexivity is to consider the space BV(Rn), that is, the class of functions of
bounded variation. This wider class of functions provides tools, such as lower semiconti-
nuity of the total variation measure, that can be used to overcome the problems caused
by the lack of reflexivity in the arguments.

This approach was originally used to study variational 1-capacity in the Euclidean
case in [1], [2], and [3]. The article [4] showed that similar approach could also be used
to study variational 1-capacity in the setting of metric measure spaces. In [4] the main
tool in obtaining a connection between the 1-capacity and BV-capacity was the metric
space version of Gustin’s boxing inequality, see [5]. Since then, this strategy has been
used in [6] to study a version of BV-capacity and Sobolev 1-capacity in the setting of
metric measure spaces. Since the case p = 1 corresponds to geometric objects in the
metric measure space such as sets of finite perimeter and minimal surfaces, it behooves
us to understand this case. A study of potential theory in the case p = 1 for the setting
of metric measure spaces was begun in the papers [6], [4], and [7], and we continue the
study in this note.

In the theory of calculus of variations, partial differential equations and potential
theory many interesting features of Sobolev functions are measured in terms of capacity.
Just as sets of measure zero are associated with the Lp-theory, sets of p-capacity zero
should be understood in order to deal with the Sobolev space W 1,p(Rn). For 1 < p <
∞ the p-capacity of sets is quite well-understood; see for example [8], [9], [10] for the
Euclidean setting, and in the more general metric measure space setting, [11], [12], [13],
[14], [15], [16], [17], and the references therein. The situation corresponding to the case
p = 1 is not so well-understood.

In the setting of p = 1 there are two natural function spaces to consider: Sobolev
type spaces, and spaces of functions of bounded variation. Since these two spaces are
interrelated, it is natural to expect that the corresponding capacities are related as well.
However, these two function spaces are fundamentally different in nature. Functions in
the Sobolev class W 1,1(Rn) have quasicontinuous representatives, whereas functions of
bounded variation need not have quasicontinuous representatives, and in fact sometimes
exhibit jumps across sets of nonzero codimension one Hausdorff measure; see for exam-
ple [18]. Because of the quasicontinuity of Sobolev type functions, one can either insist
on the test functions to have value one in a neighborhood of the set whose capacity is
being computed, or merely require the test functions to have value 1 on the set. Such
flexibility is not available in computing the BV-capacities and hence different point-wise
requirements on the test functions might lead to different types of BV-capacity. Thus,
corresponding to the BV-class there is more than one possible notion of capacity and it is
nontrivial to even know which versions of BV-capacities are equivalent. We point out here
that the analog of Sobolev spaces considered in this paper, called the Newton-Sobolev
spaces, consist automatically only of quasicontinuous functions when the measure on X
is doubling and the space supports a (1, 1)-Poincaré inequality.

The primary goal of this note is to compare these different notions of capacity related
to the BV-class, and to the capacity related to the Newton-Sobolev space N1,1(X). In
Section 2 we describe the objects considered in this paper, and then in Section 3 we
show that the 1-modulus of the family of curves in a domain Ω in the metric space,
connecting two nonempty pairwise disjoint compact sets E,F ⊂ Ω, is the same as the
Newton–Sobolev 1-capacity and local Lipschitz capacity of the condenser (E,F,Ω). Our
arguments are based on constructing appropriate test functions. In Section 4 we consider
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three alternative notions of variational BV-capacity of a compact set K ⊂ Ω, and show
that these notions are comparable to each other and to the variational Sobolev 1-capacity
of K relative to Ω. We combine tools such as discrete convolution and boxing inequality
to obtain the desired results. In Section 5 we consider total capacities where we minimize
the norm of the test functions rather than their energy seminorm. We consider these
quantities of more general bounded sets - related to both BV-functions and to Sobolev
functions - and compare them to their variational capacities.

In the classical Euclidean setting some of these results are known, for example from
[2], but even in the weighted Euclidean setting and the Carnot groups the results of this
paper are new.

2. Preliminaries

In this article X = (X, d, µ) is a complete metric measure space. We assume that µ
is a Borel regular outer measure that is doubling, i.e. there is a constant CD, called the
doubling constant of µ, such that

µ(2B) ≤ CDµ(B)

for all balls B of X. Furthermore, it is assumed that 0 < µ(B) <∞ for all balls B ⊂ X.
These assumptions imply that the metric space X is proper, that is, closed and bounded
sets are compact. In this article, by a path we mean a rectifiable nonconstant continuous
mapping from a compact interval to X. The standard tool that is used to measure path
families is the following.

Definition 2.1. Let Ω ⊂ X be an open connected set. The p-modulus of a collection of
paths Γ in Ω for 1 ≤ p <∞ is defined as

Modp(Γ) = inf
%

∫
Ω

%pdµ

where the infimum is taken over all nonnegative Borel-measurable functions % such that∫
γ
% ds ≥ 1 for each γ ∈ Γ.

We use the definition of Sobolev spaces on metric measure space X based on the
notion of p-weak upper gradients, see [11], [19]. Note that instead of the whole space X,
we can consider its open subsets in the definitions below.

Definition 2.2. A nonnegative Borel function g on X is an upper gradient of an extended
real valued function u on X if for all paths γ,

|u(x)− u(y)| ≤
∫
γ

g ds, (1)

whenever both u(x) and u(y) are finite, and
∫
γ
g ds =∞ otherwise. Here x and y denote

end points of γ. Let 1 ≤ p <∞. If g is a nonnegative measurable function on X, and if
the integral in (1) is well defined and the inequality holds for p-almost every path, then
g is a p-weak upper gradient of u.
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The phrase that inequality (1) holds for p-almost every path with 1 ≤ p <∞ means
that it fails only for a path family with zero p-modulus. Many usual rules of calculus
are valid for upper gradients as well. For a good overall reference interested readers may
see [20], [21], and [22].

If u has a p-weak upper gradient g ∈ Lploc(X), then there is a minimal p-weak upper
gradient gu such that gu ≤ g µ-almost everywhere for every p-weak upper gradient g of
u, see [21] and [22].

When Ω is an open subset of Euclidean space equipped with the Euclidean metric and
Lebesgue measure, the Sobolev type space considered below coincides with the space of
quasicontinuous representatives of classical Sobolev functions. In the setting of weighted
Euclidean spaces with p-admissible weights, or the Carnot-Carathéodory spaces, the
corresponding Sobolev spaces coincide in an analogous manner with the Sobolev type
space considered below. We refer the interested reader to [19, Example 3.10]; recall that
in the Carnot-Carathéodory setting, the classical Sobolev spaces consist of functions
in Lp(X) whose horizontal derivatives are also in Lp(X), and so the upper gradient
analog is with respect to paths with tangents in the horizontal directions. In the Carnot-
Carathéodory setting paths with finite lengths are precisely paths with tangents in the
horizontal directions.

Definition 2.3. Let 1 ≤ p <∞. If u ∈ Lp(X), let

‖u‖N1,p(X) =
(∫

X

|u|p dµ+ inf
g

∫
X

g p dµ

)1/p

,

where the infimum is taken over all p-weak upper gradients of u. The Newtonian space
on X is the quotient space

N1,p(X) =
{
u : ‖u‖N1,p(X) <∞

}/
∼,

where u ∼ v if and only if ‖u− v‖N1,p(X) = 0.

Note that if X has no nonconstant rectifiable path, then zero is an upper gradient
of every function, and so in this case N1,p(X) = Lp(X). Therefore, to have a reason-
able theory of Sobolev spaces that gives rise to a viable potential theory, one needs a
further condition on the metric measure space. In literature, the following Poincaré type
inequality is considered.

Definition 2.4. Let 1 ≤ p <∞. The space X supports a weak (1,p)-Poincaré inequality
if there exists constants CP > 0 and τ ≥ 1 such that for all balls B(x, r) of X, all locally
integrable functions u on X, and for all p-weak upper gradients g of u,

−
∫
B(x,r)

|u− uB(x,r)| dµ ≤ CP r

(
−
∫
B(x,τr)

gp dµ

)1/p

,

where
uB(x,r) = −

∫
B(x,r)

u dµ =
1

µ(B(x, r))

∫
B(x,r)

u dµ.
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It is known that Lip(X) ∩ N1,p(X) is dense in N1,p(X) if µ is doubling and (1, p)-
Poincaré inequality is satisfied, see [19]. From this it easily follows that Lipschitz func-
tions with compact support are dense in N1,p(X), if X is also complete. Furthermore,
under a Poincaré inequality it is known that the metric space supports a myriad of
rectifiable curves; see for example [11] and [23].

The theory of functions of bounded variation and sets of finite perimeter in met-
ric measure space setting will be extensively used in this thesis. These concepts were
introduced and developed in [24], [25], [26], [27],[28] and [18].

Definition 2.5. Let Ω ⊂ X be an open set. The total variation of a function u ∈ L1
loc(Ω)

is defined as
‖Du‖(Ω) = inf

{ui}
lim inf
i→∞

∫
Ω

gui
dµ,

where gui
is an upper gradient of ui and the infimum is taken over all such sequences of

functions ui ∈ Liploc(Ω) such that ui → u in L1
loc(Ω). We say that a function u ∈ L1(Ω)

is of bounded variation, denoted u ∈ BV(Ω), if ‖Du‖(Ω) <∞. Furthermore, we say that
u belongs to BVloc(Ω) if u ∈ BV(Ω′) for every Ω′ b Ω. Note that N1,1(Ω) ⊂ BV(Ω).

It was shown in [24] that for u ∈ BVloc(X) we have ‖Du‖(·) to be a Radon measure
on X. If U ⊂ X is an open set such that u is constant on U , then ‖Du‖(U) = 0. A Borel
set E ⊂ X is said to have finite perimeter if χE ∈ BV(X); the perimeter P (E,A) of E
in a Borel set A ⊂ X is the number

P (E,A) = ‖DχE‖(A).

Remark. Since X is a complete and doubling 1-Poincaré space, we can consider sequences
from N1,1

loc (Ω) instead of from Liploc(Ω) in the definition of ‖Du‖(Ω). This is due to the
fact that functions from N1,1

loc (Ω) can be approximated by functions from Liploc(Ω). For
a discussion, see for instance [29, Theorem 5.9] and [22, Theorem 5.41].

The next lemma is useful in the following sections of this paper.

Lemma 2.6. Let Ω be an open subset of X and u ∈ BV(Ω) such that the support of u
is a compact subset of Ω. Then there is an open set U b Ω with supt(u) b U , and a
sequence ui ∈ Lip(Ω) with supt(ui) ⊂ U , such that ui → u in L1(Ω) and

‖Du‖(Ω) = lim
i→∞

∫
Ω

gui
dµ

for a choice of upper gradient gui of ui.

Proof. Since u ∈ BV(Ω) there is a sequence vi ∈ Liploc(Ω) with vi → u in L1
loc(Ω) and

‖Du‖(Ω) = lim
i→∞

∫
Ω

gvi
dµ

for some choice of upper gradient gvi
of vi. Since u has compact support in Ω we can

find an open set U b Ω with supt(u) b U . Let η be an L-Lipschitz function on Ω such
that 0 ≤ η ≤ 1, η = 1 on supt(u), and η = 0 on Ω \ U . We set ui = η vi, and now show
that this choice satisfies the claim of the lemma.

5



To see this, note that∫
Ω

|u− ui| dµ =
∫
U

|u− η vi| dµ

=
∫

supt(u)

|u− vi| dµ+
∫
U\supt(u)

η|vi| dµ

≤
∫
U

|u− vi| dµ+
∫
U\supt(u)

|u− vi| dµ

≤ 2
∫
U

|u− vi| dµ→ 0 as i→∞.

Furthermore, the function gui
= ηgvi

+ |vi| gη is an upper gradient of ui. Because gη = 0
on supt(u) ∪ (Ω \ U) and gη ≤ L, we see that∫

Ω

gui dµ ≤
∫
U

gvi dµ+ L

∫
U\supt(u)

|vi| dµ

≤
∫

Ω

gvi
dµ+ L

∫
U\supt(u)

|u− vi| dµ.

Because
lim
i→∞

∫
U\supt(u)

|u− vi| dµ = 0,

it follows that
lim sup
i→∞

∫
Ω

gui dµ ≤ ‖Du‖(Ω).

On the other hand, by the previous argument we know that ui → u in L1(Ω). Thus

‖Du‖(Ω) ≤ lim inf
i→∞

∫
Ω

gui dµ,

and this completes the proof.

The following coarea formula holds, see [24, Proposition 4.2]: whenever u ∈ BV(X)
and E ⊂ X is a Borel set,

‖Du‖(E) =
∫

R
P ({u > t}, E) dt.

It was also shown in the thesis [30, Theorem 6.2.2] that if u ∈ N1,1(X) then

‖u‖N1,1(X) =
∫
X

|u| dµ+ ‖Du‖(X)

and that there is a minimal weak upper gradient g of u such that whenever E ⊂ X is
measurable, we have

‖Du‖(E) =
∫
E

g dµ.
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The above was proved in [30, Theorem 6.2.2] for the case that E is an open set. Since
‖Du‖(·) is a Radon measure, the above follows for all measurable sets. In a metric
measure space equipped with a doubling measure, the (1, 1)-Poincaré inequality implies
the following relative isoperimetric inequality, see [24] or [18]: there are constants C > 0
and λ ≥ 1 such that whenever E ⊂ X is a Borel set and B is a ball of radius r in X,

min{µ(E ∩B), µ(B \ E)} ≤ C r P (E, λB).

See also [31, Theorem 1.1] for the converse statement. Thus if E has zero perimeter in
λB, then the above inequality states that up to sets of measure zero, either B ⊂ E or
B ∩ E is empty.

The Hausdorff measure of codimension one of E ⊂ X is defined as

H(E) = lim
δ→0

inf
{∑
i∈I

µ(Bi)
ri

: I ⊂ N, ri ≤ δ for all i ∈ I, E ⊂
⋃
i∈I

Bi

}
.

Here Bi are balls in X and ri = rad Bi.
Throughout this note we will assume that (X, d, µ) is a complete metric space with a

doubling measure supporting a weak (1, 1)-Poincaré inequality.

3. Modulus and Continuous capacity of condensers; the case p = 1

It was shown in [12] that when 1 < p <∞ the p-modulus of the family of all paths in
a domain Ω ⊂ X that connect two disjoint continua E,F ⊂ Ω must equal the variational
continuous p-capacity of the condenser (E,F,Ω). The tools used in that paper include
a strong form of Mazur’s lemma, which is not available when p = 1. On the other hand,
the results from [32], which were not available at the time [12] was written, should in
principle help us to overcome this difficulty.

In this section we give an extension of the result of [12] to the case p = 1 by using
the results of [32]. Once we have that the p-modulus of the family of curves connecting
E to F in Ω equals the variational p-capacity of the condenser (E,F,Ω), we use the fact
that under the Poincaré inequality Lipschitz functions form a dense subclass of the space
N1,1(X) and that functions in N1,1(X) are quasicontinuous to prove that the capacity of
the condenser can be computed by restricting to functions in N1,1(Ω) that are continuous
on Ω. An easy modification of this proof also indicates that in computing the variational
Sobolev 1-capacity of a set E ⊂ Ω, one can insist that the test functions take on the
value one on E, or equivalently take on the value one in a neighborhood of E, see for
instance [33] and [29].

Let Ω ⊂ X be an open connected set in X, and E and F be disjoint nonempty
compact subsets of Ω. Denote by Modp(E,F,Ω) the p-modulus of the collection of all
rectifiable paths γ in Ω with one endpoint in E and other endpoint in F . The p-capacity
of the condenser (E,F,Ω) is defined by

capp(E,F,Ω) = inf
∫

Ω

gpdµ,

where the infimum is taken over all nonnegative Borel measurable functions g that are
upper gradients of some function u, 0 ≤ u ≤ 1 with the property that u = 1 in E and
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u = 0 in F . Note that in this definition it is not even required of u to be measurable. If u
is in addition assumed to be locally Lipschitz, then the corresponding number obtained is
denoted locLip− capp(E,F,Ω). The definitions immediately imply that for 1 ≤ p <∞,

Modp(E,F,Ω) ≤ capp(E,F,Ω) ≤ locLip− capp(E,F,Ω).

By proposition 2.17 in [11], for 1 ≤ p <∞ we have

Modp(E,F,Ω) = capp(E,F,Ω).

Our goal in this section is to prove that

cap1(E,F,Ω) = locLip− cap1(E,F,Ω)

and therefore extend the result in [12] to also cover the case p = 1. We follow the strategy
used in [12]. A crucial step in [12] is to prove that

capp(E,F,Ω) = N1,p
loc − capp(E,F,Ω),

where in the latter case the test functions u are required to be in N1,p
loc (Ω). We prove

that the above equality also holds for p = 1. First we recall the following theorem.

Theorem 3.1 ([32, Theorem 1.11]). Let X be a complete metric space that supports a
doubling Borel measure µ which is nontrivial and finite on balls. Assume that X supports
a weak (1, p)-Poincaré inequality for some 1 ≤ p <∞. If an extended real valued function
u : X → [−∞,∞] has a p-integrable upper gradient, then u is measurable and locally p-
integrable.

The following observation is an easy consequence of the previous theorem.

Corollary 3.2. Let Ω ⊂ X be an open connected set. If u : Ω → [0, 1] has an upper
gradient g ∈ Lp(Ω), then u is measurable.

Proof. Recall that we have as a standing assumption that X supports a weak (1, 1)-
Poincaré inequality.

It suffices to prove that u coincides with a measurable function locally. To do so,
for x0 ∈ Ω let r > 0 such that B(x0, 4r) ⊂ Ω, and let η be a 1/r-Lipschitz function on
X such that 0 ≤ η ≤ 1, η = 1 on B(x0, r), and η = 0 on X \ B(x0, 2r). Consider the
function v = ηu; note that while u is not defined on X \Ω, since η = 0 on X \Ω we can
extend v by zero to X \ Ω.

A direct computation shows that ρ = ηg+ r−1uχB(x0,2r)\B(x0,r) is an upper gradient
of v in X. Thus it follows from Theorem 3.1 that v is measurable on X, and hence v is
measurable on the ball B(x0, r) ⊂ Ω.; the proof is completed by noting that on B(x0, r)
we have u = v.

Theorem 3.3. Let E and F be nonempty disjoint compact subsets of an open connected
set Ω ⊂ X. Then

cap1(E,F,Ω) = N1,1
loc − cap1(E,F,Ω).
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Proof. It is clear that

cap1(E,F,Ω) ≤ N1,1
loc − cap1(E,F,Ω).

Let ε > 0 and u : Ω→ [0, 1] be a function such that u = 1 in E and u = 0 in F and with
an upper gradient gu for which∫

Ω

gudµ < cap1(E,F,Ω) + ε.

By Corollary 3.2, u is a measurable function with an integrable upper gradient. Since u
is bounded it follows that u ∈ N1,1

loc (Ω). Hence

N1,1
loc − cap1(E,F,Ω) ≤

∫
Ω

gudµ < cap1(E,F,Ω) + ε.

The desired inequality follows by letting ε→ 0.

As pointed out in the beginning of Section 2, a complete metric measure space X with
a doubling measure is proper, i.e. all closed and bounded subsets of X are compact. The
doubling condition of the measure and weak (1, p)-Poincaré inequality, with 1 ≤ p <∞,
imply also that Lipschitz functions are dense in N1,p(X), see for example [19, Theorem
4.1]. For the following theorem we refer to [29, Theorem 1.1].

Theorem 3.4. Let X be proper, Ω ⊂ X open, 1 ≤ p < ∞ and assume that continuous
functions are dense in N1,p(X). Then every u ∈ N1,p

loc (Ω) is quasicontinuous in Ω; that is,
for every ε > 0 there is an open set Uε with Capp(Uε) < ε such that u|Ω\Uε

is continuous
on Ω \ Uε.

Here, by the total capacity Capp(Uε) we mean the number

Capp(Uε) = inf ‖u‖pN1,p(X),

where the infimum is taken over all u ∈ N1,p(X) with u = 1 on Uε and 0 ≤ u ≤ 1.
The following lemma (for 1 < p < ∞) is from [12]; we will prove that it also holds

true in the case p = 1. A similar proof can be used to show that whenever E ⊂ X, we
have Capp(E) = Capp,O(E), where the latter is obtained by considering test functions
u as in the definition of Capp(E) but with the additional condition that u ≥ 1 in a
neighborhood of E. See [33] and [29] for further discussion.

Lemma 3.5. Let E and F be nonempty disjoint compact subsets of Ω. For every 0 <
ε < 1

2 there exists disjoint compact sets Eε and Fε of Ω such that for some δ > 0

(i)
⋃
x∈E B(x, δ) = Eε,

(ii)
⋃
x∈F B(x, δ) = Fε,

(iii) N1,1
loc − cap1(Eε, Fε,Ω) ≤ 1

1−2ε

(
N1,1

loc − cap1(E,F,Ω) + 2ε
)

.

9



Proof. Let 0 < ε < 1/2 and u ∈ N1,1
loc (Ω) be such that 0 ≤ u ≤ 1, u = 1 in E, u = 0 in

F , and with an upper gradient gu satisfying∫
Ω

gudµ < N1,1
loc − cap1(E,F,Ω) + ε.

Let L = 4 dist(E,F )−1. By Theorem 3.4 the function u is quasicontinuous in Ω. Hence
there exists an open set U such that u|Ω\U is continuous in Ω\U and Cap1(U) < ε/(1+L).
Thus there exists v ∈ N1,1(X), 0 ≤ v ≤ 1, such that v = 1 in U and∫

X

v dµ+
∫
X

gvdµ <
ε

1 + L
.

Let E1 = E \ U and F1 = F \ U ; then E1, F1 are compact subsets of Ω \ U with
E \ E1 = E ∩ U and F \ F1 = F ∩ U subsets of U . Let

δ1 = dist (E1, {x ∈ Ω \ U : u(x) < 1− ε})
δ2 = dist (F1, {x ∈ Ω \ U : u(x) > ε})

and let

δ = min {δ1, δ2,dist(E,F )/10,dist(E,X \ Ω)/2,dist(F,X \ Ω)/2} .

Since E1 and F1 are compact and u|Ω\U is continuous, it follows that δ > 0. Let

Eε =
⋃
x∈E

B(x, δ)

Fε =
⋃
x∈F

B(x, δ)

and let η be an L-Lipschitz function such that −1 ≤ η ≤ 1, η = −1 in Fε, and η = 1 in
Eε. Let

w̃ = max
{

0,
u+ ηv − ε

1− 2ε

}
and let w = min{1, w̃}. Now w ∈ N1,1

loc (Ω) with w = 0 in Fε and w = 1 in Eε. Since w
has an upper gradient

gw ≤
gu

1− 2ε
+
Lv + gv
1− 2ε

,

we obtain

N1,1
loc − cap1(Eε, Fε,Ω) ≤

∫
Ω

gwdµ

=
1

1− 2ε

(∫
Ω

gudµ+ L

∫
Ω

v dµ+
∫

Ω

gvdµ

)
<

1
1− 2ε

N1,1
loc − cap1(E,F,Ω) +

2ε
1− 2ε

We recall the following result [29, Theorem 5.9]. The proof given there is valid for all
1 ≤ p <∞.
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Theorem 3.6 ([29, Theorem 5.9]). Let X be proper and assume that locally Lipschitz
functions are dense in N1,p(X). If Ω ⊂ X is open, u ∈ N1,p

loc (Ω), and ε > 0, then there
exists a locally Lipschitz function v : Ω→ R such that ‖u− v‖N1,p(Ω) < ε.

An analog of the next lemma for p > 1 was proved in [12].

Lemma 3.7. Let ε, δ, Eε, Fε, E, F and Ω be as in Lemma 3.5. Then

N1,1
loc − cap1(Eε, Fε,Ω) ≥ locLip− cap1(E,F,Ω).

Proof. Let η1 be a Lipschitz function such that 0 ≤ η1 ≤ 1, η1 = 1 in E and η1 = 0 in
Ω \ Eε. Correspondingly, let η2 be a Lipschitz function such that 0 ≤ η2 ≤ 1, η2 = 1 in
F and η2 = 0 in Ω \ Fε. Let γ > 0 and let u ∈ N1,1

loc (Ω) be such that 0 ≤ u ≤ 1, u = 1 in
Eε and u = 0 in Fε with an upper gradient gu such that∫

Ω

gudµ < N1,1
loc − cap1(Eε, Fε,Ω) + γ.

By Theorem 3.6 there is a sequence of locally Lipschitz functions ui, 0 ≤ ui ≤ 1 such
that

lim
i→∞

‖ui − u‖N1,1(Ω) = 0.

Let
vi = (1− η1 − η2)ui + η1 = (1− ui)η1 + ui(1− η2),

for i = 1, 2, . . . Observe that vi = 1 in E, vi = 0 in F and vi has an upper gradient

gvi ≤ gη1(1− ui) + η1gui + gui(1− η2) + uigη2

≤ gη1(1− ui) + η1(gui−u + gu) + (gui−u + gu)(1− η2) + uigη2 .

Since we may assume that gu = 0 in Eε ∪ Fε, gη1 = 0 in Ω \ Eε, gη2 = 0 in Ω \ Fε and
since u = 1 in Eε and u = 0 in Fε we have the following estimate

locLip− cap1(E,F,Ω) ≤
∫

Ω

gvidµ

≤ ‖gη1‖L∞(Ω)

∫
Eε

|ui − u|dµ+
∫
Eε

gui−udµ

+
∫
Eε

gudµ+
∫

Ω

gui−udµ+
∫

Ω

gudµ

+ ‖gη2‖L∞(Ω)

∫
Fε

|ui − u|dµ.

We may assume that gu = 0 in Eε because u = 1 in Eε. Thus by letting i → ∞ we
obtain

locLip− cap1(E,F,Ω) ≤
∫

Ω

gudµ

≤ N1,1
loc − cap1(Eε, Fε,Ω) + γ.

The claim now follows by letting γ → 0.
11



Finally we obtain the main result of this section.

Theorem 3.8. If E and F are nonempty disjoint compact subsets of Ω, then

Mod1(E,F,Ω) = cap1(E,F,Ω) = locLip− cap1(E,F,Ω).

Proof. It suffices to prove that

locLip− cap1(E,F,Ω) ≤ cap1(E,F,Ω).

Let Eε and Fε be as in Lemma 3.5. Then by Lemma 3.7 and Lemma 3.5,

locLip− cap1(E,F,Ω) ≤ N1,1
loc − cap1(Eε, Fε,Ω)

≤ 1
1− 2ε

(
N1,1

loc − cap1(E,F,Ω) + 2ε
)
.

According to Theorem 3.3 we have that

N1,1
loc − cap1(E,F,Ω) = cap1(E,F,Ω)

and the claim now follows by letting ε→ 0.

4. Variational BV-capacity

In this section we study different types of variational BV-capacities in metric measure
spaces. Since the class BV(X) is less restrictive than N1,1(X) in terms of pointwise
behavior of functions, it is not obvious which definitions of BV-capacity are equivalent.
Our main focus in this section is to study which pointwise conditions the test functions
of capacity must satisfy in order to establish a BV-capacity that is comparable to the
variational 1-capacity known in literature.

For the Sobolev 1-capacity, due to the quasicontinuity of Sobolev type functions, one
can either insist on the test functions u satisfying u = 1 in a neighborhood of the set
whose capacity is being computed, or merely require that the test functions satisfies
u = 1 on the set. Thus the two seemingly different notions of 1-capacity are equal; for
instance, see the earlier discussion in Section 3.

In the Euclidean setting Federer and Ziemer [3] studied a version of BV-capacity of
a set E based on minimizing the perimeter of sets that contain E in the interior, and
another version of BV-capacity based on test functions u that satisfy the requirement that
the level set {u ≥ 1} should have positive upper density Hn−1-a.e. in E. They proved
that these two quantities and the variational 1-capacity are equal. In [4] Kinnunen
et.al. studied the following variational BV-capacity in a metric measure space setting.

Definition 4.1. Let K ⊂ X be compact. The variational BV-capacity of K is defined
as

capBV(K) = inf ‖Du‖(X),

where the infimum is taken over all u ∈ BV(X) such that u = 1 on a neighborhood of
K, 0 ≤ u ≤ 1, and the support of u is a compact subset of X.

12



It was shown in [4] that when K is compact the above BV-capacity is comparable
to the variational 1-capacity and to the Hausdorff content of codimension one. In this
section, we define two modifications of BV-capacity. First we recall the definitions of the
approximate upper and lower limits. Let u be a measurable function. Define

u∨(x) = inf
{
t ∈ R : lim

r→0

µ (B(x, r) ∩ {u > t})
µ (B(x, r))

= 0
}
,

and

u∧(x) = sup
{
t ∈ R : lim

r→0

µ (B(x, r) ∩ {u < t})
µ (B(x, r))

= 0
}
.

Moreover, we define

u =
u∨ + u∧

2
.

If u∨(x) = u∧(x), we denote by

ap lim
y→x

u(y) = u∨(x)

the approximate limit of u at point x. The function u is approximately continuous at x
if

ap lim
y→x

u(y) = u(x).

The jump set of function u, in the sense of approximate limits, is defined as

Su = {x ∈ X : u∨(x) 6= u∧(x)} .

The classical result states that Su is countably (n − 1)-rectifiable for u ∈ BV(Rn), see
for instance [10, Theorem 5.9.6]. This result has an analog in the metric setting, where
the countable (n − 1)-rectifiability is replaced with Su =

⋃
k∈N S(k) with H(S(k)) < ∞

for each k ∈ N; this follows from [18, Proposition 5.2 and Theorem 4.4].
We consider the following capacities in this section.

Definition 4.2. Let Ω ⊂ X be an open set and K ⊂ Ω be a compact set. We define

cap1,O(K,Ω) = inf
∫

Ω

gudµ

where the infimum is taken over all weak upper gradients gu of functions u ∈ N1,1(Ω)
such that supt(u) is a compact subset of Ω with u = 1 on a neighborhood of K. Moreover,
we define

capBV,O(K,Ω) = inf ‖Du‖(Ω)

where the infimum is taken over all u ∈ BV(Ω) such that 0 ≤ u ≤ 1, supt(u) is a compact
subset of Ω with u = 1 on a neighborhood of K. In this definition, as with cap1,O(·,Ω),
we can remove the condition that 0 ≤ u ≤ 1. We define

c̃apBV(K,Ω) = inf ‖Du‖(Ω)

13



where the infimum is taken over all u ∈ BV(Ω) such that supt(u) is a compact subset of
Ω and u ≥ 1 on K. Finally we define

c̃apBV−trunc(K,Ω) = inf ‖Du‖(Ω)

where the infimum is taken over all u ∈ BV(Ω) such that 0 ≤ u ≤ 1, supt(u) is a compact
subset of Ω and u ≥ 1 on K.

Remark. Note that we do not assume that these functions satisfy the condition u ≤ 1 in
the definition of c̃apBV(K,Ω), though we can assume that u ≥ 0.

For any compact set K we automatically have the following inequalities:

c̃apBV(K,Ω) ≤ c̃apBV−trunc(K,Ω) ≤ capBV,O(K,Ω) ≤ cap1,O(K,Ω).

The first inequality immediately follows from comparing the test functions. The second
inequality follows from the observation that if u = 1 in some open neighborhood of a
compact set K, then u∧(x) ≥ 1 for every x ∈ K. The third inequality follows from the
fact that N1,1(Ω) ⊂ BV(Ω).

Theorem 4.3. For any compact set K ⊂ Ω we have

cap1,O(K,Ω) = capBV,O(K,Ω).

Proof. As pointed out above, capBV,O(K,Ω) ≤ cap1,O(K,Ω). In order to prove the
opposite inequality, let ε > 0 and u ∈ BV(Ω) be such that u = 1 in an open neighborhood
U b Ω of K, supt(u) is a compact subset of Ω, and that

‖Du‖(Ω) < capBV,O(K,Ω) + ε.

According to Lemma 2.6, there exist functions ui ∈ Lip(Ω) such that ui → u in L1(Ω)
and satisfying

lim
i→∞

∫
Ω

gui
dµ = ‖Du‖(Ω).

We may assume that 0 ≤ ui ≤ 1 and by Lemma 2.6, the functions ui all have a compact
support in Ω. Let U ′ be an open set such that K ⊂ U ′ b U and η be a Lipschitz function
such that 0 ≤ η ≤ 1, η = 1 in U ′ and η = 0 in Ω \ U . We define

vi = η + (1− η)ui = (1− ui)η + ui

for i = 1, 2, . . . and note that vi ∈ N1,1(Ω) with compact support in Ω. Furthermore, the
absolute continuity of vi on p-modulus almost every path yields that for every i ∈ N the
function vi has an upper gradient gvi satisfying

gvi ≤ |(1− ui)gη + (1− η)gui | = (1− ui)gη + (1− η)gui ,

see [34, Lemma 3.1] and [22, Theorem 2.11]. Since we may assume that gη = 0 in Ω \ U
we have the following estimate

lim sup
i→∞

∫
Ω

gvi
dµ ≤ lim sup

i→∞

∫
Ω

(1− ui)gηdµ+ lim sup
i→∞

∫
Ω

(1− η)gui
dµ

≤ ‖gη‖∞ lim sup
i→∞

∫
U

|u− ui|dµ+ ‖Du‖(Ω)

= ‖Du‖(Ω) < capBV,O(K,Ω) + ε.
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Thus, for every ε > 0 we find an admissible N1,1(Ω)–function with a compact support
in Ω such that

cap1,O(K,Ω) ≤ lim sup
i→∞

∫
Ω

gvi
dµ ≤ ‖Du‖(Ω) < capBV,O(K,Ω) + ε.

The claim now follows by letting ε→ 0.

Before proceeding any further in the study of comparisons of capacities, we give a
counterexample demonstrating that c̃apBV(K,Ω) 6= capBV,O(K,Ω) in general.

In this example we use the fact that if a ball B ⊂ E, where E ⊂ R2 is a bounded
set with finite perimeter, then P (B) ≤ P (E). This type of results for convex sets are
part of the general folklore. For the details of one such result which is sufficient for our
purposes, see [35, Proof of Proposition 3.5 and Appendix].

Example 4.4. Let m denote the ordinary Lebesgue measure and let X = (R2, | · |, µ)
where dµ = w dm with

w(x) =

{
1 when |x| ≤ 1,
8 when |x| > 1.

Let K = B(0, 1) and Ω = B(0, 10). Let ε > 0. The coarea formula implies that

capBV,O(K,Ω) ≥ ‖Du‖(Ω)− ε
≥ P ({u > t},Ω)− ε

for some admissible function u ∈ BV(Ω) and for some 0 < t < 1. Furthermore, since u
is compactly supported in Ω, via zero extension we obtain that

capBV,O(K,Ω) ≥ P ({u > t}, X)− ε.

From the fact that u = 1 in a neighborhood of B(0, 1) it follows that {u > t} c B(0, 1+δ)
for some δ > 0.

Since the perimeter measure vanishes outside the measure theoretic boundary, we can
apply the result mentioned in the discussion preceding this example also in this weighted
case for sets {u > t} and B(0, 1 + δ) to obtain

P ({u > t}, X)− ε ≥ P (B(0, 1 + δ), X)− ε = 16π + 16πδ − ε.

Thus letting ε→ 0, we get

capBV,O(K,Ω) ≥ 16π.

By approximating 2χK with Lipschitz functions

ui = 2 min {1,max {0,−2i|x|+ 2i− 1}} ,

see [6, Example 4.5] for details, it follows that

c̃apBV(K,Ω) ≤ ‖D(2χK)‖(Ω) ≤ lim inf
i→∞

∫
Ω

|Dui|dµ ≤ 4π.

Therefore, in this example we get

c̃apBV(K,Ω) < capBV,O(K,Ω).
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In the light of the above example, our goal now is to show that these capacities are
comparable. To do so, by the previous observations we need to prove that there is a
constant C > 0 such that

1
C

capBV,O(K,Ω) ≤ c̃apBV−trunc(K,Ω) ≤ C c̃apBV(K,Ω)

for every compact set K ⊂ Ω. We start with the following theorem. In the proof we
combine discrete convolution and boxing inequality type arguments to obtain the desired
result.

Theorem 4.5. There exists a constant C > 0, depending only on the constants in the
(1, 1)-Poincaré inequality and the doubling constant of the measure, such that

capBV,O(K,Ω) ≤ C c̃apBV−trunc(K,Ω)

for any compact set K ⊂ Ω.

Proof. Let u ∈ BV(Ω), with 0 ≤ u ≤ 1, be an admissible function for computing
c̃apBV−trunc(K,Ω), such that

‖Du‖(Ω) < c̃apBV−trunc(K,Ω) + ε.

Since u ≥ 1 on K and 0 ≤ u ≤ 1, we have u∧ ≥ 1 on K. So by the definition of u∧, for
every x ∈ K and t < 1 we have

lim
r→0

µ (B (x, r) ∩ {u < t})
µ (B(x, r))

= 0.

For t ≥ 0 set Et = {u > t}. Thus for every x ∈ K and 0 ≤ t < 1,

lim
r→0

µ (B (x, r) ∩ Et)
µ (B(x, r))

= 1. (2)

By the coarea formula there exists 0 < t0 < 1 such that

P (Et0 ,Ω) ≤ ‖Du‖(Ω) < c̃apBV−trunc(K,Ω) + ε. (3)

Let

E =
{
x ∈ Ω : lim

r→0

µ (B (x, r) ∩ Et0)
µ (B(x, r))

= 1
}
.

Observe that dist (E,X \ Ω) = δ > 0, and due to the Lebesgue differentiation theorem,
µ(E∆Et0) = 0. Thus P (Et0 ,Ω) = P (E,Ω) = P (E,X). The equation (2) yields that
K ⊂ E. We now apply discrete convolution, as in the proof of Theorem 6.4 in [4], to
the function w = χE with parameter ρ = δ/(40τ), where τ is the constant in the weak
(1, 1)-Poincaré inequality, to obtain

v(x) =
∞∑
i=1

ϕi(x)wBi
.

Here {Bi}∞i=1 is the covering related to the discrete convolution.
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Let us make few comments on this technique. The radius of each ball Bi is ρ =
δ/(40τ). The partition of unity {ϕi}∞i=1 can be constructed in such way that ϕi is a
C/δ-Lipschitz function with ϕi ≥ 1/C in Bi and supt(ϕi) ⊂ 2Bi for every i = 1, 2, . . .,
where the constant C depends only on the overlap constant of the covering related to
the discrete convolution, see [4]. The overlap constant does not depend on the radii of
the balls used in the covering. We also point out that in [4] the authors assume that
µ(X) = ∞, but the construction and properties of discrete convolution do not depend
on this assumption at all, and hence that assumption is not needed in this paper.

The proof of Theorem 6.4 in [4] implies that v ∈ N1,1(Ω)∩C(Ω) with 0 ≤ v ≤ 1 and
supt(v) is a compact subset of Ω.

We divide the set E into two parts

E1 =
{
x ∈ E :

µ (Bi ∩ E)
µ(Bi)

>
1
2

for some Bi with x ∈ Bi
}

and

E2 =
{
x ∈ E :

µ (Bi ∩ E)
µ(Bi)

≤ 1
2

for every Bi with x ∈ Bi
}
.

Let x ∈ E1. By the definition of E1 there is a ball Bi such that x ∈ Bi and wBi > 1/2.
Since ϕi ≥ 1/C in Bi we have that

v ≥ ϕiwBi
≥ 1/(2C) > 0

in Bi and therefore ṽ = 2Cv ≥ 1 in a neighborhood of the set E1. Note that ṽ ∈
N1,1(Ω) ⊂ BV(Ω) with compact support in Ω and with the total variation

‖Dṽ‖(Ω) ≤ C‖DχE‖(Ω) = C P (E,Ω),

see the proof of [4, Theorem 6.4] for details.
Let x ∈ E2 and Bi be such that x ∈ Bi. Let B = B(x, ρ) and notice that Bi ⊂ 2B ⊂

4Bi. Thus we can estimate

µ (2B ∩ E)
µ (2B)

=
µ (2B)
µ (2B)

− µ (2B \ E)
µ (2B)

≤ 1− µ (Bi \ E)
µ (4Bi)

≤ 1− µ (Bi \ E)
C2
Dµ (Bi)

.

Here CD is the doubling constant of the measure µ. By the definition of E2 we know
that

µ(Bi \ E)
µ(Bi)

≥ 1
2
.

Hence
µ (2B ∩ E)
µ (2B)

≤ 1− 1
2C2

D

= c < 1.

Since x ∈ E2 is a point of Lebesgue density 1 for Et0 and µ(E∆Et0) = 0, we have that

lim
r→0

µ (B (x, r) ∩ E)
µ (B(x, r))

= 1.
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We now follow the proof of the boxing inequality [4, Theorem 3.1], see also [36, Lemma 3.1].
For every x ∈ E2 there exists rx with 0 < rx ≤ 2ρ such that

µ (B (x, rx) ∩ E)
µ (B(x, rx))

≤ c

and
µ (B (x, rx/2) ∩ E)
µ (B(x, rx/2))

> c.

From the choice of rx it follows that

µ (B(x, rx) \ E) = µ (B(x, rx))− µ (B(x, rx) ∩ E)
≥ µ (B(x, rx))− c µ (B(x, rx))
= (1− c)µ (B(x, rx)) .

Furthermore, we have that

µ (B (x, rx) ∩ E)
µ (B(x, rx))

≥ µ (B (x, rx/2) ∩ E)
CDµ (B(x, rx/2))

>
c

CD
.

Thus by the relative isoperimetric inequality we obtain

µ (B(x, rx))
rx

≤ C min {µ (B (x, rx) ∩ E) , µ (B(x, rx) \ E)}
rx

≤ CP (E,B (x, τrx)) ,

where the constant C depends only on the doubling constant of the measure and the
constants in the weak (1, 1)-Poincaré inequality. We apply the standard covering argu-
ment to the family of balls B(x, τrx), x ∈ E2, to obtain pairwise disjoint balls B(xj , τrj),
j ∈ N, such that

E2 ⊂
⋃
x∈E2

B(x, τrx) ⊂
∞⋃
j=1

B(xj , 5τrj).

By using the doubling property of µ and the fact that P (E, ·) is a Borel measure and
that the balls B(xj , τrj) are pairwise disjoint, we obtain

∞∑
j=1

µ (B(xj , 5τrj))
5τrj

≤ C
∞∑
j=1

µ (B(xj , rj))
rj

≤ C
∞∑
j=1

P (E,B (xj , τrj))

= CP

E, ∞⋃
j=1

B(xj , τrj)


≤ CP (E,Ω).
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For positive integers j we define functions ψj ∈ Lip(Ω) by

ψj(x) =
(

1− dist (x,B(xj , 5τrj))
5τrj

)
+

.

Let
ψ = sup

1≤j<∞
ψj

and observe that ψ = 1 in a neighborhood of the set E2. The radius of the covering balls
B(xj , 5τrj) satisfies 5τrj ≤ δ/4 and since δ = dist(E,X \Ω) ≤ dist(E2, X \Ω), we know
that ψ has compact support in Ω. Moreover, ψ has an upper gradient

gψ = sup
1≤j<∞

1
5τrj

χB(xj ,10τrj),

see [22, Lemma 1.28]. For the upper gradient we have the estimate∫
Ω

gψdµ ≤
∫

Ω

∞∑
j=1

1
5τrj

χB(xj ,10τrj)dµ

=
∞∑
j=1

∫
B(xj ,10τrj)

1
5τrj

dµ

≤ CD
∞∑
j=1

µ(B(xj , 5τrj))
5τrj

≤ C P (E,Ω).

Thus ψ ∈ N1,1(Ω).
Let ν = min{ṽ + ψ, 1} where ṽ was constructed in considering E1, and notice that

ν ∈ N1,1(Ω) ⊂ BV(Ω), 0 ≤ ν ≤ 1 and supt(ν) is a compact subset of Ω. Moreover ν = 1
in a neighborhood of E ⊃ K. By using the properties of total variation measure we have
that

cap1,O(K,Ω) ≤ ‖Dν‖(Ω)

≤ ‖Dṽ‖(Ω) + ‖Dψ‖(Ω)

≤ ‖Dṽ‖(Ω) +
∫

Ω

gψdµ

≤ CP (E,Ω).

In the previous estimate the third inequality follows from the fact that ‖Dψ‖(Ω) ≤
‖gψ‖L1(Ω) for ψ ∈ N1,1(Ω), see [30, Theorem 6.2.2]. Since P (E,Ω) = P (Et0 ,Ω), the
inequality (3) yields

cap1,O(K,Ω) = capBV,O(K,Ω) < C
(
c̃apBV−trunc(K,Ω) + ε

)
.

The claim now follows by letting ε→ 0.

Thus capBV,O(·,Ω) and c̃apBV−trunc(·,Ω) are comparable with a constant which does
not depend on Ω. We obtain the remaining inequality in the next theorem.
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Theorem 4.6. There exists a constant C > 0, depending only on the constants in the
(1, 1)-Poincaré inequality and the doubling constant of the measure, such that

c̃apBV−trunc(K,Ω) ≤ C c̃apBV(K,Ω)

for every compact set K ⊂ Ω.

Proof. Let ε > 0 and u ∈ BV(Ω) such that supt(u) is a compact subset of Ω, u ≥ 1 in
K, and

‖Du‖(Ω) < c̃apBV(K,Ω) + ε.

We may assume that 0 ≤ u ≤ 2 since the truncated function ũ = min{u, 2} is an
admissible function with smaller total variation. This is due to the observations that for
any t < 2 we have {u > t} = {ũ > t} and {u < t} = {ũ < t}. Hence u∨(x) ≥ 2 implies
that ũ∨(x) = 2, and if u∨(x) < 2 then u∨(x) = ũ∨(x) and u∧(x) = ũ∧(x).

We divide the set K into two parts;

K1 = {x ∈ K : u∨(x)− u∧(x) < 1/2}

and
K2 = {x ∈ K : u∨(x)− u∧(x) ≥ 1/2} .

Note that K2 ⊂ Su and thus by [18, Theorem 5.3],

H(K2) ≤
∫
K2

dH ≤ 2
α

∫
K2

θudH

≤ C‖Du‖(Su)
≤ C‖Du‖(Ω). (4)

Here C = 2/α, and we used the estimate that for x ∈ K2

θu(x) ≥
u∨(x)∫
u∧(x)

αdt ≥ α

2
,

where θu is defined as in [18, Theorem 5.3] and α > 0 depends only on the doubling
constant of the measure and the constants related to the weak (1, 1)-Poincaré inequality,
see [18, Theorem 4.4] and [18, Theorem 5.3]. Hence the constant C in the above estimate
depends only on the doubling constant of the measure and the constants related to the
Poincaré inequality. Thus for δ > 0 there is a covering

∞⋃
i=1

B(xi, ri) ⊃ K2

such that ri ≤ δ for every i = 1, 2, . . . with the estimate

∞∑
i=1

µ (B (xi, ri))
ri

< H(K2) + ε. (5)
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By choosing δ to be small, we may assume that

δ <
dist (K,X \ Ω)

10
.

We construct an admissible test function to estimate c̃apBV−trunc(K,Ω) as follows. Let
us define functions ϕi by

ϕi(x) =
(

1− dist (x,B (xi, ri))
ri

)
+

for i = 1, 2, . . . and
ϕ0 = min {2u, 1} .

Let
ϕ = sup

0≤i<∞
ϕi

and observe that 0 ≤ ϕ ≤ 1 and supt(ϕ) is a compact subset of Ω. If x ∈ K2, then
x ∈ B(xi, ri) for some index 1 ≤ i <∞ and ϕ ≥ ϕi ≥ 1 in this neighborhood of x. Thus
ϕ∨(x) ≥ ϕ∧(x) ≥ 1 and so ϕ(x) ≥ 1. To obtain similar estimate for the points of set K1

notice that for t < 1 we have

{ϕ < t} ⊂ {ϕ0 < t} ⊂ {2u < t} .

Since u∧ ≥ 1/2 in K1, it follows that for every x ∈ K1 and for any t < 1/2,

lim
r→0

µ (B(x, r) ∩ {u < t})
µ (B(x, r))

= 0.

Thus for every x ∈ K1 and for any t < 1 we have that

lim
r→0

µ (B(x, r) ∩ {2u < t})
µ (B(x, r))

= 0,

and hence

lim
r→0

µ (B(x, r) ∩ {ϕ < t})
µ (B(x, r))

= 0.

This implies that ϕ∧ ≥ 1 in K1 and therefore ϕ ≥ 1 in K1. We have thus obtained that
ϕ ≥ 1 in K. Let

ψk = max
0≤i≤k

ϕi

and note that ψk → ϕ pointwise as k → ∞. We apply the dominated convergence
theorem to obtain

lim
k→∞

∫
Ω

|ϕ− ψk|dµ =
∫

Ω

lim
k→∞

(ϕ− ψk) dµ = 0
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and thus ψk → ϕ in L1(Ω) as k → ∞. By the properties of the total variation measure
we have

‖Dϕ‖(Ω) ≤ lim inf
k→∞

‖Dψk‖(Ω)

≤ lim inf
k→∞

k∑
i=0

‖Dϕi‖(Ω)

= ‖Dϕ0‖(Ω) +
∞∑
i=1

‖Dϕi‖(Ω).

Using the definitions of functions ϕi we have the estimates

‖Dϕ0‖(Ω) ≤ 2‖Du‖(Ω),

and by (5) and (4),

∞∑
i=1

‖Dϕi‖(Ω) ≤
∞∑
i=1

∫
B(xi,2ri)

1
ri
dµ

≤ CD
∞∑
i=1

µ (B (xi, ri))
ri

≤ CD (C‖Du‖(Ω) + ε)
≤ C (‖Du‖(Ω) + ε) .

Thus

c̃apBV−trunc(K,Ω) ≤ ‖Dϕ‖(Ω)
≤ C (‖Du‖(Ω) + ε)
≤ C (c̃apBV(K,Ω) + ε) .

The claim now follows by letting ε→ 0.

The constant C in the previous theorem does not depend on Ω. We have thus obtained
that there exists a constant C > 0 such that

1
C

capBV,O(K,Ω) ≤ c̃apBV−trunc(K,Ω) ≤ C c̃apBV(K,Ω)

for any compact set K ⊂ Ω. Combining these estimates we may state the following.

Corollary 4.7. Let Ω ⊂ X be open and K a compact subset of Ω. Then

cap1,O(K,Ω) = capBV,O(K,Ω) ≈ c̃apBV−trunc(K,Ω) ≈ c̃apBV(K,Ω),

with the constants of comparison depending only on the doubling constant of the measure
and the constants in the Poincaré inequality.

Thus, on the collection of all compact subsets of Ω we have cap1,O(·,Ω), c̃apBV(·,Ω),
c̃apBV−trunc(·,Ω) and capBV,O(·,Ω) are equivalent by two sided estimates.
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5. Codimension one Hausdorff measure and Capacity

In this section we study comparisons between the variational capacity and the capacity
where the norm of the function is also included. In the previous sections we studied
relative capacities of compact sets. Should the metric space X be parabolic, then when
Ω = X the relative capacities of every set are zero; see for example the discussion in [4,
Section 7]. However, the total capacities considered in this section do not have this
drawback. Furthermore, since capacities in general are not inner measures, it would be
insufficient for potential theory to consider only compact sets; in this section we consider
more general sets.

Let B ⊂ X be a ball. For E ⊂ B, we define the following four versions of capacity:

cap1(E,B) = inf
∫
B

gu dµ,

capBV,O(E,B) = inf ‖Du‖(B),

Cap1(E,B) = inf
∫
B

(|u|+ gu) dµ,

CapBV,O(E,B) = inf
(∫

B

|u| dµ+ ‖Du‖(B)
)
,

where the first and third infimum are taken over all u ∈ N1,1(B) and all upper gradients
gu of u such that u = 1 on E and u has compact support in B, and the second and fourth
infimum are taken over all u ∈ BV(B) such that u = 1 in a neighborhood of E and u has
compact support in B. In each of the above definitions we consider the infimum to be
infinite, if there are no such functions. These definitions are consistent with the notions
studied in previous sections for the case that E is compact. Observe that when E b B
we could also require the test functions to satisfy the condition u = 1 in a neighborhood
of E in the definition of cap1(E,B) and Cap1(E,B) to obtain the same quantities. This
fact can be proved by using a cutoff function and quasicontinuity of functions in N1,1(B),
see for instance [22, Theorem 6.19] for the proof of an analogous result.

Remark. We could actually extend the above definitions of capacities to arbitrary sets
E ⊂ X by requiring that the test functions satisfy the pointwise conditions in E ∩B.

Our goal is to prove that the above capacities have the same null sets. In order to
compare variational capacities with the total capacities where the norm of the function is
also included, we apply a metric measure space version of Sobolev inequality, see [37], [38,
Lemma 2.10], [39, Proposition 3.1] and [22, Section 5.4] for general discussion.

Lemma 5.1. Let B ⊂ X be a ball such that X \ B is nonempty. For every E ⊂ B we
have

cap1(E,B) ≈ Cap1(E,B)

with the constants of comparison depending solely on the doubling constant, the Poincaré
constants, and the ball B.

Proof. To see this, note that clearly cap1(E,B) ≤ Cap1(E,B). In order to prove the
remaining comparison, we may assume that cap1(E,B) < ∞. Suppose u is in N1,1(B)
with u = 1 on E and u has a compact support in B. Since X \B is nonempty, it contains
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a ball which has a positive measure according to the assumptions we made at beginning
of this article. Thus X \ B has a positive capacity and we can apply the “Poincaré
inequality for N1,1

0 (B)-functions”, see [22, Corollary 5.48], to obtain∫
B

|u| dµ ≤ C
∫
B

gu dµ.

Here the constant C depends on the ball B as well as the doubling constant of measure
and constants in the weak (1, 1)-Poincaré inequality. In the above estimate we used the
fact that since u has a compact support in B we can take gu = 0 on X \B. Hence

Cap1(E,B) ≤
∫
B

(|u|+ gu) dµ ≤ C
∫
B

gu dµ.

Taking the infimum over all such u gives

Cap1(E,B) ≤ C cap1(E,B).

In fact, since ‖Du‖(B) is defined using approximation by Lipschitz functions, we
can use same arguments as in the above proof together with Lemma 2.6 to obtain an
analogous result for the corresponding BV-capacities. In this case we have the inequality∫

B

|u| dµ ≤ C‖Du‖(B)

and this yields
CapBV,O(E,B) ≤ C‖Du‖(B).

Thus we have the following.

Corollary 5.2. Let B ⊂ X be a ball such that X \B is nonempty. For every E ⊂ B we
have

capBV,O(E,B) ≈ CapBV,O(E,B),

with the constants of comparison depending solely on the doubling constant, the Poincaré
constants, and the ball B.

Furthermore, if K ⊂ B is compact, then according to Theorem 4.3 in the previous
section capBV,O(K,B) = cap1,O(K,B) = cap1(K,B).

For more general sets E, we consider

Cap1(E) = inf
∫
X

(|u|+ gu) dµ,

CapBV,O(E) = inf
(∫

X

u dµ+ ‖Du‖(X)
)

where the first infimum is taken over all u ∈ N1,1(X) such that u = 1 on E and the
second infimum is taken over all u ∈ BV(X) such that u = 1 on an open neighborhood
E. It was shown in [4] that the set of non-Lebesgue points of a function in N1,1(X) is of
zero Cap1–capacity.
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It can be seen that Cap1(E) = 0 if and only if for all balls B in X, Cap1(E∩B, 2B) =
0. Indeed, let us assume that the latter condition holds. By comparing the test functions
we immediately have that

Cap1(E ∩B) ≤ Cap1(E ∩B, 2B)

for all balls B ⊂ X. Thus, if a ball B ⊂ X is fixed, then the countable subadditivity of
1-capacity, see for instance [22], implies that

Cap1(E) ≤
∞∑
k=1

Cap1(E ∩ kB) ≤
∞∑
k=1

Cap1(E ∩ kB, 2kB) = 0.

In order to prove the opposite inequality, let us assume that Cap1(E) = 0. Let B ⊂ X
be a ball and let ε > 0. There is a function u ∈ N1,1(X) such that u = 1 on E and that∫

X

(|u|+ gu) dµ < ε.

Let v = uη where η ∈ Lip(2B) is such that 0 ≤ η ≤ 1, η = 1 in B and that supt(η) is a
compact subset of 2B. Denote by L > 0 the Lipschitz constant of η. Then ηgu + L|u| is
a weak upper gradient of v and

Cap1(E ∩B, 2B) ≤
∫

2B

(|v|+ ηgu + L|u|) dµ

≤ (L+ 1)
∫
X

(|u|+ gu) dµ

< (L+ 1)ε.

The desired result then follows by letting ε→ 0.
The previous argument can be used to obtain the corresponding result for BV-

capacities. Indeed the BV-capacity CapBV,O(·) is countable subadditive, see [6, The-
orem 3.3], and thus CapBV,O(E ∩ B, 2B) = 0 for all balls B in X implies similarly that
CapBV,O(E) = 0. On the other hand, if CapBV,O(E) = 0, then the equivalence of ca-
pacities, see [6, Theorem 4.3], implies that Cap1(E) = 0. Thus the previous statement
concerning 1-capacities together with the fact that N1,1(2B) ⊂ BV(2B) gives

CapBV,O(E ∩B, 2B) ≤ Cap1(E ∩B, 2B) = 0

for all balls B ⊂ X.
Let us recall that the Theorems 4.3 and 5.1 in [6] imply that for any set E ⊂ X

CapBV,O(E) = 0⇐⇒ Cap1(E) = 0⇐⇒ H(E) = 0.

The following corollary is a consequence of the results studied above in this section. In
this result we assume that X\2B is nonempty. However, if X\2B is empty, then 2B = X
and the following versions of total 1-capacities coincide, as do the total BV-capacities;
however, the variational capacities are all zero.

Corollary 5.3. Let B ⊂ X be a ball such that X \2B is nonempty and let E ⊂ B. Then
the following are equivalent.
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1. Cap1(E) = 0,

2. CapBV,O(E) = 0,

3. Cap1(E, 2B) = 0,

4. CapBV,O(E, 2B) = 0,

5. cap1(E, 2B) = 0,

6. capBV,O(E, 2B) = 0,

7. H(E) = 0.

In potential theory one is usually concerned with whether a set is of zero capacity
or not. The above corollary shows that any of the six forms of capacity can be used in
studying this question. Furthermore, if CapBV,O(E,B) = 0 then H(E) = 0.

The above type total capacities and their connections to Hausdorff measure of codi-
mension one were studied in [6]. The relative variational BV-capacity in metric measure
space setting was studied in [7] in the context of De Giorgi measure and an obstacle prob-
lem. In [7], the authors require the capacity test functions for capBV,O(E,B) to be zero
in X\B. As an interesting result [7, Corollary 6.4] they obtain that if capBV,O(E,B) > 0,
then

H(∂∗G) ≈ capBV,O(E,B),

for some G ∈ G satisfying E ⊂ intG. The class G, related to De Giorgi measure, is
a refined collection of measurable sets satisfying certain density conditions, see [7] for
details.
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