
The ∞-Poincaré inequality in metric measure spaces

Estibalitz Durand-Cartagena, Jesús A. Jaramillo and
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1 Introduction

A useful feature of the Euclidean n-space, n ≥ 2, is the fact that every pair of points
x and y can be joined not only by the line segment [x, y], but also by a large family of
curves whose length is comparable to the distance between the points. Once one has
found such a “thick” family of curves, the deduction of important Sobolev and Poincaré
inequalities is an abstract procedure in which the Euclidean structure no longer plays
a role.

The classical Poincaré inequality allows one to obtain integral bounds on the oscil-
lation of a function using integral bounds on its derivatives. In this type of inequalities
the derivative itself is not needed, but only the size of the gradient of the function
is really used; a nice discussion of this can be found in [17]. This is the idea behind
generalizations of Poincaré inequalities in spaces where we may not have a linear struc-
ture. Heinonen and Koskela ([8],[9]) introduced a notion of “upper gradients” which
serves the role of derivatives in a metric space X. A non-negative Borel function g
on X is said to be an upper gradient for an extended real-valued function u on X if
|u(γ(a)) − u(γ(b))| ≤

∫
γ
g for every rectifiable curve γ : [a, b] → X. The following

Poincaré inequality is now standard in literature on analysis in metric measure spaces.

Definition 1.1. Let 1 ≤ p < ∞. We say that (X, d, µ) supports a weak p-Poincaré
inequality if there exist constants Cp > 0 and λ ≥ 1 such that for every Borel measur-
able function u : X → R∪{∞} and every upper gradient g : X → [0,∞] of u, the pair
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(u, g) satisfies the inequality∫
B(x,r)

|u− uB(x,r)| dµ ≤ Cp r
(∫

B(x,λr)
gpdµ

)1/p

for each ball B(x, r) ⊂ X. The word weak refers to the possibility that λ may be
strictly greater than 1.

Here B(x, r) is an open ball with center at x and radius r > 0. For arbitrary A ⊂ X
with 0 < µ(A) <∞ we write

uA =

∫
A
u =

1

µ(A)

∫
A

u dµ.

There is a long list of metric spaces supporting a Poincaré inequality, including
some standard examples such as Rn, Riemannian manifolds with non-negative Ricci
curvature, Carnot groups (in particular the Heisenberg group), but also other non-
Riemannian metric measure spaces of fractional Hausdorff dimension, see for exam-
ple [14], [7] and references therein. Metric spaces equipped with a p-Poincaré inequal-
ity support a nontrivial potential theory and geometric theory even without a priori
smoothness structure of the metric space. Metric spaces with doubling measure and
p-Poincaré inequality admit a first order differential calculus theory akin to that in
Euclidean spaces. One surprising fact is that some geometric consequences of this
condition seem to be independent of the parameter p and the picture is not yet clear.

It follows from Hölder’s inequality that if a space admits a p-Poincaré inequality,
then it admits a q-Poincaré inequality for each q ≥ p. Recently Keith and Zhong [11]
proved a self-improving property for Poincaré inequalities, that is, if X is a complete
metric space equipped with a doubling measure satisfying a p-Poincaré inequality for
some 1 < p <∞, then there exists ε > 0 such that X supports a q-Poincaré inequality
for all q > p− ε. The strongest of all these inequalities would be a 1-Poincaré inequal-
ity, and it is well known that the 1-Poincaré inequality is equivalent to the relative
isoperimetric property ([16], [1]). On the other hand, even for p > 1 the p-Poincaré
inequality has strong links with the geometry of the underlying metric measure space.
For instance, the Poincaré inequality implies that any pair of points in the space can
be connected by curves that are not too long; this property is called quasiconvexity.
A natural question is what would be the weakest version of p-Poincaré inequality that
would still give reasonable information on the geometry of the metric space. One of
the goals of this paper is to answer this question, by studying the following version of
∞-Poincaré inequality:

Definition 1.2. We say that (X, d, µ) supports a weak ∞-Poincaré inequality if there
exist constants C > 0 and λ ≥ 1 such that for every Borel measurable function u :
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X → R ∪ {∞} and every upper gradient g : X → [0,∞] of u, the pair (u, g) satisfies
the inequality ∫

B(x,r)
|u− uB(x,r)| dµ ≤ C r‖g‖L∞(B(x,λr))

for each ball B(x, r) ⊂ X.

The main result of this paper is a characterization of spaces supporting a ∞-
Poincaré inequality; this is given in Theorem 4.7. A metric measure space is said to be
thick quasiconvex if, loosely speaking, every pair of sets of positive measure, which are
a positive distance apart, can be connected by a “thick” family of quasiconvex curves in
the sense that the ∞-modulus of this family of curves is positive. The first aim of this
paper is to show that a connected complete doubling metric measure space supports
a weak ∞-Poincaré inequality if and only if it is thick quasiconvex, which is a purely
geometric condition. We will also prove that this condition is equivalent to the purely
analytic condition that LIP∞(X) = N1,∞(X) with comparable energy seminorms, in
the sense described before Example 4.5.

The paper is organized as follows. In Section 2 we recall some standard notation and
relevant notions regarding metric spaces supporting a doubling measure,∞-modulus of
curves, and Newtonian-Sobolev spaces N1,∞(X). In Section 3 we introduce∞-Poincaré
inequality and present an example (Example 3.3) of a non-doubling metric space which
supports an ∞-Poincaré inequality but does not support any p-Poincaré inequality for
p <∞. We do not know whether there is a metric space with a doubling measure which
supports an ∞-Poincaré inequality but does not support any p-Poincaré inequality
for p < ∞. Furthermore, we give some geometric implications of the ∞-Poincaré
inequality, namely, that the space is quasiconvex. However, as one can appreciate in
Corollary 4.15, quasiconvexity is not a sufficient condition for a space to support an
∞-Poincaré inequality. In Section 4 we will introduce the stronger notion of thick
quasiconvexity (Definition 4.1), which leads us in Theorem 4.7 to obtain the desired
analytic and geometric characterization of ∞-Poincaré inequality.

Unless otherwise stated, the letter C denotes various positive constants whose exact
values are not important, and the value might change even from line to line.

2 Notation and Preliminaries

We assume throughout the paper that (X, d, µ) is a metric measure space, that is, a
metric space equipped with a metric d and a Borel measure µ such that 0 < µ(B) <∞
for each open ball B ⊂ X.

A measure µ is doubling if there is a constant Cµ > 0 such that for all x ∈ X and
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r > 0,
µ(B(x, 2r)) ≤ Cµ µ(B(x, r)).

Here B(x, r) := {y ∈ X : d(x, y) < r}. Also B(x, r) := {y ∈ X : d(x, y) ≤ r} and
λB(x, r) := {y ∈ X : d(x, y) < λr}. We point out here that in the abstract metric
setting, while B(x, r) contains the closure of B(x, r), it might be larger.

An iteration of the above inequality shows that µ is also s1-homogeneous for some
s1 > 0, that is, there are constants C and s depending only on Cµ such that, whenever
B is a ball in X, x ∈ B and r > 0 with B(x, r) ⊂ B,

(1)
µ(B(x, r))

µ(B)
≥ 1

C

(
r

rad(B)

)s1
.

If in addition X is connected and has at least two points, then the doubling property
also implies the existence of a constant s2 > 0 such that for all balls B ⊂ X and
B(x, r) ⊂ B,

(2)
µ(B(x, r))

µ(B)
≤ 1

C

(
r

rad(B)

)s2
.

Because of the above inequality, letting r → 0 we see that for all x ∈ X we have
µ({x}) = 0, that is, µ has no atoms.

In a complete metric space X, the existence of a doubling measure which is finite
on balls and not trivial implies that X is separable and proper. The latter means that
closed bounded subsets of X are compact. In particular, X is locally compact.

Some of the classical theorems in analysis in the Euclidean setting can be extended
to doubling metric measure spaces. The Lebesgue differentiation theorem is such an
example: if u is a locally integrable function on a doubling metric space X, then

u(x) = lim
r→0

∫
B(x,r)

udµ,

for µ-a.e. point in X. In other words, almost every point in X is a Lebesgue point for
u, see for example [7].

Remark 2.1. The hypothesis of completeness is not so restrictive. The completion
(X̂, d̂) of a metric space (X, d) is unique up to isometry. Note that (X, d) is a subspace
of (X̂, d̂) and X is dense in X̂. For our purposes, the crucial observation is that the
essential features of X are inherited by X̂. Indeed, if X is locally complete and there
is a doubling Borel measure µ which is non-trivial and finite on balls, we may extend
this measure to X̂ so that X̂ \X has zero measure and the extended measure has the
same properties as the original one. Also, if X supports a weak p-Poincaré inequality
for some 1 ≤ p ≤ ∞, then so does X̂. See also [10] for further discussions on this topic.
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By a curve γ we will mean a continuous mapping γ : [a, b] → X. Recall that the
length of a continuous curve γ : [a, b]→ X in a metric space (X, d) is defined as

`(γ) = sup
{ n−1∑

i=0

d(γ(ti), γ(ti+1))
}

where the supremum is taken over all finite partitions a = t0 < t1 < · · · < tn = b of
the interval [a, b]. We will say that a curve γ is rectifiable if `(γ) < ∞. The integral
of a Borel function g over a rectifiable path γ is usually defined via the path length
parametrization γ0 of γ in the following way:∫

γ

ρds =

∫ `(γ)

0

g ◦ γ0(t)dt.

Recall here that every rectifiable curve γ admits a parametrization by the arc-length;
that is, with γ0 : [0, `(γ)]→ X, for all t1, t2 with t1 ≤ t2, we have `(γ0|[t1,t2]

) = t2 − t1.

Hence from now on we only consider curves that are arc-length parametrized.

We denote by LIP∞(X) the space of bounded Lipschitz functions on X. In what
follows, ‖ · ‖L∞ will denote the essential supremum norm, provided we have a measure
on X. In addition, LIP(·) will denote the Lipschitz constant:

LIP(u) := sup
x,y∈X
x 6=y

|u(y)− u(x)|
d(y, x)

.

The norm on LIP∞(X) is given by

‖u‖LIP∞(X) := sup
x∈X
|u(x)|+ LIP(u).

We recall the definition of∞-modulus , an outer measure on the collection of all paths
in X. In what follows let Υ ≡ Υ(X) denote the family of all non-constant rectifiable
curves in X. It may happen that Υ is empty, but we will be mainly interested in
finding out when metric spaces have large enough Υ.

Definition 2.2. For Γ ⊂ Υ, let F (Γ) be the family of all Borel measurable functions
ρ : X → [0,∞] such that ∫

γ

ρ ≥ 1 for all γ ∈ Γ.

We define the ∞-modulus of Γ by

Mod∞(Γ) = inf
ρ∈F (Γ)

{‖ρ‖L∞}.

If some property holds for all curves γ 6∈ Γ for some Γ ⊂ Υ that satisfies Mod∞ Γ = 0,
then we say that the property holds for ∞-a.e. curve.
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It can be easily checked that Mod∞ is an outer measure as it is for 1 ≤ p <∞, see
for example [5, Theorem 5.2].

Remark 2.3. Notice that, if we have two measures µ and λ defined on X with the
same zero measure sets, then the ∞-modulus of Γ is the same, independent of the
measure we use to compute it.

Definition 2.4. Let E ⊂ X. Γ+
E is the family of curves γ such that L 1(γ−1(γ∩E)) > 0,

where L 1 denotes the one-dimensional Lebesgue measure.

Recall that we only consider curves that are arc-length parametrized.

Lemma 2.5. Let E ⊂ X. If µ(E) = 0, then Mod∞(Γ+
E) = 0.

Proof. Since µ is a Borel measure, by enlarging E if necessary, we may assume that E
is a Borel set. Let g =∞ · χE. For γ ∈ Γ+

E, we have that L 1(γ−1(γ ∩ E)) > 0 and so∫
γ

gds =

∫
γ∩E

gds =∞.

Hence, by the definition of modulus

Mod∞(Γ+
E) ≤ ‖g‖L∞(X) = 0.

A related generalization of Sobolev spaces to general metric spaces are the so-called
Newtonian Spaces N1,p introduced in [18, 19]. Its definition is based on the notion
of upper gradients of Heinonen and Koskela. In this work, we will focus on the case
p =∞ studied in [3].

Definition 2.6. A non-negative Borel function g on X is an ∞-weak upper gradient
of an extended real-valued function u on X if for ∞-a.e. curve γ ∈ Υ,

|u(γ(a))− u(γ(b))| ≤
∫
γ

g

when both u(γ(a)) and u(γ(b)) are finite, and
∫
γ
g = ∞ otherwise. If the family of

curves for which the above requirement is not satisfied is an empty family, then we say
that g is an upper gradient of u.

Let Ñ1,∞(X, d, µ) = Ñ1,∞(X) be the class of all Borel functions u ∈ L∞(X) for

which there exists an ∞-weak upper gradient g in L∞(X). For u ∈ Ñ1,∞(X, d, µ) we
set

‖u‖ eN1,∞ = ‖u‖L∞ + inf
g
‖g‖L∞ ,

where the infimum is taken over all ∞-weak upper gradients g of u.

6



Definition 2.7. We define an equivalence relation in Ñ1,∞(X) by u ∼ v if and
only if ‖u − v‖ eN1,∞ = 0. The space N1,∞(X, d, µ) = N1,∞(X) denotes the quotient

Ñ1,∞(X, d, µ)/ ∼ and it is equipped with the norm

‖u‖N1,∞ = ‖u‖ eN1,∞ .

It was shown in [3] that N1,∞(X) is a Banach space. Note that if u ∈ Ñ1,∞(X) and

v = u µ-a.e., then it is not necessarily true that v ∈ Ñ1,∞. Nevertheless, the following
lemma shows that if u, v ∈ Ñ1,∞ and v = u µ-a.e., then ‖u− v‖ eN1,∞ = 0.

Lemma 2.8. [3, 5.13] Let u1, u2 ∈ Ñ1,∞(X, d, µ) such that u1 = u2 µ-a.e. Then
u1 ∼ u2, that is, both functions define exactly the same element in N1,∞(X, d, µ).

If g is an ∞-weak upper gradient of f , then one can find a sequence {gj}∞j=1 of
upper gradients of f such that gj −→ g in L∞(X). It follows from the Lebesgue’s
differentiation Theorem that, if µ is doubling, then µ-a.e. x ∈ X is a Lebesgue point of
N1,∞(X, d, µ). Observe also that if u ∈ LIP∞(X), then the Lipschitz constant LIP(u)
is an upper gradient for u. Therefore, ‖ · ‖N1,∞ ≤ ‖ · ‖LIP∞ for every u ∈ LIP∞(X).

3 ∞-Poincaré inequality in metric measure spaces

We recall here again the definition of ∞-Poincaré inequality referred to in Section 1.

Definition 3.1. We say that (X, d, µ) supports a weak ∞-Poincaré inequality if there
exist constants C > 0 and λ ≥ 1 such that for every Borel measurable function u :
X → R ∪ {∞} and every ∞-weak upper gradient g : X → [0,∞] of u, the pair (u, g)
satisfies the inequality∫

B(x,r)
|u− uB(x,r)| dµ ≤ C r‖g‖L∞(B(x,λr))

for each ball B(x, r) ⊂ X.

Remark 3.2. Let us observe that∫
B
|u(x)− uB| dµ(x) =

∫
B

∣∣∣ ∫
B

(u(x)− u(y))dµ(y)
∣∣∣dµ(x)

≤
∫
B

∫
B
|u(x)− u(y)|dµ(y)dµ(x),

and so, when we want to check that (X, d, µ) supports a weak ∞-Poincaré inequality,
it is enough to prove that each pair (u, g) satisfies

(3)

∫
B

∫
B
|u(x)− u(y)|dµ(y)dµ(x) ≤ C r‖g‖L∞(λB)
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for each ball B ⊂ X with radius r. On the other hand, the inequality (3) is necessary
to verify ∞-Poincaré inequality as well. To see this, note that∫

B

∫
B
|u(x)− u(y)|dµ(y)dµ(x) =

∫
B

∫
B
|u(x)− uB + uB − u(y)|dµ(y)dµ(x)

≤ 2

∫
B
|u(x)− uB|dµ(x).

The next example shows that there exist spaces with a weak∞-Poincaré inequality
which do not admit a weak p-Poincaré inequality for any finite p.

Example 3.3. Let T be a non-degenerate triangular region in R2 and let T ′ be an
identical copy of T . Let X be the metric space obtained by identifying a vertex V of
T with a vertex V ′ of T ′ (V = V ′ = {0}) and the metric defined by

d(x, y) =

{
|x− y| if x, y ∈ T or x, y ∈ T ′,
|x− V |+ |V ′ − y| if x ∈ T and y ∈ T ′.

The space is equipped with the weighted measure µ given by dµ(x) = ω(x)dL 2(x),

where ω(x) = e
− 1
|x|2 . Note that µ and the Lebesgue measure L 2 have the same zero

measure sets. It is already known that this space equipped with the Lebesgue measure
L 2 admits a p-Poincaré inequality for p > 2 (see for example [18]). Let us see that
(X, d, µ) does not admit a weak p-Poincaré inequality for any finite p but admits a
weak ∞-Poincaré inequality.

First, let us notice that given a measurable function u in X,

(4)

∫
B
|u− uB| dµ ≤ 2 inf

c∈R

∫
B
|u− c|dµ,

where uB =
∫
B
udµ. Indeed, let c ∈ R and suppose c ≥ uB (the case c < uB is

analogous). Then,∫
B
|c− uB| dµ = c− uB =

∫
B
c−

∫
B
u =

∫
B

(c− u) ≤
∫
B
|c− u|dµ.

Since |u(x)− uB| ≤ |u(x)− c|+ |c− uB| for each x ∈ X, we have that∫
B
|u− uB| dµ ≤

∫
B
|u− c| dµ+

∫
B
|c− uB| dµ ≤ 2

∫
B
|u− c|dµ.

If we take the infimum over c on the right hand of the previous inequality, we get
inequality (4). Let us consider an upper gradient g of u.
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Now, we obtain the following chain of inequalities by using Hölder’s inequality for
2 < p < q. If g is an upper gradient for u,∫

B
|u− uB| dµ

(4)

≤ 2 inf
c∈R

∫
B
|u− c|dµ ≤ 2

∫
B
|u− uB,L 2|dµ

≤ 2‖u− uB,L 2‖L∞(µ) = 2‖u− uB,L 2‖L∞(L 2)

≤Cpr
(∫

5λB
gpdL 2

)1/p

≤ Cpr
(∫

5λB
gqdL 2

)1/q

,

where uB,L 2 =
∫
B
udL 2. In the third line of the previous chain of inequalities we have

applied [6, Theorem 5.1]. If we let q tend to infinity we get∫
B
|u− uB| dµ ≤ Cpr‖g‖L∞(L 2,5λB) = Cpr‖g‖L∞(µ,5λB),

and so, (X, d, µ) admits a weak ∞-Poincaré inequality.

Let us see now that (X, d, µ) does not admit a p-Poincaré inequality for any finite
p. Indeed, consider the function u = 1 in T and u = 0 in T ′ and in the vertex. It is
not difficult to check that the function gα(x) = α

|x| is an upper gradient for u for each

α > 0. Taking the ball B = X, we have that uX > 0 and therefore
∫
X
|u− uX | dµ > 0.

Nevertheless,
∫
X
gpαdµ tends to zero when α tends to zero for 1 < p < ∞, and so X

does not admit a weak p-Poincaré inequality for any finite p.

Observe that the measure µ in the above example is not doubling.

One of the most useful geometric implications of the p-Poincaré inequality for finite
p is the fact that if a complete doubling metric measure space supports a p-Poincaré
inequality then there exists a constant such that each pair of points can be connected
with a curve whose length is at most the constant times the distance between the points
(see [17] or [6]), that is, the space is quasiconvex. If X is only known to support an
∞-Poincaré inequality, the same conclusion holds as demonstrated by Proposition 3.4
below.

Proposition 3.4. Suppose that (X, d, µ) is a complete metric measure space with µ a
doubling measure. If X supports a weak ∞-Poincaré inequality, then X is quasiconvex
with a constant depending only on the constants of the Poincaré inequality and the
doubling constant.

Proof. Let ε > 0. We say that x, z ∈ X lie in the same ε-component of X if there
exists an ε-chain joining x with z, that is, there exists a finite chain z0, z1, . . . , zn such
that z0 = x, zn = z and d(zi, zi+1) ≤ ε for all i = 0, . . . , n − 1. If x and y lie in
different ε-components, then it is obvious that there does not exist a rectifiable curve
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joining x and y. Thus, the function g ≡ 0 is an upper gradient for the characteristic
function of any of the components. Note that for every x in one of the components,
the ball B(x, ε/2) is a subset of that component; that is, each component is open
and hence is a measurable set. By applying the weak ∞-Poincaré inequality to the
characteristic function of any component, it follows that all the points of X lie in the
same ε-component.

Now, let us fix x, y ∈ X and prove that there exists a curve γ joining x and y
such that `(γ) ≤ Cd(x, y), where C is a constant which depends only on the doubling
constant and the constants involved in the Poincaré inequality. We define the ε-distance
of x to z to be

ρx,ε(z) := inf
N−1∑
i=0

d(zi, zi+1),

where the infimum is taken over all finite ε-chains {zi}. Note that ρx,ε(z) <∞ for all
z ∈ X. In addition, if d(z, w) ≤ ε then |ρx,ε(z) − ρx,ε(w)| ≤ d(z, w). Hence, ρx,ε is a
locally 1-Lipschitz function, in particular, every point is a Lebesgue point of ρx,ε and in
addition, for all ε > 0, the function g ≡ 1 is an upper gradient of ρx,ε. For each i ∈ Z,
define Bi = B(x, 21−id(x, y)) if i ≥ 0, and Bi = B(y, 21+id(x, y)) if i ≤ −1. Thus, a
telescopic argument, together with weak ∞-Poincaré inequality, gives us the following
chain of inequalities:

|ρx,ε(y)| =|ρx,ε(x)− ρx,ε(y)|

≤
∑
i∈Z

∣∣∣ ∫
Bi

ρx,εdµ−
∫
Bi+1

ρx,εdµ
∣∣∣

≤Cµ
∑
i∈Z

1

µ(Bi)

∫
Bi

∣∣∣ρx,ε − ∫
Bi+1

ρx,εdµ
∣∣∣dµ

≤CµCd(x, y)
∑
i∈Z

2−|i|‖g‖L∞(λBi)

≤ Cd(x, y)(5)

where C is a constant that depends only on X.

Since X is complete, the existence of a non trivial doubling measure implies that
closed balls are compact. Using a standard limiting argument, which involves Arzela-
Ascoli’s theorem and inequality (5), we can construct a 1-Lipschitz rectifiable curve
connecting x and y with length at most Cd(x, y). Since x and y were arbitrary this
completes the proof. For further details about the construction of the curve we refer
the reader to [13, Theorem 3.1].

The following technical lemma will be useful in the sequel.
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Lemma 3.5. Let X be a complete separable metric space equipped with a σ-finite Borel
measure µ, and let g : X −→ [0,∞] be a Borel function. Then, for each x0 ∈ X, the
function

u(z) = inf
γ connects z to B(x0,r)

∫
γ

g ds,

is µ-measurable. Moreover, whenever k ∈ R the function g is an upper gradient for
v = min{u, k}.

Proof. Following the lines of [10, Corollary 1.10], one can prove that u is µ-measurable.

To see that g is an upper gradient of v on X, we argue as follows. Fix z1, z2 ∈ X
and β be a rectifiable curve in X connecting z1 to z2. There are three possible cases:

1. v(z1) = u(z1) and v(z2) = u(z2),

2. v(z1) = u(z1) and v(z2) = k,

3. v(z1) = k = v(z2).

In the first case, both u(z1) and u(z2) are finite. Fix ε > 0; then we can find a rectifiable
curve connecting z1 to B(x, ε) such that u(z1) ≥

∫
γ
gds− ε, and so

u(z2)− u(z1) ≤
∫
γ∪β

g ds−
∫
γ

g ds + ε =

∫
β

g ds + ε,

where we can cancel
∫
γ
g ds because it is a finite value. A similar argument gives

u(z1)− u(z2) ≤
∫
β

g ds + ε,

and the combination of the above two inequalities followed by letting ε→ 0 gives

|v(z1)− v(z2)| = |u(z1)− u(z2)| ≤
∫
β

g ds.

In the second case, u(z1) = v(z1) ≤ v(z2) ≤ u(z2). In this case again, u(z1) is finite.
For ε > 0 we can find a rectifiable curve γ connecting z1 to B(x, ε) such that u(z1) ≥∫
γ
g ds− ε, and so

|v(z1)− v(z2)| = v(z2)− v(z1) ≤ u(z2)− u(z1) ≤
∫
γ∪β

g ds−
∫
γ

g ds+ ε

=

∫
β

g ds+ ε,
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where again we were able to cancel the term
∫
γ
g ds ≤ u(z1) + ε because it is finite.

Letting ε→ 0 we again obtain

|v(z1)− v(z2)| ≤
∫
β

g ds.

In the third case we easily obtain the above inequality again, because in this case
v(z1)− v(z2) = 0.

The following example shows one of the difficulties in working with p = ∞ as
opposed to finite values of p.

Example 3.6. Let X be a complete metric space that supports a doubling Borel
measure µ which is non-trivial and finite on balls, and suppose that X supports a weak
∞-Poincaré inequality. Denote by Γx0,r,R the family of curves that connect B(x0, r) to
the complement of the ball B(x0, R) with 0 < r < R/2 < diam(X)/4.

We will prove that there is a constant C > 0, independent of R, r and x0, such that

Mod∞(Γx0,r,R) ≥ C

R
.

To see this, let g be a non-negative Borel measurable function on X such that for
all γ ∈ Γx0,r,R, the integral

∫
γ
g ds ≥ 1. Notice here that by Proposition 3.4, X is

quasiconvex. We then set

ũ(z) = inf
γ path connecting z to B(x0,r)

∫
γ

g ds,

and consider u = min{ũ, 2}. Then it follows that u = 0 on B(x0, r) and by the choice
of g, u ≥ 1 on X \ B(x0, R). By [10, Corollary 1.10] it follows that u is measurable
and from Lemma 3.5 it follows that g is an upper gradient of u; that is, u ∈ N1,∞(X).

If x ∈ B(x0, r) and y ∈ B(x0, R + r) \ B(x0, R), for each i ∈ Z define Bi =
B(x, 21−id(x, y)) if i ≥ 0, and Bi = B(y, 21+id(x, y)) if i ≤ −1. By the weak ∞-
Poincaré inequality and the doubling property of µ, we get for Lebesgue points x ∈
B(x0, r) and y ∈ X \B(x0, R),

1 ≤ |u(x)− u(y)| ≤
∑
i∈Z

∣∣∣ ∫
Bi

udµ−
∫
Bi+1

udµ
∣∣∣

≤ Cµ
∑
i∈Z

∫
Bi

∣∣∣u− ∫
Bi

udµ
∣∣∣dµ

≤ CµCd(x, y)
∑
i∈Z

2−|i|‖g‖L∞(λBi)

≤ Cd(x, y)‖g‖L∞(X).
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Hence

‖g‖L∞(X) ≥
1

C d(x, y)
≥ 1

C (R + r)
≥ 1

2CR
.

Taking the infimum over all such g we obtain the desired inequality for the ∞-
Modulus. An analogous statement holds for Modp(Γx0,r,R) if X supports a weak p-
Poincaré inequality for sufficiently large finite p (that is, with p larger than the lower
mass bound exponent s1 obtained from the doubling property of the measure µ). For
such finite p, we can approximate test functions g from above in Lp(X) by lower semi-
continuous functions (it follows from Vitali-Caratheodory theorem [4, pp. 209–213 ]),
and so we would see as in [9] that the p-Modulus of the collection of all curves that
connect x0 itself to X \ B(x0, R) is positive. Unfortunately such an approximation
by lower semi-continuous functions in the L∞-norm does not hold true, and so we
cannot conclude from the above computation that the ∞-modulus of the collection of
all curves connecting x0 to X \ B(x0, R) is positive if X is only known to support a
weak ∞-Poincaré inequality.

The previous example highlights the difficulties when working with the L∞-norm,
namely, the L∞-norm is insensitive to local changes, and we do not have Vitali-
Caratheodory theorem.

4 Geometric characterization of weak ∞-Poincaré

inequality

The connection between isoperimetric and Sobolev-type inequalities in the Euclidean
setting is well-understood (see [16], [1]). In the context of metric spaces supporting a
doubling measure, Miranda proved in [16] that a 1-weak Poincaré inequality implies a
relative isoperimetric inequality for sets of finite perimeter. Recently, in [12] Kinnunen
and Korte gave further characterizations of Poincaré type inequalities in the context
of Newtonian spaces in terms of isoperimetric and isocapacitary inequalities.

In what follows, we will prove that ∞-Poincaré inequality also has a geometric
characterization, namely, it is equivalent to thick quasiconvexity .

Definition 4.1. (X, d, µ) is a thick quasiconvex space if there exists C ≥ 1 such that
for all x, y ∈ X, 0 < ε < 1

4
d(x, y), and all measurable sets E ⊂ B(x, ε), F ⊂ B(y, ε)

satisfying µ(E)µ(F ) > 0 we have that

Mod∞(Γ(E,F,C)) > 0,

where Γ(E,F,C) denotes the set of curves γp,q connecting p ∈ E and q ∈ F with
`(γp,q) ≤ Cd(p, q). Here we do not require quantitative control on the modulus of the
curve family.
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Remark 4.2. Note that every complete thick quasiconvex space X supporting a dou-
bling measure is quasiconvex. Indeed, let x, y ∈ X and choose a sequence εj which
tends to zero. Since X is thick quasiconvex, there exists a constant C ≥ 1 such that
for every εj there exists xj ∈ B(x, εj) and yj ∈ B(y, εj) and a curve γj connecting xj
to yj with `(γj) ≤ Cd(xj, yj). Thus, we obtain a sequence {γj} of curves such that

`(γj) ≤ Cd(xj, yj) ≤ 2Cd(x, y),

that is, a sequence of curves with uniformly bounded length. Since X is a complete
doubling metric space and therefore proper, we may use Arzela-Ascoli’s theorem to
obtain a subsequence, also denoted {γj}, which converges uniformly to a curve γ which
connects x and y with

`(γ) = lim
j→∞

`(γj) ≤ C lim
j→∞

d(xj, yj) = Cd(x, y).

However, the converse is not true. In example 4.14 we will give a quasiconvex space
endowed with a doubling measure which is not thick quasiconvex.

Standard assumptions : In what follows, we will assume that X is a connected
complete metric space supporting a doubling Borel measure µ which is non-trivial and
finite on balls.

We have already proved in Proposition 3.4 that weak ∞-Poincaré inequality for
Lipschitz functions implies quasiconvexity. However, in the following proposition we
prove that weak ∞-Poincaré inequality for Newtonian functions implies the stronger
property of thick quasiconvexity.

Proposition 4.3. If X supports a weak∞-Poincaré inequality for functions in N1,∞(X)
with upper gradients in L∞(X), then X is thick quasiconvex.

We wish to point out here that N1,∞(X) consists precisely of functions in L∞(X)
that have an upper gradient in L∞(X).

Proof. Let x, y ∈ X such that x 6= y, and let 0 < ε < d(x, y)/4. Fix n ∈ N and let
Γn = Γ(B(x, ε), B(y, ε), n) be the collection of all rectifiable curves connecting B(x, ε)
to B(y, ε) such that `(γ) ≤ n d(x, y). Observe that by the choice of ε, if p, q are the
end points of γ, then d(p, q)/4 ≤ d(x, y) ≤ 4d(p, q).

Suppose that Mod∞(Γn) = 0. By [3, Lemma 5.7] there exists a non-negative Borel
measurable function g ∈ L∞(X) such that ‖g‖L∞(X) = 0 and for all γ ∈ Γn, the path
integral

∫
γ
g ds =∞. In this case we define

u(z) = inf
γ connecting z to B(x,ε)

∫
γ

(1 + g) ds.
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Observe that ‖1+g‖L∞(X) = 1 and u = 0 on B(x, ε). If z ∈ B(y, ε) and γ is a rectifiable
curve connecting z to B(x, ε), then either γ ∈ Γn in which case

∫
γ
(1+g) ds ≥

∫
γ
g ds =

∞, or else γ 6∈ Γn, in which case `(γ) > nd(x, y) and so
∫
γ
(1+g) ds ≥

∫
γ

1 ds > nd(x, y),

and so u(z) ≥ n d(x, y). It follows that the function v = min{u, 2n d(x, y)} has the
properties that

1. v = 0 on B(x, ε),

2. v ≥ nd(x, y) on B(y, ε),

3. v ∈ N1,∞(X),

4. 1 + g is an upper gradient of v on X (see Lemma 3.5), with ‖g‖L∞(X) = 0.

Let y0 ∈ B(y, ε/2) be a Lebesgue point of v; then by using the chain of balls Bi =
B(x, 21−id(x, y)) if i ≥ 0 and Bi = B(y0, 2

1+id(x, y)) if i ≤ −1 and using the weak
∞-Poincaré inequality, we get

n d(x, y) ≤ v(y0) = |v(x)− v(y0)| ≤
∑
i∈Z

|vBi
− vBi+1

|

≤ C
∑
i∈Z

∫
2Bi

|v − vBi
| dµ

≤ C
∑
i∈Z

2−|i|d(x, y)‖1 + g‖L∞(λBi)

= Cd(x, y)
∑
i∈Z

2−|i| ≤ Cd(x, y).

Observe that x is a Lebesgue point of v since v = 0 on B(x, ε). Thus we must have
n ≤ C, with C depending solely on the doubling constant and the constant of the
Poincaré inequality. Hence if n > C then the curve family Γn = Γ(B(x, ε), B(y, ε), n)
must have positive ∞-Modulus, completing the proof in the simple case that E =
B(x, ε) and F = B(y, ε). The proof for more general E,F is very similar, where we
modify the definition of u by looking at curves that connect z to E, and then observing
that almost every point in E and almost every point in F are Lebesgue points for the
modified function v, with v = 0 on E and v ≥ nd(x, y) on F . This completes the proof
of the proposition.

The following result indicates an advantage of a thick quasiconvex space.

Lemma 4.4. Let X be a thick quasiconvex space. If u is a measurable function (finite
µ-a.e.) on X and g is an upper gradient of u, and if B is a ball in X such that

15



‖g‖L∞(2CB) <∞, then there is a set F ⊂ B with µ(F ) = 0 such that u is C‖g‖L∞(2CB)-
Lipschitz continuous on B \ F . Here C is the constant appearing in the definition of
thick quasiconvexity.

Proof. Since u is measurable (and finite µ-almost everywhere), by Lusin’s theorem ([4,
pp. 61]) for every n ∈ N there is a measurable set En ⊂ X such that µ(En) < 1/n
and u|B\En is continuous. Moreover, for each n ≥ 1 we can choose Gn be an open set
such that En ⊂ Gn, µ(Gn) < 1

n
(see Theorem 1.10 in [15]) and u|X\Gn is continuous.

Now, Vn = G1 ∩G2 ∩ · · · ∩Gn is an open set with µ(Vn) < 1
n
. Observe that B \ Vn =

(B \G1) ∪ · · · ∪ (B \Gn) and u|B\Vn is continuous.

We will show that u is C‖g‖L∞(2CB)-Lipschitz continuous on B \ Vn. Let P = {x ∈
2CB : g(x) > ‖g‖L∞(2CB)}; then by assumption, µ(P ) = 0, and so it follows from
Lemma 2.5 that Mod∞(Γ+

P ) = 0. To prove that u is C‖g‖L∞(2CB)-Lipschitz continuous
on B\Vn, we fix x, y ∈ B\Vn that are points of density for B\Vn. Let 0 < δ < d(x, y)/4.
By the thick quasiconvexity applied to the sets Eδ := B(x, δ)\Vn and Fδ := B(y, δ)\Vn,
there is a curve γ connecting a point xδ ∈ Eδ and yδ ∈ Fδ with `(γ) ≤ Cd(xδ, yδ) and
L 1(γ−1(γ ∩ P )) = 0. Notice that since x is a point of density for B \ Vn,

lim
ρ→0

µ(B(x, ρ) ∩ (B \ Vn)

µ(B(x, ρ))
= 1,

and so µ(Eδ) > 0. Analogously, we obtain that since y is a point of density for B \ Vn,
µ(Fδ) > 0. Hence we can apply the thick quasiconvexity property to Eδ, Fδ.

Thus,

(6) |u(xδ)− u(yδ)| ≤
∫
γ

g ds ≤ ‖g‖L∞(2CB)`(γ) ≤ C‖g‖L∞(2CB)d(xδ, yδ).

Since u is continuous on B \ Vn, by letting δ → 0 in (6), we see that

|u(x)− u(y)| ≤ C‖g‖L∞(2CB)d(x, y)

as wanted.

Now, we set F =
⋂
n Vn. Note that since {Vn}n is a decreasing sequence of sets,

µ(F ) = limn→∞ µ(Vn) = 0. To conclude, let x, y ∈ B \F . Since B \ Vn is an increasing
sequence of sets, there exists n ∈ N such that x, y ∈ B\Vn and so u|B\F is C‖g‖L∞(2CB)-
Lipschitz.

In what follows we say that LIP∞(X) = N1,∞(X) with comparable energy semi-
norms if there is a constant C > 0 such that for all u ∈ N1,∞(X), there exists
u0 ∈ LIP∞(X) with u = u0 µ-a.e. and

LIP(u0) ≤ C inf
g
‖g‖L∞ ,
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where the infimum is taken over all ∞-weak upper gradients g of u.

The following example shows that the requirement that LIP∞(X) = N1,∞(X) as
Banach spaces does not by itself imply that these two Banach spaces should have
comparable energy seminorms. If however the two seminorms are comparable, then
the two Banach space norms are equivalent.

Example 4.5. Consider the set X = R2 \ ∪∞n=1Rn, where Rn is the open rectangle
Rn = (2n, 2n + 1) × (0, n). We endow X with the Euclidean distance and the 2-
dimensional Lebesgue measure. It is clear that X is not quasiconvex. Nevertheless,
X is uniformly locally thick quasiconvex, that is, for every p ∈ X, the ball B(p, 1) in
X with center p and radius 1/2 is thick quasiconvex with quasiconvexity constant 2.
Indeed, if the ball does not contain any corner of the rectangles Rn, n ∈ N, then it is
thick quasiconvex with quasiconvexity constant 1, and if it contains a corner of one of
the rectangles Rn then the ball is thick quasiconvex with quasiconvexity constant 2.
Now we will see that each u ∈ N1,∞(X) coincides a.e. with a function in LIP∞(X). The
set E = {x ∈ X : u(x) > ‖u‖L∞} has measure zero. If x, y ∈ X \E with d(x, y) ≥ 1/8,
then |u(x)− u(y)| ≤ 2‖u‖L∞(X) ≤ 16‖u‖L∞(X) d(x, y).

Fix an upper gradient g ∈ L∞(X) of u. Let (pj) be an enumeration of the points
in X having rational coordinates, and for each j consider the ball B(pj, 1/2). By
Lemma 4.4, for each j there is a set Fj of measure zero such that u is 2‖g‖L∞(B(pj ,1))-
Lipschitz on B(pj, 1/2)\Fj and hence is 2‖g‖L∞(X)-Lipschitz continuous on B(pj, 1/2)\
Fj. The set F = ∪∞j=1Fj ∪E is of measure zero. If x, y ∈ X \F such that d(x, y) < 1/8,
then there is some j with x, y ∈ B(pj, 1/2), and so |u(x) − u(y)| ≤ 2‖g‖L∞(X)d(x, y).
It follows that for all x, y ∈ X \ F ,

|u(x)− u(y)| ≤ 2[‖u‖L∞(X) + 8‖g‖L∞(X)] d(x, y).

Now the restriction u|X\F
can be extended to a Lipschitz function on X (for exam-

ple, via McShane extension, see e.g. [7, Theorem 6.2]). In this way we obtain the
equality LIP∞(X) = N1,∞(X). Finally, because X is not quasiconvex, it follows from
Theorem 4.7 below that we do not have comparable energy seminorms for this case.

Proposition 4.6. If X is a thick quasiconvex space, then LIP∞(X) = N1,∞(X) with
comparable energy seminorms.

Proof. Since we have always that given a Lipschitz function u on X, the constant
function ρ(x) = LIP(u) is an upper gradient of u, we have a continuous embedding
LIP∞(X) ⊂ N1,∞(X). Hence it suffices to check that we have a continuous embedding
N1,∞(X) ⊂ LIP∞(X). This follows from Lemma 4.4, by exhausting X by balls of
large radii and then modifying f ∈ N1,∞(X) on the exceptional set of measure zero
via McShane extension (see for example [7, Theorem 6.2]).
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We are now ready to state the main result of this paper.

Theorem 4.7. Suppose that X is a connected complete metric space supporting a
doubling Borel measure µ which is non-trivial and finite on balls. Then the following
conditions are equivalent:

(a) X supports a weak ∞-Poincaré inequality.

(b) X is thick quasiconvex.

(c) LIP∞(X) = N1,∞(X) with comparable energy seminorms.

(d) X supports a weak ∞-Poincaré inequality for functions in N1,∞(X).

The equivalence of Condition (c) with the other three conditions needs the addi-
tional assumption of connectedness of X since the example of the union of two disjoint
planar discs satisfies (c) but fails the other three conditions. The other three conditions
directly imply that X is connected.

The result a ⇒ d is immediate, and so the proof of Theorem 4.7 is split in three
parts:

◦ d⇒ b : has been proven above as Proposition 4.3.

◦ b⇒ c : has been proven above as Proposition 4.6.

◦ c⇒ a : will be proved in Proposition 4.11 below.

Remark 4.8. We point out here that if X is complete, connected, and equipped with
a non-trivial doubling measure, then the following are equivalent:

(i) X is quasiconvex.

(ii) X supports an ∞-Poincaré inequality for locally Lipschitz continuous functions
with continuous upper gradients.

(iii) LIP∞(X) = D∞(X) with comparable energy seminorms.

Recall that D∞(X) is the class of all bounded functions u : X −→ R for which
the local Lipschitz constant function Lipu is uniformly bounded; see [3]. The norm on
D∞(X) is given by

‖u‖D∞(X) := sup
x∈X
|u(x)|+ sup

x∈X
Lipu(x)
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where

Lipu(x) := lim sup
y→x
y 6=x

|u(x)− u(y)|
d(x, y)

.

So by LIP∞(X) = D∞(X) with comparable energy seminorms we mean that the two
sets coincide and there is a constant C > 0 such that for all u ∈ LIP∞(X),

LIP(u) ≤ C sup
x∈X

Lipu(x).

It is well known that LIP∞(X) is a Banach space. In general D∞(X) is not a Banach
space, as shown in [3]. But LIP∞(X) ⊂ D∞(X) as an isometric embedding, since if u
is a Lipschitz function,

Lipu(x) ≤ LIP(u) for every x ∈ X.

In the case that Condition (iii) is satisfied D∞(X) will also be a Banach space.

The implication of (ii)⇒ (i) is given by the proof of Proposition 3.4. We only need
to apply the Poincaré inequality to the locally Lipschitz continuous function ρx,ε and
its continuous upper gradient 1. The implication (i)⇒ (ii) follows from the argument
that if g is a continuous upper gradient of a locally Lipschitz continuous function u,
then for x, y ∈ X, by choosing a quasiconvex path γ connecting x to y, we get

|u(x)− u(y)| ≤
∫
γ

g ds ≤ C d(x, y) sup
z∈B(x,Cd(x,y))

g(z).

So if B is a ball in X and x, y are points in B, then∫
B

∫
B
|u(x)− u(y)| dµ(x) dµ(y) ≤ Crad(B) sup

z∈CB
g(z) = Crad(B)‖g‖L∞(CB).

The fact that Condition (i) implies Condition (iii) can be found in [3, Lemma 2.3,
Corollary 2.4].

Now suppose that Condition (iii) holds. Then as in the proof of Proposition 3.4, for
each x ∈ X and ε > 0 we consider the function ρx,ε, and since X is connected we see
that ρx,ε is finite-valued everywhere and |ρx,ε(z)− ρx,ε(w)| ≤ d(z, w) when d(z, w) < ε;
thus for all w ∈ X we have Lip ρx,ε(w) ≤ 1. Hence ρx,ε belongs to D∞(X). Because (iii)
holds, there is a constant C > 0 such that LIP(ρx,ε) ≤ C with C independent of x, ε.
It follows that for all y ∈ X and all ε > 0,

|ρx,ε(y)| = |ρx,ε(y)− ρx,ε(x)| ≤ LIP(ρx,ε)d(x, y) ≤ Cd(x, y).

Therefore as in the proof of Proposition 3.4, there is a curve γ connecting x to y with
length `(γ) ≤ C d(x, y), that is, X is quasiconvex. These two arguments prove that
Conditions (i) and (iii) are equivalent.
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Now we continue on to prove Theorem 4.7 as outlined before Remark 4.8.

The following two technical lemmas will be useful in the sequel.

Lemma 4.9. Suppose N1,∞(X) = LIP∞(X) with comparable energy seminorms. Then
there exists a constant C ≥ 1 such that for every E ⊂ X with µ(E) = 0 and for
every x ∈ X and r > 0 there is a set F ⊂ X with µ(F ) = 0 so that whenever
y ∈ X \ (B(x, 2r)∪F ), there is a rectifiable curve γy connecting y to B(x, r) such that
`(γy) ≤ C d(x, y) and L 1(γ−1

y (γy ∩ E)) = 0.

Proof. Let E ⊂ X such that µ(E) = 0; since µ is a Borel measure, we may assume
(by enlarging E if necessary) that E is a Borel set. Then ρ = ∞ · χE ∈ L∞(X) is
a non-negative Borel measurable function. Let Γ+

E be the collection of all rectifiable
curves γ for which L 1(γ−1((γ ∩ E))) > 0. Then clearly for such curves γ we have∫
γ
ρ ds =∞, and so Mod∞(Γ+

E) = 0. As before, we define for r > 0,

u(z) = inf
γ connects z to B(x,r)

∫
γ

(1 + ρ) ds,

where ‖1 + ρ‖L∞(X) = 1. For positive integers k we set uk = min{k, u}. Then
uk ∈ N1,∞(X) with 1 + ρ as an upper gradient (see Lemma 3.5), and u = 0 on
B(x, r). Let Fk be the exceptional set on which uk has to be modified in order to be
Lipschitz continuous; we have µ(Fk) = 0. Observe that since LIP∞(X) = N1,∞(X)
with comparable energy seminorms,

LIP(uk) ≤ C inf
g
‖g‖L∞ ≤ C‖1 + ρ‖L∞(X) = C,

where the infimum is taken over all ∞-weak upper gradients g of uk.

Let F = ∪k∈NFk. Thus for y ∈ X \ (F ∪B(x, 2r)), there exists a positive integer k
such that d(x, y) < k/2C. In addition,

|uk(y)| = |uk(y)− uk(x1)| ≤ C d(x1, y) ≤ C(d(x1, x) + d(x, y)) ≤ 2Cd(x, y),

for any x1 ∈ B(x, r) \ Fk and uk(y) = ũ(y) is finite. Thus, there exists a rectifiable
curve γy such that

`(γy) +

∫
γy

ρ ds =

∫
γy

(1 + ρ) ds ≤ Cd(x, y).

Hence, we have

`(γy) ≤ C d(x, y) and

∫
γy

ρ < +∞,

and so L 1(γ−1
y (γy ∩ E)) = 0, as we wanted.
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Lemma 4.10. Let u ∈ N1,∞(X) and g ∈ L∞(X) be an upper gradient of u. If v is a
Lipschitz continuous function on X such that u = v µ-a.e., then g is an ∞-weak upper
gradient of v and so there is a Borel measurable function 0 ≤ ρ ∈ L∞(X) with ρ = g
µ-a.e. such that ρ is an upper gradient of v.

Proof. Let E = {x ∈ X : u(x) 6= v(x)}; then µ(E) = 0, and so Mod∞(Γ+
E) = 0. If

x, y ∈ X \ E and β a rectifiable curve connecting x to y in X, then

|u(x)− u(y)| = |v(x)− v(y)| ≤
∫
β

g ds.

Let γ be a non-constant rectifiable compact curve with end points x and y, such that
γ 6∈ Γ+

E. Then we can find two sequences of points {zi} and {wi} from the trajectory
of γ such that for i we have zi, wi ∈ γ \ E and zi → x, wi → y as i → ∞. Letting γi
be a subcurve of γ with end points zi and wi; then by the above discussion,

|v(zi)− v(wi)| ≤
∫
γi

g ds ≤
∫
γ

g ds.

Since v is Lipschitz continuous, by letting i→∞ in the above, we get

|v(x)− v(y)| ≤
∫
γ

g ds.

It follows that g is an ∞-weak upper gradient of v. Since Mod∞(Γ+
E) = 0, by [3,

Lemma 5.7], there is a non-negative Borel measurable function ρ0 such that ‖ρ0‖L∞(X) =
0 but for all γ ∈ Γ+

E the integral
∫
γ
ρ0 ds = ∞. It follows that ρ = g + ρ0 is an upper

gradient of v with the desired property.

Proposition 4.11. Suppose that X is connected and N1,∞(X) = LIP∞(X) with com-
parable energy seminorms. Then X supports a weak ∞-Poincaré inequality.

Proof. Let u ∈ N1,∞(X), g ∈ L∞(X) be an upper gradient of u, and fix a ball B ⊂ X.
By the assumption that N1,∞(X) = LIP∞(X) and by Lemma 4.10, we may assume
that u is itself Lipschitz continuous on X. Let E = {w ∈ 2CB : g(w) > ‖g‖L∞(2CB)},
where C is the constant from Lemma 4.9. Then µ(E) = 0. Fix ε > 0.

Observe that since µ is doubling and X is connected, we deduce that µ({x}) = 0
for all x ∈ X (see condition (2)). So for x ∈ B, we can choose r > 0 sufficiently small
so that

1. B(x, 2r) ⊂ B,

2. µ(B(x, 2r)) < µ(B)/2,
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3. for all w ∈ B(x, r) we have |u(w) − u(x)| < ε (possible because u is Lipschitz
continuous),

4.
∫
B(x,2r)

|u− u(x)| dµ ≤ 1
2

∫
B
|u− u(x)| dµ.

Then,∫
B
|u− u(x)| dµ ≤ 2

µ(B)

∫
B\B(x,2r)

|u− u(x)| dµ ≤ 2

∫
B\B(x,2r)

|u(y)− u(x)| dµ(y).

Let F ⊂ X be the set given by Lemma 4.9 with respect to x and r, and for y ∈
B \ (F ∪ B(x, 2r)) let γy be the corresponding curve connecting y to B(x, r). We
denote the other end point of γy as wy ∈ B(x, r). By the choice of r, we see that
|u(y) − u(x)| ≤ |u(y) − u(wy)| + |u(wy) − u(x)| < |u(y) − u(wy)| + ε. It follows that
|u(y) − u(x)| ≤ ε +

∫
γy
g ds ≤ ε + C‖g‖L∞(2CB)d(x, y), where we used the fact that

L 1(γ−1
y (γy ∩ E)) = 0. Therefore,∫

B

|u− u(x)| dµ ≤ 2

∫
B\(F∪B(x,2r))

(ε+ C‖g‖L∞(2CB)d(x, y))dµ(y)

≤ 4

∫
B\(F∪B(x,2r))

(ε+ C‖g‖L∞(2CB)rad(B))dµ(y)

= 4(ε+ C‖g‖L∞(2CB)rad(B)).

Now integrating over x, we obtain∫
B

∫
B

|u(y)− u(x)| dµ(y) dµ(x) ≤ 4(ε+ C‖g‖L∞(2CB)rad(B)).

Letting ε→ 0 we get the inequality∫
B

∫
B

|u(y)− u(x)| dµ(y) dµ(x) ≤ 2Crad(B)‖g‖L∞(2CB),

which in turn implies, by remark 3.2, the weak ∞-Poincaré inequality for the pair
(u, g). Since the constants are independent of u, g, B, we have that (X, d, µ) supports
a weak∞-Poincaré inequality for Newtonian functions. It follows from Proposition 4.3
that X is thick quasiconvex.

To complete the proof, we have to check that (X, d, µ) admits a weak ∞-Poincaré
inequality for every Borel measurable function u : X → R and every upper gradient.
Let u be a measurable function and let g be a measurable upper gradient for u. Fix
B. If ‖g‖L∞(2CB) = ∞ we are done, so let us assume that ‖g‖L∞(2CB) < ∞. Since
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by above we have X is thick quasiconvex, we can invoke Lemma 4.4 to see that u is
Lipschitz in B ⊂ X up to a set of measure zero. By Lemma 4.10, we can assume that
u is Lipschitz in all of B and that g is an upper gradient of u in B. Thus we can repeat
the proof above for the pair u and g, and the proof is now complete.

Example 4.12. The space (X, d, µ) considered in Example 3.3 with a measure that
decays very fast to zero at the origin (the point where the two triangular regions are
glued) is thick quasiconvex. We can prove it by the aid of theorem 4.7 despite the fact
that µ is not doubling. Indeed, since (X, d,L 2) supports a p-PI for p > 2 ([18, 4.3.1.]),
it also supports an ∞-PI. By theorem 4.7, it is also thick quasiconvex (observe that
we can apply it since L 2 is a doubling measure). Using the idea in Remark 2.3, we
conclude that (X, d, µ) is also thick quasiconvex.

The rest of this section will be devoted to show that in Theorem 4.7 the thick
quasiconvexity cannot be replaced with the weaker notion of quasiconvexity.

The next lemma is useful in verifying whether a metric space does not support any
Poincaré inequality. Its proof is an adaptation of [2, Lemma 4.3] for the case p =∞.

Lemma 4.13. Let (X, d, µ) be a bounded doubling metric measure space admitting a
weak ∞-Poincaré inequality, and let f : X −→ I be a surjective Lipschitz function
from X onto an interval I ⊂ R. Then, L 1

|I � f#µ. Here f#µ denotes the pushforward
measure of µ under f .

Proof. Let us denote L = LIP(f). Suppose the contrary. Then, there exists a Borel
set N in I such that L 1(N) > 0 and µ(f−1(N)) = f#µ(N) = 0. On X we consider
the function

u(x) =

∫ f(x)

0

χN(t)dL 1(t).

This function is L-Lipschitz, because for x, y ∈ X we have

|u(y)− u(x)| =
∣∣∣ ∫ f(y)

f(x)

χN dL
1
∣∣∣ = L 1([f(x), f(y)] ∩N) ≤ |f(y)− f(x)| ≤ Ld(y, x).

Moreover, g = L (χN ◦ f) is an upper gradient of u. Indeed, for each rectifiable curve
γ : [a, b] −→ X one has (without loss of generality we assume that f(γ(a)) < f(γ(b)))

|u(γ(a))− u(γ(b))| =
∣∣∣ ∫ f(γ(b))

f(γ(a))

χN(t)dL 1(t)
∣∣∣ = L 1([f(γ(a)), f(γ(b))] ∩N),

and ∫
γ

g =

∫ b

a

L · (χN ◦ f(γ(t)))dL 1(t) = LL 1([a, b] ∩ (f ◦ γ)−1(N)).
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Because γ is arclength-parametrized, f ◦ γ is L-Lipschitz. It follows that

L 1([a, b] ∩ (f ◦ γ)−1(N)) ≥ L−1 L 1([f(γ(a)), f(γ(b))] ∩N),

and hence,

|u(γ(a))− u(γ(b))| ≤
∫
γ

gdL 1(t)

for each rectifiable curve γ in X. However, µ{x ∈ X : f(x) ∈ N} = f#µ(N) = 0 by
hypothesis, and so χN ◦ f(x) = 0 µ-a.e. Therefore by the weak ∞-Poincaré inequality,∫
X
|u−uX | dµ = 0, which means that u is constant µ-almost everywhere on X. Because

u is Lipschitz continuous on X, it follows that u is constant on X, which contradicts
the fact that u is non-constant on the set f−1(N) (this set is non-empty because f is
surjective, and u is not constant here because L 1(N) > 0).

Example 4.14. Let Q = [0, 1]× [0, 1] ⊂ R2 be the unit square. Divide Q in nine equal
squares of side length 1/3 and remove the central one. In this way, we obtain a set Q1,
which is the union of 8 squares of side length 1/3. Repeating this procedure on each
square we get a sequence of sets Qj consisting of 8j squares of side length 1/3j. We
define the Sierpinski carpet to be S =

⋂
Qj. If d is the distance in R2 given by

d((x1, y1), (x2, y2)) = |x1 − x2|+ |y1 − y2|,

then (S, d) is a complete geodesic metric space. Let µ be the Hausdorff measure on
(S, d) of dimension s, where s is given by the formula, 3s = 8. It can be checked that
µ is a doubling measure and that the metric d defined above is biLipschitz equivalent
to the restriction of the Euclidean metric.

The Sierpinski carpet (S, d, µ) is clearly quasiconvex, and so the following corol-
lary demonstrates that the quasiconvexity property is not sufficient to guarantee ∞-
Poincaré inequality.

Corollary 4.15. The Sierpinski carpet (S, d, µ) does not admit an ∞-Poincaré in-
equality.

Proof. Let f be the projection on the horizontal axis. It can be checked that f#µ⊥L 1

(see [2, 4.5]). Indeed, as shown in [2], given a point 0 < x < 1, by the way of ternary
expansion of x we can see that the interval In centered at x of radius 3−n has Lebesgue
measure L 1(In) ≈ 3−n, but f#µ(In) ≈ exp(−ψ(x, n)) for appropriately chosen function
ψ, with the property that

lim
n→∞

f#µ(In)

L 1(In)
≈ lim sup

n→∞

exp(−ψ(x, n))

3−n

which is for L 1-a.e. x either 0 or ∞; which, in conjunction with the Radon-Nikodym
theorem implies that f#µ is singular with respect to the Lebesgue measure L 1.

The result now follows from Lemma 4.13.
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sidad Complutense de Madrid, 28040-Madrid, Spain.
E-mail: estibalitzdurand@mat.ucm.es
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