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Abstract
It is now a well-known fact that for 1< p < ∞ the p-harmonic functions on domains in

metric measure spaces equipped with a doubling measure supporting a (1, p)-Poincaŕe inequality
are locally Ḧolder continuous. In this note we provide a characterization of domains in such metric
spaces for whichp-harmonic extensions of Ḧolder continuous boundary data are globally Hölder
continuous. We also provide a link between this regularity property of the domain and the uniform
p-fatness of the complement of the domain.
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1. Introduction

Given a nonempty bounded open setΩ ⊂ Rn and a functionf on ∂Ω, we denote byPΩ f the
(Perron-Wiener-Brelot) Dirichlet solution off overΩ. A boundary pointξ ∈ ∂Ω is called regular
if lim x→ξ PΩ f (ξ) = f (x) for every continuous functionf on ∂Ω. We say thatΩ is regular if every
boundary point is regular. Thus, ifΩ is regular, thenPΩ mapsC(∂Ω) toH(Ω)∩C(Ω), whereH(Ω)
is the family of harmonic functions onΩ. It is natural to raise the following question:

Question 1.1.Does the better continuity of a boundary functionf guarantee the better continuity
of PΩ f ?

In [1] the first named author studied this question in the context of Hölder continuous functions
on Euclidean domains. The purpose of this paper is to study the same problem forp-harmonic
functions in a general metric measure space for 1< p < ∞. In this context we can raise the same
question as above. Even in the setting of Euclidean domains (with the standard Lebesgue measures
as well asp-admissible measures), the results of this paper for the non-linear problem are new.

Throughout the paper we letX = (X,d, µ) be a complete connected metric space endowed with
a metricd and a positive complete Borel measureµ such that 0< µ(U) < ∞ for all bounded open
setsU. Let B(x, r) = {y ∈ X : d(x, y) < r} denote the open ball centered atx with radiusr. For
simplicity we sometimes abbreviate it toB and writeλB = B(x, λr). We assume thatµ is doubling,
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i.e.,µ(2B) ≤ Cµ(B) for all balls B. The doubling property yields positive constantsC andQ such
that

(1.1) µ(B(x, r)) ≤ CrQ.

We assumeQ > 1 and fix 1< p ≤ Q for which X supports a (1, p)-Poincaŕe inequality. ThenX
supports a (1,q)-Poincaŕe inequality for someq < p by the results of Keith-Zhong [11]. Therefore
the notions ofp-harmonicity,p-Dirichlet problem,p-Perron solution,p-regularity,p-capacity, and
p-Wiener criterion studied by A. Björn, J. Bj̈orn, P. MacManus, and N. Shanmugalingam ([6], [3],
[4] and [2]) can be used in our setting. These notions will be described in the next section. Now
letting PΩ f denote thep-Perron solution of a functionf on the boundary∂Ω, we can raise the
same question posed in Question1.1. In this note we study this question in the context of Hölder
continuous functions. Let 0< β ≤ α ≤ 1. Consider the familyΛα(E) of all boundedα-Hölder
continuous functionsu on E with norm

∥u∥Λα(E) := sup
x∈ E
|u(x)| + sup

x,y∈E
x,y

|u(x) − u(y)|
d(x, y)α

< ∞.

We are concerned about the finiteness of the operator norm:

∥PΩ∥α→β := sup
f∈Λα(∂Ω)
∥ f ∥Λα(∂Ω),0

∥PΩ f ∥Λβ(Ω)

∥ f ∥Λα(∂Ω)
.

In Euclidean domains with weighted measure this problem with respect top-harmonic func-
tions was first treated by Heinonen, Kilpeläinen and Martio [9, Theorem 6.44]. Using the Wiener
criterion ([17], [12] and [9, Theorem 6.18]), they proved that ifX \ Ω satisfiesp-capacity density
condition or is uniformlyp-fat (see the definition in the next section), then for 0< α ≤ 1 there
existsβ > 0 such that∥PΩ∥α→β < ∞. The exponentβ is less thanα and depends not only onα but
also onp, the structure constants ofp-harmonicity and uniformp-fatness. For sufficiently smallα
we may takeβ = α/2. The caseα = β does not seem to be deduced from their arguments.

The caseα = β was studied by the first named author [1] for the classical setting, i.e. for har-
monic functions in Euclidean domains. The crucial parts were based on the comparison of the
local and the global harmonic measure decay properties. In the present setting, ap-harmonicmea-
surecan be defined as an upper Perron solution of the indicator function of a set on the boundary.
However, thep-harmonicmeasureis no longer a measure because of the non-linear nature ofp-
harmonicity. Even in the casep = 2 we are guaranteed that 2-harmonic measure is a measure only
if we adopt the Cheeger 2-harmonicity rather than the 2-harmonicity defined by upper gradient
minimizers (see Section3). We shall get around this difficulty by some non-linear techniques in
Section3 and give the characterizations of domainsΩ for which ∥PΩ∥α→α < ∞ (Theorem2.2). We
shall demonstrate that the property∥PΩ∥α→α < ∞ becomes stronger asα becomes larger (Corollary
2.3). The precise formulation will be given in the next section.

Acknowledgement:The authors wish to thank Tero Kilpeläinen and the referee for valuable com-
ments.
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2. Statements of results

By the symbolC we denote an absolute positive constant whose value is unimportant and may
change even in the same line. The integral mean ofu over the measurable setE is denoted∫

E
u dµ =

1
µ(E)

∫
E

u dµ.

Definition. We say that a Borel functiong on X is anupper gradientof a real-valued functionu
on X if

|u(γ(0))− u(γ(lγ))| ≤
∫
γ

gds

for all non-constant rectifiable pathsγ : [0, lγ] → X parameterized by arc length. If the above
inequality fails only for a curve family with zerop-modulus (see e.g. [10, Section 2.3] for a
discussion on modulus of curve families), theng is referred to as ap-weak upper gradientof
u. Shouldu have ap-weak upper gradient from the classLp(X), then theminimal p-weak upper
gradient of u is the p-weak upper gradient ofu in Lp(X) that is pointwise the smallest almost
everywhere among the class of allp-weak upper gradients ofu that are inLp(X); this smallest
weak gradient is denotedgu.

Definition. We say thatX supports a (1, p)-Poincaré inequalityif there are constantsκ ≥ 1 and
Cp ≥ 1 such that for all ballsB(x, r) ⊂ X, all measurable functionsu on X, and allp-weak upper
gradientsg of u, ∫

B(x,r)
|u− uB(x,r)|dµ ≤ Cpr

(∫
B(x,κr)

gp dµ
)1/p

with uB(x,r) =
∫

B(x,r)
u dµ. The constantκ is called thescaling constantfor the Poincaŕe inequality.

A consequence of the (1, p)-Poincaŕe inequality is the followingp-Sobolev inequality (see [14,
Lemma 2.1]): if 0< γ < 1 andµ({z ∈ B(x,R) : |u(z)| > 0}) ≤ γµ(B(x,R)), then there exists a
positive constantCγ depending onγ such that

(2.1)

(∫
B(x,R)
|u|p dµ

)1/p

≤ CγR

(∫
B(x,κR)

gp
u dµ

)1/p

.

We fix 1< p ≤ Q, whereQ is as in the upper mass bound inequality (1.1), and hereafter assume
thatX supports a (1, p)-Poincaŕe inequality. By Ḧolder’s inequality (1, p)-Poincaŕe inequality im-
plies (1,q)-Poincaŕe inequality for everyq ≥ p. It is a remarkable result of Keith and Zhong [11]
that the Poincaré inequality is self-improving, i.e., ifX is proper (that is, closed and bounded sub-
sets ofX are compact) and supports a (1, p)-Poincaŕe inequality, thenX supports a (1,q)-Poincaŕe
inequality for someq < p. Note that a complete metric space equipped with a doubling measure
is necessarily proper. In this paper we rely on this result. Following [19], we consider a version of
Sobolev spaces onX.

Definition. Let

∥u∥N1,p(X) =

(∫
X
|u|p dµ

)1/p

+ inf
g

(∫
X
gp dµ

)1/p

,

where the infimum is taken over all upper gradientsg of u. The Newtonian spaceon X is the
quotient space

N1,p(X) = {u : ∥u∥N1,p < ∞}/∼,
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whereu ∼ v if and only if ∥u− v∥N1,p(X) = 0. The spaceN1,p(X) equipped with the norm∥ · ∥N1,p(X)

is a Banach space and a lattice ([19]). We say that a property holdsp-q.e. if it holds outside a
set E with Capp(E) = 0, where Capp(E) = inf ∥u∥p

N1,p(X)
with the infimum being taken over all

u ∈ N1,p(X) such thatu = 1 onE. We let

N1,p
0 (Ω) = {u ∈ N1,p(X) : u = 0 p-q.e. onX \Ω}.

Hereafter, letΩ ⊂ X be a bounded domain (connected open set) with Capp(X \Ω) > 0. We now
introduce the notion ofp-harmonicity andp-Dirichlet solutions onΩ.

Definition. We call a functionu onΩ a p-minimizerin Ω if u ∈ N1,p
loc(Ω) and

(2.2)
∫

U
gp

u dµ ≤
∫

U
g

p
u+ϕ dµ

for all relatively compact subsetsU of Ω and for every functionϕ ∈ N1,p
0 (U). A p-harmonic

function is a continuousp-minimizer (everyp-minimizer is equalp-q.e. to ap-harmonic function;
see [14]).

By Hp
Ω

f we denote the solution to thep-Dirichlet problem onΩwith boundary dataf ∈ N1,p(Ω),
i.e.,Hp

Ω
f is a function onΩ that isp-harmonic inΩwith f −Hp

Ω
f ∈ N1,p

0 (Ω). For everyf ∈ Lip(∂Ω)
there is a functionE f ∈ Lip(Ω) such thatf = E f on ∂Ω. Therefore we can defineHp

Ω
f by the

function Hp
Ω

E f ; this is independent of the extensionE f . We say that a lower semicontinuous
functionu onΩ is p-superharmonicin Ω if −∞ < u ≤ ∞, u is not identically∞ in any component
of Ω, andHp

Ω′v ≤ u in Ω′ for every nonempty open setΩ′ b Ω and all functionsv ∈ Lip(∂Ω′) such
thatv ≤ u on∂Ω′. If −u is p-superharmonic, then we sayu is p-subharmonic.

Definition. Given a functionf on ∂Ω we letU f be the set of allp-superharmonic functionsu on
Ω bounded below such that lim infΩ∋x→ξ u(x) ≥ f (ξ) for eachξ ∈ ∂Ω. The upper Perron solution
of f is defined by

P
p

Ω f (x) = inf
u∈U f

u(x) for x ∈ Ω.

Similarly, we define the lower Perron solution by

Pp
Ω

f (x) = sup
u∈L f

u(x) for x ∈ Ω,

whereL f = −U− f is the set of allp-subharmonic functionsu on Ω bounded above such that
lim supΩ∋x→ξ u(x) ≤ f (ξ) for eachξ ∈ ∂Ω. Since in this paperp is fixed, henceforth we drop the

reference top in the notation of the Perron solutions;PΩ f = P
p

Ω f andP
Ω

f = Pp
Ω

f . If PΩ f = P
Ω

f ,
then we sayf is resolutive and writePΩ f for this common function.

It is known that every continuous function on∂Ω is resolutive and thatHp
Ω

f = PΩ f in Ω for
every f ∈ N1,p(X). We say thatξ ∈ ∂Ω is p-regular if

lim
Ω∋x→ξ

PΩ f (x) = f (ξ) for all f ∈ C(∂Ω).

If ξ ∈ ∂Ω is a p-regular point andf is a bounded function on∂Ω which is continuous atξ, then

lim
Ω∋x→ξ

P
Ω

f (x) = lim
Ω∋x→ξ

PΩ f (x) = f (ξ).

The validity of theKellogg propertyis known: the set of allp-irregular points on∂Ω is of p-
capacity zero. See [3], [4] and [2] for these accounts. A domainΩ with no p-irregular boundary
point is called ap-regular domain.
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By H p(Ω) we denote the family of allp-harmonic functions onΩ. The counterpart of the
classical result mentioned at the beginning is the following: ifΩ is p-regular, thenPΩ mapsC(∂Ω)
to H p(Ω) ∩ C(Ω). Now, as in Question1.1, we may ask whether the Hölder continuity of the
boundary functionf results in a better regularity ofPΩ f . Heuristically one might think that the
finiteness of∥PΩ∥α→β with 0 < β ≤ α implies thep-regularity of the domainΩ. This is not the
case, as observed by an example in [1] for the linear case. Indeed, it is easy to see that every
singleton set has zerop-capacity forp ≤ Q, and it can be seen that removing a single point yields
a p-irregular domain for which∥PΩ∥α→β < ∞. To avoid such a pathological example we consider
the following notion. We say thata ∈ ∂Ω is a p-trivial boundary pointif there isr > 0 such that
Capp(∂Ω∩B(a, r)) = 0. We rule outp-trivial boundary points as we have the following proposition.

Proposition 2.1. Suppose∥PΩ∥α→β < ∞ for some0 < β ≤ α. ThenΩ is a p-regular domain if and
only if ∂Ω has nop-trivial points.

The proof can be carried out in the same way as in [1, Theorem 1] with the aid of the Kellogg
property ([4]). For the reader’s convenience it will be given in Section7. A p-trivial boundary
point can be regarded as an interior point from the point of view of potential theory. Adding all
p-trivial boundary points to the domain, we obtain a domain with nop-trivial boundary point; the
potential theoretical property of the resulting domain is the same as that of the original domain. In
light of Proposition2.1, we may assume thatΩ is p-regular in the sequel.

In this paper we concentrate mostly on the caseα = β. In particular we study several conditions
for ∥PΩ∥α→α < ∞ to be true. The following local or interior Ḧolder continuity ofp-harmonic
functions is proved in [14, Theorem 5.2]: there existsα0 > 0 such that everyp-harmonic function
in any domainΩ is locallyα0-Hölder continuous inΩ (see Lemma3.4in Section3 for the precise
formulation). This constantα0 depends only onp and the constants associated with the doubling
property ofµ and the Poincaré inequality, but not onΩ. In general,α0 < 1. It should be noted
that in the setting of general metric measure spaces, even ifp = 2 one cannot hope to obtain local
Lipschitz regularity forp-harmonic functions. Indeed, the example discussed at the beginning of
[15, page 4] demonstrates that the largest possible value ofα for the questions above is the index
α0 given by [14]. This is one difference between the classical case and the present case. In order
to have∥PΩ∥α→α < ∞, we restrict ourselves toα ≤ α0.

From the point of view of the classical results, the conditions for∥PΩ∥α→α < ∞ involve the
p-harmonic measureand theexterior conditionsof the domainΩ such as the relative capacity:

Capp(E,U) := inf
{∫

U
gp

udµ : u ∈ N1,p
0 (U) andu ≥ 1 onE

}
.

Definition. Given an open setU in X and a Borel setE ⊂ ∂U, by thep-harmonic measureωp(E; U)
we mean the upper Perron solutionPU χE of the boundary functionχE in U; see [4].

Note thatωp(E; U) need not be a measure unlessp = 2 because of the non-linear nature of
p-harmonicity. Even in the casep = 2 we are guaranteed thatωp(E; U) is a measure only if we
adopt the Cheeger 2-harmonicity rather than the 2-harmonicity defined above by upper gradient
minimizers (see Section3).

We useϕa,α(x) = min{d(x,a)α, 1} for a ∈ ∂Ω as a test boundary function with respect toα-
Hölder continuity. LetS(x, r) = {y ∈ X : d(x, y) = r} be thespherewith center atx and radiusr;
it should be noted that while∂B(x, r) ⊂ S(x, r), the sphere can be a larger set than∂B(x, r). The
following is the main theorem of this paper.
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Theorem 2.2. LetΩ be ap-regular domain. Suppose0 < α ≤ α0, whereα0 is a positive constant
such that everyp-harmonic function inΩ is locallyα0-Hölder continuous inΩ as explained above
([14, Theorem 5.2]). Consider the following four conditions:

(i) ∥PΩ∥α→α < ∞.
(ii) There exists a constantC1 such that whenevera ∈ ∂Ω,

(2.3) PΩϕa,α(x) ≤ C1d(x,a)α for everyx ∈ Ω.

(iii) Global Harmonic Measure Decayproperty (abbreviated to GHMD(α)). There exist con-
stantsC2 ≥ 1 andr0 > 0 such that whenevera ∈ ∂Ω and0 < r < r0,

ωp(x; ∂Ω \ B(a, r),Ω) ≤ C2

(
d(x,a)

r

)α
for everyx ∈ Ω ∩ B(a, r).

(iv) Local Harmonic Measure Decayproperty (abbreviated to LHMD(α)). There exist con-
stantsC3 ≥ 1 andr0 > 0 such that whenevera ∈ ∂Ω and0 < r < r0,

ωp(x;Ω ∩ S(a, r),Ω ∩ B(a, r)) ≤ C3

(
d(x,a)

r

)α
for everyx ∈ Ω ∩ B(a, r).

Then we have
(i) ⇐⇒ (ii ) =⇒ (iii ) ⇐= (iv).

If (iv) holds for someα′ > α, then(i) and (ii ) hold.
Moreover, ifX is AhlforsQ-regular, i.e.,

(2.4) C−1rQ ≤ µ(B(x, r)) ≤ CrQ for every ballB(x, r),

then(iii ) ⇐⇒ (iv).

As an immediate corollary, we observe that the largerα is the stronger the property∥PΩ∥α→α < ∞
is.

Corollary 2.3. Assume thatX is AhlforsQ-regular. If 0 < β ≤ α ≤ α0 and ∥PΩ∥α→α < ∞, then
∥PΩ∥β→β < ∞
Remark 2.4. There is a domainΩ for which the LHMD(α) holds and yet∥PΩ∥α→α = ∞. In fact,
letΩ = {z ∈ C : |z| < 1, |argz| < π/(2α)} for 0 < α ≤ 1. Then it is easy to see that LHMD(α) holds
with respect to the classical harmonic measure. Defineϕ(z) = |z|α for ∂Ω. Then∥ϕ∥Λα(∂Ω) < ∞,
whereas the classical Dirichlet solutionPΩϕ satisfies∥PΩϕ∥Λα(Ω) = ∞ sincePΩϕ(x) ≈ xα log(1/x)
asx ↓ 0 on the positive real axis. Thus the statement (iv) =⇒ (i) with the same exponentα does
not necessarily hold true in the above theorem.

Definition. We say thatE is uniformly p-fat or satisfies thep-capacity density conditionif there
exist constantsC4 > 0 andr0 > 0 such that

(2.5)
Capp(E ∩ B(a, r), B(a,2r))

Capp(B(a, r), B(a,2r))
≥ C4

whenevera ∈ E and 0< r < r0.

See [16] and [18] for more on uniform fatness in the Euclidean setting, and [6] for the metric
space setting. If we ignore the exact Hölder exponent, we obtain the following characterization.

Theorem 2.5.Assume thatX is AhlforsQ-regular. LetΩ be ap-regular domain. Then the follow-
ing five conditions are equivalent:
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(i) ∥PΩ∥α→α < ∞ for someα > 0.
(ii) (2.3) holds for someα > 0.

(iii) GHMD(α) holds for someα > 0.
(iv) LHMD(α) holds for someα > 0.
(v) X \Ω is uniformlyp-fat.

We say that a measurable setE satisfies thevolume density conditionif there exist constants
C5 > 0 andr0 > 0 such that

(2.6)
µ(E ∩ B(a, r))
µ(B(a, r))

≥ C5

whenevera ∈ E and 0< r < r0. The volume density condition is stronger than thep-capacity
density condition, and hence we obtain the following.

Corollary 2.6. If X \Ω satisfies the volume density condition, then it isp-uniformly fat, and hence
∥PΩ∥α→α < ∞ for someα > 0.

The arguments of the paper are based mostly on the comparison theorem ofp-harmonic func-
tions and on the properties of the De Giorgi class ([14]), which includes thep-harmonic functions
in its membership. Therefore, our results are applicable not only top-harmonic functions but also
to Cheegerp-harmonic functions as well as theA-harmonic functions in the Euclidean setting
with the usual uniform ellipticity assumptions onA. We shall give precise definitions of Cheeger
p-harmonic functions and related functions as well as several properties of the De Giorgi class in
the next section.

The proof of Theorem2.2will be given as a series of lemmas. The crucial part is GHMD=⇒
LHMD (Lemma5.1), for which we need the AhlforsQ-regularity ofµ. This part will be proved
in Section5. Other parts of the theorem remain true under a weaker hypothesis thatµ is doubling
and supports a (1, p)-Poincaŕe inequality. Section4 will be devoted to the proof of these parts.
The proof of Theorem2.5 will be given in Section6. The final section deals with conditions for
∥PΩ∥α→β < ∞ when 0< β ≤ α, and includes the proof of Proposition2.1. In the caseβ < α, the
characterization for∥PΩ∥α→β < ∞ is far from complete. Nevertheless, we shall show that some
parts of Theorem2.2holds true.

3. Quasiminimizers and De Giorgi class

Definition. We call a functionu on X a p-superminimizerin Ω if u ∈ N1,p
loc(Ω) and the energy min-

imizing inequality (2.2) holds for all relatively compact subsetsU of Ω and for every nonnegative
functionϕ ∈ N1,p

0 (U).

Remark 3.1. Let u be ap-superminimizer inΩ. Then the lower regularization ess liminfy→x u(y)
is a lower semicontinuous representative ([13, Theorem 5.1]) and it is ap-superharmonicfunction
([13, Proposition 7.4]). Conversely, a boundedp-superharmonic (resp.p-subharmonic) function is
a p-superminimizer (resp.p-subminimizer) ([13, Corollary 7.8]). An unboundedp-superharmonic
function need not to be ap-superminimizer; the truncation of such ap-superharmonic function is
a p-superminimizer.

Cheeger [7] introduced the partial derivativesdu and gave an alternative definition of Sobolev
spaces. As long as 1< p < ∞, the Cheeger Sobolev space andN1,p(X) coincide. Moreover, the
minimal p-weak upper gradient and the Cheeger derivative are comparable, i.e.,

(3.1) C−1|du(x)| ≤ gu(x) ≤ C|du(x)|.
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See [19, Theorem 4.10] and [20, Corollary 3.7] for these accounts.

Definition. We call a functionu on X aCheegerp-minimizerin Ω if u ∈ N1,p
loc(Ω) and

(3.2)
∫

U
|du|p dµ ≤

∫
U
|d(u+ ϕ)|p dµ

for all relatively compact subsetsU of Ω and for every functionϕ ∈ N1,p
0 (U). A Cheegerp-

harmonicfunction is a continuous Cheegerp-minimizer. We call a functionu on X a Cheeger
p-superminimizerin Ω if u ∈ N1,p

loc(Ω) and (3.2) holds for all relatively compact subsetsU of

Ω and for every nonnegative functionϕ ∈ N1,p
0 (U). A lower semicontinuousp-superminimizer

is a Cheegerp-superharmonicfunction. If −u is Cheegerp-superharmonic, thenu is said to be
Cheegerp-subharmonic.

Definition. We say that a functionu ∈ N1,p
loc(Ω) is a p-quasiminimizerin Ω if there is a constant

C6 ≥ 1 such that

(3.3)
∫

U
gp

u dµ ≤ C6

∫
U
g

p
u+ϕ dµ

for all relatively compact subsetsU of Ω and for every functionϕ ∈ N1,p
0 (U). We call a function

u ∈ N1,p
loc(Ω) a p-quasisuperminimizerin Ω if (3.3) holds for all relatively compact subsetsU

of Ω and for every nonnegative functionϕ ∈ N1,p
0 (U). A function u ∈ N1,p

loc(Ω) is said to be a
p-quasisubminimizerin Ω if (3.3) holds for all relatively compact subsetsU of Ω and for every
nonpositive functionϕ ∈ N1,p

0 (U).

Clearly,p-harmonic and Cheegerp-harmonic functions arep-quasiminimizers;p-superharmonic
and Cheegerp-superharmonic functions arep-quasisuperminimizers, whilep-subharmonic and
Cheegerp-subharmonic functions arep-quasisubminimizers.

Definition. Given an open setΩ, a functionu ∈ N1,p
loc (Ω) is said to belong to the De Giorgi class

DGp(Ω) if there are constantsC > 0 andκ ≥ 1 such that∫
B(z,ρ)

g
p
(u−k)+

dµ ≤ C
(R− ρ)p

∫
B(z,R)

(u− k)p
+ dµ

wheneverk ∈ R, 0 < ρ < R< diam(X)/3, andB(z, κR) ⊂ Ω.

In what follows letκ be the scaling constant from the (1,q)-Poincaŕe inequality. Then we have
the following ([14, Proposition 3.3]).

Lemma 3.2. If u is a quasisubminimizer onΩ, thenu ∈ DGp(Ω). If u is a quasiminimizer onΩ,
then bothu and−u belong toDGp(Ω).

In light of the above lemma, our results hold true ifp-harmonicity is replaced by Cheegerp-
harmonicity. We now collect together some properties of the De Giorgi class. The following
lemma is from [14, Theorem 4.2].

Lemma 3.3. There is a constantC7 > 1 such that whenever0 < R < diam(X)/3 and u ∈
DGp(B(z, κR)),

sup
B(z,R/2)

u ≤ k0 +C7

(∫
B(z,R)

(u− k0)
p
+dµ

)1/p
for everyk0 ∈ R.
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This estimate yields the local Ḧolder continuity ofp-quasiminimizers ([14, Theorem 5.2]). The
next result gives control over the oscillation of a function in the De Giorgi class. Here, by oscE u
we denote the oscillation supE u− inf E u.

Lemma 3.4. Suppose that bothu and−u belong toDGp(B(x,2κR)). Then

osc
B(x,r)

u ≤ C
( r
R

)α0
osc

B(x,R)
u for 0 < r ≤ R

for some0 < α0 ≤ 1 andC ≥ 1 independent ofu, x andR.

The above lemma is deduced from a certain measure estimate ([14, Proposition 5.1]). We shall
need its precise form in the proof of Theorem2.2(iii ) =⇒ Theorem2.2(iv).

Lemma 3.5. Let0 < R< diam(X)/(6κ) andu ∈ DGp(B(z,2κR)). Suppose0 ≤ u ≤ M on B(z,2κR)
and

µ({x ∈ B(z,R) : u(x) > M − s})
µ(B(z,R))

≤ γ < 1

for some0 < s< M. Then for anyδ > 0 there isη = η(p,q, γ, δ) > 0 such that

µ({x ∈ B(z,R) : u(x) > M − ηs})
µ(B(z,R))

≤ δ.

Though the proof is similar to [14, Proposition 5.1], for the reader’s convenience it is given here.

Proof. In this proof we fixu andz and writeA(h,R) = {x ∈ B(z,R) : u(x) > h}. Let us recall that
a (1,q)-Poincaŕe inequality withq < p is assumed to hold inX. For the moment letM − s ≤ h <
k < M. We claim

(3.4)

(
(k− h)µ(A(k,R))
(M − h)µ(B(z,R))

)pq/(p−q)

≤ C
µ(A(h, κR)) − µ(A(k, κR))

µ(B(z,R))

wheneverµ(A(h,R)) ≤ γµ(B(z,R)). To prove this, let

v(x) = min{u(x), k} −min{u(x),h} =


k− h if u(x) ≥ k,

u(x) − h if h < u(x) < k,

0 if u(x) ≤ h.

Then we havegv = gu · χ{h<u<k} andµ({x ∈ B(z,R) : v(x) > 0}) ≤ γµ(B(z,R)). Hence theq-Sobolev
inequality together with the doubling property ofµ implies(∫

B(z,R)
vqdµ

)1/q
≤ CR

(∫
B(z,κR)

gq
vdµ

)1/q
,

whereC depends onγ. Hence

(k− h)µ(A(k,R)) =
∫

A(k,R)
vdµ ≤

∫
B(z,R)

vdµ

≤ µ(B(z,R))1−1/q
(∫

B(z,R)
vqdµ

)1/q

≤ CRµ(B(z,R))1−1/q
(∫

B(z,κR)
gq
vdµ

)1/q

= CRµ(B(z,R))1−1/q
(∫

A(h,κR)\A(k,κR)
gq

udµ
)1/q

.
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Sinceq < p, it follows from Hölder’s inequality and the definition ofDGp(B(z,2κR)) that∫
A(h,κR)\A(k,κR)

gq
udµ ≤

(∫
A(h,κR)\A(k,κR)

gp
udµ

)q/p
(µ(A(h, κR)) − µ(A(k, κR)))1−q/p

≤ C
( 1
Rp

∫
A(h,2κR)

(u− h)pdµ
)q/p

(µ(A(h, κR)) − µ(A(k, κR)))1−q/p .

Hence (k− h)µ(A(k,R)) is bounded by

Cµ(B(z,R))1−1/q
(∫

A(h,2κR)
(u− h)pdµ

)1/p
(µ(A(h, κR)) − µ(A(k, κR)))1/q−1/p

≤ Cµ(B(z,R))1−1/q(M − h) (µ(B(z,2κR))1/p (µ(A(h, κR)) − µ(A(k, κR)))1/q−1/p

≤ C(M − h) (µ(B(z,R))1−(1/q−1/p) (µ(A(h, κR)) − µ(A(k, κR)))1/q−1/p .

Therefore (3.4) follows and the claim is proved.
Now we letki = M − 2−i sand apply (3.4) with k = ki andh = ki−1. Note that ifi ≥ 1, then

µ(A(M − 21−i s,R)) ≤ µ(A(M − s,R)) ≤ γµ(B(z,R)).

Hence (3.4) becomes(
2−i sµ(A(M − 2−i s,R))

21−i sµ(B(z,R))

)pq/(p−q)

≤ C
µ(A(M − 21−i s, κR)) − µ(A(M − 2−i s, κR))

µ(B(z,R))
.

Adding the above inequality fori = 1, . . . , ν and using the monotonicity, we obtain

ν

(
µ(A(M − 2−νs,R))

µ(B(z,R))

)pq/(p−q)

≤ C
µ(A(M − s, κR))

µ(B(z,R))
≤ C

µ(B(z, κR))
µ(B(z,R))

≤ C.

Hence, for arbitraryδ > 0, choosingν > C δ−pq/(p−q) and settingη = 2−ν we see that

µ(A(M − ηs,R))
µ(B(z,R))

< δ.

Thus the lemma is proved. �

Combining the above lemmas, we obtain the following.

Lemma 3.6. Let 0 < R< diam(X)/(6κ) andu ∈ DGp(B(z, 2κR)). Suppose0 ≤ u ≤ 1 on B(z,2κR)
and

µ({x ∈ B(z,R) : u(x) > 1− s})
µ(B(z,R))

≤ γ < 1

for some0 < s< 1. Then there existst = t(p,q, γ, s) > 0 such that

u ≤ 1− t on B(z,R/2).

Proof. Considerδ > 0 such thatC7δ
1/p < 1/2, whereC7 is the constant from Lemma3.3. By

Lemma3.5we findη with 0 < η < 1 such that

µ({x ∈ B(z,R) : u(x) > 1− ηs})
µ(B(z,R))

≤ δ.

10



As we have 0≤ (u− (1− ηs/2))+ ≤ ηs/2, applying Lemma3.3with k0 = 1− ηs/2 we obtain

sup
B(z,R/2)

u ≤ 1− ηs
2
+C7

(∫
B(z,R)

(u− (1− ηs
2

))p
+dµ

)1/p

≤ 1− ηs
2
+C7

ηs
2

(
µ({B(z,R) : u(x) > 1− ηs/2})

µ(B(z,R))

)1/p

≤ 1− ηs
2
+C7

ηs
2
δ1/p ≤ 1− ηs

4
.

Thus the lemma follows witht = ηs/4. �

Corollary 3.7. Let 0 < R < diam(X)/(6κ) and B(z1,R/2) ∩ B(z2,R/2) , ∅. Supposeu ∈
DGp(B(z2,2κR)) with 0 ≤ u ≤ 1 in B(z2,2κR). If u ≤ 1 − ε1 on B(z1,R/2) for someε1 > 0,
then there is a positive constantε2 = ε2(ε1) < 1 such thatu ≤ 1− ε2 on B(z2,R/2).

4. Proof of Theorem 2.2

The proof of Theorem2.2is given as a series of lemmas. In this section we shall prove the parts
of Theorem2.2that do not need the Ahlfors regularity ofµ. Throughout this section, the standing
assumption is that the (1, p)-Poincaŕe inequality is supported onX and thatµ is a doubling measure
with the exponentQ from the upper volume condition (1.1) satisfyingQ ≥ p.

4.1. Condition (ii ) implies Condition (iii ).

Lemma 4.1. Condition(ii ) =⇒ Condition(iii ).

The proof of this lemma follows verbatim the proof of the analogous result in [1], and is therefore
left to the reader to verify. The only tool needed is the comparison theorem.

4.2. Condition (i) is equivalent to Condition (ii ). Let us recall the following geometric property
([8, Proposition 4.4]).

Lemma 4.2. The spaceX is quasiconvex, i.e., there is a constantC8 ≥ 1 such that every pair of
pointsx, y ∈ X can be joined by a curve of length at mostC8d(x, y). Hence ifx ∈ E $ X, then

dist(x,X \ E) ≤ dist(x, ∂E) ≤ C8 dist(x,X \ E) for x ∈ E.

Proof. See [8, Proposition 4.4] for a proof of the first assertion. For the second assertion it suffices
to show the last inequality withx ∈ E $ X andy ∈ X \ E. There is a curveγ joining x andy with
length no more thanC8d(x, y). Sincex ∈ E andy ∈ X \ E, there exists a pointz ∈ γ ∩ ∂E. Hence

dist(x, ∂E) ≤ d(x, z) ≤ C8d(x, y).

Sincey ∈ X \ E is arbitrary, we obtain the required inequality. �

Lemma 4.3. Condition(i) ⇐⇒ Condition(ii ).

The proof in [1] of the result analogous to the above lemma uses the Poisson integral representa-
tion of harmonic functions on balls. Since we are dealing with more general (nonlinear) values of
p, we do not have the Poisson representation. We instead use the local Hölder continuity (Lemma
3.4).
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Proof. First suppose that Condition (i) holds. By the definition ofϕa,α we see thatϕa,α ∈ Λα(∂Ω)
with ∥ϕa,α∥Λα(∂Ω) ≤ 2. Hence

|PΩϕa,α(x) − PΩϕa,α(y)| ≤ 2∥PΩ∥α→αd(x, y)α for x, y ∈ Ω.
Sincea is ap-regular point by assumption, we obtain Condition (ii ) with C1 = 2∥PΩ∥α→α by letting
y→ a.

Next suppose that Condition (ii ) holds. Let f ∈ Λα(∂Ω). By the maximum principle

sup
x∈Ω
|PΩ f (x)| ≤ sup

ξ∈∂Ω
| f (ξ)| ≤ ∥ f ∥Λα(∂Ω).

AsΩ is bounded, it now suffices to show that

(4.1) |PΩ f (x) − PΩ f (y)| ≤ C∥ f ∥Λα(∂Ω)d(x, y)α for x, y ∈ Ω with d(x, y) ≤ 1.

To this end, letx, y ∈ Ω such thatd(x, y) ≤ 1. Without loss of generality we may assume that
dist(x,X \ Ω) ≥ dist(y,X \ Ω). Let R = dist(x,X \ Ω)/(2κ) with κ ≥ 1 from theq-Poincaŕe
inequality. Since∂Ω is compact, there is a pointx∗ ∈ ∂Ω such that dist(x, ∂Ω) = d(x, x∗). By
Lemma4.2we have

(4.2) 2κR≤ d(x, x∗) ≤ 2κC8R.

Set f0 : ∂Ω→ R by f0(ξ) = f (ξ) − f (x∗) for ξ ∈ ∂Ω. Since

| f0(ξ)| ≤


| f (ξ) − f (x∗)| ≤ ∥ f ∥Λα(∂Ω)d(ξ, x∗)α ≤ ∥ f ∥Λα(∂Ω)ϕx∗,α(ξ) if d(ξ, x∗) ≤ 1

| f (ξ)| + | f (x∗)| ≤ 2∥ f ∥Λα(∂Ω) ≤ 2∥ f ∥Λα(∂Ω)ϕx∗,α(ξ) if d(ξ, x∗) > 1,

it follows from Condition (ii ) that

(4.3) |PΩ f0(z)| ≤ 2C1∥ f ∥Λα(∂Ω)d(z, x∗)α for z ∈ Ω.
The rest of the proof is split into two cases.
Case 1: d(x, y) ≤ d(x, x∗)/(2κC8). Thend(x, y) ≤ R = d(x,X \ Ω)/(2κ) by (4.2). SincePΩ f0 is
p-harmonic inDGp(B(x,2κR)), it follows from Lemma3.4that

osc
B(x,r)

PΩ f0 ≤ C
( r
R

)α0
osc

B(x,R)
PΩ f0 for 0 < r ≤ R.

We observe from (4.2) thatd(z, x∗) ≤ d(x, z) + d(x, x∗) ≤ (1+ 2κC8)R whenz ∈ B(x,R). Thus by
(4.3) we have oscB(x,R) PΩ f0 ≤ C∥ f ∥Λα(∂Ω)Rα. Hence

|PΩ f (x) − PΩ f (y)| = |PΩ f0(x) − PΩ f0(y)| ≤ C
(d(x, y)

R

)α0∥ f ∥Λα(∂Ω)R
α ≤ C∥ f ∥Λα(∂Ω)d(x, y)α.

In the last inequality, we have used the facts thatα ≤ α0 andd(x, y)/R≤ 1.
Case 2:d(x, y) ≥ d(x, x∗)/(2κC8). Thend(y, x∗) ≤ d(x, y)+d(x, x∗) ≤ (1+2κC8)d(x, y). Therefore
we have from (4.3) that

|PΩ f (x) − PΩ f (y)| = |PΩ f0(x) − PΩ f0(y)| ≤ |PΩ f0(x)| + |PΩ f0(y)|
≤ 2C1∥ f ∥Λα(∂Ω)(d(x, x∗)α + d(y, x∗)α)

≤ 2C1∥ f ∥Λα(∂Ω)((2κC8)
α + (1+ 2κC8)

α)d(x, y)α.

Now combining both cases we obtain (4.1). The proof is complete. �
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4.3. Condition (iv) implies Condition (iii ).

Lemma 4.4. Condition(iv) =⇒ Condition(iii ).

Proof. Let a ∈ ∂Ω and 0< r < r0 with r0 as in the statement of LHMD(α). SinceχΩ∩S(a,r) ≥
ωp(∂Ω \ B(a, r);Ω) on∂(Ω ∩ B(a, r)), it follows from the comparison theorem that

ωp(Ω ∩ S(a, r);Ω ∩ B(a, r)) = PΩ∩B(a,r)[χΩ∩S(a,r)] ≥ PΩ∩B(a,r)[ωp(∂Ω \ B(a, r);Ω)]

onΩ ∩ B(a, r). AsΩ is a p-regular domain, every point on∂Ω ∩ B(a, r) is a p-regular boundary
point forΩ ∩ B(a, r) (see [2]). Since the upper Perron solution is the largestp-harmonic solution
to a given boundary data problem (see [4]), we have

ωp(Ω ∩ S(a, r);Ω ∩ B(a, r)) ≥ ωp(∂Ω \ B(a, r);Ω) onΩ ∩ B(a, r).

Now it is clear that Condition (iv) implies Condition (iii ). �

4.4. Condition (iv) with α′ > α yields Condition (ii ). The counterpart of the following lemma
was given in [1]. The proof given there heavily relied on the linearity. Here, we shall employ a
simple iteration argument, applicable to the non-linear situation as well.

Lemma 4.5. LHMD(α′) for someα′ > α =⇒ Condition(ii ).

Proof. Let a ∈ ∂Ω andu = PΩϕa,α. We will show thatu(x) ≤ C dist(x,a)α. Set

ψ(ρ) = sup
Ω∩S(a,ρ)

u(x).

It suffices to show thatψ(ρ) ≤ Cρα for smallρ > 0. Let 0< ρ < r < 1. Then by the definition of
ϕa,α we see thatu ≤ rα + ψ(r)χS(a,r)∩Ω on the boundary ofΩ ∩ B(a, r). The comparison theorem
yields

u(x) ≤ rα + ψ(r)ωp(x;Ω ∩ S(a, r),Ω ∩ B(a, r)) for x ∈ Ω ∩ B(a, r).
Hence, LHMD (α′) implies

ψ(ρ) ≤ rα +C3

(
ρ

r

)α′
ψ(r).

Let τ = (2C3)1/(α′−α) > 1. If τρ ≤ r, thenC3(ρ/r)α
′−α ≤ 1/2. Thus

ψ(ρ) ≤ rα +
1
2

(
ρ

r

)α
ψ(r),

whenever 0< τρ ≤ r < 1. Let ρ j = τ
jρ and letk ≥ 1 be the integer such thatτkρ ≤ 1 < τk+1ρ.

Then we obtain

ψ(ρ j) ≤ ραj+1 +
1

2τα
ψ(ρ j+1) for j = 0, . . . , k− 1.

Hence

ψ(ρ) = ψ(ρ0) ≤ ρα1 +
1

2τα
ψ(ρ1)

≤ ρα1 +
1

2τα

(
ρα2 +

1
2τα

ψ(ρ2)

)
= ρα1 +

ρα2
2τα
+

1
(2τα)2

ψ(ρ2)

≤ ταρα + (τ2ρ)α

2τα
+ · · · + (τkρ)α

(2τα)k−1
+

1
(2τα)k

≤ ταρα
(
1+

1
2
+ · · · + 1

2k−1

)
+

(
1
τk

)α
≤ 3ταρα.

Here we have used the facts thatψ(ρk) ≤ 1 andτk+1ρ > 1. Thus the desired inequality follows.�
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5. Proof of Theorem 2.2continued

What remains to be proved is the most challenging part of Theorem2.2.

Lemma 5.1. Supposeµ satisfies the AhlforsQ-regularity. Then the GHMD(α) and the LHMD(α)
conditions are equivalent, i.e., Condition(iii ) ⇐⇒ Condition(iv).

We have already seen that the LHMD(α) implies the GHMD(α). It is sufficient to show the
converse part. The proof consists of a series of lemmas. In the rest of this section we assume the
Ahlfors Q-regularity ofµ. We begin with some geometric properties. ByA(x, r,R) we denote the
annulusB(x,R) \ B(x, r) with center atx and radiir andR.

Definition. Given a setE ⊂ X, we say thatE is uniformly perfectif there are constants 0< C9 < 1
andr0 > 0 such thatA(x,C9r, r) ∩ E , ∅ for everyx ∈ E and all 0< r < r0.

Definition. We say thatX isLinearly Locally Connected(abbreviated toLLC) if there are constants
C10 > 1 andr0 > 0 such that for everya ∈ X and 0< r < r0 each pair of pointsx, y ∈ S(a, r) can
be connected by a curve lying inA(a, r/C10,C10r).

The LLC property was introduced by Heinonen-Koskela [10]. It is known that the Ahlfors
Q-regularity andp-Poincaŕe inequality withp ≤ Q together yield the LLC property ofX ([10,
Corollary 5.8] and [8, Proposition 4.5]).

5.1. Condition (iii ) implies Uniform Perfectness. In this subsection we shall prove the follow-
ing.

Lemma 5.2. If Ω satisfies the GHMD for someα, then∂Ω is uniformly perfect.

To prove the above lemma we need the following capacitary estimates for condensers. This
estimate holds true even for general doubling measures with (1.1), not necessarily Ahlfors regular.

Lemma 5.3. If 0 < 2r ≤ R< diam(Ω)/2, then

Capp(B(a, r), B(a,R)) ≤


CrQ−p if p < Q,

C
(
log

R
r

)1−p

if p = Q.

Proof. It is easy to findu ∈ N1,p
0 (B(a,2r)) such thatu = 1 on B(a, r) and gu ≤ C/r. Hence

Capp(B(a, r), B(a,R)) ≤ Cr−pµ(B(a, r)) ≤ CrQ−p by (1.1). If p = Q, then the better estimate can
be proved as follows. Letk ≥ 1 be the unique positive integer such that 2kr ≤ R < 2k+1r, and let
ψ(t) be a piecewise linear function on [0,∞) such thatψ(t) = 1 for 0 ≤ t ≤ r, ψ(2ir) = 1− i/k for
i = 0, . . . , k, andψ(t) = 0 for t ≥ 2kr. Thenu(x) = ψ(d(x,a)) ∈ N1,p

0 (B(a,R)) with∫
2i r≤d(x,a)<2i+1r

gp
udµ ≤

(
1

k2ir

)p

µ(B(a,2i+1r)) ≤ Ck−p(2ir)Q−p

for i = 0, . . . , k. Summing up the above inequalities, we obtain the required estimates. �

Proof of Lemma5.2. Let a ∈ ∂Ω and 0< ρ1 < ρ2 < diam(Ω)/2. SupposeA(a, ρ1, ρ2) does not
intersect∂Ω. We will prove thatρ1/ρ2 cannot be too close to 0. Without loss of generality, we
may assume thatρ1 ≤ ρ2/(2C2

10). By the LLC property we see thatA(a,C10ρ1, ρ2/C10) ⊂ Ω. For
simplicity we letr = C10ρ1 andR= ρ2/C10. Then

(5.1) A(a, r,R) ⊂ Ω.
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Letting ρ2 be larger if necessary, we may assume thatS(a,C10R) has a pointb ∈ ∂Ω. Let K =
B(a, r) \Ω. Observe from (5.1) thatK = B(a,R) \Ω. By Lemma5.3,

(5.2) Capp(K,Ω ∪ K) ≤ Capp(B(a, r), B(a,R)) ≤


CrQ−p if p < Q,

C
(
log

R
r

)1−p

if p = Q.

Let uK be thep-potential for the condenser (K,Ω ∪ K), i.e. uK = 1 p-q.e. onK, uK = 0 p-q.e. on
X \ (Ω ∪ K) and

Capp(K,Ω ∪ K) =
∫

X
gp

uK
dµ.

Sincer ≤ R/2 andA(a, r,R) does not intersect∂Ω, we haveuK ≤ ωp(∂Ω \ B(b,R/2);Ω) onΩ.
Hence by the GHMD(α) condition,

uK(x) ≤ C2

(d(x,b)
R/2

)α
for x ∈ Ω ∩ B(b,R/2).

Settingβ = (2(3C2)1/α)−1 and noting thatuK = 0 onB(b,R/2)\Ω, we obtainuK ≤ 1/3 onB(b, βR).
It follows from (5.1) and the comparison principle that

uK = 1− ωp(∂Ω \ B(a,R);Ω) onΩ,

so that GHMD(α) together with the fact thatuK = 1 on B(a, βR) \ Ω ⊂ B(a,R) \ Ω yields again
uK ≥ 2/3 onB(a, βR). Let v = max{uK ,1/3} − 1/3 ≥ 0. Then

µ({x ∈ B(a,2C10R) : v(x) = 0})
µ(B(a,2C10R))

≥ µ(B(b, βR))
µ(B(a,2C10R))

≥ γ,

whereγ > 0 depends only onβ. Hence thep-Sobolev inequality (2.1) implies(∫
B(a,2C10R)

vpdµ
)1/p
≤ CR

(∫
B(a,2C10κR)

gp
vdµ

)1/p
.

Since by the doubling property ofµ we have∫
B(a,2C10R)

vpdµ ≥
∫

B(a,βR)
(1/3)pdµ ≥ Cµ(B(a,2C10R)),

we obtain

Capp(K,Ω ∪ K) =
∫

gp
uK

dµ ≥
∫

B(a,2C10κR)
gp
vdµ ≥ CR−pµ(B(a,2C10R)) ≥ CRQ−p.

Here, the AhlforsQ-regularity is used in the last inequality. This, together with (5.2), implies that
R/r is bounded and therefore so isρ2/ρ1. The lemma is proved. �

5.2. Condition (iii ) implies Condition (iv). In this subsection we shall prove Lemma5.1 and
thus complete the proof of Theorem2.2.

Proof of Lemma5.1. Let us assume the GHMD(α) property and prove the LHMD(α) property.
Let a ∈ ∂Ω and 0< r < r0. By the uniform perfectness of∂Ω (Lemma5.2), we find ρ such
that S(a, ρ) ∩ ∂Ω , ∅ and r/C9 ≤ ρ < r. Let c be a small positive number to be determined
later. By the LLC property and the doubling property ofµ, we can find finitely many points
z1, . . . zN ∈ A(a, ρ/C10,C10ρ) such that the union∪N

j=1B(zj , cr) is a covering ofS(a, ρ) that forms
a chain, that is, for everyj, k ∈ {1, . . . ,N} there is a subcollection of ballsB1, . . . Bl such that
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B(zj , cr) = B1, B(zk, cr) = Bl, and fori ∈ {1, . . . , l − 1}, Bi ∩ Bi+1 is non-empty. HereN depends
only onc and the space (X,d, µ). Observe that

N∪
j=1

B(zj ,4κcr) ⊂ A
(
a,

ρ

C10
− 4κcr,C10ρ + 4κcr

)
⊂ A

(
a,

( 1
C9C10

− 4κc
)
r, (C10+ 4κc)r

)
.

(5.3)

Let c > 0 be small enough so that

(5.4) 4cκ ≤ 1
2C9C10

=: η.

Consider

u =

ωp(∂Ω ∩ B(a, ηr);Ω) onΩ,

0 on X \Ω.

Then 0≤ u ≤ 1 onX andu is ap-subminimizer inX\B(a, ηr) ⊃ ∪N
j=1 B(zj ,4κcr) by (5.3) and (5.4).

Hence from the discussion in the second section,u ∈ DGp(∪N
j=1B(zj , 4κcr)). Fix z∗ ∈ ∂Ω ∩ S(a, ρ).

Without loss of generality we may assume thatz∗ ∈ B(z1, cr). Since

B(z∗, (4κ − 1)cr) ⊂ B(z1,4κcr) ⊂ X \ B(a, ηr),

it follows from the comparison principle thatu ≤ ωp(∂Ω \ B(z∗, (4κ − 1)cr);Ω) onΩ. See Figure
5.1.

∂Ω

z1

z2

z∗
4κcrcr

ηr

ρ

a

Figure 5.1. u ∈ DGp(∪N
j=1B(zj ,4κcr)) andu ≤ ωp(∂Ω \ B(z∗, (4κ − 1)cr);Ω).

Hence the GHMD property yields

u ≤ 1
2

on B(z∗, βr) ∩Ω

for someβ > 0 independent ofa andr. Sinceu = 0 onX \ Ω, it follows thatu ≤ 1/2 onB(z∗, βr).
Hence Lemma3.6 with R = 2cr yields thatu ≤ 1 − ε1 on B(z1, cr) for someε1 > 0 independent
of a andr. Since∪N

j=1B(zj , cr) is a chain, we find some ball, sayB(z2, cr), intersectingB(z1, cr).
Then Corollary3.7 givesu ≤ 1 − ε2 on B(z2, cr) for someε2 > 0. We may repeat this argument
finitely many times until, by the finiteness of the cover and by its chain property, we eventually

16



obtainu ≤ 1 − ε0 on∪N
j=1B(zj , cr) for someε0 > 0 that is independent ofa andr. In particular,

u ≤ 1− ε0 onS(a, ρ). Since

ωp(∂Ω ∩ B(a, ηr);Ω) + ωp(∂Ω \ B(a, ηr);Ω) = 1 onΩ,

it follows in particular thatωp(∂Ω \ B(a, ηr);Ω) ≥ ε0 onΩ ∩ S(a, ρ). By the comparison principle
we now have

1
ε0
ωp(∂Ω \ B(a, ηr);Ω) ≥ ωp(Ω ∩ S(a, ρ);Ω ∩ B(a, ρ)) onΩ ∩ B(a, ρ).

Hence the GHMD(α) property yields

ωp(x;Ω ∩ S(a, r),Ω ∩ B(a, r)) ≤ ωp(x;Ω ∩ S(a, ρ),Ω ∩ B(a, ρ)) ≤ C2

ε0

(d(x,a)
ηr

)α
for all x ∈ Ω ∩ B(a, ρ). Becauseρ ≥ r/C9, the required inequality holds also for pointsx in
Ω ∩ B(a, r) \ B(a, ρ). Therefore the LHMD(α) property follows. �

6. Proof of Theorem 2.5

For the proof of Theorem2.5, it is sufficient to show the following.

Lemma 6.1. The LHMD(α) property holds for someα > 0 if and only ifX \Ω is uniformlyp-fat.

To this end, we shall use capacity estimates and the boundary regularity. Observe the following
lemma from the results in [5] and [6, Lemma 5.5].

Lemma 6.2. Leta ∈ X and0 < r < r0.

(i) If 0 < s≤ 1, then

Capp(B(a, sr), B(a,2r)) ≤ Capp(B(a, r), B(a,2r)) ≤ C Capp(B(a, sr), B(a,2r)),

whereC depends only ons.
(ii) If E ⊂ B(a, r) andt ≥ 1, then

Capp(E, B(a,2tr)) ≤ Capp(E, B(a,2r)) ≤ C Capp(E, B(a,2tr))

whereC depends only ont.

Fora ∈ X, E ⊂ X, andr > 0, we let

ϕ(a,E, r) =
Capp(E ∩ B(a, r), B(a,2r))

Capp(B(a, r), B(a,2r))
.

Then the uniformp-fatness ofE is restated asϕ(a,E, r) ≥ C4 for a ∈ E and 0< r < r0. Let us
observe that the validity of this inequality fora ∈ ∂E is sufficient for us to conclude the uniform
p-fatness ofE.

Lemma 6.3. If ϕ(a,E, r) ≥ C for everya ∈ ∂E and0 < r < r0, thenE is uniformlyp-fat.

Proof. Let a be an arbitrary interior point ofE. It is sufficient to showϕ(a,E, r) ≥ C. Let R =
d(a,X \ E) > 0. By the quasiconvexity (Lemma4.2) we findb ∈ ∂E such thatR≤ d(a,b) ≤ C8R.
We have the following two cases.
Case 1:r ≤ 2C8R. ThenB(a, r/2C8) ⊂ E. Hence Lemma6.2yields

ϕ(a,E, r) ≥
Capp(B(a, r/2C8), B(a,2r))

Capp(B(a, r), B(a, 2r))
≥ C.
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Case 2: r ≥ 2C8R. ThenB(b, r/2) ⊂ B(a, r) ⊂ B(b,3r/2) andB(b, r) ⊂ B(a,2r) ⊂ B(b,5r/2).
Hence Lemma6.2yields

Capp(E ∩ B(a, r), B(a,2r)) ≥ Capp(E ∩ B(b, r/2), B(a,2r))

≥ Capp(E ∩ B(b, r/2), B(b,5r/2))

≥ C Capp(E ∩ B(b, r/2), B(b, r)),

and

Capp(B(a, r), B(a,2r)) ≤ Capp(B(b,3r/2), B(a,2r))

≤ C Capp(B(b, r/2), B(b,2r)) ≤ C Capp(B(b, r/2), B(b, r)).

Thereforeϕ(a,E, r) ≥ Cϕ(b,E, r/2). Sinceϕ(b,E, r/2) ≥ C for b ∈ ∂E by assumption, we have
ϕ(a,E, r) ≥ C. The proof is now complete. �

The following estimate plays an important role in the topic of modulus of continuity of the
solution of the Dirichlet problem. See [17] for a version in the classical case and [6, Lemma 5.7]
for a proof of the present version.

Lemma 6.4. Let a ∈ ∂Ω and fixr > 0. Let u be thep-potential for B(a, r) \ Ω with respect to
B(a,5r). Then

1− u(x) ≤ exp
(
−C

∫ r

ρ

ϕ(a,X \Ω, t)1/(p−1)dt
t

)
for 0 < ρ ≤ r andx ∈ B(a, ρ).

Proof of Lemma6.1. First suppose thatX \ Ω is uniformly p-fat. Leta ∈ ∂Ω, 0 < r < r0, and letu
be thep-potential forB(a, r/5) \Ω with respect toB(a, r). By the comparison principle we have

ωp(Ω ∩ S(a, r);Ω ∩ B(a, r)) ≤ 1− u onΩ ∩ B(a, r).

In view of Lemma6.4we have

ωp(x;Ω ∩ S(a, r),Ω ∩ B(a, r)) ≤ 1− u(x) ≤ C
( ρ

r/5

)δ
for x ∈ B(a, ρ) and 0< ρ ≤ r/5,

whereδ > 0 depends only onC4 andp. Thus LHMD(δ) follows.
Conversely, suppose that LHMD(α) holds for someα > 0. In light of Lemma6.3, it is sufficient

to showϕ(a,X \ Ω, r) ≥ C for everya ∈ ∂Ω and 0< r < r0. Fix a ∈ ∂Ω and 0< r < r0, and letv
be thep-potential forB(a, r) \Ω with respect toB(a,2r). Then the comparison principle yields

ωp(Ω ∩ S(a, r);Ω ∩ B(a, r)) ≥ 1− v onΩ ∩ B(a, r).

In view of the LHMD(α) we findC11 > 1 such that

ωp(Ω ∩ S(a, r);Ω ∩ B(a, r)) ≤ 1
2

onΩ ∩ B(a, r/C11).

Hence,v ≥ 1/2 on Ω ∩ B(a, r/C11). Sincev = 1 p-q.e. onB(a, r) \ Ω, we havev ≥ 1/2
p-q.e. onB(a, r/C11), so that 2v is an admissible function for computing the relative capacity
Capp(B(a, r/C11), B(a,2r)). Therefore

Capp(B(a, r/C11), B(a,2r)) ≤
∫

B(a,2r)
(2gv)

pdµ = 2p Capp(B(a, r) \Ω, B(a,2r)).
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By Lemma6.2we have

ϕ(a,X \Ω, r) =
Capp(B(a, r) \Ω, B(a,2r))

Capp(B(a, r), B(a, 2r))
≥ 2−p

Capp(B(a, r/C11), B(a,2r))

Capp(B(a, r), B(a,2r))
≥ C.

Thus the required inequality follows. �

Proof of Corollary2.6. Suppose thatE satisfies the volume density condition (2.6). It is sufficient
to show thatE satisfies the capacity density condition (2.5) as well. Leta ∈ E and letr > 0
be sufficiently small, sayr < diam(X)/(4κ). Take a compact subsetK ⊂ E ∩ B(a, r) such that
µ(K) ≥ C5µ(B(a, r))/2. LetuK be thep-capacitary potential for the condenser (K, B(a,2κr)). Then
uK = 1 q.e. onK and henceµ-a.e. onK. Observe that 0≤ 1 − uK ≤ 1 on X and as 1− uK is a
p-quasisubminimizer onB(a,2κr), we have 1− uK ∈ DGp(B(a,2κr)). In view of Lemma3.6 we
have

1− uK ≤ 1− ε on B(a, r/2)

for someε > 0. Hence

Capp(B(a, r/2), B(a,2κr)) ≤ 1
εp

∫
gp

uK
dµ =

Capp(K, B(a,2κr))

εp
≤

Capp(K,B(a,2r))

εp
.

Now by Lemma6.2 and the monotonicity of the capacity we see thatE satisfies the capacity
density condition (2.5). �

7. Further generalizations

So far, we have regardedPΩ as an operator fromΛα(∂Ω) to Λα(Ω) with the same exponentα.
Let 0 < β ≤ α. In this section, we regardPΩ as an operator from fromΛα(∂Ω) to Λβ(Ω). Let us
begin with the proof of Proposition2.1.

Proof of Proposition2.1. It is clear that ifΩ has ap-trivial point, thenΩ is p-irregular. Conversely,
suppose thatΩ has nop-trivial point. For an arbitrary pointa ∈ ∂Ω setu = PΩϕa,α. We claim

(7.1) lim
Ω∋x→b

u(x) = ϕa,α(b) for b ∈ ∂Ω.

Let b ∈ ∂Ω andr > 0. By assumptionu is β-Hölder continuous, and hence

|u(x) − u(y)| ≤ Crβ for x, y ∈ B(b, r) ∩Ω.
Sinceb is not p-trivial, we find a p-regular boundary pointb′ ∈ ∂Ω ∩ B(b, r) by the Kellogg
property ([4]). Letting y→ b′, we obtain|u(x)− ϕa,α(b′)| ≤ Crβ. By definition |ϕa,α(b)− ϕa,α(b′)| ≤
d(b,b′)α ≤ (2r)α, so that

|u(x) − ϕa,α(b)| ≤ Crβ + (2r)α for x ∈ B(b, r).

Letting r → 0, we obtain (7.1).
Sinceϕa,α(a) = 0 andϕa,α(b) > 0 for b ∈ ∂Ω\{a} by (7.1), it follows thatu is a barrier function at

a and hencea is a p-regular boundary point. See [2] for a discussion on barriers andp-regularity.
HenceΩ is a p-regular domain from the arbitrariness ofa ∈ ∂Ω. �

Let us observe that some parts of Theorem2.2are extended in a straightforward manner.

Theorem 7.1. Let 0 < β ≤ α ≤ α0 and letΩ be ap-regular domain. Consider the following four
conditions:

(i) ∥PΩ∥α→β < ∞.
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(ii) There exists a constantC12 such that whenevera ∈ ∂Ω,

(7.2) PΩϕa,α(x) ≤ C12d(x,a)β for everyx ∈ Ω.

(iii) GHMD(α, β). There exist constantsC13 ≥ 1 andr0 > 0 such that whenevera ∈ ∂Ω and
0 < r < r0,

ωp(x; ∂Ω \ B(a, r),Ω) ≤ C13
d(x,a)β

rα
for everyx ∈ Ω ∩ B(a, r).

(iv) LHMD(α, β). There exist constantsC14 ≥ 1 andr0 > 0 such that whenevera ∈ ∂Ω and
0 < r < r0,

ωp(x;Ω ∩ S(a, r),Ω ∩ B(a, r)) ≤ C14
d(x,a)β

rα
for everyx ∈ Ω ∩ B(a, r).

Then we have
(i) ⇐⇒ (ii ) =⇒ (iii ) ⇐= (iv).

Moreover, if (iii ) holds andγ > 0, then∥PΩ∥γ→γ′ < ∞ with γ′ = βγ/(α + γ).

Proof. The proof of the assertion (i) ⇐⇒ (ii ) =⇒ (iii ) ⇐= (iv) can be obtained by an easy
modification of the proof of Theorem2.2. We leave the verification to the reader. Let us prove the
last assertion. Suppose that (iii ) holds. Leta ∈ ∂Ω and 0< r < 1. The comparison theorem yields

PΩϕa,γ(x) ≤ rγ + ωp(x; ∂Ω \ B(a, r),Ω) ≤ rγ +C13
d(x, a)β

rα
for x ∈ Ω ∩ B(a, r).

Since (α + γ)/β > 1, it follows in particular that

PΩϕa,γ(x) ≤ (1+C13)r
γ = (1+C13)d(x,a)βγ/(α+γ) for x ∈ Ω ∩ S(a, r (α+γ)/β).

Hence we have∥PΩ∥γ→γ′ < ∞ with γ′ = βγ/(α + γ) as (i) ⇐⇒ (ii ). �
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