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Abstract

It is now a well-known fact that for 1< p < oo the p-harmonic functions on domains in
metric measure spaces equipped with a doubling measure supporting)-d&@incae inequality
are locally Hblder continuous. In this note we provide a characterization of domains in such metric
spaces for whiclp-harmonic extensions ofélder continuous boundary data are globaligider
continuous. We also provide a link between this regularity property of the domain and the uniform
p-fatness of the complement of the domain.
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1. INTRODUCTION

Given a nonempty bounded open §etc R" and a functionf on 9Q, we denote byPq f the
(Perron-Wiener-Brelot) Dirichlet solution df overQ. A boundary point € 9Q is called regular
if lim . Po f(€) = f(X) for every continuous functioh on 0Q. We say thaf is regular if every
boundary point is regular. Thus g is regular, thedP, mapsC(d€Q) to H(Q) NC(Q), whereH(Q)
is the family of harmonic functions of2. It is natural to raise the following question:

Question 1.1.Does the better continuity of a boundary functibguarantee the better continuity
of Po f?

In [1] the first named author studied this question in the contextafiét continuous functions
on Euclidean domains. The purpose of this paper is to study the same problg@andomonic
functions in a general metric measure space ferfi < . In this context we can raise the same
guestion as above. Even in the setting of Euclidean domains (with the standard Lebesgue measures
as well asp-admissible measures), the results of this paper for the non-linear problem are new.
Throughout the paper we &t = (X, d, ) be a complete connected metric space endowed with
a metricd and a positive complete Borel measursuch that O< u(U) < « for all bounded open
setsU. LetB(x,r) = {y € X : d(X,y) < r} denote the open ball centeredxatvith radiusr. For
simplicity we sometimes abbreviate it Bxand writeAB = B(x, Ar). We assume thatis doubling,
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i.e.,u(2B) < Cu(B) for all balls B. The doubling property yields positive consta@teandQ such
that

(1.1) u(B(x,1)) < Cr<.

We assumé&) > 1 and fix 1< p < Q for which X supports a (1p)-Poincaé inequality. TherX
supports a (J1Ig)-Poincaé inequality for some < p by the results of Keith-Zhongl[l]. Therefore

the notions ofp-harmonicity,p-Dirichlet problem,p-Perron solutionp-regularity, p-capacity, and
p-Wiener criterion studied by A. Brn, J. Bprn, P. MacManus, and N. Shanmugalinga#j,([3],

[4] and [2]) can be used in our setting. These notions will be described in the next section. Now
letting P, f denote thep-Perron solution of a functiori on the boundaryQ, we can raise the
same question posed in Questibd. In this note we study this question in the context d@fdier
continuous functions. Let & B8 < a < 1. Consider the family,(E) of all boundeda-Holder
continuous functions on E with norm

Ju(x) — u(y)l
IUlla,g) := suplu(x)| + sup—-———= < o
MO e et d(xy)”
Xy

We are concerned about the finiteness of the operator norm:

_ IPa flias@
IPalloe—p = _

tera@)  Iflla.00)
[If1lAq(00) %0

In Euclidean domains with weighted measure this problem with respgethtrmonic func-
tions was first treated by Heinonen, Kilgeten and Martio§, Theorem 6.44]. Using the Wiener
criterion ([L7], [12] and [2, Theorem 6.18]), they proved thatXf\ Q satisfiesp-capacity density
condition or is uniformlyp-fat (see the definition in the next section), then for Qv < 1 there
existsg > 0 such thaf|Pq|l,—s < co. The exponeng is less tharr and depends not only anbut
also onp, the structure constants pfharmonicity and unifornp-fatness. For sticiently smalla
we may taked = a/2. The caser = 8 does not seem to be deduced from their arguments.

The caser = 8 was studied by the first named autha} for the classical setting, i.e. for har-
monic functions in Euclidean domains. The crucial parts were based on the comparison of the
local and the global harmonic measure decay properties. In the present sehihgrraonicmea-
surecan be defined as an upper Perron solution of the indicator function of a set on the boundary.
However, thep-harmonicmeasures no longer a measure because of the non-linear natupe of
harmonicity. Even in the cage= 2 we are guaranteed that 2-harmonic measure is a measure only
if we adopt the Cheeger 2-harmonicity rather than the 2-harmonicity defined by upper gradient
minimizers (see SectioB). We shall get around this fliiculty by some non-linear techniques in
Section3 and give the characterizations of domaihfor which||Pq||,-, < o (Theoren2.2). We
shall demonstrate that the propelBs|l,—. < o0 becomes stronger asbecomes larger (Corollary
2.3). The precise formulation will be given in the next section.

AcknowledgementiThe authors wish to thank Tero Kil@ghen and the referee for valuable com-
ments.



2. STATEMENTS OF RESULTS

By the symbolC we denote an absolute positive constant whose value is unimportant and may
change even in the same line. The integral meanafer the measurable sEtis denoted

](Eudp:/%fEud,u.

Definition. We say that a Borel functiog on X is anupper gradientof a real-valued function
on X if

U((0) — u(r(,))l < f gds

Y
for all non-constant rectifiable paths: [0,l,] — X parameterized by arc length. If the above
inequality fails only for a curve family with zer@-modulus (see e.g. 1], Section 2.3] for a
discussion on modulus of curve families), thens referred to as g-weak upper gradienof
u. Shouldu have ap-weak upper gradient from the clak&(X), then theminimal p-weak upper
gradientof u is the p-weak upper gradient aii in LP(X) that is pointwise the smallest almost
everywhere among the class of ghweak upper gradients af that are inLP(X); this smallest
weak gradient is denotef.

Definition. We say thatX supports a (;p)-Poincaré inequalityif there are constants > 1 and
C, > 1 such that for all ball8(x,r) c X, all measurable functionson X, and allp-weak upper

gradientsy of u,
1p
f |U — U )l du < Cpr({ g° dlu)
B(x.r) B(x.xr)

with ugyy) = fB(X’r) udu. The constant is called thescaling constantor the Poincag inequality.

A consequence of the (p)-Poincaé inequality is the followingp-Sobolev inequality (se€e [,
Lemma 2.1]): if 0< y < 1 andu({z € B(x,R) : |u(@| > 0}) < yu(B(x,R)), then there exists a
positive constant, depending ory such that

1/p 1/p
(2.1) (J[ ulP d,u) < CyR(:f gh d,u) .
B(x,R) B(x.«R)

We fix 1 < p < Q, whereQ s as in the upper mass bound inequalityl}, and hereafter assume
that X supports a (1p)-Poincaé inequality. By Hblder’s inequality (1p)-Poincae inequality im-
plies (1, g)-Poincae inequality for everyg > p. It is a remarkable result of Keith and Zhong(]
that the Poincdrinequality is self-improving, i.e., X is proper (that is, closed and bounded sub-
sets ofX are compact) and supports g f)-Poincaé inequality, therX supports a (1g)-Poincaé
inequality for somey < p. Note that a complete metric space equipped with a doubling measure
is necessarily proper. In this paper we rely on this result. Followisy fve consider a version of
Sobolev spaces oX.

Definition. Let

vp 1/p
lullsog = ( f uPda) -+ inf( f o)
X 9 \JX

where the infimum is taken over all upper gradiesmtsf u. The Newtonian spacen X is the
quotient space

NP(X) = {u llullnee < c0}/~,
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whereu ~ v if and only if [|u — vllNuexy = 0. The spac&™-P(X) equipped with the norri - [lyze(x)
is a Banach space and a latticeq]). We say that a property holdsg.e. if it holds outside a
setE with Cap,(E) = 0, where CapE) = inf Jull? with the infimum being taken over all

NLP(X)
u e NLP(X) such thau = 1 onE. We let
N P(Q) = {ue N*P(X) : u =0 p-g.e. onX\ Q}.

Hereafter, lef2 c X be a bounded domain (connected open set) with,Gap) > 0. We now
introduce the notion op-harmonicity andp-Dirichlet solutions or.

Definition. We call a functioru onQ a p-minimizerin Q if u e N&;E(Q) and

(2.2) f g4 du < f Gbe du
U U

for all relatively compact subsetd of Q and for every functiory € Ng’p(U). A p-harmonic
function is a continuoup-minimizer (everyp-minimizer is equap-q.e. to ap-harmonic function;
see [L4]).

By H) f we denote the solution to teDirichlet problem or2 with boundary datd € N*P(Q),
i.e.,HX f is a function o that isp-harmonic i with f—HE f € N>P(Q). For everyf e Lip(9Q)
there is a functiorE f € Lip(Q) such thatf = Ef on Q. Therefore we can defiridgf by the
function HSE f; this is independent of the extensi@f. We say that a lower semicontinuous
functionu on Q is p-superharmonicén Q if —co < U < o0, U is not identicallyco in any component
of Q, anng,v < uin Q' for every nonempty open s& € Q and all functions € Lip(dQ)’) such
thato <uondQY. If —uis p-superharmonic, then we says p-subharmonic.

Definition. Given a functionf ondQ we let?; be the set of alp-superharmonic functionson
Q bounded below such that liminf,_. u(x) > f(¢) for eaché € 9Q. The upper Perron solution
of f is defined by

Phf(X) = inf u(x) forxe Q.
ueUs
Similarly, we define the lower Perron solution by

PP f(x) = supu(x) for x € Q,
ueLs
where L; = —U_; is the set of allp-subharmonic functions on Q bounded above such that
lim supy.,. U(X) < f(¢) for eaché € 9Q. Since in this papep is fixed, henceforth we drop the

reference tqp in the notation of the Perron solutiory f = Phf andP, f = PP f. If Pof = P, f,
then we sayf is resolutive and writ®q f for this common function.

It is known that every continuous function @ is resolutive and thalt-lgf = Pqof in Q for
every f € NLP(X). We say that € 0Q is p-regular if

Jim Pof(x)=f(e) forall f C0).

If £ € 0Q is ap-regular point and is a bounded function ofiQ which is continuous &, then
lim P,f(x) = Qlaiglfﬁgf(x) = f(&).

Qax—E& ™
The validity of theKellogg propertyis known: the set of alp-irregular points oroQ is of p-

capacity zero. SeeJ], [4] and [2] for these accounts. A domaid with no p-irregular boundary
point is called gp-regular domain.



By HP(QQ) we denote the family of alp-harmonic functions o2. The counterpart of the
classical result mentioned at the beginning is the followin§ i§ p-regular, therP, mapsC(0Q)
to HP(Q) N C(Q). Now, as in Questiorl.1, we may ask whether thedttler continuity of the
boundary functionf results in a better regularity ¢, f. Heuristically one might think that the
finiteness of|Pqll,—s With 0 < 8 < a implies thep-regularity of the domair§. This is not the
case, as observed by an exampleipfpr the linear case. Indeed, it is easy to see that every
singleton set has zenwcapacity forp < Q, and it can be seen that removing a single point yields
a p-irregular domain for whichiPq|,—s < co. To avoid such a pathological example we consider
the following notion. We say that € 9Q is a p-trivial boundary pointif there isr > 0 such that
Cap,(60Q2nB(a, r)) = 0. We rule outp-trivial boundary points as we have the following proposition.

Proposition 2.1. SupposéiPq|l,—s < oo for some0 < g < a. ThenQ is a p-regular domain if and
only if 9Q has nop-trivial points.

The proof can be carried out in the same way as jnTheorem 1] with the aid of the Kellogg
property (F]). For the reader’s convenience it will be given in SectibnA p-trivial boundary
point can be regarded as an interior point from the point of view of potential theory. Adding all
p-trivial boundary points to the domain, we obtain a domain wittprtavial boundary point; the
potential theoretical property of the resulting domain is the same as that of the original domain. In
light of Proposition2.1, we may assume th&t is p-regular in the sequel.

In this paper we concentrate mostly on the caseg. In particular we study several conditions
for ||Pallese < oo to be true. The following local or interior éder continuity of p-harmonic
functions is proved in14, Theorem 5.2]: there exists > 0 such that everp-harmonic function
in any domain is locally ap-Holder continuous if2 (see Lemma.4in Section3 for the precise
formulation). This constanty depends only o and the constants associated with the doubling
property ofu and the Poinc& inequality, but not oif2. In generalay < 1. It should be noted
that in the setting of general metric measure spaces, eyes 2 one cannot hope to obtain local
Lipschitz regularity forp-harmonic functions. Indeed, the example discussed at the beginning of
[15, page 4] demonstrates that the largest possible valuef@f the questions above is the index
ao given by [L4]. This is one diference between the classical case and the present case. In order
to havel|Pgll,—. < oo, We restrict ourselves @ < ayp.

From the point of view of the classical results, the conditions|/fegl|,_., < o involve the
p-harmonic measurand theexterior conditionsf the domain such as the relative capacity:

Cap,(E.U) := inf{f ghdu : ue NyP(U) andu > 1 onE}.
U

Definition. Given an open sé&i in X and a Borel seE c dU, by thep-harmonic measur@,(E; U)
we mean the upper Perron solutiBp ye of the boundary functioge in U; see .

Note thatwp(E; U) need not be a measure unlgss= 2 because of the non-linear nature of
p-harmonicity. Even in the case = 2 we are guaranteed thaf,(E; U) is a measure only if we
adopt the Cheeger 2-harmonicity rather than the 2-harmonicity defined above by upper gradient
minimizers (see SectioB).

We useyp,,(X) = min{d(x,a)*, 1} for a € 0Q as a test boundary function with respectato
Holder continuity. LetS(x,r) = {y € X : d(X,y) = r} be thespherewith center atx and radiug;
it should be noted that whil@B(x,r) c S(x,r), the sphere can be a larger set tlé&fx,r). The
following is the main theorem of this paper.



Theorem 2.2.LetQ be ap-regular domain. Suppose< a < ag, Whereaqy is a positive constant
such that everyp-harmonic function i is locally ap-Holder continuous if2 as explained above
([14, Theorem 5.2] Consider the following four conditions:

(I) ”PQ”(t—MI < 0.
(i) There exists a consta@ such that whenevex € 9Q,

(2.3) Pawa.(X) < Cid(x,a)* for everyx € Q.

(i) Global Harmonic Measure Decaproperty (abbreviated to GHMY)). There exist con-
stantsC, > 1 andry > 0 such that whenevere 0Q and0 < r < ry,
d(x, a)
r

wp(X;0Q\ B(a,r),Q) < Cz( ) for everyx e QN B(a,r).

(iv) Local Harmonic Measure Decayroperty (abbreviated to LHMDY)). There exist con-
stantsC; > 1 andrg > 0 such that whenevexe 9Q and0 < r < rg,

d(x, a)
r

wp(X; Q2N S(ar), 2N B(ar)) < C3( ) for everyx € Q N B(a,r).

Then we have
() = (i) = (i) = (iv).
If (iv) holds for some’ > «, then(i) and (ii) hold.
Moreover, ifX is AhlforsQ-regular, i.e.,

(2.4) C R < u(B(x,r)) < Cr? for every ballB(x,r),
then(iiil) < (iv).

As an immediate corollary, we observe that the largisrthe stronger the propetall, - <
is.
Corollary 2.3. Assume thakX is AhlforsQ-regular. If0 < 8 < @ < ap and||Pq|ly—e < oo, then
||PQ||,B—>ﬁ < 0

Remark 2.4. There is a domaif for which the LHMD() holds and ye{iPq||,—. = . In fact,
letQ={zeC:|7 <1 |argZ < n/(2a)} for 0 < a < 1. Then itis easy to see that LHM®&) holds
with respect to the classical harmonic measure. Defi{ap = |2* for 0Q. Then|lglla,@a) < o,
whereas the classical Dirichlet soluti®ay satisfied|Paglla, ) = o sincePqop(X) ~ x* log(1/X)
asx | 0 on the positive real axis. Thus the statemént (i) with the same exponentdoes
not necessarily hold true in the above theorem.

Definition. We say that is uniformly p-fat or satisfies thg-capacity density conditioif there
exist constant€, > 0 andrgy > 0 such that

Cap,(E N B(a,r), B(a, 2r))

(2.5) Cap,(B(a.r), B(a, 2r))

4

wheneverl € E and O< r < rg.

See [L6] and [1g] for more on uniform fatness in the Euclidean setting, asjdqgr the metric
space setting. If we ignore the exadblder exponent, we obtain the following characterization.

Theorem 2.5. Assume thaX is AhlforsQ-regular. LetQ be ap-regular domain. Then the follow-
ing five conditions are equivalent:



(i) IPallama < oo for somea > O.
(i) (2.3 holds for somer > O.
(i) GHMD(«) holds for somer > 0.
(iv) LHMD(e) holds for somer > 0.
(v) X\ Qis uniformly p-fat.

We say that a measurable $etsatisfies thevolume density conditioif there exist constants
Cs > 0 andrg > 0 such that
HENB@r) )

uB@r)
whenevera € E and O< r < ro. The volume density condition is stronger than fhreapacity
density condition, and hence we obtain the following.

(2.6)

Corollary 2.6. If X\ Q satisfies the volume density condition, then fiHsniformly fat, and hence
IPalleme < oo for somea > 0.

The arguments of the paper are based mostly on the comparison theopehahonic func-
tions and on the properties of the De Giorgi classl{), which includes thep-harmonic functions
in its membership. Therefore, our results are applicable not ontyttarmonic functions but also
to Cheegemp-harmonic functions as well as th@-harmonic functions in the Euclidean setting
with the usual uniform ellipticity assumptions oft. We shall give precise definitions of Cheeger
p-harmonic functions and related functions as well as several properties of the De Giorgi class in
the next section.

The proof of Theoren2.2will be given as a series of lemmas. The crucial part is GHMbB
LHMD (Lemmab5.1), for which we need the Ahlfor®-regularity ofu. This part will be proved
in Section5. Other parts of the theorem remain true under a weaker hypothesjsithdbubling
and supports a (P)-Poincaé inequality. Sectiod will be devoted to the proof of these parts.
The proof of Theoren2.5will be given in Sectior6. The final section deals with conditions for
IPallo—s < o0 when 0< B < a, and includes the proof of Propositi@l In the casgs < «, the
characterization fol{Pq||,—s < oo is far from complete. Nevertheless, we shall show that some
parts of Theoren2.2 holds true.

3. QuAasmMINIMIZERS AND DE GIORGI CLASS

Definition. We call a functioru on X a p-superminimizem Q if u € Nli;E(Q) and the energy min-
imizing inequality @.2) holds for all relatively compact subsetisof Q and for every nonnegative
functiong € N3 P(U).

Remark 3.1. Let u be ap-superminimizer ir2. Then the lower regularization ess limjnf u(y)
is a lower semicontinuous representative3([Theorem 5.1]) and it is p-superharmonidunction
([13, Proposition 7.4]). Conversely, a boundeduperharmonic (resgp-subharmonic) function is
a p-superminimizer (respp-subminimizer) (1.3, Corollary 7.8]). An unboundepg-superharmonic
function need not to be p-superminimizer; the truncation of suchpesuperharmonic function is
a p-superminimizer.

Cheeger [] introduced the partial derivativedu and gave an alternative definition of Sobolev
spaces. As long as & p < oo, the Cheeger Sobolev space axtP(X) coincide. Moreover, the
minimal p-weak upper gradient and the Cheeger derivative are comparable, i.e.,

(3.1) CHdu(X)| < gu(X) < Cldu(x)!.



See [L9, Theorem 4.10] and’[), Corollary 3.7] for these accounts.

Definition. We call a functioru on X a Cheegerp-minimizerin Q if u e N&;E(Q) and

(3.2) j}mwmlsj]Mu+@wml

for all relatively compact subsetd of Q and for every functionp € Né’p(U). A Cheegerp-
harmonicfunction is a continuous Cheegprminimizer. We call a functioru on X a Cheeger

p-superminimizein Q if u € N&;E(Q) and @B.2 holds for all relatively compact subsets of

Q and for every nonnegative functian e Né’p(U). A lower semicontinuougp-superminimizer
is a Cheegerp-superharmonidunction. If —u is Cheegermp-superharmonic, thea is said to be
Cheegerp-subharmonic

Definition. We say that a function € NIEE(Q) is a p-quasiminimizelin Q if there is a constant
Ce > 1 such that

(3.3) [ odu=ce [ gban
U U

for all relatively compact subsets of QQ and for every functiorp € Né’p(U). We call a function

ue Nlt’g(Q) a p-quasisuperminimizein Q if (3.3 holds for all relatively compact subsets

of Q and for every nonnegative functign € NyP(U). A functionu e N:P(Q) is said to be a
p-quasisubminimizein Q if (3.3) holds for all relatively compact subsdisof Q and for every
nonpositive functioy € NyP(U).

Clearly, p-harmonic and Cheeggrharmonic functions arp-quasiminimizersp-superharmonic
and Cheegep-superharmonic functions ag@quasisuperminimizers, whilp-subharmonic and
Cheegemp-subharmonic functions aggquasisubminimizers.

Definition. Given an open se®, a functionu € le)’cp(Q) is said to belong to the De Giorgi class

DGy(€) if there are constants > 0 andk > 1 such that

C
p p
g du < f (u—K): du
L(Lp) (= (R=p)? Jeir

whenevek € R, 0 < p < R < diam(X)/3, andB(z «R) c Q.

In what follows letx be the scaling constant from the ()-Poincaé inequality. Then we have
the following ([14, Proposition 3.3]).

Lemma 3.2. If uis a quasisubminimizer of2, thenu € DG,(Q). If uis a quasiminimizer o,
then bothu and —u belong toDG(€2).

In light of the above lemma, our results hold trugotharmonicity is replaced by Cheegpr
harmonicity. We now collect together some properties of the De Giorgi class. The following
lemma is from [4, Theorem 4.2].

Lemma 3.3. There is a constan€; > 1 such that wheneved < R < diam(X)/3 andu €
DGy(B(z «R)),

sup u<ky+ C7(][ (u- ko)fdu)l/p for everyk, € R.
B(zR)

B(zR/2)



This estimate yields the localdttler continuity ofp-quasiminimizers ([4, Theorem 5.2]). The
next result gives control over the oscillation of a function in the De Giorgi class. Here, byiosc
we denote the oscillation sgp — infg u.

Lemma 3.4. Suppose that both and —u belong toDG(B(x, 2«R)). Then

I \a
oscu < C(—)yO oscu forO<r <R
B(xr) R/ BxR

for some0 < ap < 1 andC > 1independent ofi, x andR.

The above lemma is deduced from a certain measure estiméteéPfloposition 5.1]). We shall
need its precise form in the proof of Theor@x (i) = Theorem2.2(iv).

Lemma 3.5. Let0 < R < diam(X)/(6«) andu € DGp(B(z 2«R)). Suppos® < u < M onB(z 2«R)

and
u({xe B(zR) 1 u(x) > M - s})

wB(zR)
for some0 < s< M. Then for any > O there isp = n(p, g,7y,d) > 0 such that
u({xe B(zR) : u(x) > M —ns}) <5
1(B(z R) T
Though the proof is similar tol}¢, Proposition 5.1], for the reader’s convenience itis given here.

<y<l1l

Proof. In this proof we fixu andz and writeA(h,R) = {x € B(z R) : u(x) > h}. Let us recall that
a (1, g)-Poincae inequality withg < p is assumed to hold iX. For the moment leM — s < h <
k < M. We claim

3.4) ( (k- (A, R) )Pq“p-q)  GHA KR) ~ (A KR)

(M - hu(B(z R) wB(zR)
whenevep(A(h, R)) < yu(B(z R)). To prove this, let
k-nh if u(x) > Kk,
v(X) = min{u(x), k} — minfu(x),h} = u(x) —h if h<u(x) <k,
0 if u(x) <h.

Then we havey, = gy - yihu< andu({x € B(z R) : v(x) > 0}) < yu(B(z R)). Hence theg-Sobolev
inequality together with the doubling propertyofmplies

(f qu,u)l/q < CR([ g?d,u)l/q,
B(zR) B(z«R)
whereC depends or. Hence

(k= hu(Ak,R) = f vdu < f vdu
Ak R) BzR)

< u(BERY ([ vid)”

B(zR)

< CRu(BER) ([ i

B(z«R)

= CRUBERY ([ g
A(h,kR)\A(K,kR

)1/q

)1/q
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Sinceq < p, it follows from Holder’s inequality and the definition @G,(B(z 2«R)) that

f gl < ( f gadu
AhxR\AKKR) A(hxR\AKKR)
1

<C —f u-h)Pd
(Rp A(h,ZKR)( )

Hence k — h)u(A(k, R)) is bounded by

)q/p (u(A(h, kR)) — u(A(k, kR))) P

J® (u(A. kR) — (A, kR

Cu(B(z R)*%( f (U= h)Pr) " (u(ACh, KR) — Ak, KR)) M

A(h,2<R)
< Cu(B(z R)* (M — h) (u(B(z. 26R)™? (u(A(h. kR)) ~ Ak, kR) Y P
< C(M — h) (u(B(z R))* /P (u(A(h, kR)) — (A, k).

Therefore 8.4) follows and the claim is proved.
Now we letk; = M — 27'sand apply 8.4) with k = k; andh = k;_;. Note that ifi > 1, then

u(AM - 215 R)) < u(AM - s, R)) < yu(B(z R)).
Hence B8.4) becomes
(2“5«1(A(M -2 R)))pq“p“” (A(M - 245 «R)) - (A(M - 27's,kR))
2 su(B(z R)) 1Bz R) '
Adding the above inequality far= 1, ..., v and using the monotonicity, we obtain
(M(A(M -27s, R»)W“"“’ L CHAM - sR) _ u(BzkR) _
u(B(z R)) B uBzR) —  uBzZR)
Hence, for arbitrary > 0, choosing’ > C §-P¥(P-9 and setting; = 2 we see that

H(AMM —ns R))
#(B(z R)

Thus the lemma is proved. m|

<ct

<0.

Combining the above lemmas, we obtain the following.

Lemma 3.6. Let0 < R < diam(X)/(6x) andu € DG,(B(z 2«R)). Suppos® < u < 1 on B(z 2«R)
and

ufxe B(zR) :u(x) > 1-9}) -
1(B(z R) -
for some0 < s < 1. Then there existis= t(p, g, y, S) > 0 such that

y<1

u<l-tonB(zR/2).

Proof. Considers > 0 such thatC;6YP < 1/2, whereC; is the constant from Lemma.3. By
Lemma3.5we findn with 0 < n < 1 such that

pixeBZR) ux) >1-ns) _
#(B(z R) T
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As we have  (u- (1-17s/2)). < ns/2, applying Lemma.3with ky = 1 — nS/2 we obtain

s s 1
supu<1-T4 C7(J[ (u-(1- n—))‘jd,u) ®
BzR/2) 2 BzR) 2

8, Cﬂs(ﬂ( B(zR) :u(x) > 1- ns/z}))”"

2 H(B(z R)
nS .y 775
<1l-— P<1-
2 +Crgo 4
Thus the lemma follows with= ns/4. O

Corollary 3.7. Let0 < R < diam(X)/(6«) and B(z,R/2) N B(z,R/2) # 0. Supposeau €
DGy(B(z, 2«R)) with 0 < u < 1in B(z,2R). If u < 1 - & on B(z, R/2) for somee; > 0,
then there is a positive constast = £,(¢1) < 1 such thatu < 1 — &, on B(z, R/2).

4. ProOF OF THEOREM 2.2

The proof of Theoren2.2is given as a series of lemmas. In this section we shall prove the parts
of Theorem2.2that do not need the Ahlfors regularity @f Throughout this section, the standing
assumption is that the (p)-Poincae inequality is supported o¥ and thaj: is a doubling measure
with the exponen@ from the upper volume conditiori (1) satisfyingQ > p.

4.1. Condition (ii) implies Condition (iii ).
Lemma 4.1. Condition(ii) = Condition(iii).

The proof of this lemma follows verbatim the proof of the analogous resulijapd is therefore

left to the reader to verify. The only tool needed is the comparison theorem.

4.2. Condition (i) is equivalent to Condition (ji). Let us recall the following geometric property
([8, Proposition 4.4]).

Lemma 4.2. The spaceX is quasiconvexi.e., there is a constar@g > 1 such that every pair of
pointsx, y € X can be joined by a curve of length at m@st(x, y). Hence ifx € E & X, then

dist(x, X \ E) < dist(x, dE) < Cgdist(x, X\ E) for x € E.

Proof. See [, Proposition 4.4] for a proof of the first assertion. For the second assertidficesu
to show the last inequality witk € E & X andy € X \ E. There is a curve joining X andy with
length no more tha@sd(x, y). Sincex € E andy € X\ E, there exists a poirte y N JE. Hence

dist(x, 0E) < d(x, 2) < Cgd(X, y).
Sincey € X\ E is arbitrary, we obtain the required inequality. ]
Lemma 4.3. Condition(i) <= Condition(ii).

The proof in [I] of the result analogous to the above lemma uses the Poisson integral representa-
tion of harmonic functions on balls. Since we are dealing with more general (nonlinear) values of
p, we do not have the Poisson representation. We instead use the tddal dontinuity (Lemma

3.4),
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Proof. First suppose that Condition) (holds. By the definition of,, we see thap,, € A,(0)
With [l¢aella, @0 < 2. Hence

|PQ‘;0a,a(X) - PQQDa,a(y)l < 2||PQ||<1—>(zd(X’ y)d for X, y € Q

Sinceais ap-regular point by assumption, we obtain Conditioh\ith C; = 2||Pq||,-.. by letting
y—a
Next suppose that Conditioi holds. Letf € A,(0Q2). By the maximum principle

sup|Pq f(X)] < suplf(é)] < [Iflla,00)-

XeQ £eoQ
As Q is bounded, it now dtices to show that
(4.1) IPaf(X) = Paf(y)l < Cliflla,00d(X y)* for X,y € Qwith d(x,y) < 1.

To this end, letx,y € Q such thatd(x,y) < 1. Without loss of generality we may assume that
dist(x, X \ Q) > dist(y, X \ Q). Let R = dist(x, X \ Q)/(2«) with k > 1 from theg-Poincaé

inequality. SincedQ is compact, there is a poit € dQ such that dist, 0Q) = d(x, X*). By
Lemma4.2we have

4.2) 2kR < d(x, X*) < 2«CgR.
Setfp : 9Q — R by fo(¢) = (&) — f(X) for £ € Q. Since

1T(£) — T < M Flla,@d(E, X)) < Iflla,oexo€) fdEXx)<1

Ifo(€)] <
IFEN+ 1T} < 21flla, 00 < 2fla,@0¢x o) if d(¢, x7) > 1,
it follows from Condition (i) that
(4.3) |Pq fo(2)| < 2C4[flla,00)d(z X)*  forze Q.

The rest of the proof is split into two cases.
Case 1:d(x,y) < d(x, X)/(2«Cg). Thend(x,y) < R = d(x, X\ Q)/(2«) by (4.2). SincePqfy is
p-harmonic inDG,(B(X, 2«R)), it follows from Lemma3.4 that

I \ao
E%%S P fo < C(ﬁ) é?f’p% Pofo forO<r <R

We observe from4.2) thatd(z x*) < d(x,2) + d(x, X*) < (1 + 2«Cg)Rwhenz € B(x, R). Thus by
(4.9) we have osgyr) Pq fo < Cllf]ls,00R*. Hence

d(x. »)
R

|Po f(X) = Pof(y)l = 1P fo(X) — Pofo(y)l < C( )aollfHAa(aQ)Ra < ClIflla,aeyd(X, y)“.

In the last inequality, we have used the facts that oy andd(x, y)/R < 1.
Case 2:d(x,y) > d(x, x*)/(2«Cg). Thend(y, X*) < d(X, y) + d(x, x*) < (1+ 2«Cg)d(X, y). Therefore
we have from 4.3) that
IPaf(X) — Paf(y)l = [Pafo(X) — Pafo(y)l < Pafo(X)| + [Pafo(y)l
< 2C1|| f ||Aa(6Q) (d(X, X*)a + d(y’ X*)a)
< 2C4|Iflla,00)((2cCq)™ + (1 + 2¢Cg)*)d(X, y)".

Now combining both cases we obta#i1). The proof is complete. O
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4.3. Condition (iv) implies Condition (iii ).
Lemma 4.4. Condition(iv) = Condition(iii ).
Proof. Leta € 9Q and 0< r < ro with rq as in the statement of LHMRY. Sinceygns@r) >
wp(0Q\ B(a,r); Q) ond(Q N B(a, r)), it follows from the comparison theorem that
wp(Q N S(@r); QN B(@r)) = Pansanransan] = Pansan[wp(0Q \ B(a,r); Q)]

onQ N B(ar). AsQ is ap-regular domain, every point a#2 N B(a, r) is a p-regular boundary
point for Q N B(a, r) (see P]). Since the upper Perron solution is the largestarmonic solution
to a given boundary data problem (s€§[we have

wp(QNS(ar);, QN B(ar)) > wy(0Q2\ B(a,r); Q) onQnB(ar).
Now it is clear that Conditioni§) implies Condition ii ). ]

4.4. Condition (iv) with @’ > « yields Condition (ii). The counterpart of the following lemma
was given in []. The proof given there heavily relied on the linearity. Here, we shall employ a
simple iteration argument, applicable to the non-linear situation as well.

Lemma 4.5. LHMD(«’) for somex’ > @« = Condition(ii).

Proof. Leta € 0Q andu = Pqg,,. We will show thatu(x) < Cdist(x, a)*. Set
¥(p) = sup u(x).
QnS(a,p)

It suffices to show that(p) < Cp® for smallp > 0. Let 0< p < r < 1. Then by the definition of
Pae. We see thatl < r* + y(r)ys@anne 0N the boundary of2 N B(a,r). The comparison theorem
yields

ux) < r* +y(Nwp(x; Q2N Sar),Qn B(ar)) forxe QnB(ar).
Hence, LHMD ¢’) implies

w(p) <1* +Cs (?) y(r).
Lett = (2C3)¥@~® > 1. If 7p < r, thenCa(p/r)* ~* < 1/2. Thus

wo) <1+ 5 (2) e,

whenever O< 7p < r < 1. Letp; = ij and letk > 1 be the integer such thatp < 1 < 7*p.
Then we obtain

o)) < ps + —ulpyer) for j=0.... k1.

2(1/
Hence

(o) = ¥lpo) < pi +—lﬂ(p1)

1 1 05
Spi+ﬁ(pz+—m<pz>):pa*+ 22+ )
(%) (o) 1
TO S ey T o

o a 1 1 10 a
STp 1+§+"'+F+7Tk S3Tp

Here we have used the facts tiidp,) < 1 andr**'p > 1. Thus the desired inequality followso
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5. PrOOF OF THEOREM 2.2 CONTINUED
What remains to be proved is the most challenging part of The@r&m

Lemma 5.1. Suppose: satisfies the Ahlfor®-regularity. Then the GHMDX) and the LHMD¢)
conditions are equivalent, i.e., Conditi¢ii) < Condition(iv).

We have already seen that the LHMD(implies the GHMDg). It is suficient to show the
converse part. The proof consists of a series of lemmas. In the rest of this section we assume the
Ahlfors Q-regularity ofu. We begin with some geometric properties. Bk, r, R) we denote the
annulusB(x, R) \ B(x, r) with center atx and radiir andR.

Definition. Given a seE c X, we say thakt is uniformly perfecif there are constants©Cy < 1
andrg > 0 such thaA(x, Cor,r) N E # 0 for everyx e Eand all O< r < ry.

Definition. We say thaX is Linearly Locally Connectethbbreviated ta.LC) if there are constants
Ci0 > 1 andrg > 0 such that for everg € X and O< r < ry each pair of pointx, y € S(a,r) can
be connected by a curve lying &a, r/C1o, Cy1or).

The LLC property was introduced by Heinonen-Koskela][ It is known that the Ahlfors
Q-regularity andp-Poincaé inequality withp < Q together yield the LLC property ok ([10,
Corollary 5.8] and §, Proposition 4.5]).

5.1. Condition (iii ) implies Uniform Perfectness. In this subsection we shall prove the follow-
ing.
Lemma 5.2. If Q satisfies the GHMD for some thenoQ is uniformly perfect.

To prove the above lemma we need the following capacitary estimates for condensers. This
estimate holds true even for general doubling measures Wit} ot necessarily Ahlfors regular.

Lemma 5.3.1f 0 < 2r < R < diam(@)/2, then

CrQ-p ifp<Q,
R\""P

C(Iog F) if p=Q.

Proof. It is easy to findu € Né’p(B(a, 2r)) such thatu = 1 on B(a,r) andg, < C/r. Hence

Cap,(B(a,r),B(a,R)) < {

Cap,(B(a.r), B(a,R)) < CrPu(B(a,r)) < CrePpy (1.1). If p = Q, then the better estimate can
be proved as follows. Lét > 1 be the unique positive integer such tht 2 R < 2r, and let
¥(t) be a piecewise linear function on, [®) such thaiy(t) = 1 for0O< t <r, (2r) = 1 —i/k for

i =0,...,k andy(t) = 0 fort > 2r. Thenu(x) = y(d(x, a)) € Ny*(B(a, R)) with

1P : _
f ~ghdu < (—,) u(B(a, 2*1r)) < CKkP(2'r)QP
2ir<d(x.a)<2+1r K2'r
fori=0,...,k. Summing up the above inequalities, we obtain the required estimates. O

Proof of Lemm&.2 Leta € dQ and 0< p; < p, < diam@)/2. SupposeéA(a, p1, p2) does not
intersectoQQ. We will prove thatp;/p, cannot be too close to 0. Without loss of generality, we
may assume that; < p,/(2C%,). By the LLC property we see th#{(a, C1q01,02/C10) € Q. For
simplicity we letr = Cyg0; andR = p,/Cyo. Then

(5.2) Al r,R) c Q.

14



Letting p, be larger if necessary, we may assume @ C,oR) has a poinb € 9Q. LetK =
B(a,r) \ Q. Observe from§.1) thatK = B(a, R) \ Q. By Lemma5.3

Cre-r if p<Q,
R\\P
C (Iog ?) if p=Q.

Let ux be thep-potential for the condenseK(Q U K), i.e. ux = 1 p-g.e. onK, ux = 0 p-g.e. on
X\ (QuUK)and

(5.2) Cap,(K,QUK) < Cap,(B(a,r), BaR)) < {

Cap,(K,QUK) = ngKd,u.
X
Sincer < R/2 andA(a,r, R) does not intersedlQ2, we haveux < wp(0Q \ B(b, R/2);Q) on Q.

Hence by the GHMD®) condition,
d(x, b)
R/2

Settings = (2(3C,)Y*)~1 and noting thatik = 0 onB(b, R/2)\ Q, we obtainuk < 1/3 onB(b, 8R).
It follows from (5.1) and the comparison principle that

Uk = 1-wp(0Q\ B(a,R); Q) onQ,

so that GHMD¢) together with the fact thaix = 1 onB(a,R) \ Q c B(a,R) \ Q yields again
ug > 2/3 onB(a BR). Letv = maxXuk,1/3} —1/3 > 0. Then

pixe B(@ 2C10oR) 1 v(x) = 0)  u(BMO,AR) y
u(B(a, 2C1oR)) ~ u(B(a,2CoR)) — 7
wherey > 0 depends only oA. Hence thgx-Sobolev inequalityZ.1) implies

)" < C J( Pu) .
(Jg(a,ZCmR) ’ IU) = F< B(a,2C10kR) % IU)

Since by the doubling property pfwe have

f el > f (1/3)°du > Cu(B(a, 2C10R).
B(a,2C10R) B(a,8R)

Uk (x) < Co )" forxeQnB(b R2).

we obtain

Cap,(K,QUK) = fgﬁKd,u > f gPdu > CRPu(B(a, 2C10R)) > CRe™P.
B(a,2C10xR)

Here, the AhlforQ-regularity is used in the last inequality. This, together wit?), implies that

R/r is bounded and therefore squg/p;. The lemma is proved. |

5.2. Condition (iii) implies Condition (iv). In this subsection we shall prove Lemrial and
thus complete the proof of Theorezr?.

Proof of Lemmé.1 Let us assume the GHMBY] property and prove the LHMI) property.
Leta € 9Q and O0< r < ro. By the uniform perfectness @iQQ (Lemma5.2), we findp such
thatS(a,p) N 9Q # 0 andr/Cy < p < r. Letc be a small positive number to be determined
later. By the LLC property and the doubling propertygfwe can find finitely many points
Z,... 2y € A(a,p/Cio, C1gp) such that the unioanN:lB(z,-,cr) is a covering ofS(a, p) that forms

a chain, that is, for every,k € {1,..., N} there is a subcollection of balB,, ... B, such that
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B(z;,cr) = By, B(z.cr) = B, and fori € {1,...,1 = 1}, B; n By is non-empty. Heré\N depends
only onc and the spaceX d, ). Observe that
N

B(z;, 4xcr) A(a, CL — 4ker,Cigo + 4/<cr)
(5.3) i=1 v
C A(a, ( CCo - 4/<c)r, (Cio+ 4/<c)r).
Letc > 0 be small enough so that
(5.4) 4ck < 2CoCos = 1.

Consider

U wp(0Q N B(a,nr); )  onqQ,
o onX\ Q.

Then 0< u < 1 onXanduis ap-subminimizer inX\ B(a, r) o Uﬂ-“zl B(z;, 4«cr) by (5.3) and 6.4).
Hence from the discussion in the second sectio@DGp(ug“le(zj, 4kcer)). Fix z- € 0Q N S(a, p).
Without loss of generality we may assume tia¢ B(z, cr). Since

B(Z', (4« — 1)cr) c B(z, 4«cr) c X\ B(a, nr),

it follows from the comparison principle that< wy(0Q \ B(z', (4« — 1)cr); Q) on Q. See Figure
51

Ficure 5.1. U e DGp(U;\LlB(Zj, 4ker)) andu < wp(0Q \ B(Z', (4x — 1)cr); Q).

Hence the GHMD property yields
u< % onB(Z,Br)NnQ

for someB > 0 independent oh andr. Sinceu = 0 onX \ Q, it follows thatu < 1/2 on B(z, Ar).
Hence Lemma.6 with R = 2cr yields thatu < 1 — & on B(z, cr) for somee; > 0 independent

of a andr. Sinceuj’\‘le(zj,cr) is a chain, we find some ball, s&(z, cr), intersectingB(z,, cr).

Then Corollary3.7 givesu < 1 — &, on B(z, cr) for somee, > 0. We may repeat this argument
finitely many times until, by the finiteness of the cover and by its chain property, we eventually
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obtainu < 1 - gy on Uj'\'le(zj,cr) for somegy > 0 that is independent @ andr. In particular,
u<1l-gonS(ap). Since

wp(0Q N B(a,7r); Q) + wp(0Q \ B(a,nr); Q) =1 onQ,

it follows in particular thatw,(0Q \ B(a, nr); Q) > go onQ N S(a, p). By the comparison principle
we now have

giowp(aﬂ \ B(a,77r); Q) = wp(Q N S(a,p); QN B(a,p)) onQn B(ap).

Hence the GHMDY) property yields

C,,d(Xx, a)\e
wp(X 2N S@, 1), 2N B(ar)) < wpy(x QN Sap), 2N Ba,p)) < g_j( ()7r ))
for all x € Q N B(a,p). Becausg > r/C,, the required inequality holds also for pointsn

QN B(ar)\ B(a p). Therefore the LHMDg) property follows. ]

6. ProOF OF THEOREM 2.5
For the proof of Theorer.5, it is suficient to show the following.
Lemma 6.1. The LHMDg) property holds for some > 0 if and only if X \ Q is uniformly p-fat.

To this end, we shall use capacity estimates and the boundary regularity. Observe the following
lemma from the results iro] and [5, Lemma 5.5].

Lemma6.2.Letae XandO < r < rq.
(i) f0<s<1,then
Cap,(B(a, s1), B(a, 2r)) < Cap,(B(a.r). B(a, 2r)) < C Cap,(B(a. s1. B(a, 2r)),
whereC depends only os.
(i) If E c B(ar)andt > 1, then
Cap,(E, B(a, 2tr)) < Cap,(E, B(a, 2r)) < C Cap,(E, B(a, 2tr))
whereC depends only oh

Forae X, E c X, andr > 0, we let
Cap,(E N B(a,r), B(a, 2r))
Cap,(B(a, r), B(a, 2r))

Then the uniformp-fatness oft is restated ag(a, E,r) > C4fora e Eand O< r < ro. Letus
observe that the validity of this inequality fare 9E is suficient for us to conclude the uniform
p-fatness ok.

¢(a,E,r) =

Lemma 6.3. If ¢(a, E,r) > C for everya € dE andO < r < rq, thenE is uniformly p-fat.

Proof. Let a be an arbitrary interior point . It is suficient to showg(a, E,r) > C. LetR =
d(a, X\ E) > 0. By the quasiconvexity (Lemm&?2) we findb € JE such thaR < d(a, b) < CgR.
We have the following two cases.

Case 1:r < 2CgR. ThenB(a,r/2Cg) c E. Hence Lemm&.2yields
Cap,(B@1/2C:). B@.21)
Cap,(B(ar).B@2r)

o(a, E,r) >
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Case 2:r > 2CgR. ThenB(b,r/2) c B(a,r) c B(b,3r/2) andB(b,r) c B(a,2r) c B(b, 5r/2).
Hence Lemm&®.2yields

Cap,(E n B(a,r), B(a, 2r)) > Cap,(E N B(b,r/2), B(a, 2r))
> Cap,(E N B(b, r/2), B(b, 5r/2))
> C Cap,(E N B(b,r/2), B(b,r)),
and
Cap,(B(a.r). B(a, 2r)) < Cap,(B(b. 3r/2), B(a, 2r))
< CCap,(B(b.r/2), B(b, 2r)) < C Cap,(B(b,r/2), B(b,)).

Thereforep(a, E,r) > Coe(b, E,r/2). Sincep(b, E,r/2) > C for b € 9E by assumption, we have
¢(a, E,r) > C. The proof is now complete. O

The following estimate plays an important role in the topic of modulus of continuity of the
solution of the Dirichlet problem. Seé [] for a version in the classical case arig femma 5.7]
for a proof of the present version.

Lemma 6.4. Leta € 9Q and fixr > 0. Letu be thep-potential forB(a,r) \ Q with respect to
B(a, 5r). Then

' dt
1-u(x) < exp(—Cf o(a, X\ Q, t)l/(p‘l)T) for 0 < p <randx e B(a p).
P
Proof of Lemma.1 First suppose that \ Q is uniformly p-fat. Leta e 9Q, 0 < r < rg, and letu
be thep-potential forB(a, r/5) \ Q with respect tdB(a, r). By the comparison principle we have
wp(@NS(ar),QnBar))<l-u onQnB(@r).
In view of Lemma6.4we have

wp(X QN S(ar),QNBar)) <1-u(x) < C(r%)d for x € B(a,p) and O< p < r/5,

whereé > 0 depends only o€, andp. Thus LHMD() follows.

Conversely, suppose that LHM®) holds for somer > 0. In light of Lemma6.3, it is suficient
to showg(a, X \ Q,r) > C for everya e 9Q and O< r < ro. Fixae dQ and O< r < ro, and letv
be thep-potential forB(a, r) \ Q with respect td(a, 2r). Then the comparison principle yields

wp(QNS(ar),QnB(ar))>1-v onQnB(ar).
In view of the LHMD(a) we findC,; > 1 such that

wp(QNS(ar), QnB(ar)) < % onQ N B(a, r/Ciy).

Hence,v > 1/2 onQ N B(a,r/Cy;). Sincev = 1 p-g.e. onB(ar) \ Q, we havev > 1/2

p-g.e. onB(a,r/Cy,), so that 2 is an admissible function for computing the relative capacity
Cap,(B(a, r/Cu1), B(a, 2r)). Therefore

Cap (B 1/0:). Ba. ) < [ (20070 = 2" Cap(B@aN) \ 2. B(a. 2).
a,2r
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By Lemma6.2we have

Cap,(B(a,r) \ , B(a, 2r)) . Z_pCapp(B(a, r/Ci1), B(a, 2r)) . C
Cap,(B(a.r).Ba2r)) Cap,(B(a.r),B(a 2r))
Thus the required inequality follows. O

o(a X\ Q,r) =

Proof of Corollary2.6. Suppose thaE satisfies the volume density conditiah ). It is suficient
to show thatE satisfies the capacity density conditidhg) as well. Leta € E and letr > 0
be suficiently small, sayr < diam(X)/(4«). Take a compact subsit c E n B(a,r) such that
u(K) > Csu(B(a, r))/2. Letuk be thep-capacitary potential for the condensEr B(a, 2«r)). Then
Uk = 1 g.e. onK and hencegi-a.e. onK. Observethat X 1 -ux < l1onXandas - ugx isa
p-quasisubminimizer oiB(a, 2«r), we have 1- ux € DGp(B(a, 2«r)). In view of Lemma3.6 we
have
l1-ux<1l-¢ onB(ar/2)

for somee > 0. Hence

Can(Bla.1/2).Ba.20) < =5 [ gt

&

_ Cap,(K, B(a, 2«r)) 3 Cap,(K, B(a, 2r))

&P &P

Now by Lemma6.2 and the monotonicity of the capacity we see thasatisfies the capacity
density conditionZ.5). m|

7. FURTHER GENERALIZATIONS

So far, we have regardd®, as an operator from,(0Q2) to A,(Q2) with the same exponent.
Let 0 < 8 < e. In this section, we regarB, as an operator from from, (0Q2) to Az(Q). Let us
begin with the proof of Propositiod. 1

Proof of Propositior2.1. Itis clear that ifQQ has ap-trivial point, thenQ is p-irregular. Conversely,
suppose tha® has nop-trivial point. For an arbitrary poira € 0Q setu = Pqop,,. We claim

(7.1) lim u(x) = pa.(b) forbeoQ.
Qax—b

Letb € 9Q andr > 0. By assumptiom is 8-Holder continuous, and hence
lu(x) — u(y)l < Cr® for x,y € B(b,r) N Q.

Sinceb is not p-trivial, we find a p-regular boundary pointY € 9Q N B(b, r) by the Kellogg
property (£]). Lettingy — b, we obtainu(x) — ¢4, (b')| < Crf. By definition |pa . (b) — ¢a.(0)] <
d(b,b")* < (2r)*, so that
IU(X) — @au(b) < CrP +(2r)* for x € B(b,r).
Lettingr — 0, we obtain 7.1).
Sincey,,(a) = 0 andp,,(b) > 0 forb € 0Q\ {a} by (7.1), it follows thatu is a barrier function at

a and hencea is a p-regular boundary point. Se&][for a discussion on barriers anEregularity.
HenceQ is a p-regular domain from the arbitrarinessa& 0Q. O

Let us observe that some parts of Theorz@are extended in a straightforward manner.

Theorem 7.1.Let0 < B8 < a < ag and letQ be ap-regular domain. Consider the following four
conditions:

(I) IlPQ”a—>ﬁ < 00,
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(i) There exists a constafl, such that whenevex € 6Q,
(7.2) Popas(X) < Crod(x,a) for everyx e Q.

(i) GHMD(«,B). There exist constants;; > 1 andry > 0 such that whenevex € 9Q and
O<r<ry,

wp(X;0Q\ B(a,r), Q) < Clgd(x’ 3 for everyx e Q N B(a, r).

r(Y
(iv) LHMD(«,pB). There exist constantS;, > 1 andr, > 0 such that whenevex € 9Q and
O0<r <ry,
d(x, ay

wp(X; QN S(ar), 2N B(ar)) <Cu for everyx e QN B(a,r).

re
Then we have

() = (i) = (i) = (iv).
Moreover, if (iii) holds andy > 0, then||Pgl|,—,,, < co Withy" = By/(a + ).

Proof. The proof of the assertion)( < (ii) = (iii) < (iv) can be obtained by an easy
modification of the proof of Theore.2. We leave the verification to the reader. Let us prove the
last assertion. Suppose thait)(holds. Leta € 9Q and O< r < 1. The comparison theorem yields

d(x, a)’

r(}.’

Pawa,(X) <17+ wp(X0Q\ B(a,r),Q) <r”+Css forxe QN B(ar).

Since ¢ + v)/B > 1, it follows in particular that
Pa@a,(X) < (1 + Cua)r” = (1 + Cyz)d(x, @@ for x e Q n S(a, r@ ),
Hence we havgPq||,—,,, < cowithy’ =By/(e+7vy)as ) < (ii). m]
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