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8.1 Poincaré inequality and pointwise inequalities 215

8.2 Density of Lipschitz functions 238

8.3 Quasiconvexity and Poincaré inequality 244
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2 Introduction

Analysis in metric spaces, in the sense that we are considering in this

book, emerged as an independent research field in the late 1990s. Its

origins lie in the search for an abstract context suitable to recover a sub-

stantial component of the classical Euclidean geometric function theory

associated to quasiconformal and quasisymmetric mappings. Such a con-

text, identified in the paper [125], consists of doubling metric measure

spaces supporting a Poincaré inequality.

Over the past fifteen years the subject of analysis in metric spaces has

expanded dramatically. A significant part of that development has been

a detailed study of abstract first-order Sobolev spaces and their relation

to variational problems and PDE as well as their role as a tool in, e.g.,

function theory, dynamics and related fields. The subject has by now

advanced to the point that a careful treatment from first principles, in

textbook form, appears to be needed. This book is intended to serve

that purpose.

The concept of an upper gradient plays a critical role in both the notion

of Sobolev space considered in this book and the concomitant framework

of metric measure spaces supporting a Poincaré inequality. This concept,

also proposed originally in [125], provides an effective replacement for

the gradient, or more precisely, of the norm of the gradient of a smooth

function. A nonnegative Borel function g (possibly taking on the value

+∞) on a metric space (X, d) is said to be an upper gradient of a real-

valued function u if the inequality

|u(x)− u(y)| ≤
∫
γ

g ds (1.1)

is satisfied for all rectifiable curves γ joining x to y inX. Here the integral

of g on the right hand side of (1.1) is computed with respect to the arc

length measure along γ induced by the metric d. We review the theory

of path integrals along rectifiable curves in metric spaces in Chapter 5;

Chapter 6 is devoted to the basic properties of upper gradients in metric

spaces. It is worth emphasizing that no smoothness assumption on u is

a priori imposed in the definition. (Indeed, it is not clear in the metric

space setting what such an assumption would entail.) However, as we

will see in this book, the existence of a well-behaved upper gradient for

a function u necessarily implies certain regularity properties for u itself.

With the notion of upper gradient in hand it is natural to inquire

about the existence of a theory of Sobolev spaces based on such gradi-

ents. The classical Sobolev space W 1,p(Ω), when Ω is a domain in Rn,

can be adapted to the setting of a metric measure space (X, d, µ) by in-
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troducing the space of p-integrable functions which admit a p-integrable

upper gradient. The foundations for such a theory were laid in the the-

sis [247] and the accompanying paper [248]. In the literature this space

is often referred to as the Newtonian space and denoted N1,p(X). This

terminology highlights the essential role played by the upper gradient

inequality (1.1), which in turn serves as an abstract counterpart of the

Fundamental Theorem of Calculus.

Chapters 7, 8, and 9 form the heart of this book. In these chapters we

introduce and give a detailed study of the Sobolev space N1,p. Among

other results in these chapters, we show that N1,p is a Banach func-

tion space, we study the pointwise properties of Sobolev functions (both

scalar- and vector-valued), and we discuss the density of Lipschitz func-

tions in the Sobolev space.

In this book we consistently employ the terminology Sobolev space,

although we retain the notation N1,p(X) both in homage to the origins

of the concept and to distinguish this space from other abstract versions

of the classical Sobolev space. In Chapter 10 we review several alternate

approaches to abstract Sobolev spaces on metric measure spaces. Under

suitable assumptions, some or all of these spaces coincide, either as sets

or (up to linear isomorphism, or even up to isometry) as Banach spaces.

One version of the classical Poincaré inequality on the Euclidean space

Rn states that

1

|B|

∫
B

|u− uB | ≤ Cr
1

|B|

∫
B

|∇u|. (1.2)

Here u denotes a C∞ function on Rn and B denotes a ball of radius r.

The notation uB = |B|−1
∫
B
u denotes the mean value of u on B. The

constant C depends only on the dimension n, i.e., it is independent of

B and u.

Using the notion of upper gradient one can reformulate the Poincaré

inequality (1.2) in the metric measure space context, by replacing |∇u|
by any fixed upper gradient g of a given function u. Actually the story

is more subtle. It trivially follows from Hölder’s inequality that (1.2)

implies the corresponding inequality where the integral on the right hand

side is replaced by the Lp norm of |∇u| with respect to the Lebesgue

measure on B (normalized by the volume of B as in (1.2)). Moreover,

one can replace the ball B by any larger concentric ball λB (λ > 1),

at the cost of possibly changing the constant C. We say that a metric

measure space (X, d, µ) supports a weak p-Poincaré inequality if there
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exist constants C > 0 and λ ≥ 1 so that the inequality

1

µ(B)

∫
B

|u− uB | dµ ≤ Cr
(

1

µ(λB)

∫
λB

gp dµ

)1/p

(1.3)

holds for all balls B in X and all function-upper gradient pairs (u, g).

As before r denotes the radius of B, while λB denotes the ball with the

same center as B and with radius λr.

The importance of the abstract Poincaré inequality (1.3) lies in the

fact that it imposes an additional relation between functions and their

upper gradients, at the level of the volume measure µ rather than at the

level of the length measure along curves. The length-volume principle

(usually known as the length-area principle) lies at the core of classical

Euclidean geometric function theory. In our setting the interplay between

the upper gradient inequality (1.1) and the Poincaré inequality (1.3) is

a principal driving force. When coupled with the doubling condition for

the measure µ (namely, the assumption that µ(2B) ≤ Cµ(B) for all

balls B in X, where the constant C is independent of B), the Poincaré

inequality becomes a powerful tool with both analytic and geometric

consequences.

The reader may wonder why we complicate the story by distinguishing

the Poincaré inequality according to the value of the exponent p, as well

as by allowing for the dilated balls λB in the definition. In the Euclidean

space, as already observed, the Poincaré inequality holds with p = 1 and

λ = 1 (and this is the strongest form of the inequality). In the abstract

setting, it is not necessarily the case that a space supporting a Poincaré

inequality for some 1 ≤ p < ∞ and with some dilation constant λ ≥ 1,

necessarily supports a Poincaré inequality for better choices of this data.

Under rather mild conditions the dilation parameter λ can always be

chosen to be 1. We discuss this and other self-improvement phenomena

related to Sobolev–Poincaré inequalities in Chapter 9.

It is a much deeper fact of the theory that, if the underlying metric

space is complete and the measure µ is doubling, then the exponent

p on the right hand side of (1.3) can be improved. In other words, if

such a space (X, d, µ) supports a p-Poincaré inequality for some p > 1,

then it supports a q-Poincaré inequality for some 1 ≤ q < p. This fact,

due to Keith and Zhong, is a highlight of the modern theory of analysis

on metric spaces. Chapter 12 of this book contains a detailed and self-

contained proof of the Keith–Zhong theorem, as well as a discussion of

its numerous implications and corollaries. Examples of doubling spaces
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supporting a p-Poincaré inequality for some but not all values of p in

the range [1,∞) are described in Chapters 13 and 14.

Of comparable importance is the landmark theorem of Cheeger on

the almost everywhere differentiability of Lipschitz functions on dou-

bling spaces supporting a Poincaré inequality. This result, an abstract

reformulation of the famous Rademacher differentiation theorem for Eu-

clidean Lipschitz functions, demonstrates that doubling metric measure

spaces supporting a Poincaré inequality possess a rich infinitesimal “lin-

ear” structure not immediately apparent from the definition. Indeed, on

such spaces it is possible to define not only the norm of the gradient of a

Lipschitz function but (in a suitable sense) the gradient (or differential)

itself, acting as a linear operator. The penultimate chapter of this book

contains a proof of Cheeger’s differentiation theorem.

One of our aims in preparing this book has been to present self-

contained proofs of these two key theorems by Keith–Zhong and Cheeger.

Another major theme of this book is our consistent emphasis on the

class of vector-valued functions, that is to say, functions taking values

in a Banach space V . The integrability theory for vector-valued func-

tions goes back to the work of Bochner and Pettis; we review this theory

in Chapter 3. Our standard setting is that of V -valued Bochner inte-

grable functions u defined on a metric measure space (X, d, µ). (Note

however that upper gradients of such functions u, as analogs of the

norm of the classical gradient, remain real-valued functions.) The the-

ory of first-order Sobolev spaces is, with a few notable expections, no

more difficult to develop in the vector-valued case as in its scalar-valued

counterpart. Moreover, there are important reasons why one wishes to

have a theory in such a context. Every metric space admits an isometric

embedding into some Banach space. (See Chapter 4 for a summary of

classical embedding and extension theorems.) Taking advantage of such

embeddings one can define metric space-valued Sobolev mappings. The

space of Sobolev mappings from a metric measure space (X, d, µ) into

another metric space (Y, d′) plays a key analytic role in the theory of

quasisymmetric maps as well as in nonlinear geometric variational prob-

lems. While we do not investigate those subjects in this book, we remark

that the analytic definition of quasisymmetric maps in terms of metric

space-valued Sobolev mappings, as developed in our paper [129], was a

primary impetus for this book. A brief survey of the theory of quasicon-

formal and quasisymmetric mappings on metric spaces can be found in

Section 14.1.

In Chapter 14 we describe various examples of metric measure spaces
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supporting a Poincaré inequality, and, although we do not provide proofs

of the relevant inequality for these examples, we do give copious refer-

ences to the literature in case the reader wishes to pursue such matters

further. It is also useful to know that the collection of doubling met-

ric measure spaces supporting a Poincaré inequality, with uniform con-

stants, is closed under a suitable notion of convergence (e.g., convergence

in the Gromov–Hausdorff sense). We discuss Gromov–Hausdorff conver-

gence and prove the preceding claim in Chapter 11. This observation

expands the class of example spaces for our theory by including suitable

Gromov–Hausdorff limit spaces.

The following references are recommended to readers who wish to

learn more about the subject. The short books [120] and [8] are good

introductions to the field of analysis in metric spaces. Haj lasz’s survey

articles [109] and [112] focus specifically on the theory of Sobolev spaces

on metric spaces; these two articles are well suited for readers wishing

to learn more about alternate notions of Sobolev spaces as discussed in

Chapter 10 of this book. For a general historical survey of nonsmooth

calculus, see [122]. The recent book by A. and J. Björn [31] is a com-

prehensive treatment of nonlinear potential theory, especially the theory

of p-harmonic functions on metric measure spaces; this book serves as

a valuable counterpart to the present volume. Other topics closely re-

lated to the subject matter of this book, and that are currently under

active study, include abstract notions of curvature (as in the books [8]

and [276]) and analysis on fractals (as in the book [155]).

This book is intended as a graduate textbook. We have endeavored

to include detailed proofs of virtually all of the major results, and to

present the material in such a way as to minimize the necessary back-

ground. Prior knowledge of abstract measure theory and functional anal-

ysis, at the level of a standard introductory graduate course, is highly

recommended. We review the basic tools of functional analysis needed

for this book in Chapter 2, while in Chapter 3 we review the founda-

tions of Borel and Radon measures, the theory of integration of Banach

space-valued functions, and basic tools of harmonic analysis such as the

Hardy–Littlewood maximal function. Prior exposure to Sobolev spaces

(e.g., as can be found in a graduate PDE course) can help the reader

place the topics of this book in a broader context.

Throughout this book, we let C denote any positive constant whose

particular value is not of interest to us; thus, even within the same line,

two occurrences of C may refer to two different values. However, C will

always be assumed to be a positive constant.
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Our style of exposition has undoubtedly been influenced by the works

of our mathematical fathers and grandfathers, including Olli Martio, Olli

Lehto and Rolf Nevanlinna. Besides this we wish to acknowledge Jussi

Väisälä, whose lecture notes on quasiconformal mappings attracted each

of us to the subject. Finally, we have benefited tremendously from the

inspiring atmosphere generated by Lois and Fred Gehring, and from the

mentoring which we have all received from Fred. We dedicate this book

with great appreciation to his memory.
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2.1 Normed and seminormed spaces 9

The theory of Sobolev spaces as developed in this book requires only

a small amount of elementary functional analysis. In this chapter we

present the required background material. For the sake of completeness,

we have included proofs for all but the most standard facts. Anyone

with a good working knowledge of analysis can safely skip this chapter.

Alternatively, one can quickly glance through the chapter for notation

and return to it later as needed.

We assume that the reader is familiar with basic measure theory for

real-valued functions and Lebesgue integration. The integration theory

for Banach space-valued functions will be developed later in Chapter 3.

2.1 Normed and seminormed spaces

Let V be a vector space over the real numbers. A norm on V is a function

| · | : V → R

that satisfies the following three conditions:

|v| > 0 for all v ∈ V \ {0}, (2.1.1)

|λv| = |λ| |v| for all v ∈ V and λ ∈ R, (2.1.2)

|v + w| ≤ |v|+ |w| for all v, w ∈ V . (2.1.3)

Here and throughout this book, |λ| denotes the absolute value of a real

number λ. The notational similarity between absolute value and general

norms should not cause any confusion.

If | · | is a norm and v ∈ V , it follows from the definition that |v| ≥ 0,

and that |v| = 0 if and only if v = 0. A function | · | : V → R is called a

seminorm on V if it satisfies (2.1.2), (2.1.3), and in place of (2.1.1) the

following weaker version:

|v| ≥ 0 for all v ∈ V . (2.1.4)

If | · | is a norm on V , the pair (V, | · |) is called a normed space. Analo-

gously, (V, | · |) is a seminormed space if | · | is a seminorm.

The n-dimensional space Rn, n ≥ 1, is most commonly equipped with

its Euclidean norm

|x| = (x2
1 + · · ·+ x2

n)1/2, x = (x1, . . . , xn). (2.1.5)

We always assume, unless otherwise explicitly stated, that Rn comes
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equipped with the norm as in (2.1.5). There are however many other

norms in Rn. For 1 ≤ p ≤ ∞ we have the p-norms

|x|p := (|x1|p + · · ·+ |xn|p)1/p, 1 ≤ p <∞, (2.1.6)

and

|x|∞ := max{|x1|, . . . , |xn|}. (2.1.7)

Thus |x| = |x|2 for x ∈ Rn.

The norms | · |p can be defined as extended real-valued functions on

the vector space of infinite sequences R∞ := {(x1, x2, . . .) : xi ∈ R} in

the obvious way,

|x|p :=

( ∞∑
i=1

|xi|p
)1/p

, |x|∞ := sup{|xi| : i = 1, 2, . . .}. (2.1.8)

Then a family of norms can be defined by restricting |x|p to the vector

subspace of R∞ consisting of those x ∈ R∞ for which |x|p <∞. In this

way we construct the lp spaces,

lp = lp(N) := {x ∈ R∞ : |x|p <∞}, 1 ≤ p ≤ ∞. (2.1.9)

More generally, let (X,µ) be a measure space (see Section 3.1 for a

review of basic terminology) and define, for 1 ≤ p < ∞ and f : X →
[−∞,∞] measurable,

||f ||p :=

(∫
X

|f |p dµ
)1/p

. (2.1.10)

Then || · ||p is a seminorm on the vector space of measurable functions f

for which ||f ||p <∞. It is not always a norm, for the integral in (2.1.10)

vanishes whenever f vanishes almost everywhere. If we identify two func-

tions that agree almost everywhere, then for the resulting equivalence

classes [f ] we can define ||[f ]||p unambiguously via (2.1.10) by using a

representative. In this way we arrive at the Lp spaces

Lp = Lp(X) = Lp(X,µ), 1 ≤ p <∞, (2.1.11)

consisting of the equivalence classes [f ] of measurable functions on X

with ||[f ]||p <∞. It is customary in the Lp-theory to speak about func-

tions in Lp rather than equivalence classes, and to use the notations f

and ||f ||p rather than [f ] and ||[f ]||p. We will follow the same practice.

In the theory of Sobolev spaces, the issue of identification of functions

arises in a more subtle way; this will be discussed in detail in Chapters 5
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and 6. Functions in Lp(X) are also referred to as p-integrable functions

on X.

The sup norm for a measurable function f : X → [−∞,∞] is given

by

||f ||∞ := sup{λ ∈ R : µ({x ∈ X : |f(x)| > λ}) 6= 0}. (2.1.12)

Upon following the preceding identification convention for functions, we

obtain a normed space

L∞ = L∞(X) = L∞(X,µ) . (2.1.13)

This is the space of essentially bounded functions consisting of those

(equivalence classes of) measurable functions for which the expression

||f ||∞ is finite.

In the case when X = N and µ is the counting measure, we recover

the lp-spaces as in (2.1.9).

For an arbitrary set A (with no assigned measure) one can define a

normed space

l∞(A) (2.1.14)

consisting of all bounded functions f : A→ R with the norm

||f ||∞ := sup
a∈A
|f(a)|. (2.1.15)

We use the short notation l∞ = l∞(N), ||x||∞ = |x|∞ for x ∈ R∞, which

is in accordance with (2.1.8) and (2.1.9).

Remark 2.1.16 The procedure of passing to the equivalence classes

of functions in Lp-spaces is an example of a general procedure, whereby

a seminormed space can be turned into a normed space. To wit, let

(V, | · |S) be a seminormed space. For v ∈ V we consider the equivalence

class [v] given by the equivalence relation ∼, where v ∼ w if and only if

|v − w|S = 0. By setting

|[v]| = |v|S (2.1.17)

we obtain a norm in the vector space of equivalence classes [v]. Put

differently, if VS denotes the vector subspace of V consisting of those

vectors v for which |v| = 0, then the map | · |S : V → R factors through

the canonical projection V → V/VS as a norm | · | : V/VS → R.
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Lebesgue measure. We denote the n-dimensional Lebesgue measure

on Rn by mn and the corresponding Lebesgue spaces by Lp(Rn). More

generally, if A ⊂ Rn is a Lebesgue measurable set, then the short nota-

tion

Lp(A) = Lp(A,mn)

is used, where mn is restricted to A in a natural manner.

Metric spaces. A metric space is a pair (X, d), where X is a set and

d : X ×X → [0,∞) is a function, called a distance or metric, satisfying

the following three conditions:

2d(x, y) = d(y, x) for all x, y ∈ X, (2.1.18)

d(x, y) = 0 if and only if x = y, (2.1.19)

d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X. (2.1.20)

Both (2.1.3) and (2.1.20) are commonly called the triangle inequality.

We assume that the reader is familiar with the basic theory of metric

spaces, including standard topological notions such as completeness and

compactness. A reasonable discussion on this basic theory can be found

in [214].

It follows from the definitions that every normed space (V, | · |) is

naturally a metric space with the distance function d(v, w) = |v − w|.
Unless otherwise stated, all topological notions on a normed space V =

(V, | · |) are based on this metric. For example, the phrase “the sequence

(vi) converges to v in V ”, or “vi → v in V ”, means limi→∞ |vi − v| = 0.

We will, however, consider other modes of convergence in V later (see

Section 2.3 and Section 2.3).

A metric space is separable if it possesses a countable dense subset. A

normed space is said to be separable if it is separable as a metric space.

The space Lp(X) for 1 ≤ p <∞ is separable under some mild condi-

tions on the measure space X = (X,µ). For example, Lp(Rn) is separa-

ble for 1 ≤ p < ∞. (See Proposition 3.3.49 for a statement in the main

context of this book.) On the other hand, the space L∞(X) is rarely

separable, and l∞(A) is separable if and only if A is a finite set.

Banach spaces. A normed space (V, | · |) is said to be a Banach space

if it is complete as a metric space. We also use the self-explanatory

term complete norm in this case. The spaces (Rn, | · |p) and Lp(X) for

1 ≤ p ≤ ∞ as well as l∞(A) introduced earlier are all examples of

Banach spaces.
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Every normed space (V, | · |) can be completed and this completion

(V, | · |) is a Banach space. The elements in (V, | · |) are equivalence classes

of Cauchy sequences (vi) in (V, | · |), where (vi) ∼ (wi) if and only if

|vi −wi| → 0 as i→∞. The norm | · | is extended to the completion by

setting |(vi)| = limi→∞ |vi|. The limit exists because (2.1.3) shows that

(|vi|) is Cauchy in R. Moreover, the limit value is independent of the

representative (vi). The elements in the completion of a normed space

can often be identified more concretely. For example, let (X,µ) be a

measure space and let S be the vector space of simple functions s on X

of the type

s =

N∑
i=1

aiχAi , (2.1.21)

where ai ∈ R, the sets Ai ⊂ X are pairwise disjoint and measurable with

µ(Ai) <∞, and χA denotes the characteristic function of a set A ⊂ X.

We equip S with the norm

|s| =
N∑
i=1

|ai|µ(Ai).

Then the completion of (S, |·|) can be identified with the Lebesgue space

L1(X,µ). (Compare Section 3.2.)

A vector subspace of a normed space is itself a normed space with the

induced norm. A subspace S of a Banach space V is said to be dense in

V if the completion of S equals V . For example, the space S of simple

functions as in (2.1.21) is dense in every Lp(X), 1 ≤ p <∞.

There is a useful characterization of Banach spaces among all normed

spaces in terms of summable series. Namely, a normed space (V, | · |) is a

Banach space if and only if every absolutely summable series converges

in the norm. Here, a series
∑∞
n=1 vn of elements vn ∈ V is said to be

absolutely summable if
∑∞
n=1 |vn| < ∞ , and it is said to be convergent

in the norm if the partial sums
∑N
n=1 vn converge to an element v ∈ V

as N → ∞. This characterization is easy to verify from the definitions,

see for example [86, p. 144].

Hilbert spaces. Hilbert spaces are important special classes of Banach

spaces. To wit, a Hilbert space is a Banach space whose norm is induced

by an inner product. An inner product on a vector space V is a function

〈·, ·〉 : V × V → R (2.1.22)
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that is symmetric (〈v, w〉 = 〈w, v〉 for all v, w ∈ V ), bilinear (〈αv +

βw, z〉 = α〈v, z〉 + β〈w, z〉 and 〈z, αv + βw〉 = α〈z, v〉 + β〈z, w〉 for

v, w, z ∈ V and α, β ∈ R), and satisfies

〈v, v〉 > 0 for all v ∈ V \ {0}. (2.1.23)

If 〈·, ·〉 is an inner product on V , then the expression

|v| := 〈v, v〉1/2 (2.1.24)

defines a norm on V . A vector space equipped with an inner product 〈·, ·〉
is called an inner product space. It is a Hilbert space if it is, in addition,

complete in the induced norm (2.1.24).

An inner product on a vector space provides extra structure not avail-

able on general Banach spaces; one can talk about angles and orthogo-

nality. The Euclidean space Rn has its standard inner product

〈x, y〉 := x1y1 + · · ·+ xnyn,
x = (x1, . . . , xn),

y = (y1, . . . , yn),
(2.1.25)

which induces the Euclidean norm (2.1.5). More generally, if (X,µ) is a

measure space, then L2(X) is a Hilbert space with the inner product

〈f, g〉 :=

∫
X

f · g dµ. (2.1.26)

The spaces Lp(X) for p 6= 2 cannot be equipped with an inner product

which induces the p-norm (2.1.10).

Norms that arise from inner products are characterized by the paral-

lelogram law

|v + w|2 + |v − w|2 = 2(|v|2 + |w|2) (2.1.27)

in the following sense: every norm in a vector space V that arises from

an inner product satisfies (2.1.27) for all v, w ∈ V ; and if a norm | · |
satisfies (2.1.27) for all v, w ∈ V , then we can define an inner product

on V by the formula

〈v, w〉 :=
1

4

(
|v + w|2 − |v − w|2

)
.

Finally, a semi-inner product on V is a map as in (2.1.22) for which we

replace (2.1.23) by 〈v, v〉 ≥ 0 for all v ∈ V . In this case, the expression

|v| = 〈v, v〉1/2 defines a seminorm on V .

Hilbert spaces do not play a special role in this book, but they will be

mentioned from time to time, mostly in examples and remarks.
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2.2 Linear operators and dual spaces

A map T : V →W between two normed spaces is also called an operator.

Such an operator is said to be a bounded operator if there is a constant

C ≥ 0 such that

|Tv| ≤ C|v| (2.2.1)

for all v ∈ V . The least number C is called the operator norm (or norm)

of T and is denoted by |T |. When T is linear, we call it a linear operator.

A linear operator is bounded if and only if it is continuous as a map

between metric spaces.

The vector space B(V,W ) of all bounded operators T : V → W is

itself a normed space with the norm T 7→ |T | defined above. It is a

Banach space if W is a Banach space.

An operator T : V →W is bounded precisely when it maps bounded

sets in V to bounded sets in W .

Open mapping theorem. A basic result about bounded operators is

the open mapping theorem, which asserts that every surjective bounded

linear operator between Banach spaces is an open mapping. The proof

of this theorem is a standard application of the Baire category theorem.

Recall that an open mapping between topological spaces is a mapping

that takes open sets to open sets.

Dual spaces. The Banach space of all bounded linear operators from a

normed space V to R is called the dual space of V . We use the standard

notation V ∗ = B(V,R), and call the elements of V ∗ bounded linear

functionals on V . Moreover, we usually write

〈v∗, v〉 (2.2.2)

for the numerical value v∗(v), where v ∈ V and v∗ ∈ V ∗. The Banach

norm in V ∗ is given by

|v∗| = sup
|v|≤1

|〈v∗, v〉|,

in accordance with (2.2.1). This notation does not claim that 〈v∗, v〉
comes from an inner product. However, should V happen to be a Hilbert

space, then by the Riesz representation theorem V ∗ can be identified

with V via the inner product on V : for v∗ ∈ V , the map v 7→ 〈v∗, v〉 is

a bounded linear operator on V , and every bounded operator has such

a representation.
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It follows from the Hahn–Banach theorem (see 2.2) that every normed

space V admits a canonical isometric embedding to its double dual

V ↪→ V ∗∗ := (V ∗)∗, (2.2.3)

where, for v ∈ V , we define a linear functional on V ∗ by

v∗ 7→ 〈v∗, v〉, v∗ ∈ V ∗. (2.2.4)

A Banach space is called reflexive if V = V ∗∗ in the sense that the above

embedding is surjective.

Hilbert spaces are reflexive, as follows from the Riesz representation

theorem. (See also Theorem 2.4.9 below.) The dual of Lp(X), 1 < p <∞,

is Lq(X), where q = p
p−1 . Thus Lp-spaces for 1 < p < ∞ are reflexive.

For σ-finite measure spaces (X,µ) we have L∞(X) = L1(X)∗. On the

other hand, the dual of L∞(X) has a description as a space of finitely

additive signed measures on X. In general, the spaces L∞ and L1 are

not reflexive.

We note the following special cases of the above dualities: lq = (lp)∗

for 1 ≤ p < ∞ and q = p
p−1 , with the usual understanding that q = ∞

if p = 1. Although L1(Rn) is not the dual of any Banach space, we have

that

l1 = c∗0, (2.2.5)

where c0 is the Banach subspace of l∞ consisting of all sequences x = (xi)

such that xi → 0 as i → ∞. Indeed, the duality in (2.2.5) is a special

case of the duality

M(S) = c0(S)∗, (2.2.6)

where c0(S) is the space of all continuous functions on a locally compact

Hausdorff space S that “vanish at infinity”, and M(S) is the space of

all finite Borel regular measures on S. This follows from another Riesz

representation theorem, see [237, Theorem 2.14 of page 40]. We forgo

the precise definitions here as they are not needed in this book.

It is important to recognize reflexive Banach spaces, for these enjoy

some strong properties commonly used in analysis. (See Theorem 2.4.1,

for example.)

The Hahn–Banach theorem. A sublinear map on a vector space V

is a map p : V → R that satisfies

p(v + w) ≤ p(v) + p(w) and p(λv) = λp(v) (2.2.7)
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for all v, w ∈ V and λ ≥ 0. In particular, every seminorm on V deter-

mines a sublinear map. More generally, if C is a convex, open neighbor-

hood of 0 in a normed space V , then the formula

pC(v) := inf{λ > 0 : λ−1v ∈ C}, v ∈ V, (2.2.8)

determines a sublinear map, called the Minkowski functional associated

with the convex set C.

Let p : V → R be a sublinear map, let W be a vector subspace of V ,

and let v∗ : W → R be a linear map such that

v∗(w) ≤ p(w)

for all w ∈ W . The Hahn–Banach theorem asserts that there exists a

linear map v∗ : V → R such that v∗|W = v∗ and that

v∗(v) ≤ p(v)

for all v ∈ V .

The Hahn–Banach theorem is most often applied in a situation where

one needs to extend a bounded linear functional from a subspace of a

normed space. However, the general formulation with sublinear maps is

crucial for some basic facts.

We record two immediate corollaries of the Hahn–Banach theorem.

Given a nonzero vector v in a normed space V , there is an element

v∗ in the dual space V ∗ such that 〈v∗, v〉 = |v| and that |v∗| = 1. In

particular, the dual of a normed space is never trivial. It also follows that

the canonical embedding (2.2.3) is isometric. This corollary follows by

applying the Hahn–Banach theorem with v 7→ |v| as the sublinear map

and the linear map λv 7→ λ|v| defined on the one-dimensional subspace

of V spanned by v.

Given a convex, open neighborhood C of 0 in a normed space V and

a vector v /∈ C, there is an element v∗ in the dual space V ∗ such that

〈v∗, w〉 < 〈v∗, v〉 (2.2.9)

for all w ∈ C. This corollary follows by applying the Hahn–Banach

theorem with the Minkowski functional pC and with the linear map

λv 7→ λpC(v) defined on the one-dimensional subspace of V spanned by

v. Indeed, we have that (2.2.9) holds for a linear map v∗, and because

C contains a neighborhood of 0, we also have that v∗ is bounded as

required (compare (2.2.1)).

There is another, less immediate corollary of the Hahn–Banach the-

orem, called Mazur’s lemma, which will play an important role in the
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development of the Sobolev space theory in this book. We will review

and prove Mazur’s lemma in 2.3.

2.3 Convergence theorems

Principle of uniform boundedness. Another basic theorem of func-

tional analysis which we quote without proof is the principle of uniform

boundedness: if {Tα : α ∈ A} is a collection of bounded linear operators

from a Banach space V into a normed space W , and if

sup
α∈A
|Tα(v)| <∞ (2.3.1)

for each v ∈ V , then

sup
α∈A
|Tα| <∞.

Recall that |T | is the operator norm of T as defined in 2.2.

A standard application of the principle of uniform boundedness is the

following. If (Ti) is a sequence of bounded linear operators from a Banach

space V into a normed space W such that

lim
i→∞

Ti(v) (2.3.2)

exists in W for every v ∈ V , then the expression (2.3.2) determines a

bounded linear operator from V to W .

The principle of uniform boundedness is also known as the Banach–

Steinhaus theorem.

While the proof of the uniform boundedness principle in its complete

generality will not be needed here, we will need the following weaker

version of it in Chapter 11.

Theorem 2.3.3 If V is a separable Banach space and T = {Tα : α ∈
A} is a collection of bounded linear operators from V into R and for all

v ∈ V we have

sup
α∈A
|Tα(v)| <∞,

then there is a sequence (Tαj ) in T so that T (v) := limj Tαj (v) exists

for each v ∈ V , with T a bounded linear operator on V .

Proof The proof relies on the fact that bounded subsets of R are pre-

compact. A sketch of the proof is as follows. Since V is separable, we

can choose a countable dense subset S of V . For each vi ∈ S we can find
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a sequence (Tαj,i)j such that limj Tαj,i(vi) exists. A Cantor diagonaliza-

tion argument gives a sequence (Tαj ) so that for each i ∈ N the limit

limj Tαj (vi) =: T (vi) exists. Extend T to the linear span of S.

We now show that supj∈N |Tαj | < ∞. To do so, note that for each j,

by the continuity of Tαj , the set T−1
αj ([−1, 1]) is a closed subset of V . Set

E :=
⋂
j∈N

T−1
αj ([−1, 1]).

Then E is a closed subset of V . We claim that E has non-empty interior.

Suppose that int(E) is empty. For r > 0 we set rE := {rv : v ∈ E}.
Then for each n ∈ N we know that nE has empty interior, but by the

assumption on the family of operators, V =
⋃
n∈N nE. Then the open

set Vn := V \ nE is dense in V because nE has empty interior.

For v ∈ V and r > 0 we let B(v, r) = {w ∈ V : |w − v| < r}
denote the ball centered at v with radius r. Since V1 is dense in V , we

know that B(0, 1) ∩ V1 is non-empty (but this intersection is also open

in V ); so we can find x1 ∈ V and 0 < r1 < 2−1 such that B(x1, r1) ⊂
V1 ∩ B(0, 1). Now, V2 ∩ B(x1, r1) is a non-empty (because V2 is dense

in V ) open set; thus we can find x2 ∈ V and 0 < r2 < 2−2 such that

B(x2, r2) ⊂ V2∩B(x1, r1). Proceeding by induction, we can find xn ∈ V
and 0 < rn < 2−n such that B(xn, rn) ⊂ B(xn−1, rn−1) ∩ Vn.

It is easy to see that (xn) is a Cauchy sequence in V , and so has a

limit x∞ ∈ V . Because x∞ ∈ B(xn, rn) for each n ∈ N, it follows that⋂
n∈N Vn is non-empty; this violates the fact that V =

⋃
n∈N nE. Thus E

has non-empty interior; that is, there is some v ∈ V and r > 0 such that

B(v, r) ⊂ E. Now for each y ∈ B(v, r) we know that supj |Tαj (y)| ≤ 1.

It follows that for all z ∈ B(0, r) and all j ∈ N,

|Tαj (z)| − |Tαj (v)| ≤ |Tαj (v − z)| ≤ 1,

that is, supj∈N |Tαj (z)| ≤ 2, which directly verifies that supj∈N |Tαj | <
∞. It follows that the constructed functional T on the span of S is also

a bounded linear map; an application of the Hahn–Banach theorem,

together with the density of S in V , gives a unique extension of T to

V . It is now directly verifiable that for each v ∈ V the limit limj Tαj (v)

exists and equals T (v); we leave the details to the interested reader.

The above proof also gives an indirect proof that a Banach space is

necessarily of Baire category two; see [238].
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Weak convergence. A sequence (vi) in a normed space V is said to

converge weakly to an element v ∈ V if

lim
i→∞
〈v∗, vi〉 = 〈v∗, v〉 (2.3.4)

for each v∗ ∈ V ∗. In this case, the vector v is called the weak limit of

the sequence (vi). Note that the weak limit, if exists, is unique; namely,

if v and v′ are two weak limits of a sequence in V , then

〈v∗, v − v′〉 = 0

for each v∗ ∈ V ∗, and it follows from the Hahn–Banach theorem together

with the isometric nature of the embedding (2.2.3) that v = v′.

If (vi) ⊂ V is a sequence that converges to v ∈ V in the norm, then

|〈v∗, vi〉 − 〈v∗, v〉| ≤ |v∗| |vi − v| → 0

so that vi → v weakly as well. The converse is not true in general. For

example, the sequence {sin(ix) : i = 1, 2, . . . } converges weakly to 0 in

Lp([0, 2π]) for 1 ≤ p <∞. This follows from the dualities in 2.2 (cf. 2.3)

and from the Riemann–Lebesgue lemma [237, p. 109]. The fundamental

result about weak convergence is Theorem 2.4.1 below.

The second assertion in the following proposition is often called the

lower semicontinuity of norms.

Proposition 2.3.5 Weakly convergent sequences are norm bounded.

Moreover, if vi → v weakly, then

|v| ≤ lim inf
i→∞

|vi|. (2.3.6)

Proof Let vi → v weakly in a normed space V . Each vi determines

an element in the double dual V ∗∗ of V as explained in 2.2. Because

(〈v∗, vi〉) is bounded for each v∗ ∈ V ∗, the first assertion follows from

the principle of uniform boundedness. Furthermore,

|〈v∗, v〉| = lim
i→∞

|〈v∗, vi〉| ≤ lim inf
i→∞

|vi| |v∗|,

whence (2.3.6) follows upon invoking the first corollary of the Hahn–

Banach theorem as in Section 2.2. This proves the proposition.

Remark 2.3.7 Often in the literature, a sequence (vi) in a normed

space V is said to be weakly convergent if the limit

lim
i→∞
〈v∗, vi〉

exists for each v∗ ∈ V ∗. In general, a weakly convergent sequence need
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not converge weakly to a vector in V (see, for example, [286, p. 120],

[197, p. 20]), although it can always be thought of as converging weakly

to a vector in the double dual V ∗∗ by the principle of uniform bound-

edness. In this book, we will only consider weakly convergent sequences

that converge weakly to a vector v ∈ V . Note, however, that the first

assertion in Proposition 2.3.5 is true under the weaker meaning of the

term “weakly convergent”.

The following result will be used repeatedly in this book.

Mazur’s lemma. Let (vi) be a sequence in a normed space V converg-

ing weakly to an element v ∈ V . Then v belongs to the norm closure of

the convex hull of the sequence (vi).

The convex hull of a set A in a normed space V is the intersection

of all convex sets in V that contain A. Thus, if vi → v weakly in V ,

Mazur’s lemma guarantees the existence of a sequence (ṽk) of convex

combinations

ṽk =

mk∑
i=k

λi,kvi, λi,k ≥ 0, λk,k + · · ·+ λmk,k = 1, (2.3.8)

converging to v in the norm.

Given a metric space (X, d), a set A ⊂ X, and a point x ∈ X, we

denote the distance from x to A by

dist(x,A) := inf{d(x, a) : a ∈ A}.

Proof of Mazur’s lemma Let H be the convex hull of (vi). By replacing

the sequence (vi) by a sequence (vi−h) for some h ∈ H, we may assume

that 0 ∈ H. Assume now that there exists ε > 0 such that

|v − w| > 2ε

for each w ∈ H. Then, in particular, v 6= 0. Since |a − a′| < ε and

|b−b′| < ε implies |(ta+(1− t)b)− (ta′+(1− t)b′)| < ε for a, a′, b, b′ ∈ V
and 0 ≤ t ≤ 1, the ε-neighborhood

Hε := {w ∈ V : dist(w,H) < ε}

of H is convex; it is also an open neighborhood of 0 in V , and conse-

quently defines a Minkowski functional

|w|ε := inf{λ > 0 : λ−1w ∈ Hε}, w ∈ V, (2.3.9)



22 Review of Basic Functional Analysis

as explained in 2.2. By the Hahn–Banach theorem (see (2.2.9)), applied

to the linear map tv 7→ t|v|ε defined on the one-dimensional subspace

of V spanned by v and our Minkowski functional, there exists a linear

functional v∗ : V → R such that 〈v∗, v〉 = |v|ε and 〈v∗, w〉 ≤ |w|ε for all

w ∈ V . It follows that

1 < |v|ε = lim
i→∞
〈v∗, vi〉 ≤ lim inf

i→∞
|vi|ε ≤ 1

which is absurd. The lemma follows.

Remark 2.3.10 We will frequently employ Mazur’s lemma in the

following formulation: if a sequence (vi) in a normed space V converges

weakly to an element v, then a sequence (ṽj) of convex combinations of

the vectors vi converges to v in the norm.

A pedantic reading of this formulation would allow the situation where

the sequence (ṽj) consists of a constant sequence ṽj ≡ v for every j, in

the case where v appears as a member of the sequence (vi). However,

with a slight abuse of terminology, throughout this book in the preceding

formulation of Mazur’s lemma the following additional requirement is

always assumed: for every n ≥ 1, all but finitely many of the members

in the sequence (ṽj) are convex combinations of the vectors vi for i ≥ n.

Weak Convergence in Lp. Let X = (X,µ) be a σ-finite measure

space, and let 1 ≤ p < ∞. Then a sequence (fi) in Lp(X) converges

weakly to f ∈ Lp(X) if and only if

lim
i→∞

∫
X

g · fi dµ =

∫
X

g · f dµ

for all g ∈ Lq(X), where q = p
p−1 if 1 < p <∞ and q =∞ if p = 1. This

follows from the dualities explained in Section 2.2.

The following result is often useful in recognizing weak limits in Lp-

spaces.

Proposition 2.3.11 Let X = (X,µ) be a measure space, let 1 ≤ p ≤
∞, and let (fi) in Lp(X) be a sequence converging weakly to f ∈ Lp(X).

If

lim
i→∞

fi(x) = g(x) (2.3.12)

for almost every x ∈ X, then g = f almost everywhere.

Proof By Mazur’s lemma 2.3, a sequence (f̃k) of convex combinations

of the fi’s converges to f in Lp(X). By passing to a subsequence we may
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assume that f̃k → f pointwise almost everywhere in X (see Proposition

2.3.13 below). Because also f̃k → g almost everywhere by (2.3.12), we

have that f = g, and the proposition follows.

The following well known result from Lebesgue theory was used in the

preceding proof. A similar argument will appear later in a different con-

text (see Egoroff’s theorem 3.1 and Proposition 7.3.1), and to emphasize

this relation we provide a proof.

Proposition 2.3.13 Let (X,µ) be a measure space, let 1 ≤ p ≤ ∞,

and let (fi) ⊂ Lp(X) be a sequence converging to f in Lp(X). Then (fi)

has a subsequence (fij ) with the following property: for every ε > 0 there

exists a set Eε ⊂ X such that µ(Eε) < ε and that fij → f uniformly in

X \ Eε. In particular, (fij ) converges to f pointwise almost everywhere

in X.

Proof The statement for p = ∞ is straightforward, with a stronger

conclusion (there is no need to pass to a subsequence and the convergence

is uniform outside a set of measure zero). Thus assume 1 ≤ p <∞. The

proof in this case naturally splits into three parts. First one shows that

(fi) is Cauchy in measure, which means the following:

lim
i,j→∞

µ({x ∈ X : |fi(x)− fj(x)| > ε}) = 0 (2.3.14)

for each ε > 0. Then it is a fact, independent of Lp-theory, that a subse-

quence converges pointwise almost everywhere to a function g; moreover,

the convergence is uniform outside a set of arbitrarily small measure. Fi-

nally, Fatou’s lemma implies that g ∈ Lp(X) and that fi → g in Lp.

To prove (2.3.14), we simply observe that

εpµ({x ∈ X : |fi(x)− fj(x)| > ε}) ≤
∫
X

|fi − fj |p dµ→ 0, i, j →∞,

whenever ε > 0. Next, by passing to a subsequence and using (2.3.14),

we may assume that µ(Ei) < 2−i, where

Ei = {x ∈ X : |fi(x)− fi+1(x)| > 2−i}.

Thus

µ(Fj) < 2−j+1, (2.3.15)

where

Fj =

∞⋃
i=j

Ei,
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while for x ∈ X \ Fj we have |fi(x) − fk(x)| ≤ 2−i+1 for all j ≤ i ≤ k.

This implies that (fi) converges uniformly in X \Fj to a function g, and

because of (2.3.15) we have pointwise convergence almost everywhere.

It remains to show that fi → g in Lp (which in particular implies

that g = f). This follows because (fi) is a Cauchy sequence in Lp, and

because by Fatou’s lemma∫
X

|g − fi|p dµ ≤ lim inf
j→∞

∫
X

|fj − fi|p dµ

for each i. The proof of the proposition is complete.

Remark 2.3.16 (a) If, in Proposition 2.3.13, the set X is a topological

space and the sequence (fi) consists of continuous functions, then the

sets Fj defined in the proof are open. Therefore, if continuous functions

are dense in Lp(X), then every function in Lp(X) has a representative

with the following property: for every ε > 0 there is an open set O ⊂
X such that µ(O) < ε and that the restriction of the function to the

complement of O is continuous. See Corollary 3.3.51 for a result of this

kind in the main context of this book.

For Sobolev functions, in many cases, a similar statement is true,

where the underlying measure is replaced with a different (outer) mea-

sure called capacity. See Theorem 7.4.2 and Theorem 8.2.1.

(b) Recall that Egoroff’s theorem (see e.g. [83, 2.3.7], [81, Theorem 3,

p. 16]) asserts that if µ(X) <∞ and if (fi) is a sequence of real-valued

measurable functions on X converging pointwise almost everywhere to

a real-valued function f , then the sequence converges uniformly to f

outside a set of arbitrarily small prescribed measure. Proposition 2.3.13

shows that, upon passing to a subsequence, the hypothesis that the

measure of X be finite can be omitted in the presence of Lp-convergence.

Later in Theorem 3.1, we state and prove a vector-valued version of

Egoroff’s theorem.

(c) Another useful fact about integrable functions is the following

absolute continuity of integrals: IfA is a measurable subset of a Euclidean

space and f ∈ L1(A), then for every ε > 0 we can find δ > 0 such that

whenever E ⊂ A with the Lebesgue measure |E| < δ, we have
∫
E
|f | < ε.

This fact holds also in the context of complete measure spaces.

Weak∗-convergence. Let V ∗ be the dual space of a normed space V . A

sequence (v∗i ) in V ∗ is said to converge weakly∗, or weak∗, to an element
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v∗ ∈ V ∗ if

lim
i→∞
〈v∗i , v〉 = 〈v∗, v〉 (2.3.17)

for each v ∈ V . In this case, the vector v∗ is called the weak∗ limit of

the sequence (v∗i ). Note that weak∗ convergence is nothing but pointwise

convergence for sequences in V ∗. Obviously, the weak∗ limit, if exists, is

unique.

As in the case of weak convergence, if v∗i → v∗ in the norm of V ∗,

then v∗i → v∗ weakly∗ as well. The converse is not true in general. If

V is a reflexive Banach space, then the notions of weak∗ convergence

and weak convergence in V ∗ agree. In an arbitrary dual space V ∗, weak

convergence implies weak∗ convergence; this is simply because for weak∗

convergence one only tests pointwise convergence for elements in V which

is naturally a subspace of V ∗∗. In general, weak∗ convergence does not

imply weak convergence. For an example, consider the duality l1 = c∗0
mentioned in (2.2.5). The sequence (ei), where

ei = (0, . . . , 0, 1︸︷︷︸
ith

spot

, 0, . . .), i = 1, 2, . . . ,

converges weakly∗ to 0 in l1, because

〈ei, (xj)〉 = xi → 0

for each sequence (xj) in c0. On the other hand, we have that

〈ei, (1, 1, 1 . . .)〉 = 1

for all i, where (1, 1, 1, . . .) ∈ l∞ = (l1)∗.

In fact, one can show that a sequence in l1 converges weakly if and

only if it converges strongly. This is the so-called Schur’s lemma [286, p.

122]. We will not need this result here.

Remark 2.3.18 A sequence (v∗i ) in V ∗ is said to be weakly∗ convergent

if the limit

lim
i→∞
〈v∗i , v〉 (2.3.19)

exists for each v ∈ V . (Compare Remark 2.3.7.) We will not use or

need this weaker concept in this book. In any event, if V is a Banach

space, every weakly∗ convergent sequence in the above sense converges

weakly∗ to some element of V ∗. This follows from the principle of uni-

form boundedness; the expression in (2.3.19) defines a bounded linear

operator on V .
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Both weak and weak∗ convergences are, in essence, pointwise conver-

gences tested on each element of the space V ∗ or V , respectively. It helps

to know that in both cases one only needs to test the convergence on

norm dense subsets, provided the sequences are a priori known to be

bounded.

Proposition 2.3.20 Let V be a normed space. A sequence (vi) in V

converges weakly to an element v ∈ V if and only if (vi) is a bounded

sequence in V such that

lim
i→∞
〈v∗, vi〉 = 〈v∗, v〉

for each v∗ in some norm dense subset D∗ of V ∗, that is, D∗ = V ∗.

Furthermore, a sequence (v∗i ) in V ∗ converges weakly∗ to an element

v∗ ∈ V ∗ if and only if (v∗i ) is a bounded sequence in V ∗ such that

lim
i→∞
〈v∗i , v〉 = 〈v∗, v〉

for each v in some norm dense subset D of V .

Proof The necessity part is trivial in both statements. The proofs for

the sufficiency part are in turn similar, and we only demonstrate this in

the first assertion. Thus, let v∗0 ∈ V ∗, let ε > 0, and pick v∗ε ∈ D∗ such

that |v∗0 − v∗ε | < ε. Then

|〈v∗0 , vi〉 − 〈v∗0 , v〉| ≤ |〈v∗0 , vi〉 − 〈v∗ε , vi〉|+ |〈v∗ε , vi〉 − 〈v∗ε , v〉|
+ |〈v∗ε , v〉 − 〈v∗0 , v〉|

≤ ε |vi|+ |〈v∗ε , vi〉 − 〈v∗ε , v〉|+ ε |v|
≤ ε sup

i
|vi|+ |〈v∗ε , vi〉 − 〈v∗ε , v〉|+ ε |v|.

Because supi |vi| in the last line is finite by assumption, and because the

second term converges to zero as i→∞, we obtain that 〈v∗0 , vi〉 → 〈v∗0 , v〉
as required. The proposition follows.

2.4 Reflexive spaces

Recall from 2.2 that a Banach space V is called reflexive if the canonical

embedding of V into V ∗∗ is a surjection, i.e., onto. In this section, we

first prove the following important property of reflexive spaces.

Theorem 2.4.1 Every bounded sequence in a reflexive Banach space

has a weakly convergent subsequence.
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The proof of Theorem 2.4.1 is rather straightforward for separable

Banach spaces. The nonseparable case can be reduced to the separable

case by invoking some auxiliary results.

Lemma 2.4.2 Let W be a subspace of a normed space V , and let

v ∈ V \W be such that dist(v,W ) > 0. Then there exists an element

v∗ ∈ V ∗ such that 〈v∗, v〉 = 1 and 〈v∗, w〉 = 0 for each w ∈W .

Proof Let Z be the linear subspace of V spanned by W and {v}. Then

each z ∈ Z can be written uniquely as z = w + λv, where w ∈ W and

λ ∈ R. The linear map w + λv 7→ λ is bounded on Z, because

|w + λv| = |λ|
∣∣∣w
λ

+ v
∣∣∣ ≥ |λ|dist(v,W )

and because dist(v,W ) > 0. The Hahn–Banach theorem with the sub-

linear map p on V given by p(v) = C |v|, where C is the norm of our

linear map on Z, now provides a map v∗ as desired, and the lemma

follows.

Lemma 2.4.3 A normed space is separable if its dual is separable. In

particular, the dual of a reflexive and separable Banach space is separa-

ble.

Proof Let (v∗i ) be a countable dense subset of the dual space V ∗ of

a normed space V . Pick a sequence (vi) ⊂ V such that |vi| ≤ 1 and

|v∗i | ≤ 2〈v∗i , vi〉 for each i. The linear subspace of V spanned by the

sequence (vi) is clearly separable. If it is not dense in V , then there

exists a nonzero element v∗ ∈ V ∗ such that 〈v∗, vi〉 = 0 for each i

(Lemma 2.4.2). Assuming that v∗ij → v∗ in V ∗, we find that

|v∗ij | ≤ 2〈v∗ij , vij 〉 = 2〈v∗ij − v
∗, vij 〉 ≤ 2|v∗ij − v

∗| → 0.

This gives v∗ = 0, which is a contradiction, and the lemma follows.

Proposition 2.4.4 Every closed subspace of a reflexive Banach space

is reflexive.

Proof Let V = V ∗∗ be a reflexive Banach space, and let W ⊂ V be

a closed subspace. We have the natural bounded linear maps, obtained

via restriction of bounded linear maps on V to W ,

α : V ∗ →W ∗, α(v∗)(w) = 〈v∗, w〉,

and

β : W ∗∗ → V = V ∗∗, β(w∗∗)(v∗) = 〈w∗∗, α(v∗)〉.
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If there exists v0 ∈ β(W ∗∗)\W , then becauseW is closed, by Lemma 2.4.2

there exists v∗0 ∈ V ∗ such that 〈v∗0 , v0〉 6= 0 and that 〈v∗0 , w〉 = 0 for each

w ∈ W . Then α(v∗0) = 0. On the other hand, v0 = β(w∗∗0 ) for some

w∗∗0 ∈W ∗∗, so that

0 = 〈w∗∗0 , α(v∗0)〉 = β(w∗∗0 )(v∗0) = 〈v∗0 , v0〉 6= 0,

which is absurd. It follows that β(W ∗∗) ⊂W .

Next, pick an arbitrary element w∗∗ ∈ W ∗∗. By the previous para-

graph, β(w∗∗) = w ∈ W . Let w∗1 ∈ W ∗ and let v∗1 denote an extension

of w∗1 to V ∗ (which exists by the Hahn–Banach theorem). Then

〈w∗∗, w∗1〉 = 〈w∗∗, α(v∗1)〉 = β(w∗∗)(v∗1) = 〈v∗1 , w〉 = 〈w∗1 , w〉,

which implies that w∗∗ = w as required. The proposition follows.

Proof of Theorem 2.4.1 Let V be a reflexive Banach space and let (vi)

be a bounded sequence in V . Denote by V ′ the completion of the linear

span of the sequence (vi) in V . Then V ′ is separable by construction,

and reflexive by Proposition 2.4.4. Consequently, by Lemma 2.4.3, we

have that the dual of V ′ is separable.

We pick a countable norm dense subset (v∗j ) of (V ′)∗ and proceed

with a diagonalization argument. The sequence (〈v∗1 , vi〉) is bounded

and hence contains a subsequence

{〈v∗1 , vi11〉, 〈v
∗
1 , vi12〉, 〈v

∗
1 , vi13〉, . . .}

so that

lim
k→∞

〈v∗1 , vi1k〉

exists. Similarly, (〈v∗2 , vi1k〉) contains a convergent subsequence (〈v∗2 , vi2k〉).
Continuing in this manner, we find that for the diagonal sequence (vikk) =:

(vik) the limit

lim
k→∞

〈v∗j , vik〉

exists for all j. We claim that

lim
k→∞

〈v∗, vik〉 (2.4.5)

exists for each v∗ ∈ (V ′)∗. This is done analogously to the proof of

Proposition 2.3.20. Fix v∗ ∈ (V ′)∗ and let ε > 0. Then choose v∗j such
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that |v∗ − v∗j | < ε. We find that

|〈v∗, vik〉 − 〈v∗, vil〉| ≤ |〈v∗ − v∗j , vik〉|+ |〈v∗j , vik〉 − 〈v∗j , vil〉|
+ |〈v∗j , vil〉 − 〈v∗, vil〉|

≤ 2ε sup
i
|vi|+ |〈v∗j , vik〉 − 〈v∗j , vil〉|.

This shows that (〈v∗, vik〉) is a Cauchy sequence, and hence the limit in

(2.4.5) exists.

By the principle of uniform boundedness, (2.3.2), the expression (2.4.5)

determines a bounded linear functional on (V ′)∗, which is given by an

element v of V ′ by the reflexivity of V ′. Thus, vik → v weakly in V ′.

To finish the proof, we observe that (vik) converges weakly to v also

in V . Indeed, if v∗ ∈ V ∗, then obviously v∗ restricts to an element in

(V ′)∗. Thus the limit (2.4.5) exists and equals 〈v∗, v〉, as required. This

completes the proof of Theorem 2.4.1.

Remark 2.4.6 The Banach–Alaoglu theorem asserts that the closed

unit ball in the dual space V ∗ of a normed space V is compact in the

weak∗ topology [238, p. 66]. We will not require the general form of the

Banach–Alaoglu theorem, but rather its corollary for reflexive spaces,

Theorem 2.4.1. We have also omitted the definitions for weak and weak∗

topologies, as they are not needed in this book.

One should note, however, that the proof of Theorem 2.4.1 can be used

essentially verbatim to obtain the following form of the Banach–Alaoglu

theorem: Every bounded sequence in the dual space V ∗ of a separable

Banach space V contains a weakly∗ convergent subsequence.

Uniformly convex Banach spaces. We will prove later in this book

that certain Sobolev spaces are reflexive. Towards this end, we next

discuss a useful reflexivity criterion.

A Banach space V is said to be uniformly convex if for every ε > 0

there is δ > 0 such that

|v| = |w| = 1 and |v − w| > ε (2.4.7)

implies ∣∣∣∣12(v + w)

∣∣∣∣ < 1− δ (2.4.8)

for every pair of vectors v and w in V .
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Hilbert spaces are uniformly convex, as readily follows from the par-

allelogram law (2.1.27). We will show later in Proposition 2.4.19 that Lp

spaces are uniformly convex for 1 < p <∞.

Theorem 2.4.9 Uniformly convex Banach spaces are reflexive.

We require a lemma.

Lemma 2.4.10 Let v∗1 , . . . , v
∗
n be elements in the dual space V ∗ of a

Banach space V, and let t1, . . . , tn be real numbers such that∣∣∣∣ n∑
i=1

λiti

∣∣∣∣ ≤ ∣∣∣∣ n∑
i=1

λiv
∗
i

∣∣∣∣ (2.4.11)

whenever λ1, . . . , λn are real numbers, where the expression on the right

denotes the operator norm of λ1v
∗
1 + · · · + λnv

∗
n ∈ V ∗. Then for every

ε > 0 there exists a vector vε ∈ V such that |vε| < 1 + ε and that

〈v∗i , vε〉 = ti for each i = 1, . . . , n.

Proof It is easy to see that no loss of generality is entailed in assuming

that the v∗i ’s be linearly independent elements of V ∗. Indeed, if

v∗k =
∑
i 6=k

µiv
∗
i ,

then (2.4.11), applied with λi = µi for i 6= k and λk = −1, implies that∑
i6=k

µiti = tk .

In particular, if vε has been found for the vectors v∗i , i 6= k, then

〈v∗k, vε〉 =
∑
i 6=k

µi〈v∗i , vε〉 =
∑
i 6=k

µiti = tk ,

as required.

Recall that v∗ ∈ V ∗ is a bounded linear functional on V ; we write

v∗(w) for 〈v∗, w〉 to simplify the notation in the definition of the op-

erator T below. We proceed under the assumption that v∗1 , . . . , v
∗
n are

linearly independent. Then the mapping T : V → Rn defined by T (v) =

(v∗1(v), . . . , v∗n(v)) is linear, bounded, and surjective. By the open map-

ping theorem 2.2, the image under T of every ball

Bε := {v ∈ V : |v| < 1 + ε}, ε > 0,

is an open neighborhood of 0 in Rn. Moreover, as Bε is convex, T (Bε)

is convex as well.
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Assume now, towards a contradiction, that t = (t1, . . . , tn) does not

lie in T (Bε) for some ε > 0. It follows from the second corollary to

the Hahn–Banach theorem (see (2.2.9)) that there is a vector λ =

(λ1, . . . , λn) ∈ Rn = Rn∗ such that

n∑
i=1

λiti = 〈λ, t〉 ≥ sup
v∈Bε
〈λ, T (v)〉

= sup
v∈Bε

n∑
i=1

λiv
∗
i (v) = (1 + ε)

∣∣∣∣ n∑
i=1

λiv
∗
i

∣∣∣∣,
where 〈λ, t〉 denotes the standard Euclidean inner product. In the last

equality above we also used the first corollary to the Hahn–Banach the-

orem and the fact that the closed unit ball in V ∗ is contained in Bε.

The above lower bound contradicts the hypotheses, and the lemma fol-

lows.

Proof of Theorem 2.4.9 Let V be a uniformly convex Banach space and

let w∗∗ ∈ V ∗∗. We need to show that there exists v ∈ V such that

〈w∗∗, v∗〉 = 〈v∗, v〉 (2.4.12)

for every v∗ ∈ V ∗. To achieve this, we may assume that |w∗∗| = 1. Pick

a sequence (v∗i ) from V ∗ such that |v∗i | = 1 and that 〈w∗∗, v∗i 〉 ≥ 1− i−1

for i = 1, 2, . . . . Fix a positive integer n. Then∣∣∣∣ n∑
i=1

λi〈w∗∗, v∗i 〉
∣∣∣∣ =

∣∣∣∣〈w∗∗, n∑
i=1

λiv
∗
i 〉
∣∣∣∣ ≤ ∣∣∣∣ n∑

i=1

λiv
∗
i

∣∣∣∣
whenever λ1, . . . , λn are real numbers. Lemma 2.4.10 now implies that

there is, for each n ≥ 1, a vector vn ∈ V such that |vn| < 1 + n−1 and

that

〈w∗∗, v∗i 〉 = 〈v∗i , vn〉 (2.4.13)

for each i = 1, . . . , n. It follows that

1− n−1 ≤ 〈w∗∗, v∗n〉 = 〈v∗n, vn〉 ≤ |vn| ≤ 1 + n−1 ,

and hence that limn→∞ |vn| = 1. We claim that the sequence (vn) con-

verges in the norm.

Suppose, towards a contradiction, that there exists ε > 0 together

with arbitrarily large indices n,m such that |vn − vm| > ε. Recalling

that limn→∞ |vn| = 1, we conclude with ||vn|−1vn − |vm|−1vm| > ε
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for suitable sufficiently large n,m. Consequently, the uniform convexity

conditions (2.4.7) and (2.4.8) give

|vn + vm| < 2(1− δ) (2.4.14)

for some δ > 0, for arbitrarily large indices n,m. But we also have that

〈w∗∗, v∗i 〉 = 〈v∗i , vn〉 → 1

as i, n→∞, i ≤ n, which in combination with

〈v∗i , vn + vm〉 ≤ |vn + vm|

contradicts (2.4.14). It follows that the sequence (vn) is Cauchy, and,

since V is Banach, it converges in the norm to an element v ∈ V . We

claim that this vector v satisfies (2.4.12).

To accomplish the claim, observe first that (2.4.13) gives

〈w∗∗, v∗i 〉 = 〈v∗i , v〉

for each i. Then pick an arbitrary element v∗0 ∈ V ∗ with |v∗0 | = 1,

and apply the preceding argument to the sequence v∗0 , v
∗
1 , v
∗
2 , . . . . We

similarly get an element v′ ∈ V such that |v′| = 1 and that

〈w∗∗, v∗i 〉 = 〈v∗i , v′〉 (2.4.15)

for each i = 0, 1, 2, . . . . If v′ 6= v, then the uniform convexity guarantees

that there exists δ > 0 such that

|v + v′| < 2(1− δ).

On the other hand, we have, for i ≥ 1, that

2− 2i−1 ≤ 〈w∗∗, v∗i + v∗i 〉 = 〈v∗i , v〉+ 〈v∗i , v′〉 ≤ |v + v′|

which is a contradiction as i → ∞. Thus v = v′. Because v∗0 was an

arbitrary element of V ∗ with unit norm, we conclude from this and from

(2.4.15) that (2.4.12) holds. The proof of the theorem is complete.

We next record the following corollary to the above discussion.

Corollary 2.4.16 Every closed and convex set in a reflexive Banach

space contains an element of smallest norm; if the Banach space is uni-

formly convex, then there is only one such element.

Proof It follows from Theorem 2.4.1 and Mazur’s lemma 2.3 that every

closed and convex subset of a reflexive space has an element of smallest

norm. By uniform convexity, such an element is obviously unique.
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The proof for Theorem 2.4.9 essentially contained an argument for

the following proposition. We state and prove this important proposition

although it is not used later in this book.

Proposition 2.4.17 Let (vi) be a sequence in a uniformly convex Ba-

nach space, converging weakly to an element v ∈ V . If also limi→∞ |vi| =
|v|, then vi → v in the norm.

Proof We may clearly assume that v 6= 0, and hence that vi 6= 0 for

each i. Write wi = vi
|vi| and w = v

|v| . Then |wi| = |w| = 1 and wi → w

weakly. To prove the lemma, it suffices to show that |wi − w| → 0.

Assuming the opposite, and using uniform convexity, we find that

there exist δ > 0 and infinitely many indices i such that

|wi + w| < 2(1− δ) . (2.4.18)

By the Hahn–Banach theorem, we can pick an element v∗ ∈ V ∗ with

unit norm such that 〈v∗, w〉 = 1. Then

2 = 2 〈v∗, w〉 = lim
i→∞
〈v∗, wi + w〉 ≤ lim inf

i→∞
|wi + w| ,

which contradicts (2.4.18). The proposition follows.

We know that Lp-spaces for 1 < p < ∞ are reflexive. The fact that

they are also uniformly convex comes in handy sometimes. It is easy to

see that the spaces L1 and L∞ are not uniformly convex (except under

some trivial circumstances).

Proposition 2.4.19 Let (X,µ) be a measure space and let 1 < p <∞.

Then Lp(X) is uniformly convex.

Proof Let ε > 0. It suffices to show that there exists δ > 0 such that

|| 12 (f + g)||pp > 1− δ (2.4.20)

implies

|| 12 (f − g)||pp ≤ 2εp

whenever f, g ∈ Lp(X) with ||f ||p = ||g||p = 1.

To this end, we first record the inequality∫
E

| 12 (f − g)|pdµ ≤ εp
∫
X

| 12 (f + g)|pdµ ≤ εp,

where E = {|f−g| ≤ ε|f+g|}. The proof will be completed by exhibiting
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δ > 0 such that ∫
X\E
| 12 (f − g)|pdµ ≤ εp (2.4.21)

holds in the presence of (2.4.20).

Indeed, it follows from the strict convexity of the function s 7→ |s|p
that

λ 7→ 1
2 (|λ+ 1|p + |λ− 1|p)− |λ|p

is continuous and positive on R. Hence there is t, depending on ε and p,

such that

1
2 (|λ+ 1|p + |λ− 1|p)− |λ|p ≥ t (2.4.22)

whenever λ ∈ [−1/ε, 1/ε]. Applying inequality (2.4.22) for the choice

λ =
f(x) + g(x)

f(x)− g(x)
,

when x /∈ E, we conclude that

1

2

(
|f |p + |g|p

)
≥ t| 12 (f − g)|p + | 12 (f + g)|p

holds on X \E. By integrating the preceding inequality over X \E, and

the inequality

1

2

(
|f |p + |g|p

)
≥ | 12 (f + g)|p

over E, we obtain

1 =

∫
X

1
2

(
|f |p + |g|p

)
dµ ≥

∫
X

| 12 (f + g)|p dµ+

∫
X\E

t| 12 (f − g)|p dµ.

Therefore, by choosing δ = tεp we have that (2.4.21) holds, and the

proposition follows.

Two norms | · | and | · |′ on a vector space V are said to be equivalent

if there exists a constant C ≥ 1 such that

C−1|v| ≤ |v|′ ≤ C|v| (2.4.23)

for each vector v ∈ V .

The following proposition follows straightforwardly from the defini-

tions.

Proposition 2.4.24 Let | · | and | · |′ be equivalent complete norms on

a vector space V . If (V, | · |) is reflexive, then so is (V, | · |′).
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Proposition 2.4.24 implies that reflexive spaces need not be uniformly

convex. Indeed, Rn equipped with either of the norms | · |1 or | · |∞ is

reflexive, but obviously not uniformly convex. It is much harder to give

examples of reflexive spaces that do not possess equivalent uniformly

convex norms at all; see Notes to this chapter.

We next show that in finite dimensional spaces, every norm is close

to an inner product norm. This fact will be used later in connection

with Cheeger’s differentiation theorem for Lipschitz functions on metric

measure spaces. See Theorem 13.5.7.

Theorem 2.4.25 Let (V, || · ||) be an n-dimensional normed vector

space. Then there exists an inner product 〈·, ·〉 on V so that

||v|| ≤ |v| ≤
√
n||v|| (2.4.26)

for all v ∈ V , where |v| = 〈v, v〉1/2 denotes the norm induced by the

inner product.

Proof As a vector space, we identify V with the Euclidean space Rn
via the inverse of the linear map obtained by setting T (ei) = eVi , where

eVi , i = 1, · · · , n are basis vectors for V and ei are the canonical basis

vectors of Rn. Then, clearly, T is continuous and hence B0 = T−1({v ∈
V : ||v|| ≤ 1}) is a closed and convex set, invariant under the symme-

try v 7→ −v. Let E be a Euclidean ellipsoid centered at the origin of

maximal volume (Lebesgue measure) inscribed in B0. We see that such

an ellipsoid exists by maximizing the determinant function among all

linear transformations that map the Euclidean unit ball into B0. (One

can further show that such an ellipsoid is unique [23, Theorem V.2.2,

p. 207], but this fact is not trivial and unnecessary for the proof here.)

Every ellipsoid in Rn induces an inner product upon declaring the ellip-

soid to be the closed unit ball in the associated norm with the principal

axes orthogonal. Consequently, to establish (2.4.26), it suffices to show

that B0 ⊂
√
nE. Moreover, it is no loss of generality to assume that

E = {v ∈ Rn : |v| ≤ 1} is the Euclidean unit ball corresponding to the

Euclidean norm | · | as in (2.1.5).

The preceding understood, we argue by contradiction and assume that

B0 contains a point v with |v| >
√
n. Since B0 is convex, it contains the

convex hull C of E ∪{±v}. We claim that C contains an ellipsoid whose

volume exceeds that of E, which is the desired contradiction. Now the
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volume of the ellipsoid

Ea,b = {(x1, . . . , xn) : x2
1/a

2 +

n∑
i=2

x2
i /b

2 ≤ 1}, a, b > 0,

is a · bn−1 times the volume of E, and so it suffices to find a and b such

that Ea,b is contained in C and that a ·bn−1 > 1. To this end, we assume

without loss of generality that v = (r, 0, . . . , 0) for some r >
√
n and

claim that

a =
r√
n
, b =

√
1− 1/n

1− 1/r2

will do.

Indeed, a direct computation reveals that a · bn−1 > 1. Next, to show

that Ea,b ⊂ C, we can work in two dimensions, as both Ea,b and C

are radially symmetric with respect to the variables x2, . . . , xn. It is

appropriate to switch to complex notation, so that

Ea,b = {z = x+ iy ∈ C : x2/a2 + y2/b2 ≤ 1}

and C is the convex hull of D∪{±r}, where D = {z ∈ C : |z| ≤ 1} is the

closed unit disk. Note that C = D ∪ T ∪ (−T ), where T is the triangle

with vertices r, eiθ and e−iθ with θ = arccos(1/r). Next, let

Σ = {z = x+ iy ∈ C : |y| ≤ sin θ =
√

1− 1/r2}

be a horizontal strip and let

S± = {z ∈ C : arg(r − eiθ) < arg(r ∓ z) ≤ arg(r − e−iθ)}

be sectors based at vertices ±r. Then

C ∩ Σ = S+ ∩ S− ∩ Σ and C \ Σ = D \ Σ.

The proof now reduces to the following two claims: (i) Ea,b ⊂ S+ and

Ea,b ⊂ S−, and (ii) Ea,b \ Σ ⊂ D, for (i) shows that Ea,b ∩ Σ ⊂ C ∩ Σ

and (ii) shows that Ea,b \ Σ ⊂ C \ Σ.

To prove (i), we note that z = x+ iy ∈ S+ if and only if

|y| ≤ r − x√
r2 − 1

. (2.4.27)

If z ∈ Ea,b, then the Cauchy–Schwarz inequality and the definitions of

a and b give

x

r
+
|y|
√
r2 − 1

r
≤
(
x2

a2
+
y2

b2

)1/2(
a2

r2
+
b2(r2 − 1)

r2

)1/2

≤ 1. (2.4.28)
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Solving for |y| in (2.4.28) gives (2.4.27). The proof that Ea,b ⊂ S− is

similar.

Finally, we prove (ii). If z = x+ iy ∈ Ea,b \Σ, then x2/a2 + y2/b2 ≤ 1

and |y| >
√

1− 1/r2. Hence the choices of a, b, and r, yield

x2 +y2 =

(
x2 +

a2

b2
y2

)
−
(
a2

b2
− 1

)
y2 ≤ a2−

(
a2

b2
− 1

)(
1− 1

r2

)
≤ 1.

This completes the proof of Theorem 2.4.25.

2.5 Notes to Chapter 2

The material in Chapter 2 is standard and can be found in most text-

books of real and functional analysis. In particular, the open map-

ping theorem, the Hahn–Banach theorem, and the principle of uniform

boundedness can be found in each of the following sources: [77], [86],

[135], [206], [237], [238], [242], [286]. A good source for more advanced

facts is [285]. These references also contain ample historical comments.

A good discussion about the dual space of L∞(X,µ), as well as the

failure of L1(X,µ)∗ = L∞(X,µ) in general, can be found in [135, V.20].

See also [86, p. 183]. For the duality (2.2.6), see, e.g., [86, p. 216], [237,

p. 138]. For the fact that the parallelogram law (2.1.27) characterizes

inner product spaces, see [286, p. 39].

As mentioned in the text, Theorem 2.4.1 is customarily derived from

the general Banach–Alaoglu theorem. The approach that we have taken

here can be found, e.g., in [77], [242]. For a nice, elementary discussion on

reflexive spaces, see [242, Chapter 8]. The uniform convexity of Lp-spaces

for 1 < p <∞ is usually proved by using the Clarkson inequalities [61],

[135, pp. 225ff]. We learned the short proof of Proposition 2.4.19 from

Jan Malý. A similar proof appears in [206] and is based on the proof by

McShane in [205]. See [77, p. 473] and [206, Chapter 5] for more remarks

about uniform convexity. The first example of a reflexive space that does

not admit a comparable uniformly convex norm was found by Day [70].

Theorem 2.4.25 is due to John [142]; the proof here is from [208]. See

[23, Chapter V], [26, p. 299, Appendices A and G] for more information

about convexity and norms.
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In this chapter, we review some topics in the classical Lebesgue the-

ory for functions valued in a Banach space. We study basic properties

of measurable vector-valued functions as defined by Bochner and Pet-

tis. The Lp-spaces of Banach space-valued functions are introduced and

studied. Along the way, we recall many fundamental notions of measure

theory. It is assumed that the reader is familiar with the basic Lebesgue

theory for real-valued functions. (Knowledgeable readers who are only

interested in the real-valued theory may directly proceed to Section 3.3.)

We also define what is meant by a metric measure space in this book

and discuss at some length the relationship between Borel regular and

Radon measures in the context of metric measure spaces. Finally, we

discuss covering theorems, Lebesgue differentiation theory, and maxi-

mal functions.

3.1 Measurability for Banach space-valued functions

In the first two sections of this chapter, we assume that (X,µ) is a

complete and σ-finite measure space, and that V is a Banach space.

At this juncture, by a measure on a set X we mean a countably ad-

ditive set function µ that is defined in some σ-algebraM of measurable

subsets of X such that ∅ ∈ M, and takes values in [0,∞] with µ(∅) = 0.

Later, in Section 3.3, we give this term a wider meaning. A measure on X

is σ-finite if X admits a partition into countably many measurable sets

of finite measure, and it is complete if every subset of a set of measure

zero is measurable. Every measure can be completed by enlarging, if nec-

essary, the σ-algebra of measurable sets. A function f : X → [−∞,∞]

is measurable if f−1([−∞, a)) is a measurable set for every a ∈ R.

A function f : X → V is called simple if it has finite range and if

the preimage of every point is a measurable set. Thus, f is simple if

and only if there exist vectors v1, . . . , vn in V and a partition of X into

measurable sets E1, . . . , En such that

f =

n∑
i=1

viχEi .

A function f : X → V is defined to be measurable if it is the pointwise

almost everywhere limit of a sequence of simple functions. It is clear that

the set of measurable V -valued functions on X forms a vector space.

Remark 3.1.1 It is a standard fact in measure theory that the two
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notions of measurability coincide when V = R, also see the Pettis mea-

surability theorem 3.1 below. Furthermore, given a simple function f,

the function |f | : X → R defined by setting |f |(x) := |f(x)| is clearly

measurable. Consequently, this is also the case whenever f : X → V

is measurable. We also record here the following elementary fact: for

every nonnegative measurable function f : X → [0,∞] there exists

an increasing sequence (fi) of nonnegative simple functions such that

f(x) = limi→∞ fi(x) for every x ∈ X. This assertion is routine to verify

directly from the definitions.

Next, we say that f : X → V is weakly measurable if

〈v∗, f〉 : X → R

given by the map x 7→ 〈v∗, f(x)〉 is measurable for each v∗ in the dual

space V ∗. In the literature, weakly measurable functions are sometimes

called scalarly measurable (see, e.g. [74]). The ensuing Pettis measurabil-

ity theorem, a basic result in the subject, asserts that weakly measurable

and essentially separably valued functions are measurable.

A function f : X → V is said to be essentially separably valued if there

exists a set N ⊂ X of measure zero such that f(X \ N) is a separable

subset of V . It is immediate from the definition of measurable functions

that a measurable function is essentially separably valued.

Pettis measurability theorem. The following are equivalent for a

function f : X → V .

(i). f is measurable;

(ii). f is essentially separably valued and f−1(U) is measurable for each

open set U in V ;

(iii). f is essentially separably valued and weakly measurable.

For separable targets we have the following neat corollary.

Corollary 3.1.2 Let V be separable. The following are equivalent for

a function f : X → V .

(i). f is measurable;

(ii). f−1(U) is measurable for each open set U in V ;

(iii). f is weakly measurable.

Remark 3.1.3 (a) In practice, the equivalence between (i) and (ii) in

Corollary 3.1.2 can be assumed to hold always. Namely, one can show

that it holds provided V has a dense subset whose cardinality is an
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Ulam number. Every accessible cardinal is an Ulam number, and the

statement that all cardinal numbers be accessible is independent from

the usual axioms of set theory. We refer to [83, 2.1.6 and 2.3.6] for the

definitions of both Ulam numbers and accessible cardinals, and for the

equivalence between (i) and (ii) under the aforesaid condition.

(b) The function f : [0, 1] → L∞([0, 1]), given by f(t) = χ[0,t], is

weakly measurable, but not essentially separably valued. This follows

easily from the characterization of the dual of L∞([0, 1]) as the space of

finitely additive signed measures that are absolutely continuous with re-

spect to Lebesgue measure [135, V.20], [77, IV 8.16]. Hence, by the Pettis

measurability theorem 3.1, f is not measurable. Therefore, one cannot

drop the assumption that V be separable in the equivalence between (i)

and (iii) in Corollary 3.1.2.

For the proof of Pettis measurability theorem 3.1, we require the fol-

lowing Egoroff’s theorem for Banach space-valued functions, cf. Remark

2.3.16 (b).

Egoroff’s theorem. Assume that µ(X) <∞. Let f, f1, f2, . . . be mea-

surable functions from X to V such that

lim
i→∞

fi(x) = f(x) (3.1.4)

for almost every x ∈ X. Then for every ε > 0 there exists a measurable

set A ⊂ X such that µ(A) < ε and that fi → f uniformly in X \A.

Proof Let E ⊂ X be the collection of all x ∈ X at which (3.1.4) fails.

Fix ε > 0. Define

Ejk :=

∞⋃
i=j

{x ∈ X : |fi(x)− f(x)| > 2−k} ,

where j, k = 1, 2, . . . . The sets Ejk are all measurable by Remark 3.1.1.

For each fixed k ≥ 1, we have that E1k ⊃ E2k ⊃ · · · and that

∞⋂
j=1

Ejk \ E = ∅ .

In particular, because µ(X) < ∞, there exists an integer jk such that

µ(Ejkk) < ε 2−k. By letting A :=
⋃∞
k=1Ejkk, we have that µ(A) < ε. On

the other hand, if k ≥ 1 and x ∈ X\A, we have that |fi(x)−f(x)| ≤ 2−k

whenever i ≥ jk. The proposition follows.
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In fact, Theorem 3.1 can be upgraded so as not to assume a priori

that f be measurable.

Corollary 3.1.5 If fi, i = 1, 2, . . . , is a sequence of measurable func-

tions from X to V such that fj → f : X → V almost everywhere in X,

then f is measurable on X.

Proof Recall that µ is σ-finite; therefore there is a countable collection

of measurable sets Xk with µ(Xk) < ∞ and X =
⋃
kXk. Without loss

of generality we may assume that these sets are pairwise disjoint. Fix

one of the sets Xk.

By the definition of measurability, for each i we have a sequence (hi,j)

of simple functions on Xk that converges pointwise almost everywhere

on Xk to fi. An application of Egoroff’s theorem 3.1 (with fi playing

the role of f and hi,j playing the role of fj in that theorem) gives a

measurable set Dk,i with µ(Dk,i) < 2−i−1−k such that (hi,j) converges

to fi uniformly in Xk \ Dk,i. Now for each i we can find ji such that

|fi − hi,ji | < 2−i on Xk \ Dk,i. For m = 1, 2, . . . and points x ∈ Xk \⋃∞
i=mDk,i,

|f(x)−hi,ji(x)| ≤ |f(x)−fi(x)|+ |fi(x)−hi,ji(x)| < 2−i+ |f(x)−fi(x)|

whenever i > m. Since limi |f(x)− fi(x)| = 0 when x ∈ Xk \
⋃∞
i=mDk,i,

we can conclude that the subsequence (hi,ji) of simple functions con-

verges to f on Xk \
⋃∞
i=mDk,i. Because the measure of

⋃∞
i=mDk,i is at

most 21−m, it follows that (hi,ji) converges pointwise almost everywhere

in Xk to f. To simplify notation, call this subsequence (hk,j). We may

clearly assume that hk,j(x) = 0 for all x ∈ X \Xk.

Because f is the pointwise almost everywhere limit of the sequence

(hk,j) of simple functions on Xk, for each k, it follows that this also

holds for f , which is approximated pointwise almost everywhere by the

sequence of simple functions gm :=
∑m
k=1 hk,m on X.

Remark 3.1.6 We deduce the following from the proof of the pre-

ceding corollary: Given measurable, pairwise disjoint sets Xk of finite

measure, with X =
⋃
kXk, a function f : X → V is measurable if and

only if f is measurable on each Xk.

Proof of Theorem 3.1 First we prove the implication (i) ⇒ (ii). Let

fi =

N(i)∑
k=1

vikχEik
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be a sequence of simple functions such that fi(x)→ f(x) for all x in the

complement of a set N ⊂ X of measure zero. We assume that the sets

Eik form a partition of X for each fixed i. Then {vik} is a countable

set whose closure contains f(X \ N). This implies that f is essentially

separably valued. Next, let U ⊂ V be open. We observe that

N ∪ f−1(U) = N ∪
∞⋃
n=1

∞⋃
j=1

∞⋂
i=j

f−1
i (Un) ,

where Un := {v ∈ U : dist(v, V \ U) > 1/n}. Because f−1
i (Un) ⊂ X

is measurable, we have that N ∪ f−1(U) is measurable. Therefore, by

completeness of µ,

f−1(U) = (N ∪ f−1(U)) \ (N ∩ (X \ f−1(U)))

is measurable.

The implication (ii) ⇒ (iii) is clear because the elements in V ∗ are

continuous.

To prove the implication (iii) ⇒ (i), assume that f is weakly measur-

able and that f(X \ N) is separable for some set N ⊂ X of measure

zero. Let D = {v1, v2, . . . } be a countable dense set of distinct points in

f(X \N). Then the difference set

D −D := {vi − vj : vi, vj ∈ D}

is a countable dense set in the difference set

f(X \N)− f(X \N) := {f(x)− f(y) : x, y ∈ X \N} .

By the Hahn–Banach theorem, we have elements v∗ij ∈ V ∗ such that

|v∗ij | = 1 and that 〈v∗ij , vi−vj〉 = |vi−vj | for each pair of distinct indices

i, j. It follows that, for each vj ∈ D, the function

x 7→ |f(x)− vj | = sup
i
|〈v∗ij , f(x)− vj〉|

is a measurable (real-valued) function on X by hypotheses. Fix ε > 0,

and put

A1 := {x ∈ X : |f(x)− v1| < ε} ,

and

Aj := {x ∈ X : |f(x)−vk| ≥ ε for all k = 1, . . . , j − 1 and |f(x)−vj | < ε} ,
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that is,

Aj = {x ∈ X : |f(x)− vj | < ε} \
j−1⋃
i=1

Ai

for j ≥ 2. Then (Aj) is a pairwise disjoint collection of measurable sets

in X, and

X \N ⊂
∞⋃
j=1

Aj .

In particular, the countably valued measurable function

g :=

∞∑
j=1

vjχAj (3.1.7)

satisfies |f(x) − g(x)| < ε for all x ∈ X \ N . It follows that f |X\N can

be approximated uniformly by (countably valued) measurable functions.

An application of Corollary 3.1.5 completes the proof.

The proof for the Pettis measurability theorem can be used to obtain

additional useful consequences. We record these in a separate proposition

as follows.

Proposition 3.1.8 A function f : X → V is measurable if and only

if there is a set N ⊂ X of measure zero such that the restriction f |X\N
can be approximated uniformly by countably valued measurable functions

X → V . Moreover, ϕ ◦ f : X → W is measurable whenever f : X → V

is measurable, W is a Banach space, and ϕ : V →W is continuous.

Proof The first assertion is explicitly contained in the proof of the

implication (iii) ⇒ (i) in Theorem 3.1.

The second assertion is clear by Theorem 3.1, once we observe that

ϕ◦f : X →W is essentially separably valued under the given hypotheses

and satisfies the condition (ii) of Theorem 3.1.

The proposition follows.

We return to the approximation of measurable functions in the context

of metric measure spaces later in this chapter. In that case, something

more can be said. See in particular Section 3.3.
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3.2 Integrable functions and spaces Lp(X : V )

We continue assuming in this section that X = (X,µ) is a complete,

σ-finite measure space, and V is a Banach space.

Bochner integrability. Suppose that

f : X → V , f =

n∑
i=1

viχEi ,

is a simple function, with the sets Ei measurable and pairwise disjoint,

and suppose that vi = 0 for each i with µ(Ei) = ∞. We define the

integral of f over X to be∫
X

f dµ :=

n∑
i=1

µ(Ei)vi.

Then
∫
X
f dµ is well-defined as an element of V , |f | is measurable, and

we observe that∣∣∣∣∫
X

f dµ

∣∣∣∣ ≤ ∫
X

|f | dµ =

n∑
i=1

µ(Ei)|vi| <∞. (3.2.1)

We call such a simple function f integrable.

Integrals for general measurable functions can now be defined in anal-

ogy with the scalar-valued case. A measurable function f : X → V is

said to be (Bochner) integrable if there exists a sequence of integrable

simple functions (fj) such that

lim
j→∞

∫
X

|f − fj | dµ = 0;

notice that the real-valued function x 7→ |f(x)− fj(x)| is measurable by

Remark 3.1.1. If f is integrable, then the (Bochner) integral of f over X

is defined to be ∫
X

f dµ = lim
j→∞

∫
X

fj dµ.

It is straightforward to verify using (3.2.1) that this limit exists as an

element of V , independent of the choice of the sequence (fj).

If E ⊂ X is measurable and f : E → V is a function, we say that f is

integrable over E if the function fχE : X → V is integrable, where (with

slight abuse of notation) the function fχE is defined by fχE(x) := f(x)

for x ∈ E and fχE(x) := 0 for x /∈ E. Then we set∫
E

f dµ :=

∫
X

fχE dµ .
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We could also consider E, together with the restriction of the measure

of X to E, to be a measure space in its own right; the corresponding

Bochner integral
∫
E
f dµ is consistent with the above construction of∫

E
f dµ. By using the preceding definitions and (3.2.1), we find by a

simple limit argument that∣∣∣∣∫
E

f dµ

∣∣∣∣ ≤ ∫
E

|f | dµ (3.2.2)

for each measurable set E ⊂ X and for each function f that is integrable

over E. In particular, if f is integrable, then

lim
µ(E)→0

∫
E

f dµ = 0 (3.2.3)

by standard Lebesgue theory.

The following observation can be used in applications to reduce to the

case when X has finite measure.

Proposition 3.2.4 Assume that X =
⋃∞
k=1Xk with Xk, k = 1, 2, . . . ,

pairwise disjoint measurable sets, that f : X → V is integrable over each

Xk, and that

∞∑
k=1

∫
Xk

|f | dµ <∞ . (3.2.5)

Then f is integrable over X and

∫
X

f dµ =

∞∑
k=1

∫
Xk

f dµ. (3.2.6)

Proof By Remark 3.1.6, we see that f is measurable on X. Let ε > 0

and choose n such that

∞∑
k=n+1

∫
Xk

|f | dµ < ε.

For each k = 1, . . . , n, let gk be a simple function on Xk with∫
Xk

|f − gk| dµ < 2−kε.
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Then g =
∑n
k=1 gkχXk is a simple function and∫

X

|f − g| dµ =

∞∑
k=1

∫
Xk

|f − g| dµ

=

n∑
k=1

∫
Xk

|f − gk| dµ+

∞∑
k=n+1

∫
Xk

|f | dµ

<

n∑
k=1

2−kε+ ε < 2ε.

Thus f is integrable over X. To see why (3.2.6) holds, we easily deduce

from the definitions, from (3.2.2), and from (3.2.5) that

lim
n→∞

∣∣∣∣∣
∫
X

f dµ−
n∑
k=1

∫
Xk

f dµ

∣∣∣∣∣ ≤ lim
n→∞

∞∑
k=n+1

∫
Xk

|f | dµ = 0 .

The proposition follows.

Proposition 3.2.7 Bochner integrable functions are precisely those

measurable functions f whose norm |f | is integrable.

Proof If f is Bochner integrable and (fj) is an approximating sequence

of simple functions, then∫
X

|f | dµ ≤
∫
X

|f − fj | dµ+

∫
X

|fj | dµ <∞

for all j.

To prove the converse, suppose f is measurable with
∫
X
|f | dµ < ∞.

By Proposition 3.2.4, it is no loss of generality to assume that µ(X) <∞.

Fix ε > 0. By Proposition 3.1.8 we may choose a countably valued

measurable function g : X → V such that |f(x) − g(x)| < ε for every

x ∈ X \N , where N ⊂ X has measure zero. Then∫
X

|g| dµ ≤
∫
X

|f | dµ+ ε µ(X) <∞ .

Hence we can choose δ > 0 such that
∫
F
|g| dµ < ε whenever F ⊂ X

is measurable and satisfies µ(F ) < δ. Next, partition X measurably,

X = E ∪ F , so that g1 := gχE has finite range and µ(F ) < δ. Then∫
X

|f − g1| dµ ≤
∫
X

|f − g| dµ+

∫
X

|g − g1| dµ

≤
∫
X

|f − g| dµ+

∫
F

|g| dµ ≤ ε µ(X) + ε .
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This shows that f is integrable, and the proof of the proposition is

complete.

Remark 3.2.8 If T : V → W is a bounded linear operator between

Banach spaces and if f : X → V is integrable, then T ◦ f : X → W is

also integrable and

T

(∫
X

f dµ

)
=

∫
X

T ◦ f dµ. (3.2.9)

This follows directly from the definitions for simple functions and via

approximation for more general functions. In particular, we have that〈
v∗,

∫
X

f dµ

〉
=

∫
X

〈v∗, f〉 dµ (3.2.10)

for each v∗ ∈ V ∗ and integrable f .

Mean value. Let E ⊂ X be measurable with finite and positive mea-

sure, and let f : E → V be integrable over E. The mean value of f over

E is the vector

fE :=

∫
E

f dµ :=
1

µ(E)

∫
E

f dµ . (3.2.11)

It is easy to see that the mean value fE is always in the closure of the

convex hull of f(E) in V . Indeed, the closure of the convex hull of a set

A in V can be characterized as the set of those vectors w ∈ V such that

inf
v∈A
〈v∗, v〉 ≤ 〈v∗, w〉 ≤ sup

v∈A
〈v∗, v〉 (3.2.12)

for all v∗ ∈ V ∗. The preceding claim follows from this characterization

and from (3.2.10).

By an argument similar to that for (3.2.9), one concludes that if T :

V →W is a bounded linear map, then

T

(∫
E

f dµ

)
=

∫
E

T ◦ f dµ.

Lp-spaces of vector-valued functions. The classes of V -valued p-

integrable functions are defined in the usual manner. For 1 ≤ p < ∞,

we denote by

Lp(X : V ) = Lp(X,µ : V )

the vector space of all equivalence classes of measurable functions f :

X → V for which
∫
X
|f |p dµ <∞. Two functions are declared equivalent



3.2 Integrable functions and spaces Lp(X : V ) 49

if they agree almost everywhere. As in the case of real-valued functions,

we speak about functions in Lp, rather than equivalence classes, and

make no notational distinction. This is done with the understanding that

such functions are well-defined only up to sets of measure zero. Typically,

members in various Lp- spaces are called p-integrable functions in this

book.

Endowed with the norm

||f ||p := ||f ||Lp(X:V ) :=

(∫
X

|f |p dµ
)1/p

we have that Lp(X : V ) is a Banach space. Using the characterization

of complete norms in 2.1, the proof for this assertion is identical with

the proof for the real-valued case [86, p. 175].

By Proposition 3.2.7, L1(X : V ) coincides with the class of Bochner in-

tegrable functions. We have a similar characterization in terms of simple

functions for p-integrable V -valued functions. The following proposition

is proved just as Proposition 3.2.7, with some obvious modifications.

Proposition 3.2.13 Let 1 ≤ p <∞. A measurable function f : X →
V belongs to Lp(X : V ) if and only if there exists a sequence (fk) of

p-integrable simple functions, fk : X → V , such that

lim
k→∞

∫
X

|f − fk|p dµ = 0 . (3.2.14)

For p = ∞ we denote by L∞(X : V ) the vector space of (equiva-

lence classes of) essentially bounded measurable functions f : X → V ,

endowed with the norm

||f ||∞ = ||f ||L∞(X:V ) := ess supx∈X |f(x)|
= sup{λ ∈ R : µ({x ∈ X : |f(x)| > λ}) 6= 0}.

Then L∞(X : V ) is a Banach space as well.

If V = R, we simply write Lp(X) = Lp(X : R) in accordance with

(2.1.11).

We say that a measurable function f : X → V is locally (Bochner) in-

tegrable if every point in X has a neighborhood on which f is integrable.

Also, f is locally p-integrable if |f |p is locally integrable as a real-valued

function. The self-explanatory notation Lploc(X : V ) and Lploc(X) is used.

The following analog of Proposition 2.3.13 holds for Banach space-

valued functions; the proof from Proposition 2.3.13 applies verbatim.

Proposition 3.2.15 Let 1 ≤ p ≤ ∞, and let (fi) ⊂ Lp(X : V ) be a
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sequence converging to f in Lp(X : V ). Then (fi) has a subsequence (fij )

with the following property: for every ε > 0 there exists a set Eε ⊂ X

such that µ(Eε) < ε and that fij → f uniformly in X \Eε. In particular,

(fij ) converges to f pointwise almost everywhere in X.

Remark 3.2.16 Analogous to Remark 2.3.16 (a), we observe the fol-

lowing by examining the argument of the proof of Proposition 2.3.13

(applied for Proposition 3.2.15): if X is a topological space and the se-

quence (fi) consists of continuous functions, then the sets Fj defined in

the proof are open. In particular, if continuous functions are dense in

Lp(X : V ), then every function in Lp(X : V ) has a representative with

the following property: for every ε > 0 there is an open set O ⊂ X such

that µ(O) < ε and that the restriction of the function to the comple-

ment of O is continuous. See Proposition 3.3.49 and Corollary 3.3.51 for

a statement in metric measure spaces.

Duality for spaces Lp(X : V ). It is not difficult to see that Lq(X : V ∗)

embeds isometrically in Lp(X : V )∗, where 1 ≤ p < ∞ and q = p
p−1 .

Indeed, if g ∈ Lq(X : V ∗), then the linear operator

f 7→
∫
X

〈g(x), f(x)〉 dµ(x)

defines a bounded operator on Lp(X : V ) with norm equal to ||g||q.
Moreover, if p = 2 and H is a Hilbert space, then

L2(X : H)∗ = L2(X : H∗) = L2(X : H).

However, when p 6= 2 the Banach spaces Lq(X : V ∗) and Lp(X : V )∗

need not be isometrically equivalent, although this is true for a large class

of Banach spaces; it suffices to have V reflexive, for example. For further

details and examples, we refer the reader to [75, Chapter 4, Section 1].

We will mostly not need the dual spaces Lp(X : V )∗ in this book

outside the familiar case V = R.

Pettis integral. In this book, we will work exclusively with measur-

able functions and the Bochner integral. Before moving on, however, we

should point out that there exist alternate integration theories where it

is possible to assign values to the integrals of weakly measurable but

not necessarily measurable functions. One example of this is the Pettis

integral, which we describe briefly. The results of this paragraph will not

be needed or used elsewhere in this book.
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We call a function f : X → V weakly integrable if it is weakly measur-

able and 〈v∗, f〉 ∈ L1(X) for each v∗ ∈ V ∗. Given a weakly integrable

function f and a measurable set E ⊂ X, consider the linear operator

v∗ 7→ 〈v∗, χEf〉 = χE〈v∗, f〉 (3.2.17)

from V ∗ to L1(X). It is easy to see (using Proposition 2.3.13) that if

v∗i → v∗ in V ∗ and if 〈v∗i , χEf〉 → g in L1(X), then g = 〈v∗, χEf〉. The

closed graph theorem [286, p. 79] or [238, p. 51, Theorem 2.15] applied

to the linear map Λ : V ∗ → L1(X) given by (3.2.17), now implies that

the operator in (3.2.17) is bounded; that is,∣∣∣∣∫
E

〈v∗, f〉 dµ
∣∣∣∣ ≤ C|v∗|

for some constant C <∞ independent of v∗, and hence the map

v∗ 7→
∫
E

〈v∗, f〉 dµ

defines an element of V ∗∗. Recalling the canonical embedding of V in

V ∗∗, we say that f is Pettis integrable over E if this element, denoted

by

(P )−
∫
E

f dµ,

actually lies in V . Because the Pettis integral of f over a set E, if it

exists, is characterized by the validity of the identity

〈v∗, (P )−
∫
E

f dµ〉 =

∫
E

〈v∗, f〉 dµ

for all v∗ ∈ V ∗, the uniqueness of the integral follows from the Hahn–

Banach theorem.

Proposition 3.2.18 Bochner integrable functions are Pettis integrable

and the two integrals agree in this case.

Proof Let f : X → V be a Bochner integrable function; then f is

weakly integrable by (3.2.10). Moreover, by (3.2.10) we have that

〈v∗,
∫
E

f dµ〉 =

∫
E

〈v∗, f〉 dµ

for all v∗ ∈ V ∗, where
∫
E
f dµ denotes the Bochner integral. Thus the

proposition follows from the discussion immediately before it.
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It is easy to see that the function f : [0, 1] → L∞([0, 1]) in Remark

3.1.3 is Pettis integrable.

Here is a standard example of a weakly integrable function that is not

Pettis integrable. Define f : (0, 1)→ c0 by

f(t) = (χ(0,1)(t), 2χ(0,1/2)(t), . . . , nχ(0,1/n)(t), . . .),

and let v∗ = (α1, α2, . . . , αn, . . .) ∈ c∗0 = l1. Then∫ 1

0

〈v∗, f(t)〉 dt =

∫ 1

0

∞∑
n=1

αn · n · χ(0,1/n)(t) dt

= 〈v∗, (1, 1, . . . , 1, . . .)〉,

where (1, 1, . . . , 1, . . .) ∈ l∞ \ c0 = c∗∗0 \ c0. This example is typical in

the following sense: if V contains no isometric copy of c0, then every

weakly integrable function f : X → V is Pettis integrable [75, Chapter

2, Theorem 7].

3.3 Metric measure spaces

In this section, we define and discuss metric measure spaces. The concept

of a metric measure space plays a central role in this book, and it is

worthwhile to spend some time on the basics. In particular, we discuss

in considerable detail the theory of Borel measures in topological and

metric spaces.

Measures and outer measures. A collection M of subsets of a set

X is said to be a σ-algebra if X belongs to M, X \ A ∈ M whenever

A ∈M, andM is closed under countable unions. In books on probability

theory, σ-algebras are often called σ-fields. A measure on X is a non-

negative function µ defined on a σ-algebra M such that µ(∅) = 0 and

µ is countably additive, that is, µ(
⋃
iAi) =

∑
i µ(Ai) whenever Ai, i ∈

F ⊂ N, is a countable pairwise disjoint subcollection of M. An outer

measure on a set X is a function µ that is defined on all subsets of X,

takes values in [0,∞], satisfies µ(∅) = 0, and is countably subadditive:

µ(A) ≤
∑
E∈F

µ(E)

whenever F is a countable collection of subsets of X whose union con-

tains A. For A ⊂ X, the number µ(A) ∈ [0,∞] is called the measure

of A, or the µ-measure of A if µ needs to be mentioned. We also use
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self-explanatory phrases such as “A has finite measure” or that “A is of

measure zero”. We say that µ is nontrivial if µ(X) > 0.

Every outer measure has its σ-algebra of µ-measurable sets; these are

the sets A ⊂ X that satisfy

µ(T ) = µ(T ∩A) + µ(T \A) (3.3.1)

for each T ⊂ X. If the measure µ is clear from the context, we speak of

measurable sets for simplicity. Note that by subadditivity, a set A ⊂ X

is measurable if and only if

µ(T ) ≥ µ(T ∩A) + µ(T \A) (3.3.2)

for each T ⊂ X. Also note that sets of measure zero are always measur-

able and that we can integrate with respect to µ only over measurable

sets.

Every (countably additive) measure µ defined on a σ-algebra M of

measurable subsets of a set X can be extended to an outer measure in

a canonical way by setting

µ(E) := inf{µ(A) : E ⊂ A ∈M}. (3.3.3)

It is readily checked that the σ-algebra of measurable sets for this ex-

tension always contains M.

It is a common practice in modern geometric analysis not to make a

distinction between an outer measure and a measure. In this book, we

will follow the same practice. Thus, by abusing the preceding terminol-

ogy, from now on

by a measure we mean an outer measure.

In particular, the term “outer” will not be used hereafter in this context.

For example, it is understood that Lebesgue measure in Rn is defined

on all subsets of Rn via formula (3.3.3). More generally, every measure

µ that is perhaps defined on some σ-algebra M only, is automatically

understood as defined on all sets by the formula (3.3.3).

If µ is a measure on a set X and f : X → [−∞,∞] is a function, we

say that f is µ-measurable, or just measurable, if f is measurable with

respect to the σ-algebra of µ-measurable sets; that is, we require that

f−1([−∞, a)) is µ-measurable for every a ∈ R. Similarly, if X can be

written as a countable union of µ-measurable sets each of finite mea-

sure, then the measurability of a Banach space-valued function on X

is understood with respect to the σ-algebra of µ-measurable sets as in

Section 3.1.
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A measure on a set X is said to be σ-finite if X can be expressed as

a countable union of measurable sets each of which has finite measure.

A measure on a topological space is said to be locally finite if every

point in the space has a neighborhood of finite measure.

Borel sets. Every topological space has its natural σ-algebra of Borel

sets; this is the σ-algebra generated by open sets. That is, the σ-algebra

of Borel sets is the smallest σ-algebra containing all the open subsets.

A Borel partition of a topological space is a decomposition of the space

into pairwise disjoint Borel sets.

We record the following observation about Borel sets on subspaces.

Lemma 3.3.4 If Y is a subspace of a topological space Z, then the

Borel sets of Y are precisely of the form B ∩ Y , where B ⊂ Z is Borel.

Proof It is readily checked that the collection

{B ∩ Y : B ⊂ Z is a Borel set}

is a σ-algebra of subsets of Y , containing every open subset of Y . On

the other hand, it is also readily checked that the collection

{B ⊂ Z : B ∩ Y is a Borel set in Y }

is a σ-algebra of subsets of Z, containing every open subset of Z. The

lemma follows from these two remarks.

Borel measures. A measure on a topological space is called a Borel

measure if Borel sets are measurable; this is tantamount to saying that

open sets are measurable. A Borel measure is further called Borel regular

if every set is contained in a Borel set of equal measure.

Essentially all Borel measures that arise in geometry and analysis are

Borel regular measures. For example, Lebesgue measure in Rn is Borel

regular, and so are all Hausdorff measures in a metric space. (See Section

4.3.) Also note that if µ is a measure initially defined on the σ-algebra of

Borel sets of a topological space, then its (automatic) extension given in

(3.3.3) is Borel regular. Examples of Borel measures that are not Borel

regular are given in Example 3.3.17 (a).

There is a useful Carathéodory criterion for a measure to be a Borel

measure in the context of metric spaces.
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Lemma 3.3.5 A measure µ on a metric space (X, d) is a Borel mea-

sure if and only if

µ(E1 ∪ E2) = µ(E1) + µ(E2) (3.3.6)

for every pair of sets E1, E2 ⊂ X such that dist(E1, E2) > 0.

Proof Let µ be a measure in a metric space (X, d). Assume first that µ

is a Borel measure. Then pick two sets E1, E2 ⊂ X with dist(E1, E2) > 0.

Let O be an open set containing E1 such that O ∩E2 = ∅. Because O is

measurable, we have

µ(E1 ∪ E2) = µ((E1 ∪ E2) ∩O) + µ((E1 ∪ E2) \O) = µ(E1) + µ(E2) ,

which gives (3.3.6).

Assume next that (3.3.6) holds. To show that µ is a Borel measure,

it suffices to show that closed sets are measurable. Thus, pick C ⊂ X

closed, and let T ⊂ X be arbitrary; we prove that

µ(T ) ≥ µ(T ∩ C) + µ(T \ C) , (3.3.7)

which suffices by (3.3.2). To this end, define

Ti := {x ∈ T \ C : dist(x,C) ≥ 1/i}

for i = 1, 2, . . . . Then Ti ⊂ Ti+1 ⊂ T \ C for every i ≥ 1 and T \ C =⋃∞
i=1 Ti because C is closed. Because dist(T ∩C, Ti) > 0, we have by the

assumption (3.3.6) that

µ(T ) ≥ µ((T ∩ C) ∪ Ti) = µ(T ∩ C) + µ(Ti) (3.3.8)

for each i ≥ 1. We now claim that

lim
i→∞

µ(Ti) ≥ µ(T \ C) . (3.3.9)

By (3.3.8), inequality (3.3.7) follows from (3.3.9). To prove (3.3.9), write

Ai := Ti+1 \ Ti, and observe that T \ C = T2k ∪ A2k ∪ A2k+1 ∪ . . . for

every k ≥ 1. Inequality (3.3.9) obviously holds if µ(Ti) = ∞ for some

i ≥ 1; we may thus assume that µ(Ai) < ∞ for every i ≥ 1. Next, we

have that

µ(T \ C) ≤ µ(T2k) +

∞∑
i=k

µ(A2i) +

∞∑
i=k

µ(A2i+1) . (3.3.10)

If both sums appearing in (3.3.10) converge, then (3.3.9) follows. Assume

then that
∞∑
i=1

µ(A2i) =∞ .
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Therefore, by using the fact that dist(A2i, A2j) > 0 whenever i 6= j, we

have by the assumption (3.3.6) that

∞ = lim
k→∞

k∑
i=1

µ(A2i) = lim
k→∞

µ(A2 ∪ · · · ∪A2k) ≤ lim
k→∞

µ(T2k+1) .

Thus (3.3.9) again holds. Finally, if the second sum in (3.3.10) diverges,

we argue similarly, and conclude that (3.3.9) holds in all cases. This

completes the proof of (3.3.7), and the lemma follows.

Restriction and extension of Borel measures. Every measure µ on

a set Z determines a measure on each subset Y of Z simply by restricting

µ to the subsets of Y . We will call such a measure on Y the restriction

of µ to Y , and when necessary use the notation µY .

Lemma 3.3.11 Let µ be a Borel measure on a topological space Z and

let Y ⊂ Z. Then the restriction µY is a Borel measure on Y . If moreover

µ is Borel regular, then so is µY .

Proof To prove the first assertion, let U ⊂ Y be an open set, and let

T ⊂ Y . Then U = O ∩ Y for some open set O ⊂ Z, and we have that

µY (T ) = µ(T ) = µ(T ∩O) + µ(T \O)

= µ(T ∩ U) + µ(T \ U) = µY (T ∩ U) + µY (T \ U) .

This proves that U is measurable. Next, suppose that µ is Borel regular,

and let E ⊂ Y and let B ⊂ Z be a Borel set containing E such that

µ(E) = µ(B). Then B∩Y is a Borel set in Y (Lemma 3.3.4), E ⊂ B∩Y ,

and

µY (E) ≤ µY (B ∩ Y ) ≤ µ(B) = µ(E) = µY (E) .

The lemma follows from these remarks.

A different type of restriction can be defined as follows. Let µ be a

measure on a set Z and let Y ⊂ Z. Then we can define a measure µbY
on Z by

µbY (E) := µ(E ∩ Y ) (3.3.12)

for E ⊂ Z.

Lemma 3.3.13 Let µ be a Borel measure on a topological space Z and

let Y ⊂ Z. Then the measure µbY is a Borel measure on Z. If µ is also

Borel regular, then µbY is Borel regular if and only if Y admits a Borel

partition Y = B0 ∪N such that B0 a Borel set in Z and µ(N) = 0.
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Proof The proof for the first assertion is similar to that of Lemma 3.3.11

and is thus left to the reader. Assume next that µ is Borel regular. If

µbY is Borel regular, then there is a Borel set B containing Z \ Y such

that µbY (B) = µbY (Z \ Y ) = 0. Hence B0 := Z \ B and N := Y \ B0

provide the desired partition. Conversely, assume that such a partition

Y = B0 ∪N exists, and let E ⊂ Z. Because µ is Borel regular, we can

choose Borel sets B ⊃ E ∩ Y and B′ ⊃ N such that µ(B) = µ(E ∩ Y )

and that µ(B′) = µ(N) = 0. Thus B1 := B′ ∪ B ∪ (Z \ B0) is a Borel

set in Z containing E, and

µbY (E) ≤ µbY (B1) ≤ µbY (B′) + µbY (B) + µbY (Z \B0)

≤ µ(B′) + µ(B) + µ(N) = µ(E ∩ Y ) = µbY (E) .

This completes the proof.

Next we consider extensions of measures. Every measure µ on a subset

Y of a set Z can be extended to a measure µ on Z by the formula

µ(E) := µ(E ∩ Y ) (3.3.14)

for E ⊂ Z. Observe that if µ is a measure on Z and Y ⊂ Z, then

µbY = µY , (3.3.15)

so that µbY equals “the extension of the restriction”.

The next lemma is a special case of Proposition 3.3.21 below. Also

note that Lemma 3.3.13 in turn is a special case of Lemma 3.3.16 by

(3.3.15); in fact, the proofs are similar. We refer to 3.3.21 for the proof

of Lemma 3.3.16.

Lemma 3.3.16 Let µ be a Borel measure on a subset Y of a topological

space Z. Then the extension µ as given in (3.3.14) determines a Borel

measure on Z. If µ is also Borel regular, then the extension µ is Borel

regular if and only if Y admits a Borel partition Y = B0 ∪N such that

B0 a Borel set in Z and µ(N) = 0.

Example 3.3.17 (a) Let Y be a non-Lebesgue measurable subset of

Z = [0, 1] and let µ be the restriction of Lebesgue measure m1 to Y .

Then µ is Borel regular by Lemma 3.3.11. Because Y does not admit

a decomposition into a Borel set and a Lebesgue null set as in Lemma

3.3.16, it follows that the extension µ of µ is not Borel regular. It also

follows that m1bY = µ is not Borel regular on [0, 1].

(b) In general, we cannot choose the set N in Lemma 3.3.16 to be a

Borel subset of Z. For example, let Y ⊂ [0, 1] be a Lebesgue measurable
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set that is not Borel, and let µ be the restriction of Lebesgue measure m1

to Y . Then µ is Borel regular on Y by Lemma 3.3.11. By choosing a Borel

set B ⊂ [0, 1] such that m1(B) = m1([0, 1]\Y ) and [0, 1]\Y ⊂ B, we find

that µ(B∩Y ) = 0, which gives a decomposition Y = ([0, 1]\B)∪(B∩Y )

into a Borel subset of [0, 1] and a set of µ-measure zero. Lemma 3.3.16

therefore implies that the extension µ of µ to [0, 1] is Borel regular; but

Y , and hence Y ∩B, is not a Borel subset of [0, 1].

Given the above discussion of extensions and restrictions of measures,

it is natural to ask about extensions of measurable functions.

Lemma 3.3.18 Suppose that U is a measurable subset of X and that

f : U → [−∞,∞] is a measurable function. Then the zero-extension of

f to X, given by F : X → [−∞,∞] with F (x) = f(x) if x ∈ U and

F (x) = 0 if x ∈ X \ U , is also measurable.

Proof To show that F is measurable, it suffices to show that for each

t ∈ R the super-level set {x ∈ X : F (x) > t} is a measurable subset

of X. Observe that if t ≥ 0 then this super-level set is merely {x ∈
U : f(x) > t}, and if t < 0 then it is {x ∈ U : f(x) > t} ∪ (X \ U).

Hence to prove that F is measurable, it suffices to show that if E ⊂ U

is a µU -measurable subset of U , then it is a µ-measurable subset of X

(recall the definition of the restricted measure µU from Section 3.3). To

this end, let A ⊂ X. Then because E is µU -measurable, by (3.3.1) we

know that

µ(A ∩ U ∩ E) + µ(A ∩ U \ E) = µ(A ∩ U).

Therefore, because A∩E = (A∩U)∩E and A\E = (A\U)∪(A∩U \E),

we have

µ(A) ≤ µ(A ∩ E) + µ(A \ E)

= µ(A ∩ U ∩ E) + µ((A \ U) ∪ (A ∩ U \ E))

≤ µ(A ∩ U ∩ E) + µ(A \ U) + µ(A ∩ U \ E)

= µ(A ∩ U) + µ(A \ U)

= µ(A),

where the last equality followed from the fact that U is a µ-measurable

subset of X. Thus we see that for each A ⊂ X the equality µ(A ∩ E) +

µ(A \E) = µ(E) holds; therefore E is a µ-measurable subset of X. This

completes the proof of the lemma.

For future use, we record the following lemma and its proof here.
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Lemma 3.3.19 Fix 1 < p <∞, and let Ωn, n = 1, · · · , be a sequence

of measurable subsets of X with Ωn ⊂ Ωn+1 for each positive integer n,

and suppose we have a corresponding sequence of measurable functions

gn : Ωn → [−∞,∞] such that
∫

Ωn
|gn|p dµ ≤ 1 for each positive integer

n. Then for Ω =
⋃
n∈N Ωn there is a subsequence (gnk) and a function

g∞ ∈ Lp(Ω) such that for each k0 ∈ N the sequence (gnk+k0 ) converges

weakly to g∞ in Lp(Ωk0). Furthermore,
∫

Ω
gp∞ dµ ≤ 1.

Proof Since each Ωn is a measurable set and gn is a measurable function

on Ωn, by Lemma 3.3.18 it follows that the zero-extension of gn to

X is measurable; therefore the restriction of this extension to Ω is a

measurable function on Ω. We denote this function by Gn. Note that∫
Ω
|Gn|p dµ =

∫
Ωn
|gn|p dµ ≤ 1; that is, the sequence (Gn) is a bounded

sequence in Lp(Ω). Because 1 < p <∞, we may apply Proposition 2.4.19

together with Theorem 2.4.1 to this sequence to obtain a subsequence

(Gnk) and a function G∞ ∈ Lp(Ω) such that (Gnk) converges weakly to

G∞ in Lp(Ω). The proof of the lemma is now complete upon noting that

(Gnk+k0 ) also weakly converges to G∞ in Ω and hence also in Ωk0 .

Borel functions. A function from one topological space into another

is said to be a Borel function if the preimage of every open set is a Borel

set. Under a Borel function the preimage of every Borel set is a Borel

set. To see this, we generalize the argument given in 3.3: if f : Y → Z is

a Borel function, then the collection of all sets B in Z for which f−1(B)

is a Borel set in Y is a σ-algebra; because this collection contains all

open sets by definition, it contains all Borel sets.

We have, in particular, that continuous functions are Borel functions

and that the composition of two Borel functions is a Borel function.

A function f is said to be a Borel bijection if it is a bijection between

topological spaces such that both f and f−1 are Borel functions. For

example, homeomorphisms are always Borel bijections.

When we consider extended real-valued functions, i.e., functions with

values in [−∞,∞], the target is understood to have the natural topology

extending the one from R. Thus, a basis for this topology consists of sets,

or intervals, of the form (a, b), [−∞, a), and (b,∞], where a, b ∈ R. It

follows that an extended real-valued function f on a topological space is

a Borel function if and only if the preimage under f of any of the three

types of basis intervals is a Borel set.
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Push-forward measures. With every function f from a set Y to a set

Z, and with every measure µ on Y , we can associate the push-forward

measure f#µ on Z,

f#µ(E) := µ(f−1(E)) (3.3.20)

for E ⊂ Z. For example, the extension µ described in (3.3.14) is precisely

the push-forward of µ under the inclusion Y → Z.

The next proposition explains some properties of Borel measures and

their push-forwards; compare Lemma 3.3.16 and Example 3.3.17.

Proposition 3.3.21 Let Y and Z be topological spaces, let µ be a

Borel measure on Y , and let f : Y → Z be a Borel function. Then f#µ

is a Borel measure on Z. If f#µ is also Borel regular, then Y admits a

Borel partition Y = B0∪N such that f(B0) is a Borel set in Z and that

µ(N) = 0.

Finally, assume that µ is Borel regular, that f determines a Borel

bijection between Y and f(Y ), and that Y admits a Borel partition Y =

B0 ∪ N such that f(B0) is a Borel set in Z and that µ(N) = 0. Then

f#µ is Borel regular.

Proof It is clear that f#µ is a measure on Z. To check that open sets

are measurable, let T ⊂ Z and let U ⊂ Z be open; then

f#µ(T ) = µ(f−1(T )) = µ(f−1(T ) ∩ f−1(U)) + µ(f−1(T ) \ f−1(U))

= µ(f−1(T ∩ U)) + µ(f−1(T \ U)) = f#µ(T ∩ U) + f#µ(T \ U)

as desired. Thus f#µ is always a Borel measure.

Assume next that f#µ is Borel regular. Then there exists a Borel set

B in Z containing Z \ f(Y ) such that

µ(f−1(B)) = f#µ(B) = f#µ(Z \ f(Y )) = 0 .

Now we can set B0 := f−1(Z \B) and N := f−1(B).

Finally, assume that µ is Borel regular, that f : Y → f(Y ) is a Borel

bijection, and that a partition Y = B0∪N is given as in the hypotheses.

Let E ⊂ Z. Because µ is Borel regular, there is a Borel set B′ ⊂ Y

containing f−1(E) such that µ(B′) = µ(f−1(E)). Because f is a Borel

bijection, we deduce from Lemma 3.3.4 that f(B′) = B′′∩f(Y ) for some

Borel set B′′ in Z. Set B := (Z \ f(B0)) ∪B′′. Then B is a Borel set in

Z, E ⊂ B, and

f#µ(E) ≤ f#µ(B) = µ(f−1(B)) ≤ µ(N) +µ(B′) = µ(f−1(E)) = f#µ(E) .

This proves that f#µ is Borel regular as required.
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The proposition follows.

Embeddings. In this book, we typically use push-forward measures

obtained via embeddings of metric spaces. Recall that an embedding of

a topological space Y in a topological space Z is a map f : Y → Z that

determines a homeomorphism between Y and f(Y ). In particular, an

embedding f : Y → Z always determines a Borel bijection between Y

and f(Y ).

For example, every metric space X canonically embeds in its metric

completion X. The embeddingX → X is moreover isometric (see Section

4.1). By a slight abuse of notation, throughout this book we view X as

a subset of its completion and write X ⊂ X.

We discuss embeddings of metric spaces in more detail in Chapter 4.

Borel and µ-representatives. Let µ be a Borel measure on a topo-

logical space X. Given a function f from X to a topological space Z,

a function g : X → Z is said to be a Borel representative of f if g is a

Borel function that equals f almost everywhere on X. Similarly, if µ is

σ-finite and if f is a function from X to some Banach space V , we say

that a function g : X → V is a µ-representative, or just a representative,

of f if g is measurable (see Section 3.1) and equals f almost everywhere

on X. Here, as always, the measurability refers to the σ-algebra of µ-

measurable sets. Note that if f has a µ-representative, then f is itself

measurable.

We will also use the self-explanatory term Lebesgue representative for

extended real-valued functions, or for V -valued functions, that are de-

fined on subsets of Rn equipped with Lebesgue n-measure.

Proposition 3.3.22 Let µ be a Borel regular σ-finite measure on a

topological space X and let f : X → [−∞,∞] be a function. If f is

a Borel function, then f is the pointwise limit of a sequence of sim-

ple (or arbitrary) Borel functions outside a Borel set of measure zero.

Conversely, if f admits such an approximation, then f can be modified

in this Borel set of measure zero so as to become a Borel function in

X. Moreover, if f is Borel and real-valued, then there is a Borel set

N ⊂ X of measure zero such that f |X\N can be approximated uniformly

by countably valued Borel functions X → R.

Proof If f is a Borel function, it is in particular measurable and hence

the pointwise almost everywhere limit of a sequence of measurable sim-

ple functions; the simple functions can be assumed to be Borel by the
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definition for Borel regular measures, and we can also enclose the set of

points of non-convergence in a Borel set of measure zero.

Suppose that f is the pointwise limit of a sequence of simple Borel

functions outside a Borel set N of measure zero. We may assume these

simple functions take on the constant value zero on N. Then this se-

quence converges everywhere to a function g which coincides with f

outside N. Now the proof of the implication (i) ⇒ (ii) in the Pettis

measurability theorem 3.1 shows that g is a Borel function in X.

Next, the last assertion follows from the proof of the implication (iii)

⇒ (i) in Theorem 3.1; the functions gk can be assumed to be Borel

functions and the set N can be assumed to be a Borel set by the Borel

regularity.

Finally, assume that f is the pointwise limit of a sequence of arbi-

trary Borel functions outside a Borel set of measure zero. It is easy to

reduce the proof to the case where f is real-valued. Then the assertion is

proved as the corresponding assertion for general measurable functions

in Theorem 3.1.8 or Corollary 3.1.5. Note that Egoroff’s theorem admits

an obvious Borel version, needed in that proof.

The proposition follows.

Proposition 3.3.23 Let µ be a Borel regular σ-finite measure on a

topological space X. Then every measurable extended real-valued function

on X can be modified in a set of measure zero so as to become Borel

measurable.

Proof Let f be measurable, then f is the pointwise limit of a sequence

(fk) of simple functions outside a set of measure zero. Since µ is Borel

regular, we may modify these simple functions on sets of measure zero

so as to become simple Borel functions. This new sequence will still

converge to f outside a set of measure zero. Using the Borel regularity

of µ one more time, we may further assume that the convergence occurs

outside a Borel set of measure zero. The claim follows from Proposition

3.3.22.

We have analogous results for Banach space-valued functions, with

analogous proofs.

Proposition 3.3.24 Let µ be a Borel regular σ-finite measure on a

topological space X, let V be a Banach space, and let f : X → V be a

function. Then f has an essentially separably valued Borel representa-

tive if and only if f is the pointwise limit of a sequence of simple (or
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arbitrary) Borel functions outside a Borel set of measure zero. More-

over, if f is an essentially separably valued Borel function, then there is

a Borel set N ⊂ X of measure zero such that f |X\N can be approximated

uniformly by countably valued Borel functions X → V .

Balls in metric spaces. We denote open balls in a metric space X =

(X, d) by B(x, r). Thus,

B(x, r) = {y ∈ X : d(x, y) < r},

where x ∈ X is the center and 0 < r < ∞ is the radius of B(x, r). We

emphasize that a ball as a set does not, in general, uniquely determine

the center and the radius. Therefore, the center and the radius refer to

the notation B(x, r).

Closed balls are denoted by B(x, r). Thus,

B(x, r) = {y ∈ X : d(x, y) ≤ r},

where we assume r > 0 so that a closed ball is always a neighborhood

of its center. The closed ball B(x, r) may be a larger set than the (topo-

logical) closure B(x, r) of B(x, r). If B = B(x, r) is a ball, with center

and radius understood, and λ > 0, we write

λB = B(x, λr). (3.3.25)

With small abuse of notation we write rad(B) for the radius of a ball

B; this notation entails that B = B(x, rad(B)) for some x ∈ X, and it

is used when the center x is unimportant for the context at hand. We

always have

diam(B) ≤ 2 rad(B),

and the inequality is strict in general. Here, and in the rest of the book,

the diameter of a nonempty set A ⊂ X is

diam(A) := sup{d(y, z) : y, z ∈ A}.

When we use the generic term ball, it is understood that this may be

open or closed.

We next state and prove a fundamental covering lemma. This lemma

will be used on several occasions in this book.
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5B-covering lemma. Every family F of balls of uniformly bounded

diameter in a metric space X contains a pairwise disjoint subfamily G
such that for every B ∈ F there exists B′ ∈ G with B ∩ B′ 6= ∅ and

diam(B) < 2 diam(B′). In particular, we have that⋃
B∈F

B ⊂
⋃
B∈G

5B . (3.3.26)

If X is separable, then the family G is necessarily countable.

Proof The last assertion is obvious; there cannot be uncountably many

pairwise disjoint balls in a separable metric space.

To prove the first assertion, consider pairwise disjoint subfamilies B of

balls from F with the following property: if B ∈ F , then either B∩B′ = ∅
for all B′ ∈ B or there is a ball B′ ∈ B such that B ∩ B′ 6= ∅ and

diam(B) < 2 diam(B′). There is at least one such family, namely the

one-ball family {B′}, where B′ ∈ F is chosen such that

sup
B∈F

diam(B) < 2 diam(B′) .

Moreover, such families form a partially ordered set by inclusion, and

every chain of such families has an upper bound, namely the union of

all the families in the chain. By the Hausdorff maximality principle, or

Zorn’s lemma, there is a family G as required. (See [237, p. 87] or [214,

p. 69] for a discussion of the Hausdorff maximality principle, known also

as the maximum principle.) Indeed, if there is a ball B ∈ F such that

no ball in G intersects B, we can then choose B0 ∈ F that does not

intersect any ball from the collection G and at the same time satisfies

diam(B) ≤ 2 diam(B0) whenever B ∈ F does not intersect any ball from

the collection G. Now the larger collection G ∪ {B0} would violate the

maximality of G.

Note that the 5B-covering lemma is a purely metric result; no mea-

sures are involved.

We also require the following well known point set topology result

(also a kind of covering theorem). Recall that a topological space is said

the have the Lindelöf property if from every open cover of the space we

can extract a countable subcover.

Lemma 3.3.27 Every separable metric space has the Lindelöf prop-

erty.

Proof We give a quick proof using the 5B-covering lemma. Let X =

(X, d) be a separable metric space and let U = {U} be an open cover
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of X. Fix a positive integer k. For every point x ∈ X choose an open

set U ∈ U and ball Bx = B(x, rx) such that rx ≤ k and that 5Bx ⊂ U .

Then from the collection F := {Bx : x ∈ X} we can pick a countable

subcollection G = {Bi} such that

X =
⋃

Bx∈F
Bx ⊂

⋃
Bi∈G

5Bi .

The required countable subcover of U is obtained by choosing, for each

i, a set Ui ∈ U such that 5Bi ⊂ Ui. The lemma follows from taking

the countable union (one per each positive integer k) of these countable

subcovers.

From now on, we will use without further mentioning the elementary

fact that every subset of a separable metric space is separable. In partic-

ular, subspaces of separable metric spaces have the Lindelöf property;

that is, separable metric spaces are hereditarily Lindelöf.

Metric measure spaces. A metric measure space is defined to be a

triple (X, d, µ) , where (X, d) is a separable metric space and µ is a

nontrivial locally finite Borel regular measure on X.

Recall that locally finite means in this context (cf. 3.3) that for every

point x ∈ X there is r > 0 such that µ(B(x, r)) <∞.

We often write just X in place of the triple (X, d, µ), or in place of

either of the pairs (X, d) or (X,µ), if the distance and measure are either

understood from the context or do not need specific labeling.

The Lindelöf property of separable metric spaces (Lemma 3.3.27) im-

mediately yields the following.

Lemma 3.3.28 Every metric measure space can be written as a count-

able union of balls each of which has finite measure. In particular, every

metric measure space is σ-finite.

It follows from Lemma 3.3.28, and from the fact that sets of measure

zero are always measurable, that the conventions made in Sections 3.1

and 3.2 are valid in the context of metric measure spaces.

It is not true that every ball in a metric measure space has finite mea-

sure. For example, consider the open unit interval X = (0, 1) equipped

with the standard metric and with measure dµ(x) = x−1dm1(x), where

m1 is the standard Lebesgue measure, restricted to (0, 1).

A metric measure space is not assumed to be complete or even lo-

cally complete as a metric space. Indeed, assuming completeness would
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exclude many natural metric spaces from our discussion, e.g. Euclidean

domains. Also note that while every Borel regular measure µ on a metric

space X admits a natural extension µ to a Borel measure on the metric

completion X of X by formula (3.3.14), i.e.,

µ(E) = µ(E ∩X) , E ⊂ X , (3.3.29)

this extension may fail to be Borel regular. However, if X is a Borel

subset of X, for example if X is locally compact, then µ is Borel regular

by Lemma 3.3.13. We elaborate more on extensions in the next section.

Restrictions and extensions. If (X, d, µ) is a metric measure space

and if Y ⊂ X, then the restriction of the measure µ and the metric d to

Y always determines a metric measure space (Y, d, µ) (Lemma 3.3.11).

In other words, subsets of metric measure spaces can naturally be re-

garded as metric measure spaces on their own right. It also follows from

this observation that we can express every metric measure space as a

countable union of pairwise disjoint measurable subsets each of which

constitutes a metric measure space on its own right (with the restriction

of the ambient measure to each of the subsets being Borel regular by

Lemma 3.3.11.) Moreover, the partition can be done so that each of the

pieces in the partition has finite measure (Lemma 3.3.28).

On the other hand, if (X, d, µ) is a metric measure space and if f is an

embedding of X in a separable metric space Z, then Z equipped with

the push-forward measure f#µ is not always a metric measure space

even if f#µ is Borel regular. For example, consider f : [0,∞) → [0, 1],

f(x) = 2
πarctan(x). Then the push-forward f#m1 of Lebesgue measure

is not locally finite in [0, 1]. On the other hand, if f(X) is a closed subset

of Z, then Z equipped with the push-forward measure f#µ is a metric

measure space. (See Proposition 3.3.21.) Indeed, by this proposition we

see that f#µ is a Borel regular measure on Z, and because f(X) is

a closed subset of Z, every point in Z \ f(X) has a neighborhood on

which f#µ is zero. Furthermore, since µ is locally finite in X and f is

an embedding, f#µ is locally finite on f(X). Similarly, if (X, d, µ) is a

metric measure space, where X is a subset of a separable metric space Z,

then Z equipped with the extension µ given in (3.3.14) is not necessarily

a metric measure space. (See Lemma 3.3.16 and in particular Example

3.3.17 (a)). Thus some caution is required in extending measures. In

practice, however, situations like the one in Example 3.3.17 rarely arise.

The assumption that metric measure spaces be separable is a mild one;
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it is satisfied in most geometrically and analytically interesting cases.

Moreover, we have the following fact. (See also Remark 3.3.35.)

Lemma 3.3.30 If µ is a Borel measure on a metric space X, where

X can be written as a countable union of open sets with finite measure

and where every open ball has positive measure, then X is separable as

a metric space.

Proof Fix, for every positive integer n = 1, 2, . . . , a maximal 1/n-

separated set Nn = {xni}. That is, d(xni, xnj) ≥ 1/n for xni 6= xnj
and X =

⋃
iB(xni, 1/n). The existence of such a set Nn is easily estab-

lished by the aid of the Hausdorff maximality principle; see [237, p. 87].

Let X =
⋃
kXk be a countable union of open sets with µ(Xk) < ∞.

Then Nn ∩Xk must be countable because

∞ > µ(Xk) ≥
∑

xni∈Nn∩Xk

µ(B(xni, 1/2n) ∩Xk)

with µ(B(xni, 1/2n) ∩Xk) > 0 whenever xni are points in Nn ∩Xk. It

follows that Nn must be countable, and from the construction that the

set ∪∞n=1Nn is dense in X. The lemma follows.

We also have that every set of locally zero measure in a metric measure

space has zero measure.

Lemma 3.3.31 Let E be a subset of a metric measure space X =

(X, d, µ). If every point x ∈ E has a neighborhood Ux such that µ(E ∩
Ux) = 0, then µ(E) = 0.

Proof Use the Lindelöf property of separable metric spaces (Lemma

3.3.27) together with countable subadditivity.

Remark 3.3.32 The statement in Lemma 3.3.31 is not true if (X, d)

is allowed to be nonseparable. Let X be an uncountable set equipped

with the discrete metric; that is, d(x, y) = 1 if x 6= y. Then the Borel

regular measure µ defined by µ(E) = 0 if E is countable, and µ(E) =∞
if E is uncountable, is locally zero but µ(X) =∞.

Support of a measure. If (X, d, µ) is a metric measure space, we

define the support of µ by

spt(µ) := X \
⋃
{O : O ⊂ X open and µ(O) = 0} . (3.3.33)

By Lemma 3.3.31, we have that

µ(X \ spt(µ)) = 0 . (3.3.34)



68 Lebesgue theory

Then (spt(µ), d, µ) is a metric measure space with the property that ev-

ery ball in it has positive measure. Moreover, if we consider (spt(µ), d, µ)

as a metric measure space in its own right, then the extension µ of µ from

spt(µ) to X coincides with the original measure µ on X. Noting that

spt(µ) is closed in X, this assertion follows from (3.3.34) and Lemma

3.3.16.

Remark 3.3.35 Let µ be a Borel measure on a metric space X such

that X can be written as a countable union of open sets with finite

measure. Then the support spt(µ) of µ is separable by Lemma 3.3.30.

However, it is not obvious that µ(X\spt(µ)) = 0 in general. We have that

µ(X \ spt(µ)) = 0 for example if X has a dense subset whose cardinality

is an Ulam number. For this fact and comments on Ulam numbers, see

[83, 2.2.16 and 2.1.6]. Observe that a metric space, equipped with a Borel

measure, need not in general be a metric measure space in the sense of

Section 3.3.

Examples of metric measure spaces. The concept of a metric mea-

sure space is very general. It embraces most naturally occurring geo-

metric measure spaces in analysis and geometry. Here is a short list of

specific examples.

If X ⊂ Rn is any subset of positive Lebesgue n-measure, then X

equipped with the Euclidean distance and Lebesgue measure mn is a

metric measure space (Lemma 3.3.11). More generally, if X is a any

subset of a Riemannian manifold of positive Riemannian measure, then

X equipped with the Riemannian distance and measure is a metric mea-

sure space.

If (X, d) is a separable metric space with locally finite and nontrivial

α-Hausdorff measure for some α > 0, then (X, d,Hα) is a metric measure

space. See Section 4.3 and [83, Section 2.10.1].

Every locally compact and separable group equipped with a left invari-

ant metric and left invariant Haar measure is a metric measure space.

See [83, Chapter 2.7] or [86, Section 10.1].

A Banach space equipped with a Gaussian measure constitutes a met-

ric measure space. See [26, Section 6.2].

If (X, d, µ) is any metric measure space and f a locally integrable

nonnegative function on X such that µ({x ∈ X : f(x) > 0}) > 0, then

we have a metric measure space (X, d, µf ), where

µf (A) :=

∫
A

f dµ (3.3.36)
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for A ⊂ X measurable. In this case, the function f is called a density, or

a weight, and the metric measure space (X, d, µf ) is said to be weighted

by f . We also use the notation f dµ for the measure µf , and write

(X, d, f dµ) instead of (X, d, µf ).

In the preceding, as always when needed, the measures are extended

to all subsets of the space in question by formula (3.3.3).

Approximation of Borel regular measures. The following proposi-

tion records some fundamental approximation properties of Borel regular

measures in metric measure spaces.

Proposition 3.3.37 Let (X, d, µ) be a metric measure space. Then

µ(A) = sup{µ(C) : C ⊂ A , C ⊂ X closed} (3.3.38)

for every measurable set A ⊂ X, and

µ(E) = inf{µ(O) : E ⊂ O , O ⊂ X open} (3.3.39)

for every set E ⊂ X. In particular, every measurable set A ⊂ X contains

an Fσ-set F such that µ(A) = µ(F ), and every set E ⊂ X is contained

in a Gδ-set G such that µ(E) = µ(G).

Proof We begin by observing that for every measurable set A of finite

measure in X there are Borel sets B and B′ in X such that B′ ⊂ A ⊂ B
and that µ(B′) = µ(A) = µ(B). Indeed, B exists by the definition of

Borel regularity; similarly, there is a Borel set B′′ ⊂ X containing B \A
such that µ(B′′) = µ(B\A) = 0, and we can set B′ := B\B′′. Moreover,

to prove the proposition, we may assume that µ(X) <∞, for the general

case can easily be reduced to this case by using Lemma 3.3.28.

The preceding understood, to prove (3.3.38) by replacing A with B′ if

necessary, we may assume that A is a Borel set in X and that µ(X) <∞.

Let us consider the family F consisting of all subsets of X for which

(3.3.38) holds. Obviously, this family contains all closed sets. It also

contains all open sets, because these can be written as countable unions

of closed sets (closed balls in fact) by separability; using µ(X) < ∞,

the measure of a countable union of closed sets can be approximated by

the measures of finite unions of these closed sets. Next, it is easy to see,

by using the assumption µ(X) < ∞, that F is closed under countable

unions and intersections. It follows that the family

G := {A ∈ F : X \A ∈ F}
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is a σ-algebra containing all closed sets. Therefore, G must contain all

Borel sets, and (3.3.38) follows.

To prove (3.3.39), we find by Borel regularity a Borel set E0 with

E ⊂ E0 and µ(E) = µ(E0). As earlier, we may assume that µ(X) <∞.

Fix ε > 0. By (3.3.38), we may choose a closed set C ⊂ X \E0 such that

µ(C) > µ(X \E0)− ε. Then O = X \C is open, contains E and satisfies

µ(O) < µ(E0) + ε = µ(E) + ε. This proves (3.3.39).

The proof of the proposition is complete.

Radon measures. A Borel regular measure µ on a metric space X

is called a Radon measure if µ(K) < ∞ for every compact K ⊂ X, if

(3.3.39) holds, and if

µ(O) = sup{µ(K) : K ⊂ O , K ⊂ X compact} (3.3.40)

for every open set O ⊂ X.

Notice that each Borel measure that satisfies (3.3.40) is actually Borel

regular. The counting measure on a topological space is Borel regular,

but Radon only if compact sets are finite sets. We next clarify the re-

lation between Radon measures and general Borel regular measures in

the context of metric measure spaces.

Our first result is the following improvement of (3.3.40) and (3.3.38).

Proposition 3.3.41 Let X = (X, d, µ) be a metric measure space with

µ a Radon measure. Then

µ(A) = sup{µ(K) : K ⊂ A compact} (3.3.42)

for every measurable set A ⊂ X.

Proof Again by using Lemma 3.3.28, we may assume that µ(X) <∞.

Let A ⊂ X be measurable and let ε > 0. Because µ is Borel regular, it

follows from Proposition 3.3.37 that there is a closed set C contained

in A and an open set O containing A such that µ(O \ C) < ε. By the

definition for Radon measures, we can further find a compact set K ⊂ O
such that µ(K) > µ(O)− ε. Then the compact set K ∩ C ⊂ A satisfies

µ(A) ≥ µ(K ∩ C) = µ(K)− µ(K \ C) > µ(O)− 2ε ≥ µ(A)− 2ε .

The proposition follows.

Later in Proposition 3.3.46 we will characterize the metric measure

spaces (X, d, µ), where µ is indeed a Radon measure. Notice that in this
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context the only difference between the two concepts is the difference be-

tween (3.3.38) and (3.3.40), since in a metric measure space compact sets

always have finite measure because of the local finiteness of µ. Moreover,

by (3.3.38), one only needs to verify (3.3.42) for closed sets A.

Remark 3.3.43 If (X, d, µ) is a metric measure space with µ a Radon

measure, and if f : X → [0,∞] is a locally integrable function, then the

measure µf given by (3.3.36) is a Radon measure on X. This follows

readily from the definitions and from the basic properties of integral. In

the literature on measure theory, µf is also denoted f dµ.

Proposition 3.3.44 Let X = (X, d, µ) be a metric measure space with

(X, d) complete. Then µ is a Radon measure. In particular, X can be

expressed as a countable union of compact sets plus a set of measure

zero.

Proof First observe that because µ is locally finite (see Section 3.3),

a compact set can be covered by finitely many balls, each of which has

finite measure; it follows that every compact subset of X has finite mea-

sure.

By the comment made just before the proposition, we only need to

show that (3.3.42) holds for closed sets A in X. Moreover, by using

Lemma 3.3.28, we may assume that µ(A) <∞.

The preceding understood, let A ⊂ X be closed such that µ(A) <∞,

and let ε > 0. Because X is separable, we can find, for each n = 1, 2, . . .

a countable collection of closed balls Bn1, Bn2, . . . with centers in A,

each with radius n−1, such that

A ⊂
∞⋃
i=1

Bni .

We choose in such that µ(A ∩ Cn) > µ(A)− ε 2−n , where Cn := Bn1 ∪
· · · ∪Bnin . Next, set

K :=

∞⋂
n=1

Cn .

We claim both that K is compact and that

µ(A ∩K) ≥ µ(A)− ε . (3.3.45)

Because A is closed, the proposition will follow from these two claims.

To prove the latter claim, observe first that by monotone convergence,

µ(A ∩K) = lim
m→∞

µ(A ∩ C1 ∩ · · · ∩ Cm) ,
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and then that

µ(A) ≤ µ(A ∩ C1 ∩ · · · ∩ Cm) +

m∑
n=1

µ(A \ Cn)

≤ µ(A ∩ C1 ∩ · · · ∩ Cm) + ε .

Hence (3.3.45) follows. Next, to prove that K is compact, it suffices to

prove that whenever δ > 0 and T ⊂ K satisfies d(x, y) ≥ δ for all distinct

x, y ∈ T, then T is finite. Indeed, this means that K is totally bounded,

and because K is also closed and hence complete, K must be compact

(see [214, Theorem 3.1, p. 275].) To this end, let δ > 0 and T be as above.

Now T ⊂ Cn for each n. In particular, if n is such that 2/n < δ, then no

two distinct points from T can belong to just one of the finitely many

balls Bni whose union is Cn. This implies that T is finite as desired.

To complete the proof of the proposition, we note that since X is

separable and µ is locally finite, we can cover X by countably many balls

(Bi), each of finite measure. Because µ is Radon, for each positive integer

j we can find a compact set Ki,j ⊂ Bi such that µ(Ki,j) ≥ µ(Bi)− 1/j.

Since both Bi and Ki,j are measurable, µ(Bi \ Ki,j) ≤ 1/k. Therefore

µ(Bi \
⋃
j Ki,j) = 0, and so we have the countable decomposition (Ki,j)

of X by compact sets such that µ(X \
⋃
i

⋃
j Ki,j) = 0.

The proof of the proposition is now complete.

For the next proposition, recall that X denotes the metric completion

of a metric space X.

Proposition 3.3.46 Let X = (X, d, µ) be a metric measure space.

Then the following are equivalent:

(i). µ is a Radon measure on X;

(ii). µ is a Borel regular measure on X, where µ is given in (3.3.29);

(iii). X admits a Borel partition X = B0 ∪N such that B0 is a Borel set

in X and that µ(N) = 0;

(iv). there exists an embedding f of X in a complete and separable metric

space Z such that X admits a Borel partition X = B0 ∪ N of X,

where f(B0) is a Borel set in Z and µ(N) = 0.

Note in particular that condition (iii) in Proposition 3.3.46 holds if X

is a Borel subset of X. Similarly, condition (iv) holds if f(X) is a Borel

subset of Z. See Example 3.3.17 (b) for the role of the set N .

Recall that a metric space is locally complete if every point in the

space has a neighborhood that is complete in the induced topology. For
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example, every locally compact metric space is locally complete. We have

the following noteworthy corollary to Proposition 3.3.46.

Corollary 3.3.47 Let X = (X, d, µ) be a metric measure space with

(X, d) locally complete. Then µ is a Radon measure.

Proof of Proposition 3.3.46 Assume first that µ is a Radon measure.

Then, because X is separable and µ is locally finite by our standing

assumption in Section 3.3, X can be expressed as a countable union of

compact sets plus a set of measure zero, proving the implication (i) ⇒
(iii). The equivalence of (ii) and (iii) follows from Lemma 3.3.16, and

condition (iii) trivially implies (iv).

Assume next that (iv) holds. By Proposition 3.3.21 we have that f#µ

is a Borel regular measure on Z. Because also f#µ(Z\f(X)) = 0, we have

that f(X) ⊂ Z is f#µ-measurable. Now if f#µ were locally finite on Z,

it would follow from Proposition 3.3.44 that f#µ is a Radon measure on

Z, and hence that f(X) can be written as a countable union of compact

sets plus a set N ′ such that µ(f−1(N ′)) = 0. Since f is an embedding,

the preimage of a compact set is a compact subset of X; it would be

easy to deduce from this that µ is Radon. On the other hand, as was

pointed out in Section 3.3, push-forward measures need not be locally

finite. This problem will be avoided by the following technical reduction.

Fix an arbitrary closed ball B ⊂ X such that µ(B) < ∞. Because X

can be expressed as a countable union of such balls, it follows that µ is

a Radon measure if we can show that

µ(C) = sup{µ(K) : K ⊂ C compact} (3.3.48)

for every closed C ⊂ B. (Compare the discussion just before Proposition

3.3.44.)

The preceding discussion understood, we can replace X by the closed,

and hence complete, metric space B and consider an embedding f :

B → Z. The hypothesis on the Borel partition remains intact, for B =

(B0 ∩B) ∪ (N ∩B), where f(B0 ∩B) = f(B0) ∩ f(B) is a Borel set in

Z and µ(N ∩ B) = 0. Thus, without loss of generality we may assume

that the push-forward measure f#µ is finite and hence Radon on Z. As

explained in the previous paragraph, it follows from this fact that f(B)

can be expressed as a countable union of compact sets plus a set whose

preimage under f has zero µ-measure. In particular, B can be expressed

as a countable union of compact sets plus a set of µ-measure zero. This

in turn yields (3.3.48) as required.
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We have now completed the proof for the last remaining implication

(iv) ⇒ (i), and the proposition follows.

Example. There are metric measure spaces (X, d, µ) such that µ is not

a Radon measure, although it follows from Proposition 3.3.46 that such

examples can be considered pathological. To give a specific example, let

X ⊂ [0, 1] be a dense non-Lebesgue measurable set. Then X equipped

with the usual distance and Lebesgue measure m1 is a metric measure

space; however, m1 is not a Radon measure on X, see Example 3.3.17(a).

Density of continuous functions in Lp-spaces and separability.

We next apply the preceding approximation results to prove some simple

structural properties of the spaces Lp(X : V ).

Proposition 3.3.49 Let X = (X, d, µ) be a metric measure space and

let 1 ≤ p <∞. Then for every f ∈ Lp(X : V ) and for every ε > 0 there

exists a continuous function g : X → V such that ||f − g||p < ε. Assume

next, in addition, that µ is a Radon measure. Then for every function

f ∈ Lp(X : V ) and for every ε > 0 there exists a function g : X → V

with compact support such that ||f − g||p < ε.

Recall that a function h from a topological space Z to a vector spaceW

is said to have compact support if the closure of the set {z ∈ Z : h(z) 6= 0}
is compact in Z. We also say that h is compactly supported in this case.

The closure of the preceding set {h 6= 0} is called the support of h and

denoted by spt(h).

Proof Because simple Borel functions are dense in Lp(X : V ), and be-

cause the measure is Borel regular, we may assume in the first assertion

that f is of the form f = v · χU for some vector v ∈ V and for some

open set U ⊂ X of finite measure. (See Propositions 3.2.13, 3.3.24, and

3.3.37.) Then, for ε > 0 the functions

fε(x) := v ·min{1

ε
dist(x,X \ U), 1} (3.3.50)

are continuous and satisfy fε → f in Lp(X : V ) as ε → 0. If µ is a

Radon measure, there is a sequence (Ki) of compact sets Ki ⊂ U such

that limi→∞ µ(Ki) = µ(U). In particular, the functions v ·χKi converge

to f in Lp(X : V ). The proposition follows.

As discussed in Remark 3.2.16, the preceding proposition together

with Proposition 3.2.15 yields the following corollary by the fact that

uniform limits of sequences of continuous functions are continuous.
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Corollary 3.3.51 Let X = (X, d, µ) be a metric measure space and

let 1 ≤ p < ∞. Then for every f ∈ Lp(X : V ) and for every ε > 0

there exists an open set O ⊂ X such that µ(O) < ε and that f |X\O is

continuous.

It is clear that we cannot, in general, assume in the second assertion of

Proposition 3.3.49 that g is continuous and of compact support. Indeed,

the support of a continuous function that is not identically zero has

nonempty interior and X need not be locally compact. However, we

have the following proposition.

Proposition 3.3.52 Let X = (X, d, µ) be a metric measure space

such that (X, d) is locally compact and let 1 ≤ p < ∞. Then for every

f ∈ Lp(X : V ) and for every ε > 0 there exists a continuous compactly

supported function g : X → V such that ||f − g||p < ε.

Proof As in the proof of Proposition 3.3.49 we may assume that f is

of the form v ·χU for some v ∈ V and for some open set U ⊂ X of finite

measure. Fix ε > 0. Because X is locally compact, µ is a Radon measure

by Corollary 3.3.47, and we can pick a compact set K ⊂ U such that

µ(U \ K) < ε. Cover K by finitely many open balls B1, . . . , BN such

that U ′ := B1 ∪ · · · ∪ BN ⊂ U and that U ′ has compact closure in X.

Set δ := dist(K,X \ U ′) > 0. Then the continuous function

g(x) := v ·min{1

δ
dist(x,X \ U ′), 1} (3.3.53)

has compact support and satisfies

||f − g||p ≤ |v|µ(U \K)1/p < |v| ε1/p .

This completes the proof.

Remark 3.3.54 As a consequence of the above density result, we

obtain the continuity of the translation operators on Lp(Rn : V ). Indeed,

for each h ∈ Rn, we define the translation operator τh : Rn → Rn by

τh(x) = x + h. For uniformly continuous functions g ∈ Lp(Rn : V ) we

easily see that

lim
|h|→0

‖g ◦ τh − g‖Lp(Rn:V ) = 0.

The density of uniformly continuous functions in Lp(X : V ) together

with the Minkowski inequality shows that for each f ∈ Lp(Rn : V ),

lim
|h|→0

‖f ◦ τh − f‖Lp(Rn:V ) = 0.
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Proposition 3.3.55 Let X = (X, d, µ) be a metric measure space and

1 ≤ p <∞. Then Lp(X : V ) as a Banach space is separable if and only

if V is separable.

Proof Assume first that V is separable. Fix a countable dense set D :=

{v1, v2, . . . } in V . Similarly, fix a countable dense set G := {x1, x2, . . . }
in X. Denote by S the countable collection of subsets of X that are finite

unions of the form

B(xi1 , qi1) ∪ · · · ∪B(xik , qik) ,

where each B(xij , qij ) is a ball with xij ∈ G and qij ∈ Q. We claim that

the collection of simple functions that are finite sums of the functions

v · χS , v ∈ D , S ∈ S

is dense in Lp(X : V ). Indeed, as in the proof of Proposition 3.3.49, we

only need to consider functions that are of the form v ·χU for some vector

v ∈ V and for some open set U ⊂ X of finite measure. Because every

such U can be expressed as a countable union of sets in S, the claim is

easily verified by noting that the measure of U can be approximated by

the measures of sets from S contained in U . This proves that Lp(X : V )

is separable if V is separable.

If V is not separable, there is ε > 0 and an uncountable set G ⊂ V

such that B(v, ε) ∩ B(w, ε) = ∅ whenever v, w ∈ G are distinct points.

(This assertion is an easy consequence of Zorn’s lemma, cf. [237, p. 87]

or [214, p. 69].) Now fix a ball B ⊂ X of positive and finite measure,

and observe that the collection {v ·χB : v ∈ G} of p-integrable functions

is uncountable, with

||v · χB − w · χB ||Lp(X:V ) ≥ 2 ε µ(B)1/p > 0

whenever v, w ∈ G are distinct points. This shows that Lp(X : V ) cannot

be separable.

The proposition is proved.

3.4 Differentiation

Classical differentiation theorems involving integrals of functions extend

rather directly to Bochner integrable vector-valued functions. In this

section, we treat such extensions, including differentiation of measures

on metric spaces. Covering theorems are pivotal to Lebesgue type differ-

entiation, and we begin the discussion by introducing classes of metric
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measure spaces where such covering theorems hold. Both the covering

theorems and the Lebesgue differentiation theorem, especially in the

context of a doubling metric measure space, will feature prominently in

later sections of this book.

Vitali measures. The Vitali covering theorem for Lebesgue measure

asserts that from every fine covering B of a set A ⊂ Rn by closed balls we

can extract a pairwise disjoint subcollection C ⊂ B so that the measure

of A \
⋃
B∈C B is zero. A covering B of a set A by closed balls is called

fine if

inf{r : r > 0 and B(x, r) ∈ B} = 0 (3.4.1)

for each x ∈ A.

Turning Vitali’s theorem into a definition, we call a metric measure

space (X, d, µ) a Vitali metric measure space, and the measure µ a Vitali

measure, if the corresponding result holds for fine coverings of subsets

of X. Thus, X is a Vitali metric measure space if and only if for every

subset A of X and for every covering B of A by closed balls satisfying

(3.4.1) for each x ∈ A there exists a pairwise disjoint subcollection C ⊂ B
so that

µ

(
A \

⋃
B∈C

B

)
= 0. (3.4.2)

The following theorem provides a large class of Vitali measures.

Theorem 3.4.3 Let (X, d, µ) be a metric measure space such that

lim sup
r→0

µ(B(x, 2r))

µ(B(x, r))
<∞ (3.4.4)

for almost every x ∈ X. Then X is a Vitali metric measure space.

Proof Let A ⊂ X and let B be a fine covering of A by closed balls.

We need to find a pairwise disjoint subcollection C of B such that (3.4.2)

holds. To this end, we may assume that (3.4.4) holds for every x ∈ A. We

may also assume that the balls in the covering B have uniformly bounded

radii; this allows us to repeatedly use the 5B-covering lemma 3.3 for B
and for its various subfamilies.

For x ∈ X, denote the numerical value of the limit superior in (3.4.4)

by D(x). Next, use Lemma 3.3.28 and write

X =

∞⋃
k=1

Dk ,
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where each Dk is open and of finite measure such that Dk ⊂ Dk+1. Then

put

Ak := {x ∈ A : D(x) < 2k} ∩Dk .

Clearly, Ak ⊂ Ak+1 and A =
⋃∞
k=1Ak.

We will inductively choose finite pairwise disjoint subfamilies Cl ⊂ B
such that Cl ⊂ Cl+1 and that

µ

(
Ak \

⋃
B∈Cl

B

)
≤ 2−lµ(Ak) (3.4.5)

whenever 1 ≤ k ≤ l. It is then clear that the pairwise disjoint family

C :=

∞⋃
l=1

Cl = {B : B ∈ Cl for some l}

satisfies (3.4.2).

To this end, we let B1 consist of all balls B(x, r) from B with r ≤ 1

such that x ∈ A1, B(x, r) ⊂ D1, and

µ(B(x, 5r)) ≤ 23µ(B(x, r)) . (3.4.6)

The family B1 is a fine covering of A1 by closed balls of uniformly

bounded radii. We use the 5B-covering lemma 3.3 and choose a pair-

wise disjoint subfamily C′1 of balls from B1 with the following property:

if B ∈ B1, then there exists a ball B′ ∈ C′1 such that B ∩ B′ 6= ∅ and

diam(B) < 2 diam(B′). Enumerate C′1 = {B1
1 , B

1
2 , . . . }. Because the balls

B1
i are closed, and because the covering B1 is fine, there is a positive

integer N such that we can find for every x ∈ A1 \ (B1
1 ∪ · · · ∪ B1

N ) a

ball B ∈ B1, centered at x, that does not meet the union B1
1 ∪ · · · ∪B1

N .

Such a ball, therefore, meets a ball B1
i ∈ C′1 for some i > N such that

diam(B) < 2 diam(B1
i ). In particular, we find that

A1 \ (B1
1 ∪ · · · ∪B1

N ) ⊂
⋃

i≥N+1

5B1
i .

It follows from this and from (3.4.6) that

µ(A1 \ (B1
1 ∪ · · · ∪B1

N )) ≤
∑

i≥N+1

µ(5B1
i ) ≤ 23

∑
i≥N+1

µ(B1
i ) .

The right hand side in the preceding inequality tends to zero as N →∞,

because the family C′1 is pairwise disjoint and consists of balls lying in
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a fixed subset of X, namely D1, of finite measure. We choose N1 such

that

µ(A1 \ (B1
1 ∪ · · · ∪B1

N1
)) ≤ 1

2
µ(A1)

and set

C1 := {B1
1 , . . . , B

1
N1
} .

Next, assume that finite pairwise disjoint families of balls C1 ⊂ · · · ⊂
Cl from B have been selected such that (3.4.5) holds for 1 ≤ k ≤ l.

Let Bl+1 consist of all balls B(x, r) from B such that x ∈ Al+1, that

B(x, r) ⊂ Dl+1 \
⋃
B∈Cl B, and that

µ(B(x, 5r)) ≤ 23(l+1)µ(B(x, r)) .

Then the family Bl+1 is a fine covering of Al+1 \
⋃
B∈Cl B by closed

balls of uniformly bounded radii, and by the 5B-covering lemma we

can choose a pairwise disjoint subfamily C′l+1 of balls from Bl+1 with

the following property: if B ∈ Bl+1, then there exists a ball B′ ∈ C′l+1

such that B ∩ B′ 6= ∅ and diam(B) < 2 diam(B′). Enumerating C′l+1 =

{Bl+1
1 , Bl+1

2 , . . . } and arguing as earlier, we find that

Al+1 \

[ ⋃
B∈Cl

B ∪ (Bl+1
1 ∪Bl+1

2 ∪ · · · ∪Bl+1
N )

]
⊂

⋃
i≥N+1

5Bl+1
i ,

and then that

µ

(
Al+1 \

[ ⋃
B∈Cl

B ∪ (Bl+1
1 ∪Bl+1

2 ∪ · · · ∪Bl+1
N )

])
≤ 23(l+1)

∑
i≥N+1

µ(Bl+1
i ) .

(3.4.7)

The right hand side in the preceding inequality tends to zero as N →∞,

because the family C′l+1 is pairwise disjoint and consists of balls lying in

Dl+1. Now pick an integer Nl+1 such that the expression on the right in

(3.4.7) for N = Nl+1 is less than 2−l−1µ(Ak) for every 1 ≤ k ≤ l+ 1 for

which µ(Ak) > 0, that is,∑
i≥Nl+1+1

µ(Bl+1
i ) ≤ 2−4(l+1) min{µ(Ak) : 1 ≤ k ≤ l + 1, µ(Ak) > 0},

and set

Cl+1 := Cl ∪ {Bl+1
1 , . . . , Bl+1

Nl+1
} .
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It follows from the construction that Cl+1 is a collection as required,

completing the induction step.

The proof of the theorem is complete.

Doubling measures. A Borel regular measure µ on a metric space

(X, d) is called a doubling measure if every ball in X has positive and

finite measure and there exists a constant C ≥ 1 such that

µ(B(x, 2r)) ≤ C · µ(B(x, r)) (3.4.8)

for each x ∈ X and r > 0. In particular, X is separable as a metric space

(Lemma 3.3.30) and (X, d, µ) is a metric measure space. We call a triple

(X, d, µ) a doubling metric measure space if µ is a doubling measure on

X.

The doubling constant of a doubling measure µ is the smallest constant

C ≥ 1 for which inequality (3.4.8) holds. We denote this constant by Cµ.

By iterating (3.4.8), we deduce the growth estimate

µ(B(x, λr)) ≤ Cµ · λlog2 Cµµ(B(x, r)) (3.4.9)

for each x ∈ X, λ ≥ 1, and r > 0. The number log2 Cµ sometimes

takes the role of a “dimension” for a doubling metric measure space X.

Note that for µ = mn, the Lebesgue n-measure, we have log2 Cµ = n.

Moreover, log2 Cµ > 0 unless X is a one-point space.

We reiterate that in this book it is not assumed in general that metric

measure spaces are complete as metric spaces. In particular, doubling

metric measure spaces need not be complete. For example, every open

ball in Rn equipped with the Lebesgue n-measure is a doubling metric

measure space.

It is clear that doubling measures satisfy (3.4.4) so that doubling mea-

sures are Vitali measures.

Doubling metric measure spaces will play a central role in the later

chapters of this book. Additional examples of such spaces are given

Chapter 14.

Examples. The hypothesis (3.4.4) in Theorem 3.4.3 is considerably

weaker than assuming that X is a doubling metric measure space. For

example, it follows from the theorem, and from basic Riemannian ge-

ometry, that every Riemannian manifold with the Riemannian distance

and measure is a Vitali metric measure space. Moreover, if (X, d, µ) sat-

isfies (3.4.4) and f is a locally integrable nonnegative function on X,

then (X, d, µf ) is a Vitali metric measure space, where dµf = f dµ.
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This follows by combining Theorem 3.4.3 and the Lebesgue differentia-

tion theorem 3.4. A complete Riemannian manifold, with Ricci curva-

ture non-negative outside a compact subset of the manifold, satisfies the

doubling condition, as demonstrated in [184, Lemma 1.3].

If µ is a Borel regular measure on a Riemannian manifold (X, d) with

support S (as defined in (3.3.33)), then (S, d, µ) is a Vitali metric mea-

sure space. This follows from [83, Sections 2.8.9 and 2.8.18]. See also

[197, Theorem 2.8] for the case X = Rn.

Vitali type covering theorems were originally devised to treat various

differentiation theorems. The ensuing Lebesgue differentiation theorem is

one of the central results of analysis; it is crucial to the theory developed

in this book.

Lebesgue differentiation theorem. Let (X, d, µ) be a Vitali metric

measure space, let V be a Banach space, and let f : X → V be a locally

integrable function. Then almost every point x ∈ X is a Lebesgue point

of f , that is,

lim
r→0

∫
B(x,r)

|f(y)− f(x)| dµ(y) = 0 (3.4.10)

for almost every x ∈ X. In particular,

lim
r→0

∫
B(x,r)

f(y) dµ(y) = f(x) (3.4.11)

for almost every x ∈ X.

We note that µ(B(x, r)) > 0 for every r > 0 whenever x ∈ spt(µ) (see

3.3), so that the expressions in (3.4.10) and in (3.4.11) make sense at

µ-almost every point.

Proof Note that the second statement follows from the first by (3.2.2)

and the fact that if 0 < µ(B(x, r)) <∞, then
∫
B(x,r)

f(x) dµ(y) = f(x).

However, we begin by establishing (3.4.11) in the scalar valued case

V = R. To do this, we may assume that f is nonnegative (by considering

the positive and the negative parts separately) as well as integrable over

X (by using Lemma 3.3.28 and replacing f with f ·χB for an appropriate

open ball B ⊂ X). Likewise, we may assume that µ(X) < ∞ and that

µ(B(x, r)) > 0 for every x ∈ X and r > 0.
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The preceding understood, we will first show that

lim sup
r→0

∫
B(x,r)

f dµ <∞ (3.4.12)

for almost every x ∈ X. For c > 0 define

Fc := {x ∈ X : lim sup
r→0

∫
B(x,r)

f dµ > c} .

Fix c > 0 and let O be any open set containing Fc. The family

B := {B(x, r) ⊂ O : x ∈ Fc and
∫
B(x,r)

f dµ > c}

is a fine covering of Fc. We can therefore pick a countable pairwise

disjoint subcollection C of balls from B that covers almost all of Fc. It

follows that

c µ(Fc) ≤ c
∑
B∈C

µ(B) ≤
∑
B∈C

∫
B

f dµ ≤
∫
O

f dµ ≤
∫
X

f dµ <∞ .

In particular, (3.4.12) holds.

Next, for c > 0 define

Ec := {x ∈ X : lim inf
r→0

∫
B(x,r)

f dµ < c} .

The set of all those points x ∈ X for which the limit on the left hand

side of (3.4.11) fails to exist is contained in the countable union of sets

of the form Gs,t := Es ∩Ft, where s < t are rational numbers. We claim

that for every such set we have

t µ(Gs,t) ≤ s µ(Gs,t) . (3.4.13)

Because µ(Gs,t) ≤ µ(X) < ∞, this gives that µ(Gs,t) = 0 as required.

To establish (3.4.13), fix Gs,t and fix a Borel set A containing Gs,t such

that µ(Gs,t) = µ(A). For any open set O containing A, the covering

argument as earlier yields

t µ(Gs,t) ≤
∫
O

f dµ ≤
∫
A

f dµ +

∫
O\A

f dµ ,

and by taking the infimum over all such open sets O, and by using Borel

regularity (3.3.39) together with the absolute continuity of the integral,

we obtain

t µ(Gs,t) ≤
∫
A

f dµ . (3.4.14)

Now fix ε > 0 and let 0 < δ < ε be such that
∫
H
f dµ < ε whenever
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H ⊂ X is measurable such that µ(H) < δ. By Borel regularity (3.3.39),

we can find an open set O containing A such that µ(O) ≤ µ(Gs,t) + δ.

We apply again a covering argument and the Vitali property of µ to find

a countable pairwise disjoint collection C of closed balls contained in O

such that ∫
B

f dµ < sµ(B)

for every B ∈ C and that µ(Gs,t \ ∪B∈CB) = 0. In particular, since

µ(Gs,t) ≤ µ

(
Gs,t \

⋃
B∈C

B

)
+ µ

(⋃
B∈C

B

)
= µ

(⋃
B∈C

B

)
,

we have

µ

(
A \

⋃
B∈C

B

)
≤ µ(O)− µ

(⋃
B∈C

B

)

≤ µ(Gs,t) + δ − µ

(⋃
B∈C

B

)
≤ δ .

Hence ∫
A

f dµ ≤
∫
A\∪B∈CB

f dµ+
∑
B∈C

∫
B

f dµ

≤ ε+ s µ(O) ≤ ε+ s µ(Gs,t) + s δ ,

which gives, by letting ε→ 0, that∫
A

f dµ ≤ s µ(Gs,t) . (3.4.15)

Now (3.4.13) follows from by combining (3.4.14) and (3.4.15).

We have thus proved that the limit on the left hand side in (3.4.11)

exists and is finite for almost every x ∈ X whenever f is a locally

integrable nonnegative function on X. At this juncture, the preceding

assumptions understood, we state and prove the following lemma.

Lemma 3.4.16 Denote by g the almost everywhere defined limit on

the left hand side in (3.4.11). Then g is measurable.

As before, we notice that it suffices to establish the claim on each open

ball B over which f is integrable.
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Proof Because g is the pointwise almost everywhere limit of the func-

tions

gn(x) :=

∫
B(x,1/n)

f dµ

as n→∞, it suffices to show that for a fixed δ > 0 the functions

u(x) := µ(B(x, δ)) and v(x) :=

∫
B(x,δ)

f dµ

are measurable on Uδ = {x : B(x, 2δ) ⊂ B}. Towards this, fix x ∈ Uδ and

let (xi) be a sequence in X converging to x. Fix an open neighborhood

O of B(x, δ). The balls B(xi, δ) lie in O for all large i, which gives that

lim sup
i→∞

u(xi) ≤ µ(O) ,

and also that

lim sup
i→∞

v(xi) ≤
∫
O

f dµ .

By taking the infimum over all suchO, we obtain that lim supi→∞ u(xi) ≤
u(x) and also that lim supi→∞ v(xi) ≤ v(x). This shows that both u and

v are upper semicontinuous functions (cf. Section 4.2) and hence mea-

surable. Thus g is measurable as asserted.

We next verify that g equals f almost everywhere, where g is as in

Lemma 3.4.16. To this end, we will show that their integrals over every

measurable set in X agree. Thus, let A be a measurable set in X. Fix

t > 1 and note that up to a set of measure zero A can be expressed as

the disjoint union of the measurable sets

An := A ∩ {x ∈ X : tn ≤ g(x) < tn+1} ,
A−n−1 := A ∩ {x ∈ X : t−n−1 ≤ g(x) < t−n} ,
A∞ := A ∩ {x ∈ X : g(x) = 0} ,

(3.4.17)

where n = 0, 1, 2, . . . . Note that∫
A∞

f dµ = 0 =

∫
A∞

g dµ (3.4.18)

by (3.4.15). The covering argument used to prove (3.4.14) and (3.4.15)

apply to every measurable subset A of the set Fc, or the set Ec, giving

in particular that

tnµ(An) ≤
∫
An

f dµ , (3.4.19)
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and that ∫
An

f dµ ≤ tn+1µ(An) . (3.4.20)

(Strictly speaking, when proving (3.4.19), we need to observe that An ⊂
{g > sn} for every s < t, and then let s→ t.) Thus,

t−1

∫
An

f dµ ≤ tnµ(An) ≤
∫
An

g dµ

≤ tn+1µ(An) ≤ t

∫
An

f dµ .

A similar argument shows that

t−1

∫
A−n−1

f dµ ≤
∫
A−n−1

g dµ ≤ t

∫
A−n−1

f dµ .

By summing over n, and by observing (3.4.18), we deduce from the

preceding inequalities that

t−1

∫
A

f dµ ≤
∫
A

g dµ ≤ t

∫
A

f dµ .

Finally, by letting t→ 1, we find that∫
A

f dµ =

∫
A

g dµ .

Because A was arbitrary, it follows that f and g agree almost everywhere

in X as required.

We have thus proved (3.4.11) for real-valued locally integrable func-

tions f .

Now we turn to the general case and prove (3.4.10) for a locally inte-

grable function f : X → V . Let Z ⊂ X be a set of measure zero such

that f(X \ Z) is a separable subset of V (Theorem 3.1). Pick a dense

subset D = {v1, v2, . . .} of f(X \ Z) and consider the real-valued func-

tions fj(x) := |f(x) − vj | for j = 1, 2, . . . . Since, by Proposition 3.2.7,

the functions fj are locally integrable, it follows from what was proved

earlier that

|f(x)− vj | = lim
r→0

∫
B(x,r)

|f(y)− vj | dµ(y)

for every x ∈ X \ Zj , where Zj ⊂ X has measure zero. Then

Z ′ = Z ∪
∞⋃
j=1

Zj
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has measure zero, while for each x ∈ X \Z ′ and for each j we have that

lim sup
r→0

∫
B(x,r)

|f(y)− f(x)| dµ(y)

≤ lim sup
r→0

∫
B(x,r)

|f(y)− vj | dµ(y) + |f(x)− vj | = 2|f(x)− vj |.

Since D is dense in f(X \ Z), we find that (3.4.10) holds.

As was remarked in the beginning of the proof, (3.4.10) implies (3.4.11).

The proof of the theorem is thereby complete.

Differentiation of measures. The preceding proof of the Lebesgue

differentiation theorem applies to the general differentiation of measures.

The results of this section are used in the study of rectifiable curves in

the metric setting, see for instance the proof of Theorem 4.4.8. However,

these results are also used in other contexts such as the study of functions

of bounded variation in metric measure spaces, as explained for example

in [6]. Let (X, d, µ) be a metric measure space, and let ν be a Borel

regular locally finite measure on X. The derivative of ν with respect to

µ at a point x ∈ X is the limit

lim
r→0

ν(B(x, r))

µ(B(x, r))
=:

dν

dµ
(x), (3.4.21)

provided the limit exists and is finite.

Because µ(B(x, r)) > 0 for every x ∈ spt(µ) and for every r > 0 (see

3.3), the existence of a limit as in (3.4.21) can be investigated µ almost

everywhere.

Lebesgue–Radon–Nikodym theorem. Let (X, d, µ) be a Vitali met-

ric measure space and let ν be a locally finite Borel regular measure on

X. There exist unique locally finite Borel regular measures νs and νa on

X with the following two properties:

ν(A) = νs(A) + νa(A) (3.4.22)

for every Borel set A ⊂ X; there exists a Borel set D ⊂ X such that

νs(D) = 0, that µ(X \ D) = 0, and that νa = νbD. Moreover, the

derivatives of both ν and νa with respect to µ exist at µ almost every

point in X, and they are µ-measurable and locally integrable in X with

νa(A) =

∫
A

dν

dµ
(x) dµ(x) =

∫
A

dνa

dµ
(x) dµ(x) (3.4.23)
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for every Borel set A ⊂ X. In particular,

dν

dµ
=
dνa

dµ
(3.4.24)

µ-almost everywhere.

In (3.4.22), we have the Lebesgue decomposition of the measure ν into

its singular part νs and absolutely continuous part νa, with respect to µ.

Recall the definition for the measure νbB from (3.3.12).

Proof We first describe a decomposition as in (3.4.22). For E ⊂ X, set

νa(E) := inf ν(B) ,

where the infimum is taken over all Borel sets B ⊂ X such that µ(E \
B) = 0. It is easy to see that νa is a measure; we leave this to the

reader. Note that νa(E) ≤ ν(E) for every set E by Borel regularity,

and that νa(N) = 0 for every set such that µ(N) = 0. In particular,

νa is locally finite. To check that νa is a Borel measure, we use the

Carathéodory criterion (3.3.6). Thus, let E1 and E2 be two sets in X

such that dist(E1, E2) > 0. Let B ⊂ X be a Borel set such that µ((E1 ∪
E2) \ B) = 0. Choose open sets O1 and O2 containing E1 and E2,

respectively, such that dist(O1, O2) > 0, and set B1 := B ∩ O1 and

B2 := B ∩O2. Then µ(E1 \B1) = µ(E2 \B2) = 0, and therefore

ν(B) ≥ ν(B1 ∪B2) = ν(B1) + ν(B2) ≥ νa(E1) + νa(E2) .

Taking the infimum over all Borel sets B as above, we conclude that the

Carathéodory criterion holds, and hence νa is a Borel measure.

To verify that νa is also Borel regular, let E ⊂ X. We may assume

that νa(E) <∞. Pick a decreasing sequence of Borel sets B1 ⊃ B2 ⊃ . . .
such that µ(E \ Bj) = 0 for all j ≥ 1 and that limj→∞ ν(Bj) = νa(E).

Such a sequence can be found, because µ(E\B′) = µ(E\B′′) = 0 implies

µ(E \ (B′ ∩B′′)) = 0. There is a Borel set B0 containing
⋃∞
j=1(E \Bj)

such that µ(B0) = 0. Set B := (
⋂∞
j=1Bj) ∪ B0 . Then B is a Borel set

containing E, and

νa(E) ≤ νa(B) ≤ νa
 ∞⋂
j=1

Bj

 ≤ νa(Bk) ≤ ν(Bk)

for every k = 1, 2, . . . . This gives νa(E) = νa(B) establishing the Borel

regularity. Note also that with D =
⋂∞
j=1Bj , we have that D is Borel
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and µ(E \ D) = 0. It follows that νa(E) ≤ ν(D) ≤ limj ν(Bj) =

limj ν
a(Bj) = νa(E), that is, νa(E) = ν(D).

Now if E is a Borel set, then set D′ = D∩E where D is as in the above

paragraph. Then D′ also is a Borel set, with µ(E \D′) = µ(E \D) = 0,

and so νa(E) ≤ ν(D′) ≤ ν(D) = νa(E), that is, νa(E) = ν(D′). We will

now prove that

νa(B) = ν(B ∩D′) (3.4.25)

for every Borel set B ⊂ E. Indeed, if B is a Borel set in D, then (cf.

Lemma 3.3.4)

νa(B) + νa(E \B) = νa(D) = ν(D′) = ν(B ∩D′) + ν(D′ \B) ;

on the other hand, because µ(B \D′) = 0 and µ((E \ B) \ (D′ \ B)) ≤
µ(E \D′) = 0, we have that νa(B) ≤ ν(B ∩D′) and that νa(D \ B) ≤
ν(D′ \B), whence (3.4.25) follows.

We apply the preceding construction to a decomposition of X into

countably many pairwise disjoint Borel sets (Di) such that both µ(Di)

and ν(Di) are finite for each i (Lemma 3.3.28) to obtain Borel sets

D′i ⊂ Di such that µ(D′i) = µ(Di) and that νa(B) = ν(B∩D′i) whenever

B ⊂ Di is a Borel set. We set D :=
⋃
iD
′
i. Then µ(X \D) = 0, and we

claim that νa(E) = ν(E ∩D) for every E ⊂ X. To prove the claim, fix

E ⊂ X and fix a Borel set B containing E such that νa(E) = νa(B).

Then

νa(E) =
∑
i

νa(B ∩Di) =
∑
i

ν(B ∩D′i) = ν(B ∩D) ≥ ν(E ∩D) ,

while µ(B \D) = 0 and so νa(E \D) ≤ νa(B \D) = 0, from which it

follows that

νa(E) ≤ νa(E ∩D) + νa(E \D) = νa(E ∩D) ≤ ν(E ∩D) ,

as desired. Thus, νa = νbD.

Finally, we set νs(E) := ν(E)−νa(E). The preceding discussion shows

that νs(D) = 0. It is routine to verify that νs is a measure; it is also Borel

regular because ν and νa are Borel regular. We leave this to the reader.

The uniqueness of the Lebesgue decomposition (3.4.22) is straightfor-

ward to check; but it also follows from (3.4.23).

We will next show that the derivative of ν with respect to µ exists

at µ almost every point in X. The proof for this assertion is analo-

gous to that of the Lebesgue differentiation theorem 3.4; in fact, the

argument is slightly more straightforward as the Borel regularity can be
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used to finesse measurability issues that arose with integration. First, by

restricting both measures µ and ν appropriately, we may assume that

both µ(X) and ν(X) are finite, and that µ(B(x, r)) > 0 for every x ∈ X
and r > 0. Next, for c > 0 define

Ec :=

{
x ∈ X : lim inf

r→0

ν(B(x, r))

µ(B(x, r))
< c

}
and

Fc :=

{
x ∈ X : lim sup

r→0

ν(B(x, r))

µ(B(x, r))
> c

}
.

Fix c > 0, and let E′c be any subset of Ec. Then fix ε > 0 and choose

an open set O containing E′c such that µ(O) ≤ µ(E′c) + ε. Using a fine

covering of E′c, consisting of all closed balls B(x, r) ⊂ O, x ∈ E′c, such

that ν(B(x, r)) < cµ(B(x, r)), and the hypothesis that µ is a Vitali

measure, we conclude that there exists a countable pairwise disjoint

collection of closed balls C = {B} in O such that ν(B) < cµ(B) for

every B ∈ C and that µ(E′c \
⋃
B∈C B) = 0. Hence

νa(E′c) ≤ ν

(⋃
B∈C

B

)
≤ c

∑
B∈C

µ(B) ≤ c µ(O) ≤ c µ(E′c) + c ε .

By letting ε→ 0, we conclude that

νa(E′c) ≤ c µ(E′c) . (3.4.26)

Similarly, we claim that

c µ(F ′c) ≤ νa(F ′c) (3.4.27)

for every c > 0 and every subset F ′c ⊂ Fc. To see this, we use the fact

νa = νbD for some D ⊂ X such that µ(X \D) = 0. Fix F ′c ⊂ Fc, and

fix ε > 0. Choose an open set O containing F ′c ∩ D such that ν(O) ≤
ν(F ′c ∩D) + ε. As earlier, a covering argument and the Vitali property

yields that

c µ(F ′c) = c µ(F ′c ∩D) ≤ ν(O) ≤ ν(F ′c ∩D) + ε = νa(F ′c) + ε ,

whence (3.4.27) follows by letting ε→ 0. In particular,

c µ(Fc) ≤ νa(Fc) ≤ ν(X) <∞

for every c > 0, and hence we find that

lim sup
r→0

ν(B(x, r))

µ(B(x, r))
<∞
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at µ almost every point x ∈ X. As in the proof of the Lebesgue dif-

ferentiation theorem 3.4, we infer that the set of points x ∈ X such

that the limit in (3.4.21) fails to hold is contained in a countable union

of sets of the form Gs,t := Es ∩ Ft, where s < t are rational num-

bers. It follows from (3.4.26) and (3.4.27), and from the assumption

µ(Gs,t) ≤ µ(X) <∞, that µ(Gs,t) = 0.

We conclude that the function g(x) := dµ(x)
dν(x) exists and is finite at µ

almost every x ∈ X. The measurability of g is established analogously

to Lemma 3.4.16. We now show that

νa(A) =

∫
A

g(x) dµ(x) (3.4.28)

for every Borel set A ⊂ X. Again, this is similar to the argument in the

proof of the Lebesgue differentiation theorem. Let A ⊂ X be a Borel

set. Fix t > 1 and define sets An as in (3.4.17). Then up to a set of µ

measure zero, A can be expressed as a disjoint union of the sets An. We

use the inequalities (3.4.26) and (3.4.27), in place of (3.4.15), (3.4.19),

and (3.4.20), and conclude that νa(A∞) = 0, and that

t−1νa(A) ≤
∫
A

g dµ ≤ tνa(A) .

Therefore (3.4.28) follows by letting t→ 1.

The second equality in (3.4.23) follows from the first and from the

Lebesgue differentiation theorem 3.4. Finally, (3.4.24) follows from (3.4.23).

Theorem 3.4 is now completely proved.

Remark 3.4.29 The Lebesgue differentiation theorem 3.4 was formu-

lated for closed balls, because the Vitali type covering argument was

used in the proof. Similarly, closed balls were used in the measure dif-

ferentiation (3.4.21). For technical reasons, it is sometimes better to use

open balls.

If (X, d, µ) is a metric measure space and if f : X → V is locally

integrable, then∫
B(x,r)

|f(y)− f(x)| dµ(y) ≤ µ(B(x, 2r))

µ(B(x, r))

∫
B(x, 3r2 )

|f(y)− f(x)| dµ(y)

for almost every x ∈ X and for every small enough r > 0 depending

on x (cf. 3.3). In particular, if µ satisfies the asymptotic doubling prop-

erty (3.4.4), then we have that

lim
r→0

∫
B(x,r)

|f(y)− f(x)| dµ(y) = 0 (3.4.30)
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for almost every x ∈ X. Consequently, if µ satisfies (3.4.4), then also

lim
r→0

∫
B(x,r)

f(y) dµ(y) = f(x) (3.4.31)

for almost every x ∈ X.

By using (3.4.24) and (3.4.31), we further infer that

dν

dµ
(x) = lim

r→0

ν(B(x, r))

µ(B(x, r))
(3.4.32)

for µ almost every x ∈ X if µ satisfies (3.4.4) and if ν is a locally finite

Borel regular measure on X.

In particular, (3.4.30), (3.4.31), and (3.4.32) hold on doubling metric

measure spaces.

Suprema of measures. Let X be a topological space, and let µ and

ν be two Borel measures on X. Define

(µ ∨ ν)(B) := sup{µ(B1) + ν(B2)} (3.4.33)

for every Borel set B ⊂ X, where the supremum is taken over all Borel

partitions B = B1 ∪B2 of B.

We extend (µ ∨ ν) to all subsets E of X as in (3.3.3):

(µ ∨ ν)(E) := inf(µ ∨ ν)(B) , (3.4.34)

where the infimum is taken over all Borel sets B in X containing E.

Note that if E happens to be a Borel set, then the two numbers (3.4.33)

and (3.4.34) are equal.

Furthermore, notice that (µ ∨ ν)(E) ≥ µ(E) and that (µ ∨ ν)(E) ≥
ν(E), that is, (µ ∨ ν) majorizes both µ and ν. It is also straightforward

to see that (µ ∨ ν) ≤ µ+ ν and so (µ ∨ ν) is locally finite if both µ and

ν are locally finite, and that (µ ∨ µ) = µ.

Lemma 3.4.35 The set function µ ∨ ν is a Borel regular measure on

X if both µ and ν are Borel regular.

Proof From (3.4.34), it is easy to see that µ∨ν is monotonic. IfB1, B2, · · · ⊂
X are Borel sets and if

⋃
iBi = B∪B′ is a Borel partition of

⋃
iBi, then

Bi = (B ∩Bi) ∪ (B′ ∩Bi) is a Borel partition of Bi for each i, whence

µ(B) + ν(B′) ≤
∑
i

µ(B ∩Bi) + ν(B′ ∩Bi) ≤
∑
i

(µ ∨ ν)(Bi) .
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It follows that

(µ ∨ ν)

(⋃
i

Bi

)
≤
∑
i

(µ ∨ ν)(Bi) .

Next, if E1, E2, · · · ⊂ X are arbitrary, choose Borel sets Bi ⊃ Ei such

that µ(Bi) = µ(Ei) and that ν(Bi) = ν(Ei). Then B :=
⋃
iBi is a Borel

set containing
⋃
iEi and by (3.4.34),

(µ ∨ ν)

(⋃
i

Ei

)
≤ (µ ∨ ν)

(⋃
i

Bi

)
≤
∑
i

(µ ∨ ν)(Bi) .

Taking infima over all such Bi, by (3.4.34) we see that

(µ ∨ ν)

(⋃
i

Ei

)
≤
∑
i

(µ ∨ ν)(Ei).

That is, µ ∨ ν is subadditive; it follows that (µ ∨ ν) is a measure on X.

To check that Borel sets are measurable, let B ⊂ X be a Borel set, and

let T ⊂ X be arbitrary. Fix ε > 0 and let B′ be a Borel set containing

T such that (µ ∨ ν)(B′) ≤ (µ ∨ ν)(T ) + ε. Let B′ ∩ B = B1 ∪ B2 and

B′ \B = B′1 ∪B′2 be Borel partitions; then B′ = B1 ∪B′1 ∪B2 ∪B′2 is a

Borel partition, and hence

µ(B1) + ν(B2) + µ(B′1) + ν(B′2) = µ(B1 ∪B′1) + ν(B2 ∪B′2)

≤ (µ ∨ ν)(B′) ≤ (µ ∨ ν)(T ) + ε .

This gives that

(µ ∨ ν)(T ∩B) + (µ ∨ ν)(T \B) ≤ (µ ∨ ν)(B′ ∩B) + (µ ∨ ν)(B′ \B)

≤ (µ ∨ ν)(T ) + ε ,

and it follows that (µ ∨ ν) is a Borel measure. Finally, (µ ∨ ν) is Borel

regular by definition (3.4.34). The lemma follows.

If µ1, µ2, . . . is a sequence of Borel measures on X, we inductively

define µ1 ∨ · · · ∨ µk = (µ1 ∨ · · · ∨ µk−1) ∨ µk, and then, for the entire

sequence of measures, we define( ∞∨
i=1

µi

)
(E) := lim

k→∞
(µ1 ∨ · · · ∨ µk)(E) , (3.4.36)

where we have simplified the notation by writing ((µ∨ν)∨ζ) =: (µ∨ν∨ζ).
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Note that the limit in (3.4.36) exists, because µ(E) ≤ (µ ∨ ν)(E). It is

also clear that µ ∨ ν = ν ∨ µ and that( ∞∨
i=1

µi

)
(E) = sup(µi1 ∨ · · · ∨ µik)(E) ,

where the supremum is taken over all finite collections of indices {i1, . . . , ik}.
In particular, it follows that if {µi : i ∈ I} is any countable collection

of Borel measures on X, then we can define(∨
i∈I

µi

)
(E) := sup(µi1 ∨ · · · ∨ µik)(E) (3.4.37)

unambiguously.

Lemma 3.4.38 The set function (
∨
i∈I µi) is a Borel regular measure

on X if all measures µi, i ∈ I, are Borel regular, where I is a countable

set.

In view of Lemma 3.4.35, the proof of Lemma 3.4.38 is straightforward

and left to the reader.

One can define (
∨
i∈I µi) for any indexing set I as the supremum of

the measures (
∨
j∈J µj), where the supremum is taken over all countable

subsets J of I. In the present book, we will not need this concept.

Lemma 3.4.39 Let (X, d, µ) be a Vitali metric measure space and

let {µi : i ∈ I} be a countable collection of locally finite Borel regular

measures on X. If (
∨
i∈I µi) is locally finite, then

d(
∨
i∈I µi)

dµ
(x) = sup

i∈I

dµai
dµ

(x) (3.4.40)

for µ almost every x ∈ X, where µai denotes the absolutely continuous

part of the measure µi with respect to µ.

Proof Put ν := (
∨
i∈I µi). We first claim that the absolutely continuous

part of ν with respect to µ satisfies

νa =

(∨
i∈I

µai

)
.

To prove the claim, pick Borel sets D ⊂ X and Di ⊂ X such that

µ(X \ (D ∩ (
⋂
iDi))) = 0, that νa = νbD, and that µai = µibDi for

each i ∈ I (the Lebesgue–Radon–Nikodym theorem 3.4). Because µ(D \
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iDi) = 0, we have from the properties of the absolutely continuous

part of a measure that, for Borel sets E (and hence for all sets E),

νa(E) = ν

(
E ∩D ∩

(⋂
i

Di

))

= sup(µi1 ∨ · · · ∨ µik)

(
E ∩D ∩

(⋂
i

Di

))
= sup(µai1 ∨ · · · ∨ µ

a
ik

)(E) ,

as required. Because dν
dµ = dνa

dµ almost everywhere by (3.4.24), we may

assume by the preceding claim that all measures under consideration are

absolutely continuous with respect to µ.

The preceding understood, put ζ := supi∈I
dµi
dµ . Then ζ is a µ mea-

surable function on X. We next observe that for any closed ball B(x, r),

for any collection {µi1 , . . . , µik}, and for any Borel partition B(x, r) =

B1 ∪ · · · ∪Bk, we have that

µi1(B1) + · · ·+ µik(Bk) =

k∑
j=1

∫
Bj

dµij
dµ

dµ ≤
∫
B(x,r)

ζ dµ ,

which gives that

ν(B(x, r)) ≤
∫
B(x,r)

ζ dµ ,

and hence that dν
dµ (x) ≤ ζ(x) for µ almost every x, by the Lebesgue

differentiation theorem 3.4 provided ζ is locally integrable on X, because

µ is a Vitali measure. On the other hand, if B ⊂ X is any Borel set,then∫
B

dµi
dµ

dµ = µi(B) ≤ ν(B) ,

which gives that dµi
dµ (x) ≤ dν

dµ (x) for µ almost every x, and hence that

ζ(x) ≤ dν
dµ (x) for µ almost every x. This also shows that ζ is locally

integrable on X. We conclude that (3.4.40) holds, and the lemma is

thereby proved.

3.5 Maximal functions

We conclude this chapter with a discussion of the Hardy–Littlewood

maximal function. In the remainder of this book, we will only need the
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maximal function of a real-valued function; but given the theory de-

veloped earlier in this chapter, the proofs are no more involved in the

general vector-valued case, which we thus treat for the sake of complete-

ness.

Let (X, d, µ) be a metric measure space and let V be a Banach space.

The Hardy–Littlewood maximal function Mf of a locally integrable func-

tion f : X → V is the real-valued function defined by

Mf(x) := sup
r>0

∫
B(x,r)

|f(y)| dµ(y) . (3.5.1)

The sublinear operator f 7→ Mf is also called the Hardy–Littlewood

maximal operator. We also speak about a maximal function and a max-

imal operator for brevity.

It is understood that in (3.5.1), the supremum is taken over only those

values of r > 0 for which the measure of B(x, r) is finite and positive.

The special assumptions in the following lemma are sufficient for the

purposes of this book.

If we are working with a fixed metric measure space (X, d, µ) and

f : A → V is an integrable function on a measurable subset A ⊂ X,

then it is understood that Mf is the maximal function of f in the metric

measure space (A, d, µ) (cf. Section 3.3).

Lemma 3.5.2 Assume that every ball in X has finite and positive mea-

sure. Then the maximal function Mf of every locally integrable function

f : X → V is measurable.

Proof It is easy to see that the supremum in (3.5.1) is obtained over

positive rational radii r. That is, we have that

Mf(x) := sup
n
gn(x) ,

where

gn(x) :=

∫
B(x,rn)

|f(y)| dµ(y)

for a fixed enumeration {r1, r2, . . . } of the positive rational numbers.

Analogously to Lemma 3.4.16, one shows that for every fixed r > 0

the functions u(x) := µ(B(x, r)) and v(x) :=
∫
B(x,r)

|f | dµ are lower

semicontinuous (cf. Section 4.2) and hence measurable. Thus each gn is

measurable, and the lemma follows.

Before we state the important theorems on the boundedness of the
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Hardy–Littlewood maximal operator on Lp-spaces, we recall the defini-

tion for the weak Lp-spaces.

Let 1 ≤ p <∞. A measurable function g : X → R is said to be in the

weak Lp-space

Lp,∞ = Lp,∞(X) = Lp,∞(X,µ) (3.5.3)

if there exists a constant C > 0 such that

µ({x ∈ X : |g(x)| > t}) ≤ C

tp
(3.5.4)

for all t > 0. The least constant C that makes the above inequality hold

for all t > 0 is called the Lp,∞-norm of g, and is denoted ‖g‖Lp,∞(X).

We also require Cavalieri’s principle:∫
X

|g|p dµ = p

∫ ∞
0

tp−1µ({x ∈ X : |g(x)| > t}) dt , (3.5.5)

which is valid in every measure space (X,µ), for every 0 < p <∞, and

for every measurable function g : X → V . This principle follows from

an application of Tonelli’s theorem, see [86, Proposition 6.24, p. 191].

Theorem 3.5.6 Let X be a doubling metric measure space. The max-

imal operator maps L1(X : V ) to L1,∞(X) and Lp(X : V ) to Lp(X) for

all 1 < p ≤ ∞. More precisely, there exist constants Cp, depending only

on p and on the doubling constant of µ, such that

µ({x ∈ X : Mf(x) > t}) ≤ C1

t
||f ||L1(X:V ) (3.5.7)

for all t > 0 and that

||Mf ||Lp(X) ≤ Cp ||f ||Lp(X:V ) (3.5.8)

for all 1 < p ≤ ∞ and for all measurable functions f : X → V .

Proof We begin with the proof of (3.5.7) by applying the 5B-covering

lemma 3.3. Because this lemma requires the balls to have uniformly

bounded diameter, the required estimate is first proved for the restricted

maximal function

MRf(x) := sup
0<r<R

∫
B(x,r)

|f(y)| dµ(y) , (3.5.9)

for R > 0 fixed, with a constant that is independent of R. Then we pass

to the limit as R→∞.
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For each x satisfying MRf(x) > t, choose a ball B(x, r) with 0 < r <

R such that

t µ(B(x, r)) <

∫
B(x,r)

|f | dµ .

Using the 5B-covering lemma, we extract from the collection of all such

balls a countable pairwise disjoint subcollection G so that (3.3.26) is

satisfied. Then

µ({x ∈ X : MRf(x) > t}) ≤
∑
B∈G

µ(5B) ≤ C
∑
B∈G

µ(B)

≤ C

t

∑
B∈G

∫
B

|f | dµ ≤ C

t

∫
X

|f | dµ ,

where C ≥ 1 depends only on the doubling constant of the measure µ. As

mentioned earlier, inequality (3.5.7) follows from this since MRf →Mf

as R→∞.

To prove (3.5.8), notice first that the case p = ∞ is trivial; we have

C∞ = 1. Assume next that 1 < p < ∞. Let f ∈ Lp(X : V ), fix t > 0,

and write f = g + h, where g := fχ{|f |≤t/2} and h := fχ{|f |>t/2}. Then

Mf(x) ≤Mg(x) +Mh(x) ≤ t

2
+Mh(x) ,

so that

{x ∈ X : Mf(x) > t} ⊂ {x ∈ X : Mh(x) > t/2}.

We note that Mf is measurable by Lemma 3.5.2, and use Cavalieri’s

principle (3.5.5) to obtain

∫
X

|Mf |p dµ = p

∫ ∞
0

tp−1µ({x ∈ X : Mf(x) > t}) dt

≤ p
∫ ∞

0

tp−1µ({x ∈ X : Mh(x) > t/2}) dt.

This gives, by the weak-type estimate (3.5.7) together with Cavalieri’s
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principle, (applied thrice) and Fubini’s theorem that∫
X

|Mf |p dµ ≤ C
∫ ∞

0

tp−1t−1

∫
X

|h| dµ dt

= C

∫ ∞
0

tp−2

(
t

2
µ({x ∈ X : |f(x)| > t/2})

+

∫ ∞
t/2

µ({x ∈ X : |f(x)| > s}) ds

)
dt

≤ C

∫
X

|f |p dµ+ C

∫ ∞
0

∫ 2s

0

µ({x ∈ X : |f(x)| > s})tp−2 dt ds

≤ C

∫
X

|f |p dµ .

Thus (3.5.8) follows and the proof of Theorem 3.5.6 is complete.

The weak estimate (3.5.7) can be used to obtain the following integral

bound for small powers of the (restricted) maximal function. We will

need the next lemma later in this text.

Lemma 3.5.10 Let X be a doubling metric measure space and let

0 < q < 1. Then(∫
B

(M2 rad(B)f)q dµ

)1/q

≤ C

∫
3B

|f | dµ (3.5.11)

for every open ball B in X and for every measurable function f : 3B →
V , where C > 0 depends only on q and the doubling constant of µ.

Proof We have from the weak estimate (3.5.7) that

µ({x ∈ B : M2 rad(B)f(x) > t}) ≤ C1

t

∫
3B

|f | dµ .

We then compute by the aid of Cavalieri’s principle (3.5.5) that∫
B

(M2 rad(B)f)q dµ ≤ q
∫ A

0

tq−1µ(B) dt

+ q C1

∫
3B

|f | dµ
∫ ∞
A

tq−2 dt

≤ µ(B)Aq +
q C1

1− q
Aq−1

∫
3B

|f | dµ .

Putting A = C1

∫
3B
|f | dµ/µ(B) in the preceding, gives∫

B

(M2 rad(B)f)q dµ ≤ Cq1
1− q

µ(B)1−q
(∫

3B

|f | dµ
)q

,
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which gives (3.5.11). The lemma follows.

To close this chapter, we introduce a minor variant of the Hardy–

Littlewood maximal operator defined in (3.5.1).

The noncentered maximal function of a locally integrable function f :

X → V is the function defined by

M∗f(x) := sup
x∈B

∫
B

|f(y)| dµ(y) . (3.5.12)

In other words, the supremum is taken over all balls B in X that contain

the given point x, and not just those that are centered at x. Moreover, we

observe the same convention as in (3.5.1), namely that the supremum

is taken only over those balls that have finite and positive measure.

Obviously,

Mf(x) ≤ M∗f(x) (3.5.13)

for x ∈ X. Moreover, if X is a doubling metric measure space, then

Mf(x) ≤ M∗f(x) ≤ CMf(x) (3.5.14)

for x ∈ X, where C ≥ 1 depends only on the doubling constant of the

measure; this is easy to see.

One technical advantage offered by the noncentered maximal function

is that sets of the form {x ∈ X : M∗f(x) > t}, t > 0, are open in X. (In

particular, M∗f is always measurable.) By using this, we can prove the

following strengthening of equation (3.5.7).

Proposition 3.5.15 Let X be a doubling metric measure space. If

f ∈ L1(X : V ), then

lim
t→∞

t µ({x ∈ X : Mf(x) > t}) = lim
t→∞

t µ({x ∈ X : M∗f(x) > t}) = 0 .

(3.5.16)

Furthermore,

µ({x ∈ X : M∗f(x) > t}) ≤ C

t

∫
{x∈X:M∗f(x)>t}

|f | dµ.

Proof By (3.5.13), it suffices to consider the noncentered maximal func-

tion. The argument is essentially contained in the proof of (3.5.7), but

for completeness, we repeat the main steps.

We consider first a restricted version of the noncentered maximal func-

tion,

M∗,Rf(x) := sup

∫
B

|f(y)| dµ(y) ,
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where R > 0, and the supremum is taken over all balls B in X containing

x with diameter not exceeding R. As in the proof of (3.5.7), we use the

5B-covering lemma and find that, for fixed R > 0 and t > 0, the open

set {x ∈ X : M∗,Rf(x) > t} can be covered by a countable collection of

balls {5Bi} such that

t µ(Bi) <

∫
Bi

|f | dµ ,

and such that the collection {Bi} is pairwise disjoint; note that Bi ⊂
{x ∈ X : M∗,Rf(x) > t} for each i. Thus,

µ({x ∈ X : M∗,Rf(x) > t}) ≤
∑
i

µ(5Bi) ≤ C
∑
i

µ(Bi)

≤ C

t

∫
{x∈X:M∗,Rf(x)>t}

|f | dµ ,

where C ≥ 1 depends only on the doubling constant of µ. Letting R→∞
in the preceding inequality yields

µ({x ∈ X : M∗f(x) > t}) ≤ C

t

∫
{x∈X:M∗f(x)>t}

|f | dµ .

The assertion in (3.5.16) follows upon observing that µ({x ∈ X : M∗f(x) >

t})→ 0 as t→∞ by (3.5.14) and (3.5.7). The proposition is proved.

3.6 Notes to Chapter 3

Vector-valued integration theories sprung up in the 1930s from attempts

to understand differentiation theorems for Banach space-valued func-

tions. A vivid history of the subject can be found in the introduction

to the monograph [75] by Diestel and Uhl. See also [83], [26], and [136].

Vector-valued integration has become a central tool in infinite dimen-

sional stochastic processes and in the geometric theory of Banach spaces

[181], [38]. The introductory material presented here is standard.

The monographs [83], [86], [197], [237] are recommended sources for

the basic measure theory as required in this book. Most results in Section

3.3 up to 3.3 can be found in these sources and especially in [83]. Stan-

dard texts with emphasis on analysis typically treat Borel and Radon

measures on spaces that are locally compact (with [138] a notable excep-

tion). More general discussions, as in Section 3.3, are commonly found

in texts on probability theory. See, for example, [243], [251], [29], and
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[76]. The fact that Borel regular measures on complete and separable

metric spaces are Radon (Proposition 3.3.44) is credited to Oxtoby and

Ulam [221] in [243, p. 122]. (In fact, the proof given in this book appears

in a footnote in [221, p. 561] and is credited to Ulam there.) We have

not found Proposition 3.3.46 explicitly stated in the literature, although

its content should be well known; it can be extracted from [243, Part I,

Chapter II] for example.

The density and separability results in Section 3.3 are standard, albeit

difficult to locate in the literature in the generality given here.

Federer’s monograph [83, Chapters 2.8 and 2.9] contains an extensive

discussion of various covering and differentiation theorems. The material

in Section 3.4 can be found there.

The general notion of a metric measure space has recently gained

prominence in many new areas in analysis and geometry. Especially Gro-

mov has emphasized the metric features of Riemannian spaces, and the

interplay between distance and volume. See [107].

Doubling measures came into vogue in the 1970s through work of

Coifman and Weiss [63], [64], [62]. It was discovered that large parts

of basic real and harmonic analysis go over to spaces of homogeneous

type, which are (quasi-)metric measure spaces equipped with a doubling

measure. The Hardy–Littlewood maximal theorem 3.5.6 in spaces with

doubling measure was proved in 1956 by Smith [252] and by Rauch

[229]. For more recent developments, see [257], [69], [107, Appendix B],

[7], [120], and the references in these works. However, it has recently

been discovered that in fact much of the standard harmonic analysis

and Calderón–Zygmund theory previously established in the doubling

setting, persists even without that assumption on the measure. Notable

work in this direction includes that of Nazarov, Treil, and Vol’berg [217],

[218] and Tolsa [267], [268]. Verdera’s survey article [275] is highly rec-

ommended for a summary of these works and related developments.
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In this chapter, we gather further miscellaneous basic results that will

be used in later chapters. We discuss Lipschitz functions, extension and

embedding theorems, Hausdorff measures, lower semicontinuous func-

tions, and functions of bounded variation with values in an arbitrary

metric space.

4.1 Lipschitz functions, extensions, and embeddings

A function f : X → Y from a metric space X = (X, dX) to a metric

space Y = (Y, dY ) is said to be L-Lipschitz if there exists a constant

L ≥ 0 such that

dY (f(a), f(b)) ≤ LdX(a, b) (4.1.1)

for each pair of points a, b ∈ X. We also say that a function is Lipschitz

if it is L-Lipschitz for some L. The smallest L such that (4.1.1) holds for

each pair of points a, b ∈ X is called the Lipschitz constant of f .

If f : X → Y is a Lipschitz bijection whose inverse is also Lipschitz,

we say that f is a biLipschitz map between X and Y , and that X and

Y are biLipschitz equivalent. The term L-biLipschitz is self-explanatory.

A 1-biLipschitz map is an isometry. Two metric spaces are isometric

if there is an isometry between them. We also say that X admits a

biLipschitz embedding in Y if there is a biLipschitz embedding of X in

Y . Recall that an embedding is a map that is a homeomorphism onto

its image; this concept was used earlier in Section 3.3. A 1-biLipschitz

embedding is called an isometric embedding. If X admits an isometric

embedding in Y , we often suppress the embedding from the notation

and write X ⊂ Y .

We say that a function f : X → Y is locally Lipschitz if every point in

X has a neighborhood such that the restriction of f to this neighborhood

is Lipschitz. The term locally L-Lipschitz means that these restrictions

are L-Lipschitz.

Lipschitz functions play a central role in the theory of Sobolev spaces

as developed in this book. In particular, Lipschitz functions constitute

an important substitute for smooth functions in general spaces. We will

prove, for example, that in many interesting cases locally Lipschitz func-

tions are dense in a Sobolev space. To this end, we study in the present

chapter the density of Lipschitz functions in other situations.
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We begin with the following simple but important Lipschitz extension

lemma, also known as the McShane–Whitney extension lemma.

McShane–Whitney extension lemma Let X = (X, d) be a metric

space, let A ⊂ X, and let f : A → R be an L-Lipschitz function. Then

there exists an L-Lipschitz function F : X → R such that F |A = f .

Proof Without loss of generality we assume that A is nonempty. We

define F by the formula

F (x) = inf{f(a) + Ld(a, x) : a ∈ A} (4.1.2)

for x ∈ X. For a fixed point a0 ∈ A, we have

f(a) + Ld(a, x) ≥ f(a) + Ld(a, a0)− Ld(a0, x)

≥ f(a0)− Ld(a0, x),
(4.1.3)

so that F (x) > −∞ for each x ∈ X. Because the function x 7→ f(a) +

Ld(a, x) is L-Lipschitz for each given a ∈ A, we find that F is everywhere

the finite pointwise infimum of L-Lipschitz functions, and hence itself

L-Lipschitz. More specifically, given x, y ∈ X, for ε > 0 we can find

ayε ∈ A so that F (y) ≥ f(ayε ) + Ld(ayε , y) − ε. Noticing that F (x) ≤
f(ayε ) + Ld(ayε , y) by definition, we conclude that

F (x)− F (y) ≤ Ld(ayε , y)− Ld(ayε , x) + ε ≤ Ld(x, y) + ε.

Letting ε→ 0 gives F (x)− F (y) ≤ Ld(x, y). By symmetry also F (y)−
F (x) ≤ Ld(x, y), that is, F is L-Lipschitz. Finally, from (4.1.3) it follows

that F (a) = f(a) for a ∈ A. The lemma follows.

Remark 4.1.4 Formula (4.1.2) provides the largest L-Lipschitz ex-

tension of f in the sense that if G : X → R is L-Lipschitz such that

G|A = f , then G ≤ F . Similarly, the formula

F (x) = sup{f(a)− Ld(a, x) : a ∈ A} (4.1.5)

defines the smallest L-Lipschitz extension of an L-Lipschitz map f :

A→ R.

Kirszbraun’s extension theorem asserts that the conclusion of Lemma

4.1 remains true if X = Rm and f maps to Rn for n,m ≥ 1. More

generally, if H and H ′ are Hilbert spaces, A ⊂ H and f : A → H ′ is

L-Lipschitz, then there exists an L-Lipschitz function F : H → H ′ such

that F |A = f . These assertions are harder to prove, and will not be used

in this book; see [83, 2.10.43] and [26, Section 1.2]. The following weaker
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result follows by applying Lemma 4.1 to the coordinate functions of an

Rn-valued function.

Corollary 4.1.6 Let X = (X, d) be a metric space, let A ⊂ X, and

let f : A → Rn be an L-Lipschitz function. Then there exists an L
√
n-

Lipschitz function F : X → Rn such that F |A = f .

If we employ the l∞-norm | · |∞ in Rn, then the factor
√
n in Corollary

4.1.6 is unnecessary. More generally, we have the following result.

Corollary 4.1.7 Let X = (X, d) be a metric space, let A ⊂ X, and let

f : A → L∞(Y ) be an L-Lipschitz function, where Y is any set. Then

there exists an L-Lipschitz function F : X → L∞(Y ) such that F |A = f .

Proof For each z ∈ X we want to associate F (z) ∈ L∞(Y ). This is

done arguing as in the proof of Lemma 4.1. We define

F (z)(y) = inf{f(a)(y) + Ld(z, a) : a ∈ A}

when y ∈ Y . Fixing a0 ∈ A, analogously to the proof of Lemma 4.1, we

infer that F (z) ≥ −‖f(a0)‖L∞(Y )−Ld(a0, z), and the definition of F (z)

immediately yields that F (z)(y) ≤ f(a0)(y) +Ld(z, a0) for every y ∈ Y.
Thus ‖F (z)‖L∞(Y ) ≤ ‖f(a0)‖L∞(Y ) + Ld(a0, z) < ∞. It is now easy to

check that F is L-Lipschitz on X with F (z) = f(z) when z ∈ A.

The importance of Corollary 4.1.7 lies in the following fact.

Kuratowski embedding theorem. Every metric space Y embeds iso-

metrically in the Banach space L∞(Y ).

Proof Fix a point y0 ∈ Y = (Y, d). For each y′ ∈ Y define fy′ : Y → R
by

fy′(y) = d(y, y′)− d(y, y0). (4.1.8)

The triangle inequality implies that fy′ is bounded, and that

|fy′(y)− fy′′(y)| = |d(y, y′)− d(y, y′′)| ≤ d(y′, y′′)

for every y ∈ Y . On the other hand, upon choosing y = y′ we obtain

that

||fy′ − fy′′ ||∞ = d(y′, y′′) ,

and the theorem follows.

The target space for the embedding in the Kuratowski theorem 4.1

depends on the space itself. For separable metric spaces, we can use a

universal target.
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Fréchet embedding theorem. Every separable metric space embeds

isometrically in the Banach space l∞.

Proof Choose a countable dense set {yi : i = 0, 1, 2, . . . } in a metric

space Y = (Y, d). It is straightforward to check that the map

y 7→ (d(y, y1)− d(y1, y0), d(y, y2)− d(y2, y0), . . . ) (4.1.9)

determines an isometric embedding of Y in l∞.

Remark 4.1.10 There is no canonical isometric embedding of a metric

space Y in L∞(Y ), or in l∞ in case Y is separable. The embedding y′ 7→
fy′ in (4.1.8) depends on the chosen base point y0, and the embedding

in (4.1.9) depends on the chosen dense set {yi}. For many applications,

the particular choices are immaterial, but some caution is necessary; see

Section 7.6.

While Theorem 4.1 asserts that every separable metric space is iso-

metrically embeddable in l∞, this is somewhat unsatisfactory as l∞ is

itself not separable. By a theorem of Banach [21, Théorème 9, p. 185],

[121, Theorem 3.6], every separable metric space admits an isometric

embedding in the separable Banach space C([0, 1]). In this book, we will

frequently embed separable metric spaces in Banach spaces, and Ba-

nach’s theorem could be used to have a universal separable target. How-

ever, the embedding theorems of Kuratowski (4.1) and Fréchet (4.1) are

sufficient for our purposes here. Isometric embeddings of metric spaces

in Banach spaces mostly provide a convenient framework to do analysis

as we require in this book, and the specific structure of the receiving

space is not so important.

Simple examples show that there need not be a Lipschitz (or even

continuous) extension of a Lipschitz map f : A → Y , if A ⊂ X, and

X and Y are arbitrary metric spaces. This happens, for instance, when

A = Y is the circle S(0, 1) in the standard plane X, and f is the identity

mapping. On the other hand, it follows from the preceding discussion

that a Lipschitz extension of f always exists if we think of f mapping

into L∞(Y ), which contains an isometric copy of Y . This point of view

is sometimes useful.

Doubling spaces. An ε-separated set, ε > 0, in a metric space is a set

such that every two distinct points in the set have distance at least ε.

A metric space X is called doubling with constant N , where N ≥ 1 is

an integer, if for each ball B(x, r), every r/2-separated subset of B(x, r)

has at most N points. We also say that X is doubling if it is doubling
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with some constant that need not be mentioned. It is clear that every

subset of a doubling space is doubling with the same constant.

It is immediate that if X = (X, d, µ) is a doubling metric measure

space, then X is doubling. Indeed, if an r/2-separated subset of B(x, r)

contains k points x1, . . . , xk, then we have by the doubling property of

the measure and by the pairwise disjointedness of the balls B(xi, r/4),

i = 1, . . . , k, that

k

C4
µ

µ(B(x, 2r)) ≤
∑
i

C−1
µ µ(B(xi, r/2)) ≤

∑
i

µ(B(xi, r/4)) ≤ µ(B(x, 2r)),

and thus we conclude that k ≤ C4
µ. Here we used the fact that balls

have positive and finite measure, which follows from the fact that µ is

doubling, locally finite, and non-trivial. The above argument also shows

that if a metric space X is equipped with a non-trivial locally finite

doubling measure, then X is separable and so gives a metric measure

space in the sense of Section 3.3.

On the other hand, there are doubling metric spaces, even open subsets

of the real line, that do not admit doubling measures. See Section 4.5.

We record some elementary results about doubling spaces. The first

one is an alternate characterization of doubling spaces.

Lemma 4.1.11 If X is a doubling metric space with constant N , then

every open ball of radius r > 0 in X can be covered by N open balls of

radius r/2. Conversely, if X is a metric space such that every open ball

of radius r > 0 in X can be covered by M open balls of radius r/2, then

X is doubling with constant M2.

The doubling condition can be applied at small scales as follows.

Lemma 4.1.12 Let X be a doubling metric space with constant N

and let k ≥ 1 be an integer. Then every 2−kr-separated set in every ball

B(x, r) in X has at most Nk points.

Lemma 4.1.13 Every doubling metric space is separable.

A metric space is said to be proper if every closed ball in it is compact.

Lemma 4.1.14 The metric completion of a doubling metric space is

doubling with the same constant. Moreover, a complete doubling metric

space is proper.

The proofs for the preceding four lemmas are left to the reader.
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Whitney decomposition. Open subsets of doubling spaces can be

covered by balls that constitute a covering akin to the classical Whitney

decomposition of open subsets of Rn. We next discuss such coverings.

Proposition 4.1.15 Let X = (X, d) be a doubling metric space with

constant N and let Ω be an open subset of X such that X \Ω 6= ∅. There

exists a countable collection WΩ = {B(xi, ri)} of balls in Ω such that

Ω =
⋃
i

B(xi, ri) (4.1.16)

and that ∑
i

χB(xi,2ri) ≤ 2N5 , (4.1.17)

where

ri =
1

8
dist(xi, X \ Ω) . (4.1.18)

Above, it is important to consider dist(x,X\Ω) rather than dist(x, ∂Ω)

because it could very well happen in our setting that B(x,dist(x, ∂Ω))

intersects X \ Ω.

Proof For x ∈ Ω, denote d(x) := dist(x,X \ Ω). Then for k ∈ Z let

Fk := {B(x, 1
40d(x)) : x ∈ Ω with 2k−1 < d(x) ≤ 2k} .

By the 5B-covering lemma 3.3, we can pick a countable pairwise disjoint

subfamily Gk ⊂ Fk such that⋃
B∈Fk

B ⊂
⋃
B∈Gk

5B .

We claim that

WΩ :=

∞⋃
k=1

{5B : B ∈ Gk}

satisfies (4.1.16)–(4.1.18).

It is immediate from the construction that (4.1.16) and (4.1.18) hold.

To prove (4.1.17), suppose that there is a point in Ω that belongs to

M balls of the form 2B, B ∈ WΩ. We label these balls conveniently

as B(x1,
1
4d(x1)), . . . , B(xM ,

1
4d(xM )) with d(x1) ≥ d(xi) for each i =

1, . . . ,M . We readily find, by using the triangle inequality, that

d(xi) ≥
3

5
d(x1) (4.1.19)
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and that

B(xi,
1
4d(xi)) ⊂ B(x1,

3
4d(x1))

for each i = 1, . . . ,M . On the other hand, if xi, xj are centers of balls

belonging to the same family Fk, then

d(xi, xj) ≥
1

20
min{d(xi), d(xj)} ≥

1

40
d(x1)

whenever i 6= j. In other words, there is a ball of radius 3
4d(x1) containing

a 1
40d(x1)−separated set of M elements. Lemma 4.1.12 then gives that

at most N5 of our balls can have their centers in Fk for a fixed k.

Suppose x1 ∈ Fk1 . From above, we have that d(x1) ≥ d(xi) ≥ 3
5d(x1)

for all i = 2, . . . ,M and thus we conclude that all centers are contained

in Fk1−1 ∪ Fk1 . Thus (4.1.17) follows.

The proof of the proposition is complete.

Lipschitz partition of unity. Let X be a doubling metric space with

constant N , let Ω be an open subset of X such that X \ Ω 6= ∅, and

let WΩ be a collection of balls in Ω as in Proposition 4.1.15 satisfying

(4.1.16)–(4.1.18). Given a ball B(xi, ri) ∈ WΩ, define

ψi(x) := min

{
1

ri
dist(x,X \B(xi, 2ri)), 1

}
.

Then ψi is 1/ri-Lipschitz. Moreover, (4.1.16) and (4.1.17) give that

1 ≤
∑
i

ψi(x) ≤ 2N5 .

Set

ϕi(x) :=
ψi(x)∑
k ψk(x)

. (4.1.20)

Then the functions ϕi satisfy the following properties for some constant

C ≥ 1 that depends only on the doubling constant of X:

(i). ϕi(x) = 0 for x 6∈ B(xi, 2ri), and for every x ∈ Ω we have that

ϕi(x) 6= 0 for at most C indices i;

(ii). 0 ≤ ϕi ≤ 1 and ϕi|B(xi, ri) ≥ C−1;

(iii). ϕi is C/ri-Lipschitz;

(iv).
∑
i ϕi(x) = 1 for every x ∈ Ω.

Indeed, it is obvious from (4.1.17) and from the definitions that (i),

(ii), and (iv) hold with C = 2N5. A routine argument shows that (iii)

holds with C = 5N5.
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A collection {ϕi} as above is called a Lipschitz partition of unity of

the open set Ω.

Next we formulate and prove the following Lipschitz extension theo-

rem.

Theorem 4.1.21 Let X = (X, d) be a doubling metric space, let A ⊂
X, and let f : A→ V be an L-Lipschitz function from A into a Banach

space V . Then there exists a CL-Lipschitz function F : X → V such that

F |A = f , where C ≥ 1 is a constant that depends only on the doubling

constant of X.

Proof By considering the metric completion of X, we may assume that

X is complete, and hence proper by Lemma 4.1.14. We may further

assume that A is closed, because an L-Lipschitz function f as in the

hypotheses can uniquely be extended to an L-Lipschitz function on the

closure of A. Finally, we may assume that neither A nor Ω := X \
A is empty. Let WΩ = {B(xi, ri)} be a collection of balls in Ω as in

Proposition 4.1.15, and let {ϕi} be a Lipschitz partition of unity as in

4.1 satisfying (i) – (iv). Select, for each i, a point yi ∈ A such that

8ri = dist(xi, A) = d(xi, yi) .

Because X is proper and A is closed, such points yi can be found.

Recall the convention that we let C ≥ 1 denote any constant that may

depend on the doubling constant of X, but not on other parameters.

We set

F (x) :=
∑
i

ϕi(x)f(yi)

when x ∈ Ω and set F (x) = f(x) when x ∈ A, and claim that F is

an extension of f as desired. First we observe that F is a well defined

function from X to V by 4.1 (i). Next, fix y ∈ A and let x ∈ Ω. Then

by (iv),

|F (x)− f(y)| =

∣∣∣∣∑
i

(f(yi)− f(y))ϕi(x)

∣∣∣∣
≤ C max

i:2Bi3x
|f(yi)− f(y)|

≤ CL max
i:2Bi3x

d(yi, y)

≤ CLd(x, y) ,

(4.1.22)
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where we abbreviate Bi = B(xi, ri) and where the last inequality follows

from the estimate

d(y, yi) ≤ d(y, x) + d(x, xi) + d(xi, yi) ≤ d(x, y) +
5

4
d(xi, yi) ≤

8

3
d(x, y) .

(4.1.23)

We obtain in particular that F (x) → f(y) as Ω 3 x → y ∈ A. It

remains to show that F is CL-Lipschitz. To this end, fix a, b ∈ X. By

what was proved in the preceding paragraph, we may assume that a and

b both lie in Ω. Suppose first that a, b ∈ 2Bj for some j, where notation

is as before. Then by 4.1(iv),

|F (a)− F (b)| =

∣∣∣∣∑
i

f(yi)(ϕi(a)− ϕi(b))
∣∣∣∣

=

∣∣∣∣∑
i

(f(yi)− f(yj))(ϕi(a)− ϕi(b))
∣∣∣∣

≤ CLrj
∑
i

|ϕi(a)− ϕi(b)| ≤ CL|a− b| ,

(4.1.24)

where the penultimate inequality follows from an argument analogous

to (4.1.23), and where the last inequality follows from 4.1 (iii) and the

fact that if 2Bi ∩ 2Bj is nonempty, then the radii ri, rj satisfy ri ≥ 3
5rj

by (4.1.19).

It remains to consider the case where a ∈ Bj for some j while b /∈ 2Bk
for any k with a ∈ Bk. Let ya ∈ A be a point such that dist(a,A) =

d(a, ya), and similarly for b. Using (4.1.22), we estimate

|F (a)− F (b)| ≤ |F (a)− F (ya)|+ |F (ya)− F (yb)|+ |F (yb)− F (b)|
≤ C Ld(a, ya) + Ld(ya, yb) + C Ld(yb, b)

≤ C Ld(a, b)

(4.1.25)

where again the last inequality follows from the conditions on a, b that

give d(a, ya) = d(a) < 4d(a, b), d(b, yb) < 4d(a, b), and d(ya, yb) ≤
d(a, ya)+d(a, b)+d(b, yb). The theorem now follows by combining (4.1.22),

(4.1.24), and (4.1.25).

Lipschitz extension pairs. A pair of metric spaces (X,Y ) is said to

have the Lipschitz extension property if there is an increasing function Ψ :

(0,∞) → (0,∞) such that the following holds: for every subset A ⊂ X

and for every L-Lipschitz map f : A→ Y there exists a Ψ(L)-Lipschitz

map F : X → Y such that F |A = f . If one can choose Ψ(t) = Ct for
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some constant C ≥ 1, we also say that the pair (X,Y ) has the Lipschitz

extension property with constant C. We often omit the function Ψ from

the terminology and speak of a Lipschitz extension property for brevity.

It follows from the results earlier in this chapter that the pairs (X,Rn)

and (X, l∞(Y )) have the Lipschitz extension property for arbitrary X

and Y , as does the pair (X,V ) for every Banach space V, provided X is

doubling. On the other hand, it is not true that (X, l2) has the Lipschitz

extension property for every metric space X [26, Corollary 1.29].

4.2 Lower semicontinuous functions

Let X = (X, d) be a metric space. A function f : X → (−∞,∞] is said

to be lower semicontinuous if the set {x ∈ X : f(x) > a} is open for

each a ∈ R.

The non-centered maximal function considered in (3.5.12) is a lower

semicontinuous function. A typical lower semicontinuous function that

is not, in general, continuous is the characteristic function of an open

set. It is easy to see that f : X → (−∞,∞] is lower semicontinuous if

and only if

lim inf
y→x

f(y) ≥ f(x) (4.2.1)

for every x ∈ X. Thus, if f is lower semicontinuous and f(x) =∞ for a

point x ∈ X, then f is continuous (in the extended sense) at x.

A function f is said to be upper semicontinuous if −f is lower semi-

continuous. Thus, a function is continuous if and only if it is both upper

and lower semicontinuous.

Lower semicontinuous functions on a given metric space form a pos-

itive cone, closed under the pointwise minimum operation; that is, if

f and g are lower semicontinuous and if c ≥ 0, then both cf + g and

min{f, g} are lower semicontinuous. Moreover, the pointwise supremum

of an arbitrary family of lower semicontinuous functions is lower semi-

continuous. These facts are easily verified.

Proposition 4.2.2 Let (X, d) be a metric space, let c ∈ R, and let

f : X → [c,∞] be lower semicontinuous. Then there exists a sequence

(fi) of Lipschitz functions on X such that c ≤ fi ≤ fi+1 ≤ f and that

limi→∞ fi(x) = f(x) for each x ∈ X.

Proof Define, for each i = 1, 2, . . . , a function fi on X by

fi(x) = inf{f(y) + id(x, y) : y ∈ X}.
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Then, following the argument found in the proof of McShane Lemma 4.1,

we see that each fi is i-Lipschitz with c ≤ fi(x) ≤ fi+1(x) ≤ f(x) for

each x ∈ X. Fix x ∈ X. Assume first that f(x) = ∞. Let M > 0,

and choose ε > 0 such that f > M on the ball B(x, ε). Therefore, fi(x)

is at least the minimum of the numbers M and c + iε. For every i so

large that c + iε > M , we have that fi(x) ≥ M , which implies that

limi→∞ fi(x) =∞ = f(x).

Next, assume that f(x) < ∞. Let M < f(x), and choose ε > 0 such

that f > M on the ball B(x, ε). As above, we find that fi(x) ≥ M for

all large i and hence that limi→∞ fi(x) = f(x) in this case as well. The

proposition follows.

Proposition 4.2.2 together with the dominated convergence theorem

gives the following corollary.

Corollary 4.2.3 Let X = (X, d, µ) be a metric measure space, let 1 ≤
p < ∞, and let f : X → [0,∞] be a p-integrable lower semicontinuous

function. Then there exists a sequence (fi) of Lipschitz functions on X

such that 0 ≤ fi ≤ fi+1 ≤ f and that fi → f both pointwise and in

Lp(X) as i→∞.

On the other hand, in every metric measure space, nonnegative p-

integrable functions can be approximated in Lp by a pointwise decreas-

ing sequence of lower semicontinuous functions. This so called Vitali–

Carathéodory theorem has turned out to be handy in the geometric the-

ory of Sobolev spaces.

Vitali–Carathéodory theorem. Let X = (X, d, µ) be a metric mea-

sure space and let 1 ≤ p < ∞. For every p-integrable function f : X →
[0,∞] there exists a pointwise decreasing sequence (gi) of lower semi-

continuous functions on X such that f ≤ gi+1 ≤ gi and that gi → f in

Lp(X).

Proof Let f : X → [0,∞] be a p-integrable function on X. Pick an

increasing sequence (ϕi) of non-negative simple functions converging

pointwise to f (Remark 3.1.1). By using the representation

f = ϕ1 +

∞∑
i=2

(ϕi − ϕi−1),
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we find that f admits an expression

f =

∞∑
j=0

ajχEj ,

where a0 = ∞, aj ∈ (0,∞) for j ≥ 1, and Ej ⊂ X is a measurable set

for all j = 0, 1, . . . . Note that µ(E0) = 0.

Next, fix ε > 0. By (3.3.39), we can choose for each j ≥ 1 an open set

Uj ⊃ Ej such that

µ(Uj) ≤ µ(Ej) + εp 2−jp a−pj .

Moreover, we choose a sequence of open sets Vj ⊃ E0 such that

µ(Vj) ≤ εp 2−jp

for j = 1, 2, . . . . Then for the lower semicontinuous function

g =

∞∑
j=1

ajχUj +

∞∑
j=1

χVj

we have both that f ≤ g on X and that

||g − f ||p ≤
∞∑
j=1

ajµ(Uj \ Ej)1/p +

∞∑
j=1

µ(Vj)
1/p ≤ 2ε.

Because ε > 0 was arbitrary, and because the minimum of two lower

semicontinuous functions (taken to ensure a decreasing sequence) is

lower semicontinuous, the theorem follows from what was proved above.

Theorem 4.2.4 Let X = (X, d, µ) be a metric measure space, let

1 ≤ p < ∞, and let V be a Banach space. Then Lipschitz functions

are dense in Lp(X : V ). If in addition (X, d) is locally compact, then

Lipschitz functions with compact support are dense in Lp(X : V ).

Proof The first assertion follows from the proof of Proposition 3.3.49,

for the functions fε in (3.3.50) are Lipschitz. A different proof can be

given for real-valued functions, by combining the Vitali–Carathéodory

theorem 4.2 with Corollary 4.2.3. The second assertion follows from

Proposition 3.3.52, for the function g in (3.3.53) is Lipschitz.
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4.3 Hausdorff measures

We review the basic theory of Hausdorff measures. Let X = (X, d) be a

metric space. Fix a positive real number α. For each δ > 0 and E ⊂ X,

set

Hα ,δ(E) = inf υ(α)
∑
i

(diam(Ei))
α, (4.3.1)

where υ(α) is a normalizing constant given below in (4.3.4), and where

the infimum is taken over all countable covers of E by sets Ei ⊂ X with

diameter less than δ. Recall that diam(A) is the diameter of a set A ⊂ X
defined as the supremum of the numbers d(a, a′), where a, a′ ∈ A.

When δ decreases, the value Hα, δ(E) for a fixed set E increases, and

the α-Hausdorff measure of E is the number

Hα(E) := lim
δ→0
Hα ,δ(E). (4.3.2)

The set function E 7→ Hα(E) determines a Borel regular measure on X

[83, Section 2.10.2]. It is rarely a Radon measure, however, because it is

easy for the limit in (4.3.2) to be infinite on compact sets. For example,

Hα([0, 1]) =∞ for each 0 < α < 1.

It is important to notice that each Hausdorff measure Hα depends on

the underlying metric space, and that this dependence is not visible in

our notation.

Remark 4.3.3 The constant υ(α) in (4.3.1) is defined as

υ(α) :=
2−απα/2

Γ(α2 + 1)
, Γ(s) =

∫ ∞
0

e−xxs−1 dx . (4.3.4)

The purpose of this constant is to ensure that if X = Rn, then Hn agrees

with Lebesgue n-measure mn. We use the two symbols Hn and mn in

this case interchangeably. The normalizing constant υ(α) will not play

any explicit role in the chapters to follow.

The Hausdorff dimension of a set E in a metric space is the infimum

of the numbers α > 0 such that Hα(E) = 0. If no such numbers α exist,

the Hausdorff dimension of E is infinite.

If f : X → Y is L-Lipschitz, then it is easy to see from the definitions

that

Hα(f(E)) ≤ LαHα(E) (4.3.5)

for each E ⊂ X and α > 0. In particular, the Hausdorff dimension of a

set is invariant under biLipschitz transformations.
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The construction of Hausdorff measures Hα, α > 0, is a special case

of what is called Carathéodory’s construction in measure theory. For the

details and proofs for the preceding facts, see, for example, [235, p. 27

and p. 50], [197, p. 54], [83, p. 169].

4.4 Functions of bounded variation

We consider continuous maps γ : [a, b] → X, where [a, b] is a compact

interval in R and X = (X, d) is a metric space. Such maps are called

compact curves in this book, cf. Chapter 4. The purpose of this section

is to provide background for some technical facts used in Chapter 4 and

later. The main result is Theorem 4.4.8.

We will need the ensuing theory of functions of bounded variation only

for continuous functions, and hence adhere to this simplifying assump-

tion. Functions of bounded variation are typically considered on open

intervals, but because every continuous function of bounded variation on

a bounded open interval extends continuously to the end points (with

values in the metric completion of X), there is little loss of generality in

considering compact domains only.

A continuous map γ : [a, b] → X is said to be of bounded variation if

the supremum of the numbers

k∑
i=1

d(γ(ti), γ(ti−1)) (4.4.1)

is finite, where the numbers ti run over all finite sequences of points of

the form

a = t0 < t1 < · · · < tk = b .

If γ is of bounded variation and O ⊂ [a, b] is open in R, we define V (γ,O),

the variation of γ on O, as follows. If O = (c, d) is a single subinterval of

[a, b], then V (γ,O) is the supremum of the sums as in (4.4.1), with a and

b replaced by c and d, respectively. In the general case, O is a disjoint

union of open intervals I contained in [a, b] and V (γ,O) is defined to be

the sum ∑
V (γ, I)

over all these subintervals. We also set

V (γ, [c, d]) = V (γ, [c, d)) = V (γ, (c, d]) = V (γ, (c, d)) (4.4.2)
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for [c, d] ⊂ [a, b]. Note that the definitions in (4.4.2) are reasonable by

the continuity of γ. Finally, the total variation of γ is V (γ, [a, b]).

In Section 5, as in most of this book, maps of bounded variation

as defined in the preceding are called rectifiable curves, and the total

variation is the length of the curve.

We assume familiarity with the classical theory of real-valued func-

tions of bounded variation. Here is a brief review of this theory.

Let f : [a, b]→ R be a function of bounded variation such that f(a) =

0. Then f can be written as a difference of two increasing functions,

f = f1 − f2 with f1(a) = f2(a) = 0, and associated with the functions

f1 and f2 there are two unique Radon measures µ1 and µ2 on [a, b] such

that µ1([a, x]) = f1(x) and µ2([a, x]) = f2(x) for every a ≤ x ≤ b, and

there is a Borel set E ⊂ [a, b] such that µ1(E) = 0 and µ2([a, b]\E) = 0.

In particular, the signed Radon measure µ(f) := µ1 − µ2 satisfies

µ(f)([c, d]) = f(d)− f(c) (4.4.3)

whenever [c, d] ⊂ [a, b]. Moreover, f is differentiable m1-almost every-

where on [a, b] with

f ′(t) =
dµ(f)

dm1
(t) =

dµ(f)a

dm1
(t) (4.4.4)

at m1-almost every t ∈ [a, b], where µ(f)a denotes the absolutely con-

tinuous part of µ(f) with respect to m1. (See Theorem 3.4; here the

derivative of µ(f) is understood to be the difference of the derivatives

of µ1 and µ2, and similarly for the absolutely continuous part µ(f)a.) If

we write |µ(f)| := µ1 + µ2 for the total variation of the signed measure

µ(f), we also have that

|f ′(t)| = d|µ(f)|
dm1

(t) =
d|µ(f)a|
dm1

(t) (4.4.5)

at m1-almost every t ∈ [a, b], where |µ(f)a| = µa1 + µa2 = |µ(f)|a, that∫ b

a

|f ′(t)| dt ≤ |µ(f)|([a, b]) , (4.4.6)

and that

|µ(f)|(O) = V (f,O) (4.4.7)

for every open set O ⊂ [a, b]. Indeed, |µ(f)| is the unique Radon measure

on [a, b] satisfying (4.4.7) (see Section 3.3).
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For the preceding facts, see for example [237, Chapter 8], [83, Sec-

tions 2.5.17 and 2.9.19]. The reader can also easily derive these facts

from results in Section 3.4.

The main goal of this section is to prove the following theorem. The

point of the theorem is that the limit on the right hand side in (4.4.9)

exists at almost every point in the interval of definition. Recall that in

this book, functions of bounded variation are assumed to be continuous.

Theorem 4.4.8 To each map γ : [a, b] → X of bounded variation we

can associate a unique Radon measure νγ on [a, b] such that νγ(O) =

V (γ,O) for each open O ⊂ [a, b] and that

dνγ
dm1

(t) = lim
u→t,u6=t

d(γ(t), γ(u))

|t− u|
=: |γ′(t)| (4.4.9)

for m1-almost every t ∈ [a, b].

We will call the m1-almost everywhere defined function |γ′(t)| in

(4.4.9) the metric differential of a continuous map of bounded variation

γ : [a, b]→ X.

Remark 4.4.10 We emphasize that the notation |γ′(t)| notwithstand-

ing, a map γ : [a, b]→ X of bounded variation may not be differentiable

anywhere in the usual sense even if X is a normed space. A standard

example is the map γ(t) := χ[0,t] for 0 ≤ t ≤ 1, γ : [0, 1] → L1([0, 1]).

Note that γ is an isometry, ||γ(t)− γ(s)||L1 = |t− s|, so that |γ′(t)| ≡ 1.

Proof of Theorem 4.4.8 Let γ : [a, b] → X be of bounded variation.

Uniqueness of νγ is clear from the fact that νγ is a Radon measure and

νγ(O) = V (γ,O) for each open O (see (3.3.39)). To show that such a

measure exists, we use Carathéodory’s construction as in Section 4.3.

For δ > 0 and E ⊂ [a, b], set

νγ,δ(E) = inf
∑
i

V (γ, Ii),

where the infimum is taken over all countable collections {Ii} of (rela-

tively) open subintervals of [a, b] of diameter at most δ such that E ⊂
∪iIi.

The limit

νγ(A) := lim
δ→0

νγ,δ(A)

is a Radon measure on [a, b] (see [197, Chapter 4, pp. 54–55]). Since
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the notion of Sobolev spaces considered in this book is based on recti-

fiable curves (that is, mappings of bounded variation as considered in

this section), for self-containment we provide the proof of this fact now.

First note that V (γ, I2) ≤ V (γ, I1) if I2 ⊂ I1 are subintervals of [a, b].

Therefore if E2 ⊂ E1, then νγ,δ(E2) ≤ νγ,δ(E1), and so the monotonic-

ity properties of measures hold here. Furthermore, because V (γ, [a, b])

is finite, for every ε > 0 we can find tε, with a < tε < b, such that

V (γ, [a, tε]) < ε; especially νγ,δ(∅) = 0. The countable sub-additivity

follows from the fact that if Ej , j ∈ J ⊂ N, are subsets of [a, b], then

for every ε > 0 we can find a cover of each Ej by intervals Ij,i ⊂ [a, b]

with νγ,δ(Ej) ≥
∑
i V (γ, Ij,i) − 2−jε. Now the fact that νγ is a mono-

tone increasing limit of νγ,δ as δ → 0 immediately yields that νγ also

has the monotonicity and countable sub-additivity properties and that

νγ(∅) = 0; that is, νγ as well as each νγ,δ are outer measures on [a, b].

In general νγ,δ need not be a Borel measure, but by the Carathéodory

criterion 3.3.5 we can see that νγ is a Borel measure. Indeed, if 0 < δ <

dist(E1, E2) and Ii, i ∈ F ⊂ N, is a cover of E1 ∪ E2 by subintervals of

[a, b] with diameter no larger than δ, then for each i ∈ F , either Ii does

not intersect E1, or else Ii does not intersect E2. We thus partition this

cover into two sub-covers, one covering E1 but not intersecting E2, and

the other covering E2 but not intersecting E1. From this, we can directly

see that for sufficiently small δ, νγ,δ(E1∪E2) = νγ,δ(E1)+νγ,δ(E2). Thus

in the limit we have that νγ(E1 ∪E2) = νγ(E1) + νγ(E2), satisfying the

criterion.

Moreover, it easily follows from the definitions that νγ(O) = V (γ,O)

for each open O ⊂ [a, b]. In particular, νγ([a, b]) equals the total variation

of γ, which is finite.

Finally, to see that νγ is Borel regular, we directly use the construction

above. For E ⊂ [a, b], and for each j ∈ N we can find a countable

collection Ij,i of relatively open intervals from [a, b] covering E, each Ij,i
of diameter no more than 1/j, such that νγ,1/j(E) ≥

∑
i V (γ, Iji)− 1/j.

Since each Ij,i is an interval and hence a Borel set, it follows that
⋃
i Ij,i

is a Borel set containing E with

νγ(E) ≤ νγ(
⋃
i

Ij,i) ≤
∑
i

νγ(Ij,i) =
∑
i

V (γ, Ij,i) ≤ νγ,1/i(E) + 1/j.

The Borel set A =
⋂
j

⋃
i Ij,i again contains E, and from above we see

that νγ(E) = νγ(A); that is, νγ is Borel regular. Since νγ([a, b]) is finite

and closed subsets of [a, b] are compact, by (3.3.38) we know that νγ is

a Radon measure on [a, b].
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It remains to show that (4.4.9) holds. To this end, we note that the

assumptions and the conclusions of the proposition are invariant under

isometries, and so no generality is lost in assuming that X = l∞. Indeed,

we only need to work with the separable metric subspace of X that is the

image of [a, b] under γ, which in turn embeds isometrically in the Banach

space l∞ by Proposition 4.1. We may further assume that γ(a) = 0 ∈ l∞.

For every ϕ ∈ (l∞)∗ with dual norm |ϕ| ≤ 1, the function γϕ : [a, b]→
R,

γϕ(t) := 〈ϕ, γ(t)〉, (4.4.11)

is a real-valued continuous function of bounded variation with γϕ(a) = 0.

As explained in (4.4.5) and (4.4.7), there exists a unique Radon measure

νϕ on [a, b] satisfying νϕ(O) = V (γϕ, O) and from the theory of real-

valued functions of bounded variation (see for example [236, pp. 100–

103]),

dνϕ
dm1

(t) = lim
u→t,u6=t

|〈ϕ, γ(t)〉 − 〈ϕ, γ(u)〉|
|t− u|

= |γ′ϕ(t)| (4.4.12)

for m1-almost every t ∈ [a, b]. We also note that

νϕ(E) ≤ νγ(E) (4.4.13)

for each Borel set E ⊂ [a, b]. Indeed, to prove (4.4.13), it suffices to

assume that E is open, in which case the inequality comes down to a

similar inequality between variations, which is obvious because |ϕ| ≤ 1.

Next, consider the set

D := {γ(q)− γ(r) : q, r ∈ Q ∩ [a, b]} ⊂ l∞.

Then D is a countable dense set in the difference set {γ(s) − γ(t) :

s, t ∈ [a, b]}. For each v ∈ D choose an element ϕv ∈ (l∞)∗ such that

|ϕv| ≤ 1 and that 〈ϕv, v〉 = |v| (the choice is possible by the Hahn–

Banach theorem 2.2), and put Φ := {ϕv : v ∈ D}. Set

νΦ :=

∨
ϕ∈Φ

νϕ

 ;

recall (3.4.37). It follows from (4.4.13), from Lemmas 3.4.38 and 3.4.39,

and from (4.4.12) and (3.4.24), that νΦ is a finite Borel regular measure

on [a, b] such that

dνΦ

dm1
(t) = sup

ϕ∈Φ
|γ′ϕ(t)| =: τ(t) (4.4.14)



4.4 Functions of bounded variation 121

for m1-almost every t ∈ [a, b]. In particular, the function τ is measurable

and satisfies

τ(t) ≤ dνγ
dm1

(t) (4.4.15)

for almost every t ∈ [a, b] by (4.4.13) (the existence of the derivative on

the right is guaranteed by the Lebesgue–Radon–Nikodym theorem 3.4).

We will show that the limit on the right hand side of (4.4.9) equals τ(t)

for m1-almost every t ∈ [a, b], and also that

τ(t) =
dνγ
dm1

(t) (4.4.16)

for m1-almost every t ∈ [a, b].

To achieve this, observe first that

lim inf
u→t,u6=t

|γ(t)− γ(u)|
|t− u|

≥ lim inf
u→t,u6=t

|〈ϕ, γ(t)〉 − 〈ϕ, γ(u)〉|
|t− u|

= |γ′ϕ(t)|

for m1-almost every t ∈ [a, b], and hence that

lim inf
u→t,u6=t

|γ(t)− γ(u)|
|t− u|

≥ τ(t) (4.4.17)

for m1-almost every t ∈ [a, b]. Writing I = (t, u) ⊂ [a, b], we find that

|γ(t)− γ(u)| = sup
ϕ∈Φ
|〈ϕ, γ(t)〉 − 〈ϕ, γ(u)〉| ≤ sup

ϕ∈Φ
V (ϕ ◦ γ, I) ≤ νΦ(I) ,

which gives

lim sup
u→t,u 6=t

|γ(t)− γ(u)|
|t− u|

≤ dνΦ

dm1
(t) = τ(t) . (4.4.18)

It remains to prove (4.4.16). For this, we will show that, in fact, νΦ =

νγ . Inequality νΦ ≤ νγ follows from (4.4.13). To prove the opposite

inequality, it suffices to show that

νγ(O) ≤ νΦ(O) (4.4.19)

whenever O = (c, d) ⊂ [a, b] is an open interval; see (3.3.39). To this end,

let c = t0 < t1 < · · · < tk = d be such that

νγ(O)− ε = V (γ,O)− ε <
k∑
i=1

|γ(ti)− γ(ti−1)|

and that γ(ti)−γ(ti−1) ∈ D for each i = 1, . . . , k. (Note that we use the
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norm distance in l∞ here.) For each i = 1, . . . , k we can pick an element

ϕi ∈ Φ such that

|γϕi(ti)− γϕi(ti−1)| = |〈ϕi, γ(ti)− γ(ti−1)〉| = |γ(ti)− γ(ti−1)| .

Therefore,

νγ(O)− ε <
k∑
i=1

|γ(ti)− γ(ti−1)| =
k∑
i=1

|γϕi(ti)− γϕi(ti−1)|

≤
k∑
i=1

νϕi((ti−1, ti)) ≤ νΦ(O).

This proves (4.4.19) and hence (4.4.16) follows.

The proof of Theorem 4.4.8 is complete.

The following corollary will be invoked in Section 5.1 in connection

with arc length parametrization of rectifiable curves. (See Proposition

5.1.8.)

Corollary 4.4.20 Let γ : [a, b] → X be a map of bounded variation

such that V (γ, [t, u]) = u− t whenever a ≤ t ≤ u ≤ b. Then

lim
u→t,u6=t

d(γ(t), γ(u))

|t− u|
= 1 (4.4.21)

for m1-almost every t ∈ [a, b]. Moreover, for every set E ⊂ [a, b] we have

that H1(E) > 0 if H1(γ(E)) > 0.

Proof The first claim is an immediate corollary to Theorem 4.4.8. The

second claim follows from the fact that every γ satisfying the hypotheses

is 1-Lipschitz.

Remark 4.4.22 The embedding of the image of γ in a Banach space

was not necessary in the preceding proof of Theorem 4.4.8. We could

have used the 1-Lipschitz functions y 7→ d(x, y), x ∈ X, in place of dual

elements ϕ. On the other hand, similar arguments with more substantial

use of linear structure will be employed repeatedly later on.

The converse to the second part of Corollary 4.4.20 does hold true: if

E ⊂ [a, b] satisfies H1(E) > 0, then H1(γ(E)) > 0. As we will not need

this fact, we do not provide a detailed proof, but only a sketch of the

argument. First of all, one may reduce the issue to the case where X = R.

Indeed, we can choose a countable dense subset (zi) of γ([a, b]), and then

as in (4.4.16) we see that the limit on the left hand side of (4.4.21) is

also m1-almost everywhere equal to supi | ddtd(γ(t), zi)|. For each i, let
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Ii be the set where | ddtd(γ(t), zi)| > 3/4; then [a, b] ⊂ ∪iIi, up to a set

of m1-measure zero. Since ϕi = d(γ(·), zi) is also a 1-Lipschitz map,

to show that H1(γ(E ∩ Ii)) > 0 for some i, it suffices to show that

H1(ϕi(E ∩ Ii)) > 0 for a choice of i for which H1(E ∩ Ii) > 0. This

follows from the usual area formula on the real line [81, p. 96].

Absolute continuity. A continuous map γ : [a, b] → X of bounded

variation is said to be absolutely continuous if for each ε > 0 we can find

δ > 0 so that

k∑
i=1

d(γ(bi), γ(ai)) < ε (4.4.23)

whenever (ai, bi) are non-overlapping subintervals of [a, b] with

k∑
i=1

|bi − ai| < δ . (4.4.24)

We also say that γ is an absolutely continuous curve in this case. The

preceding definition is a straightforward extension of the definition for

absolutely continuous functions in classical real analysis. For example,

locally Lipschitz maps [a, b]→ X are absolutely continuous.

We assume that the reader is familiar with the classical theory of

absolutely continuous functions of a single real variable. For example, a

function f : [a, b] → R of bounded variation is absolutely continuous if

and only if the associated signed measure µ(f) as in (4.4.3) is absolutely

continuous with respect to the Lebesgue measure m1.

The following proposition is a direct consequence of the definitions,

basic measure theory, and of Theorem 4.4.8.

Proposition 4.4.25 A continuous map γ : [a, b] → X of bounded

variation is absolutely continuous if and only if the associated Radon

measure νγ is absolutely continuous with respect to the Lebesgue measure

m1. In particular, if γ : [a, b]→ X is absolutely continuous, we have that

d(γ(a), γ(b)) ≤
∫ b

a

|γ′(t)| dt . (4.4.26)

A map γ : R→ X is said to be absolutely continuous if its restriction

to every compact subinterval is absolutely continuous.

We will continue to discuss absolutely continuous curves in Chapter 5,

where absolute continuity of a curve is linked to the absolute continuity
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of the length function, see Proposition 5.1.5. We will also show in Chap-

ter 5 that every rectifiable curve admits an arc length parametrization,

which must necessarily be absolutely continuous.

4.5 Notes to Chapter 4

Lemma 4.1 is normally credited to McShane [203], but the same argu-

ment was found earlier by Whitney [283] as acknowledged in [203, p.

837].

Proposition 4.1 was proved by Kuratowski [175] in 1935, while Propo-

sition 4.1 was proved by Fréchet [88] already in 1909. Another interesting

fact is that every separable metric space admits a 4-biLipschitz embed-

ding in c0 [26, Theorem 7.11, p. 176]. Note that c0 is a “smaller” space

than l∞, which is the double dual of c0; in particular, c0 is separable. On

the other hand, no reflexive Banach space can have the property that

every separable metric space admits a biLipschitz embedding in it by

[26, Corollary 7.10, p. 176]. See also [26, Notes to Chapter 7, p. 184].

Pairs of metric spaces with the Lipschitz extension property have been

studied extensively in connection with the geometric theory of Banach

spaces. See [26, Chapter 1] for further discussion and references. In-

teresting nonlinear examples were considered by Lang, Pavlović, and

Schroeder [180] and Lang and Schlichenmaier [179]. As pointed out in

this chapter, the Lipschitz extension property of Theorem 4.1.21 may fail

for non-doubling metric spaces in the metric space-Banach space pair.

However, Lee and Naor [182] have shown that if the subset of the metric

space, on which a Lipschitz function f is defined, is itself doubling, then

f can be extended as a Lipschitz function to the ambient metric space.

Theorem 4.1.21, in the special case when the metric space source is a

finite dimensional Banach space, was proved by Johnson, Lindenstrauss,

and Schechtman [143].

An embedding theorem due to Assouad [18] asserts that, upon replac-

ing the metric d of a doubling metric space by a root of d, the resulting

‘snowflaked’ space is biLipschitz embeddable into a finite-dimensional

Euclidean space. Assouad’s embedding theorem is an important tool

in the field of analysis on metric spaces as it often permits Euclidean

machinery to be used in the study of abstract doubling spaces. How-

ever, in our setting this embedding theorem is of limited use since the

snowflaking operation destroys the rectifiability of nonconstant curves.

See Section 7.1 for further information and discussion.
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Examples of open subsets of Rn, and open subsets of general doubling

metric spaces without isolated points, that carry no doubling measures

were given by Saksman [239]. However, every complete doubling met-

ric space does carry a doubling measure. For compact doubling metric

spaces this fact was proved by Vol’berg and Konyagin in [277]. For com-

plete doubling metric spaces this result was extended by Luukkainen and

Saksman in [190]. In light of Lemma 4.1.14, one can then conclude that

the completion of a doubling metric space supports a doubling measure.

Proposition 4.2.2 appears in [204, pp. 43–44] for functions defined in

subsets of Euclidean space, but the proof is the same in metric spaces.

In [204, Chapter 2] an integration theory is developed based on the no-

tion of semicontinuous functions. This approach is related to the Vitali–

Carathéodory theorem 4.2, which is difficult to find in modern texts.

Sometimes it appears under the additional hypothesis that X be a lo-

cally compact space. See [237, p. 54].

For Lipschitz approximation of Hölder continuous functions, or more

generally functions with given modulus of continuity, see [244, p. 167],

[107, Appendix B].

Functions of bounded variation go back to the early days of real anal-

ysis. In the context of rectifiable curves in metric spaces, they will be

discussed in more detail in Section 5.1. Theorem 4.4.8 is due to Ambrosio

[6].
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The upper gradient approach to Sobolev functions, which is the main

theme of this book, relies crucially on the concept of modulus of a curve

family. Although modulus has its roots in the notion of capacity in elec-

tromagnetism, as a mathematical tool, it first flourished in function the-

ory. We offer more historical comments in the Notes to this chapter. Here

we present the modern theory of modulus starting from first principles.

5.1 Curves in metric spaces

Let X = (X, d) be a metric space. A curve in X is a continuous map

γ : I → X, where I ⊂ R is an interval. We call γ compact, open, or half-

open, depending on the type of the interval I. The parameter interval I

is allowed to be a single point, in which case γ is a constant curve. More

generally, every curve γ whose image γ(I) is just one point is called a

constant curve; otherwise γ is a nonconstant curve. Typically, we abuse

notation by writing γ = γ(I) for the image set in X. As a warning,

observe that in our terminology an open curve can have compact image.

A subcurve of γ is the restriction γ|I′ of γ to a subinterval I ′ ⊂ I.

Rectifiable curves. Given a compact curve γ : [a, b] → X, its length

is the supremum of the numbers

k∑
i=1

d(γ(ti), γ(ti−1)), (5.1.1)

where the numbers ti run over all finite sequences of points of the form

a = t0 < t1 < · · · < tk = b.

In the language of Section 4.4, the length is the total variation V (γ, [a, b]).

If γ is not compact, its length is defined to be the supremum of the

lengths of the compact subcurves of γ. Thus, every curve has a well

defined length in the extended nonnegative reals, and we denote it by

length(γ).

A curve is said to be rectifiable if its length is finite, and locally recti-

fiable if each of its compact subcurves is rectifiable. For example, curves

that are Lipschitz continuous as maps from I to X, or Lipschitz curves

for short, are always (locally) rectifiable. If a curve is not rectifiable, we

call it nonrectifiable. Thus, a compact curve is rectifiable if and only if it

is of bounded variation as defined in Section 4.4. In this book the only

rectifiable curves we are interested in are the compact ones.
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If f : X → Y is an L-Lipschitz map between metric spaces and if

γ : I → X is rectifiable, then f ◦ γ is rectifiable and

length(f ◦ γ) ≤ L length(γ) . (5.1.2)

This follows directly from the definitions.

The length of a rectifiable curve γ is bounded from below by the

Hausdorff 1-measure H1(γ) of its image in X. In general the former is

greater; however, the length and the Hausdorff measure agree provided

γ as a map is injective (Proposition 5.1.11).

With each rectifiable curve γ : [a, b]→ X there is the associated length

function

sγ : [a, b]→ [0, length(γ)]

defined by

sγ(t) := length(γ|[a,t]) .

We have that

d(γ(t2), γ(t1)) ≤ length(γ|[t1,t2]) = sγ(t2)− sγ(t1) (5.1.3)

whenever a ≤ t1 ≤ t2 ≤ b.

Lemma 5.1.4 The length function sγ of a rectifiable curve γ : [a, b]→
X is increasing and continuous.

Proof Clearly sγ is increasing. To prove continuity, fix a ≤ t0 ≤ b.

Because sγ is increasing, the one sided limits s−γ (t0) and s+
γ (t0) exist.

Suppose first that sγ(t0) − s−γ (t0) > δ > 0. Then clearly t0 > a. Let

a < t1 < t0. Because

length(γ|[t1,t0]) = sγ(t0)− sγ(t1) > δ ,

and because sγ(t0)− sγ(t1) = sγ|[t1,t0](t0), we have by the continuity of

γ that there are numbers t1 = a0 < · · · < ak < t0 satisfying

k∑
j=1

d(γ(aj), γ(aj−1)) > δ .

Define t2 = ak. Then length(γ|[t1,t2]) > δ and

length(γ|[t2,t0]) = sγ(t0)− sγ(t2) > δ .

By induction we find a sequence of values (ti), t1 < t2 < · · · < ti < · · · <
t0, such that length(γ|[ti,ti+1]) > δ. This implies

length(γ|[t1,t0]) ≥ length(γ|[t1,ti]) > (i− 1) δ
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for every i = 2, 3, . . . , contradicting the rectifiability of γ. We conclude

that s−γ (t0) = sγ(t0).

The equality s+
γ (t0) = sγ(t0) is proved analogously, and the lemma

follows.

Arc length parametrization. Recall the definition for an absolutely

continuous curve from 4.4.

The following proposition captures an important and defining prop-

erty of absolutely continuous curves.

Proposition 5.1.5 A rectifiable curve γ : [a, b] → X is absolutely

continuous if and only if its length function sγ : [a, b]→ [0, length(γ)] is

absolutely continuous.

Proof The absolute continuity of γ follows from the absolute continuity

of sγ by formula (5.1.3).

Next, assume that γ is absolutely continuous. Let ε > 0, and let δ > 0

be as in the definition of absolute continuity for this ε. Suppose that we

are given a family of k nonoverlapping subintervals [ai, bi], i = 1, . . . , k,

of [a, b] as in (4.4.24), satisfying
∑k
i=1 bi − ai < δ. Recalling that

sγ(bi)− sγ(ai) = length(γ|[ai,bi]) <∞,

we may subdivide each [ai, bi] into ki intervals [aji , b
j
i ] such that

ki∑
j=1

d(γ(bji ), γ(aji )) > sγ(bi)− sγ(ai)− ε/k.

Consequently, we have
∑k
i=1

∑ki
j=1 b

j
i − a

j
i =

∑k
i=1 bi − ai < δ, and so

k∑
i=1

|sγ(bi)− sγ(ai)| ≤ 2ε.

This proves the absolute continuity of sγ , and the proposition follows.

The arc length parametrization of a rectifiable curve γ : [a, b] → X is

the curve γs : [0, length(γ)]→ X defined by

γs(t) := γ(s−1
γ (t)) ,

where by the continuity of sγ ,

s−1
γ (t) := sup{s : sγ(s) = t} = max{s : sγ(s) = t}
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is the one-sided inverse of sγ . Notice that s−1
γ is an increasing func-

tion that is continuous from the right: limt→t+0
s−1
γ (t) = s−1

γ (t0). If

limt→t−0
s−1
γ (t) = s0 < s−1

γ (t0), then γ is constant on [s0, s
−1
γ (t0)]. Thus

γs : [0, length(γ)]→ X is the unique curve satisfying

γ(t) = γs(sγ(t)) (5.1.6)

for each t ∈ [a, b]. It follows from the definitions that

length(γs|[t, u]) = u− t (5.1.7)

for 0 ≤ t ≤ u ≤ length(γ).

From (5.1.7) and from Corollary 4.4.20 we obtain the following propo-

sition.

Proposition 5.1.8 The arc length parametrization γs of a compact

rectifiable curve γ is 1-Lipschitz continuous, hence absolutely continuous,

and satisfies

lim
u→t,u6=t

d(γs(t), γs(u))

|t− u|
= 1 (5.1.9)

for almost every t ∈ [0, length(γ)].

The following version of the Arzelà–Ascoli theorem for rectifiable

curves will be employed later on in Chapters 7 and 9. As for the usual

Arzelà–Ascoli theorem, the proof consists of choosing a countable, dense

subset {q1, q2, · · · } of [0, 1], picking a subsequence for which the values

converge at q1, continuing inductively from this subsequence, and finally

passing to a diagonal sequence.

Theorem 5.1.10 Let γj : [0, 1] → X, j = 1, 2, · · · be L-Lipschitz

maps, where X is a metric space such that bounded and closed sets in X

are compact. If γj(0) = x0 ∈ X for each j, then there is an L-Lipschitz

map γ : [0, 1]→ X and a subsequence (γj) that converges to γ uniformly

on [0, 1].

Proposition 5.1.11 Let γ : I → X be a curve. Then

diam(γ) ≤ H1(γ) ≤ length(γ) . (5.1.12)

If γ as a map is injective, then H1(γ) = length(γ).

We recall that by H1(γ) we mean H1(γ(I)); this is in the spirit of the

abuse of notation adopted earlier, where γ also denotes the image set

γ(I) of γ as well.
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Proof We invoke the real-valued 1-Lipschitz function x 7→ d(x, x1) on

X to conclude that d(x1, x2) ≤ H1(γ) whenever γ contains points x1

and x2, cf. (4.3.5); alternatively, this can be deduced from the defini-

tion of H1 and the triangle inequality. In particular, the first inequal-

ity in (5.1.12) follows. To prove the second inequality in (5.1.12), we

may assume that γ is rectifiable. Because the arc length parametriza-

tion γs : [0, length(γ)]→ X is 1-Lipschitz, by (4.3.5) we have that

H1(γ) ≤ H1([0, length(γ)]) = length(γ).

Next, suppose that γ is injective. Given a subdivision a = t0 ≤ t1 ≤
· · · ≤ tk = b, we have that

k∑
i=1

d(γ(ti), γ(ti−1)) ≤
k∑
i=1

H1(γ|[ti−1,ti]) = H1(γ) ,

where (5.1.12) was used in the first step and the injectivity of γ was used

in the second step. The desired inequality length(γ) ≤ H1(γ) follows by

taking the supremum over all subdivisions. The proposition is proved.

Line integration. Given a rectifiable curve γ : [a, b] → X and a non-

negative Borel function ρ : X → [0,∞], the line integral of ρ over γ is

the expression ∫
γ

ρ ds :=

∫ length(γ)

0

ρ(γs(t)) dt. (5.1.13)

Because ρ◦γs is a nonnegative Borel function on [0, length(γ)] (see 3.3),

the integral exists with value in [0,∞]. The line integral∫
γ

ρ ds

of a Borel function ρ : X → [0,∞] over a locally rectifiable curve γ

is defined to be the supremum of the integrals of ρ over all compact

subcurves of γ. Another possible definition could be to replace the right

side of (5.1.13) for an absolutely continuous γ by∫ b

a

ρ(γ(t))|γ′(t)| dt,

but this would lead to the same value as above. Indeed, |γ′(t)| = s′γ(t)

by Theorem 4.4.8, sγ is absolutely continuous by Proposition 5.1.5, and

γ = γs ◦ sγ by (5.1.6).
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Thus, the line integral of a nonnegative Borel function is defined over

each locally rectifiable curve, and no line integrals are defined over curves

that are not locally rectifiable. Line integrals over constant curves are

always zero.

We note the following simple lemma for future reference.

Lemma 5.1.14 Let γ : [0, L]→ X be 1-Lipschitz. Then∫
γ

ρ ds ≤
∫ L

0

ρ(γ(t)) dt (5.1.15)

for every Borel function ρ : X → [0,∞].

Proof Because γ is 1-Lipschitz, it follows that the length function sγ :

[0, L] → [0, length(γ)] is also 1-Lipschitz, and in particular absolutely

continuous. Therefore,∫
γ

ρ ds =

∫ length(γ)

0

ρ(γs(t)) dt =

∫ L

0

ρ(γs(sγ(t)))s′γ(t) dt

≤
∫ L

0

ρ(γs(sγ(t))) dt =

∫ L

0

ρ(γ(t)) dt ,

as required.

Remark 5.1.16 Simple examples show that the inequality in (5.1.15)

can be strict. For example, let γ : [0, 1]→ X be constant and let ρ > 0.

If γ is a rectifiable curve, its image has finite Hausdorff 1-measure in

X by (5.1.12). Consequently, we can integrate Borel functions ρ : X →
[0,∞] against H1 on γ. We claim that the inequality∫

γ

ρ dH1 ≤
∫
γ

ρ ds (5.1.17)

holds for every such γ and ρ. To prove (5.1.17), we may assume that γ is

a compact curve and that ρ is the characteristic function of an open set

O ⊂ X. Next, we note that the restriction of both H1 and its weighted

version ρ dH1 to γ are Radon measures; see (3.3.36), Proposition 3.3.44,

and Section 4.3. Now γ−1
s (O) is a union of disjoint intervals that are

open except those that meet the end points of [0, length(γ)]. Moreover,

for each of these intervals [ai, bi],

H1(γ|[ai,bi]) ≤ length(γ|[ai,bi]) =

∫ bi

ai

ρ(γs(t)) dt
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for each such interval by (5.1.12) and by (5.1.7). The claim follows by

adding over the intervals.

Next, let E ⊂ X be an arbitrary set. If γ is a rectifiable curve in X,

we define the length of γ in E to be the number

length(γ ∩ E) := m1(γ−1
s (E)) . (5.1.18)

Note that if E = X, then length(γ ∩ E) = length(γ). The definition

extends to locally rectifiable curves in a natural way. If E is a Borel set,

then

length(γ ∩ E) =

∫
γ

χE ds. (5.1.19)

Moreover, if E is a Borel set and if γ is a rectifiable curve with length

in E zero, then ∫
γ

ρ ds =

∫
γ

ρ · χX\E ds (5.1.20)

for all Borel functions ρ : X → [0,∞].

The inequality

H1(γ ∩ E) ≤ length(γ ∩ E) (5.1.21)

follows from (5.1.17) and from the fact that H1 is a Radon measure on

γ. Obviously, strict inequality can take place in (5.1.21).

5.2 Modulus of a curve family

Let X = (X, d, µ) be a metric measure space as defined in Section 3.3,

that is, (X, d) is separable as a metric space, and µ is a locally finite

Borel regular measure. Let Γ be a family of curves in X and let p ≥ 1

be a real number. The p-modulus of Γ is defined as

Modp(Γ) := inf

∫
X

ρp dµ , (5.2.1)

where the infimum is taken over all Borel functions ρ : X → [0,∞]

satisfying ∫
γ

ρ ds ≥ 1 (5.2.2)

for every locally rectifiable curve γ ∈ Γ. Functions ρ satisfying (5.2.2)

are called admissible densities (or metrics or functions) for Γ. Note that

the modulus has value in [0,∞]. By definition, the modulus of the family
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of all curves in X that are not locally rectifiable is zero, and the modulus

of every family containing a constant curve is infinite.

We gather some basic properties of modulus. These properties will be

used repeatedly and usually without special notice in this book. First,

we observe that

Modp(∅) = 0 , (5.2.3)

and that

Modp(Γ1) ≤ Modp(Γ2) (5.2.4)

if Γ1 ⊂ Γ2. Equality (5.2.3) follows because the zero function is admissi-

ble in this case. Inequality (5.2.4) is equally obvious, because each ρ that

is admissible for Γ2 is also admissible for Γ1. Next, if Γ0 and Γ are two

curve families in X such that each curve γ ∈ Γ has a subcurve γ0 ∈ Γ0,

then

Modp(Γ) ≤ Modp(Γ0) . (5.2.5)

We say in such a situation that Γ majorizes Γ0. To prove inequality

(5.2.5), we simply observe that each ρ that is admissible for Γ0 is also

admissible for Γ.

We also have the subadditivity of the modulus; that is,

Modp

( ∞⋃
i=1

Γi

)
≤
∞∑
i=1

Modp(Γi) . (5.2.6)

To prove (5.2.6), we assume without loss of generality that the right

hand side is finite. Fix ε > 0, and pick for each i an admissible density

ρi for Γi such that ∫
X

ρpi dµ ≤ Modp(Γi) + ε · 2−i.

Then

ρ(x) =

( ∞∑
i=1

ρi(x)p

)1/p

is Borel measurable and admissible for each Γi since ρ ≥ ρi for each i.

Because ∫
X

ρp dµ ≤
∞∑
i=1

Modp(Γi) + ε,

and because ε > 0 was arbitrary, we conclude that (5.2.6) holds.
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Remark 5.2.7 Expressions (5.2.3), (5.2.4), and (5.2.6) together imply

that the set function

Γ 7→ Modp(Γ)

is a measure on the collection of all curve families in X. In general there

are no nontrivial measurable curve families for the modulus [134].

Exceptional curve families. A family of curves is called p-exceptional

if it has p-modulus zero. We say that a property of curves holds for p-

almost every curve, if the collection of curves for which the property fails

to hold is p-exceptional.

We will use without further mention the following simple observation:

if Γ′ is a p-exceptional subfamily of a curve family Γ, then

Modp(Γ) = Modp(Γ \ Γ′).

This readily follows from the monotonicity and subadditivity properties

of modulus. (Recall that sets of measure zero are measurable for every

measure, cf. Section 3.3.)

The following lemma provides a handy criterion for p-exceptionality.

The property described in the lemma could be taken as the definition

for exceptionality.

Lemma 5.2.8 A family Γ of locally rectifiable curves in X is p-excep-

tional if and only if there is a p-integrable Borel function ρ : X → [0,∞]

such that ∫
γ

ρ ds =∞ (5.2.9)

for each curve γ ∈ Γ.

Proof Assume first that Modp(Γ) = 0. Then for each i ≥ 1 we find an

admissible density ρi with ∫
X

ρpi dµ ≤ 2−ip.

By setting

ρ(x) =

∞∑
i=1

ρi(x) ,

we obtain a p-integrable nonnegative Borel function ρ satisfying (5.2.9)

for each γ ∈ Γ as required.

Conversely, assume that ρ : X → [0,∞] is a p-integrable Borel function
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such that (5.2.9) holds for each γ ∈ Γ. Then ερ is admissible for each

ε > 0, whence Modp(Γ) = 0. The lemma follows.

p-exceptional sets. A subset E of X is said to be p-exceptional if

the family of all nonconstant curves that meet E is p-exceptional. It

follows from (5.2.5) that E is p-exceptional if and only if the family of

all nonconstant compact curves that meet E is p-exceptional. We will

use this latter observation without further mentioning in this book.

It follows from the remarks made later after (5.3.8) that every single-

ton, and hence every countable set in Rn is p-exceptional if 1 ≤ p ≤ n

and n ≥ 2. More generally, under certain circumstances singleton sub-

sets of a metric measure space are p-exceptional, see Corollary 5.3.11.

A p-exceptional set need not have zero measure. If a space has no recti-

fiable curves, then every subset is p-exceptional. A less trivial example

is obtained by considering X = Rn with the usual distance, but with

measure µ = mn + δ0, where δ0 is the Dirac mass at the origin. Then

{0} has positive measure, but is p-exceptional provided 1 ≤ p ≤ n.

We will also require the following lemma.

Lemma 5.2.10 A countable union of p-exceptional sets is p-exceptional.

In particular, if E ⊂ X and if every point x ∈ X has a neighborhood Ux
such that E ∩ Ux is p-exceptional, then E is p-exceptional.

Proof The first assertion follows from the subadditivity of modulus

(5.2.6). The second assertion follows from the first and from Lemma

3.3.27. We leave the easy details to the reader.

In Chapter 1 we proved a standard result from real analysis (Propo-

sition 2.3.13) stating that a convergent sequence in Lp has a pointwise

almost everywhere convergent subsequence. The following lemma of Fu-

glede shows that there is an analogous result involving p-exceptional

families of curves. Fuglede’s lemma plays an important role in the de-

velopment of our Sobolev space theory. Its repeated use allows us to

bypass the fact that, in general, Sobolev functions may not be differen-

tiable along a given curve.

Fuglede’s lemma. Let (gi) be a sequence of Borel functions that con-

verges in Lp(X). Then there is a subsequence (gik) with the following

property: if g is any Borel representative of the Lp-limit of (gi), then

lim
k→∞

∫
γ

|gik − g| ds = 0
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for p-almost every curve γ in X.

Note that such Borel representatives always exist; see Corollary 3.3.23.

Proof Let g be an arbitrary Borel representative of the Lp-limit of (gi).

Choose a subsequence (gik) of (gi) so that∫
X

|gik − g|p dµ ≤ 2−(p+1)k .

Note that this subsequence is independent of the particular representa-

tive g. Define

ρk = |gik − g|.

Let Γ be the family of locally rectifiable curves γ in X for which the

statement

lim
k→∞

∫
γ

ρk ds = 0

fails to hold, and let Γk be the family of all locally rectifiable curves γ

in X for which ∫
γ

ρk ds > 2−k.

Then

Γ ⊂
∞⋃
k=j

Γk

for each j ≥ 1. On the other hand, 2kρk is admissible for Γk for each k,

so that

Modp(Γk) ≤ 2pk
∫
X

ρpk dµ ≤ 2−k.

Consequently, we have that

Modp(Γ) ≤
∞∑
k=j

Modp(Γk) ≤ 2−j+1

for each j ≥ 1, whence Modp(Γ) = 0. The lemma is proved.

Fuglede’s lemma is often applied in conjunction with Mazur’s lemma.

We next give an example of this.

Proposition 5.2.11 Let p > 1 and let Γ1 ⊂ Γ2 ⊂ · · · be an increasing

sequence of curve families in X. Then

lim
i→∞

Modp(Γi) = Modp(Γ) ,
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where Γ =
⋃∞
i=1 Γi.

Proof Notice first that the numbers Modp(Γi) form an increasing se-

quence by (5.2.4), and that Modp(Γi) ≤ Modp(Γ). It therefore suffices

to show that

Modp(Γ) ≤ lim
i→∞

Modp(Γi) =: M,

assuming in addition that the limit is finite. To this end, pick for each i

an admissible density ρi for Γi such that∫
X

ρpi dµ < M + 1/i.

Hence the sequence (ρi) is bounded in Lp(X) with

lim
i→∞

||ρi||pp = M.

Because p > 1, Lp(X) is reflexive and so a subsequence of (ρi) converges

weakly to some ρ in Lp(X) (Theorem 2.4.1). Moreover, by the lower

semicontinuity of norms 2.3.5, we have that ||ρ||pp ≤M . Next, by Mazur’s

lemma 2.3, there exists a sequence of convex combinations (ρ̃j) of the

functions ρi such that ρ̃j → ρ in Lp(X) as j → ∞. Moreover, because

the curve families increase, and because the defining condition (5.2.2)

for admissibility is stable under convex combinations, the sequence (ρ̃j)

can be chosen so that ρ̃j is admissible for Γj for each j. It follows that

M ≤ lim
j→∞

||ρ̃j ||pp = ||ρ||pp ≤M. (5.2.12)

Next, by Corollary 3.3.23 and by Fuglede’s lemma 5.2, we may assume

that ρ is a Borel function and that∫
γ

ρ ds ≥ 1 (5.2.13)

for p-almost every γ ∈ Γ. It thus follows from (5.2.12) and the subaddi-

tivity of modulus that

Modp(Γ) ≤
∫
X

ρp dµ = M,

completing the proof of the proposition.

Example 5.2.14 The assumption p > 1 is needed in Proposition

5.2.11 as the following example shows. Let x ∈ Rn and r > 0. Con-

sider the curve families Γi, i = 1, 2, . . . , consisting of all curves in Rn
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with one end point in the closed ball B(x, r), and the other outside the

open ball B(x, r + 1/i). It follows from (5.3.8) that

Mod1(Γi) = ωn−1 r
n−1

for every i. On the other hand, a polar coordinate integration shows that

there are no admissible 1-integrable densities for the family Γ := ∪∞i=1Γi,

for each admissible density must satisfy
∫
L
ρ ds =∞ for any radial half

line with an end point in ∂B(x, r).

We next prove two simple but useful lemmas. Recall the terminology

from (5.1.19).

Lemma 5.2.15 Let E ⊂ X be a set of measure zero. Then for p-

almost every curve γ in X the length of γ in E is zero. In particular,

for p-almost every curve γ in X we have that H1(γ ∩ E) = 0.

Proof Let Γ be the family of all locally rectifiable curves γ in X such

that the length of γ in E is positive. Let E′ be a Borel set of zero

measure containing E. The function ρ :=∞ · χE′ is both in Lp(X) and

admissible for Γ, and hence the first assertion follows from the fact that∫
X
ρp dµ = 0. The second assertion follows from the first via (5.1.21).

Lemma 5.2.16 Let g and h be two nonnegative Borel functions on X

such that g ≤ h almost everywhere. Then∫
γ

g ds ≤
∫
γ

h ds

for p-almost every curve γ in X. In particular, if g and h agree almost

everywhere, then ∫
γ

g ds =

∫
γ

h ds

for p-almost every curve γ in X.

Proof Let E = {x ∈ X : g(x) > h(x)}. Then µ(E) = 0, and so by

Lemma 5.2.15, we have for p-almost every curve γ, H1(γ−1(E)) = 0.

Hence by the definition of line integrals,
∫
γ
(h − g) ds ≥ 0. Linearity of

line integrals now yields the desired result.
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5.3 Estimates for modulus

Except in a few cases, it is essentially impossible to give the precise value

for the modulus of a curve family. It is in general difficult even to give

good estimates. Upper bounds are easier to achieve for the simple reason

that it suffices to exhibit one nontrivial admissible density. We next give

some examples; more examples in the Euclidean setting can be found

in [273].

Lemma 5.3.1 Let Γ be a family of curves in a Borel set A ⊂ X such

that each γ ∈ Γ satisfies length(γ) ≥ L > 0. Then

Modp(Γ) ≤ µ(A)L−p.

Proof The assertion follows by using the density ρ(x) = L−1χA.

Lemma 5.3.2 Let Γ be a family of curves in X and let B1, B2, . . . be

a sequence of Borel sets in X each of finite measure. If every curve in

Γ has a nonrectifiable subcurve in some Bj, then Modp(Γ) = 0.

Proof For j ≥ 1, let Γj be the collection of curves in Γ that have a

nonrectifiable subcurve contained in Bj . By subadditivity of modulus,

it suffices to show that Modp(Γj) = 0. But this follows from Lemma

5.3.1 and inequality (5.2.5), because each set Bj has finite measure and

locally rectifiable subcurves that are not rectifiable have infinite length.

The lemma is proved.

Lemma 5.3.2 shows that the modulus ignores those nonrectifiable

curves whose nonrectifiability is, in some sense, local. It turns out that

nonrectifiable curves are unconditionally p-exceptional if the volume

growth of X is no worse than polynomial of order p.

Proposition 5.3.3 Let p > 1, and assume that there exists a point

x0 ∈ X such that

lim sup
r→∞

µ(B(x0, r))

rp
<∞. (5.3.4)

Then the p-modulus of the family of all nonrectifiable curves in X is

zero.

Proof By the preceding lemma, it suffices to show that Modp(Γ) = 0,

where Γ consists of all unbounded curves in X. For this, define

ρ(x) = (d(x, x0) log d(x, x0))−1 χX\B(x0,2)(x)
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and

Aj = B(x0, 2
j+1) \B(x0, 2

j), j ≥ 1.

For each unbounded curve γ in X there exists an integer j0 such that

γ both meets Aj0 and has, for each j > j0, a subcurve γj of length at

least 2j contained in Aj . Thus∫
γ

ρ ds ≥
∞∑
j=j0

∫
γj

ρ ds ≥
∞∑
j=j0

2j2−j−1((j + 1) log 2)−1 =∞.

On the other hand, we have a positive integer j1 such that for j > j1,

µ(B(x0, 2
j+1)) ≤ C 2p(j+1), and so∫

X

ρp dµ ≤
∞∑
j=1

∫
Aj

ρp dµ

≤
∞∑
j=1

2−pj(j log 2)−pµ(B(x0, 2
j+1))

≤
j1∑
j=1

2−pj(j log 2)−pµ(B(x0, 2
j+1))

+ C

∞∑
j=j1

2−pj(j log 2)−p2p(j+1)

is finite. Hence Lemma 5.2.8 implies that Γ is p-exceptional, and the

proof is complete.

Remark 5.3.5 The assumption p > 1 is needed in Lemma 5.3.3. To

see this, simply consider X = R equipped with the usual distance and

Lebesgue measure. Likewise, a volume growth condition is needed. To see

this, let X = Rn, n ≥ 2, equipped with the usual metric and Lebesgue

measure. Consider the family Γ consisting of half lines γω(t) = tω, t ≥ 1,

indexed by the unit sphere Sn−1 = {ω ∈ Rn : |ω| = 1}. If ρ is admissible

for Γ, then Hölder’s inequality gives

1 ≤
∫
γω

ρ ds =

∫ ∞
1

ρ(tω)t(n−1)/pt−(n−1)/p dt

≤
(∫ ∞

1

ρp(tω)t(n−1) dt

)1/p(∫ ∞
1

t−(n−1)/(p−1) dt

)(p−1)/p

.

If 1 < p < n, then ∫ ∞
1

t−(n−1)/(p−1) dt =
p− 1

n− p
,
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and we conclude by integrating in polar coordinates that∫
Rn
ρp dµ ≥

(
n− p
p− 1

)p−1

ωn−1,

where ωn−1 is the surface measure of Sn−1. Thus

Modp(Γ) ≥
(
n− p
p− 1

)p−1

ωn−1. (5.3.6)

In particular, the p-modulus of all unbounded curves in Rn is positive if

1 < p < n. In fact, equality holds in (5.3.6) for 1 < p < n. This can be

seen by observing that the function

ρ(x) =

(
n− p
p− 1

)
|x|−(n−1)/(p−1) · χ{|x|>1}(x)

is admissible for Γ, and by computing the integral of ρp.

We will next compute explicitly the moduli of certain curve families

by using similar arguments.

Given disjoint sets E,F ⊂ X, we write

Modp(E,F ) = Modp(E,F ;X) (5.3.7)

for the p-modulus of the collection of all locally rectifiable curves that

join E and F in X.

Spherical shells. Consider the modulus

Modp(B(x, r),Rn \B(x,R)), 0 < r < R,

in Rn, n ≥ 2. First we assume that p > 1. For ω ∈ Rn with |ω| = 1,

let γω denote the curve γω : [r,R] → Rn given by γω(t) = tω. As

in Remark 5.3.5, when ρ is an admissible function for computing the

above modulus, via Hölder’s inequality applied to γω, we deduce from∫
γω
ρ ds ≥ 1 that

1 ≤ Cr,R
∫ R

r

ρ(tω)p tn−1 dt,

where

Cr,R =

(∫ R

r

t−(n−1)/(p−1) dt

)p−1

=


(

p−1
|n−p|

∣∣∣∣R p−n
p−1 − r

p−n
p−1

∣∣∣∣)p−1

if 1 < p 6= n,

(log(R/r))
p−1

if p = n.
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By integrating in polar coordinates over the annulus B(x,R) \ B(x, r),

we see that ∫
Rn
ρ(y)p dy ≥

∫
B(x,R)\B(x,r)

ρ(y)p dy ≥ ωn−1

Cr,R
,

that is, we obtain lower bounds for Modp(B(x, r),Rn \B(x,R)) as stip-

ulated in (5.3.8) below. These lower bounds are also upper bounds, as

seen by a suitable choice of admissible function ρ, namely

ρ(y) = C
−1/(p−1)
r,R |y − x|−(n−1)/(p−1)χB(x,R)\B(x,r)(y).

For p = 1 the computation is simpler; choose ρj(y) = jχB(x,r+1/j)\B(x,r)(y),

and let j tend to infinity. To wit, for x ∈ Rn and 0 < r < R, we have

Modp(B(x, r),Rn \B(x,R)))

=


|n−pp−1 |

p−1ωn−1|r
p−n
p−1 −R

p−n
p−1 |1−p, p 6= 1, n,

ωn−1(log R
r )1−n, p = n,

ωn−1r
n−1, p = 1.

(5.3.8)

Observe that while Modn(B(x, r),Rn \ B(x, 2r)) is independent of r,

the value of Modp(B(x, r),Rn \B(x, 2r)) for p 6= n tends to either zero

or infinity when r tends to zero or infinity. The behavior is reciprocal

depending on whether p < n or p > n. These asymptotic properties could

also be obtained by using scaling properties of the Lebesgue measure.

The exceptional behavior of the modulus for p = n is accounted for by

its conformal invariance.

The preceding dichotomy can also be seen in the following fact: the

p-modulus of all nonconstant curves in Rn that go through a fixed point

is zero if and only if 1 ≤ p ≤ n.

Interestingly, the logarithmic behavior in (5.3.8) for the n-modulus in

Rn has a counterpart in metric spaces whose measure has an appropriate

growth condition.

Proposition 5.3.9 Let x0 ∈ X. If there exists a constant C0 > 0 such

that

µ(B(x0, r)) ≤ C0 r
p

for each 0 < r < R0, then

Modp(B(x0, r), X \B(x0, R)) ≤ C1

(
log

R

r

)1−p

(5.3.10)

whenever 0 < 2r < R < R0, where C1 depends only on C0 and p.
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Proof Set

ρ(x) = C2

(
log

R

r

)−1

d(x, x0)−1, if x ∈ B(x0, R) \B(x0, r),

and ρ(x) = 0 otherwise. We now check that for an appropriate choice of

C2, ρ is an admissible metric for the curve family in question. Let k be

the smallest integer satisfying 2kr ≥ R, and let γ be a rectifiable curve

connecting B(x0, r) to X \ B(x0, R). Then for j = 0, 1, · · · , k − 1 there

is a subcurve γj of γ lying in the annulus B(x0, 2
jr) \B(x0, 2

j−1r) with

length at least 2j−1r. It follows that∫
γ

ρ ds ≥
k−1∑
j=0

∫
γj

ρ ds ≥ C2
1

log R
r

k ≥ C2

log 2
.

Therefore, by choosing C2 appropriately, we know that ρ is admissible,

whence

Modp(B(x0, r), X \B(x0, R)) ≤
∫
X

ρp dµ .

To estimate the integral on the right, as above, let k be the smallest

integer satisfying 2kr ≥ R. By using the assumption µ(B(x0, r)) ≤ C0 r
p

on the volume growth and the annuli B(x0, 2
j+1r) \ B(x0, 2

jr), j =

0, · · · , k − 1, we easily compute∫
X

ρp dµ ≤ Cp2 C0

(
log

R

r

)−p k−1∑
j=0

(2jr)−p(2(j+1)r)p ≤ C1

(
log

R

r

)1−p

,

where C1 has the asserted form. The proposition follows.

We now give a metric measure space version of the exceptionality of

the family of curves through a fixed point.

Corollary 5.3.11 Let (X, d, µ) be a metric measure space and let x0 ∈
X. If there exist R > 0, CR > 0 and Q > 1 such that

µ(B(x0, r)) ≤ CR rQ

whenever 0 < r < R, then for 1 ≤ p ≤ Q, the p-modulus of the collection

of all non-constant rectifiable curves in X that pass through x0 is zero.

Proof By the subadditivity (5.2.6) and the majorization principle (5.2.5)

of modulus, it suffices to show that, given ε > 0, we can find 0 < r′ <

r < ε so that

Modp(B(x0, r
′), X \B(x0, r)) < ε.
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For p = Q this follows from Proposition 5.3.9 with the choice r′ = r2 for

r > 0 sufficiently small, and for 1 ≤ p < Q one simply takes r′ = r/2 for

sufficiently small r. Indeed, the function ρ(y) = 2r−1χB(x0,r)\B(x0,r/2)(y)

is admissible and ∫
X

ρp dµ ≤ 2pCRr
Q−p.

The claim follows.

Cylindrical curve families. Another situation where modulus can be

explicitly computed is the case of a generalized cylinder. Let I ⊂ R be a

nondegenerate interval and let Y = X × I be a product metric measure

space equipped with the product measure ν = µ × m1. The distance

in Y can be anything that restricts to the distances on the factors. A

generalized cylinder with base E and height h > 0 is a set of the form

G = E × J ,

where E ⊂ X is a Borel set and J ⊂ I is an interval of length h. Let

Γ be the family of all rectifiable curves γx : J → G, γx(t) = (x, t) for

x ∈ E. Then

Modp(Γ) =
µ(E)

hp−1
. (5.3.12)

Indeed, Lemma 5.3.1 shows that Modp(Γ) is bounded from above by the

right hand side of (5.3.12). To achieve a lower bound, let ρ be an ad-

missible density for Γ. Given a point x ∈ E, consider the corresponding

curve γx, and compute

1 ≤
∫
γx

ρ ds ≤
(∫

γx

ρp ds

)1/p

h(p−1)/p

by Hölder’s inequality. Fubini’s theorem then implies

µ(E) ≤ hp−1

∫
G

ρp dµ,

as required. This proves (5.3.12).

Lower semicontinuous admissible functions. As previously remarked,

estimating the modulus from above is usually substantially easier than

estimating it from below. The problem is that for a lower bound one has

to show an estimate for all admissible functions. To such end, it would

be desirable to know if the pool of admissible metrics could somehow be
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restricted. In general, one cannot restrict the admissible metrics to con-

tinuous or bounded functions. For example, it follows from the formulas

in (5.3.8), and from the subadditivity, that the p-modulus for 1 ≤ p ≤ n
of the family of all nonconstant curves in Rn that pass through a given

point is zero. Obviously, there are no admissible bounded metrics for

this family.

A useful observation is that it suffices to consider lower semicontinuous

functions as admissible metrics. This follows directly from the definitions

and from the Vitali–Carathéodory theorem 4.2.

Proposition 5.3.13 For every curve family Γ in X we have that

Modp(Γ) = inf

∫
X

ρp dµ ,

where the infimum is taken over all lower semicontinuous functions ρ :

X → [0,∞] that are admissible for Γ.

The following proposition links p-moduli of curve families for various

ranges of p. It is easily proved by an application of Hölder’s inequality,

and is left to the reader to verify.

Proposition 5.3.14 Let Γ be a family of curves, all of which lie in a

measurable set A ⊂ X with µ(A) <∞. Then for 1 ≤ q < p,

Modq(Γ)p ≤ µ(A)p−q Modp(Γ)q.

In particular, if such Γ is p-exceptional for some p > 1, then it is q-

exceptional for each 1 ≤ q ≤ p.

Later in Chapter 9 we link Poincaré inequalities to modulus, and pro-

vide some nontrivial lower bounds.

5.4 Notes to Chapter 5

Modulus was first called extremal length or distance (for p = 2). This

terminology still appears in the function theory literature for curve fam-

ilies in the complex plane. As defined in this book, the modulus is the

reciprocal of the extremal length. Beurling made systematic use of the

modulus in his 1933 thesis [27, pp. 1–107]. Later the method was bol-

stered by Beurling, Ahlfors, and many others. Notable early applications

appeared also in the works of Grötzsch and Teichmüller. Modulus is a

particularly important tool in higher dimensional function theory, in the
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theory of quasiconformal and quasiregular mappings, where other tricks

of complex analysis are often lost. See [273], [279], [234], [120].

The first abstract treatment of modulus was the seminal 1957 paper

[89] by Fuglede. This elegant work is highly recommended reading. Later

modulus was used in connection with Sobolev functions especially by

Ohtsuka [220], who called it extremal length and first considered the

concept of p-exceptional sets in the context of Euclidean domains for all

p ≥ 1.

An integration theory with respect to modulus was developed in [196],

but so far there have been no applications of this theory.

The definitions in Chapter 5 are standard adaptations of the classical

Rn-valued case. In particular, Väisälä’s monograph [273] has a careful

discussion of both curves and modulus in Rn. Systematic uses of modulus

in abstract metric measure spaces, especially in connection with Sobolev

spaces and quasiconformal mappings, can be found for example in [125],

[168], [247], [248], [271], [272]. An important predecessor was [223]. The

basic estimates here all originate from well known results in Rn.

The notions of p-modulus of curve families and their more abstract

versions (due originally to Fuglede) are still under active study; see for

example [4], [11], [16], [30], [115], and [227].

Proposition 5.2.11 is due to Ziemer and Ohtsuka; see [288, Lemma 2.3].

Their proof employs Clarkson’s inequalities instead of Mazur’s lemma.

The fact that one can restrict to lower semicontinuous functions in the

definition of modulus (Proposition 5.3.13) was already pointed out by

Fuglede [89, p. 173].

The discussion related to Proposition 5.3.3 and Remark 5.3.5 is linked

to the classification of metric spaces according to whether the collection

of unbounded rectifiable curves that start from a fixed ball has positive

p-modulus or not; a metric measure space for which such a collection of

curves has positive p-modulus is called p-hyperbolic. Euclidean spaces

of dimension n are p-hyperbolic precisely when 1 ≤ p < n, whereas the

standard hyperbolic space Hn is p-hyperbolic for all p ≥ 1. A discussion

of p-hyperbolicity can be found in the work of Grigor’yan [103], [104]

and the dissertation [137] of Holopainen.
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We begin this chapter with a brief introduction to classical Sobolev

spaces on Euclidean open sets. Our treatment of the topic is standard,

and some routine details are left (with references) to the reader. The

initial discussion serves as a motivation for the ensuing abstract defini-

tions.

The main bulk of this chapter is a thorough analysis of upper gradi-

ents, on which the later definition for Sobolev spaces in metric measure

spaces is based in Chapter 7. We discuss upper gradients here in the gen-

eral framework of functions that are defined in metric measure spaces

and have values in an arbitrary metric space.

6.1 Classical first order Sobolev spaces

We denote by Ω an open subset of Rn, n ≥ 1, and by C∞c (Ω) the vector

space of all infinitely many times differentiable functions with compact

support in Ω. We typically abbreviate dmn(x) = dx for Lebesgue n-

measure in Rn. Unless otherwise specifically stated, all measure theoretic

notions in this section are understood with respect to Lebesgue measure.

Standard basis vectors in Rn are denoted by e1, . . . , en.

Dirichlet and Sobolev spaces. Let u be a real-valued locally inte-

grable function on Ω and let i ∈ {1, . . . , n}. A real-valued locally inte-

grable function vi on Ω is said to be the weak ith partial derivative of u

on Ω if ∫
Ω

vi(x)ϕ(x) dx = −
∫

Ω

u(x)
∂ϕ

∂xi
(x) dx (6.1.1)

whenever ϕ ∈ C∞c (Ω).

It is easy to see that each weak derivative of a function, whenever it

exists, is uniquely defined as an element of L1
loc(Ω). Indeed, for this it

suffices to observe the following elementary fact: if v ∈ L1
loc(Ω) satisfies∫

Ω

v(x)ϕ(x) dx = 0

for every ϕ ∈ C∞c (Ω), then v = 0 almost everywhere. It is also obvious

that the existence of a weak derivative is independent of the Lebesgue

representative of the given function u in L1
loc(Ω). We use the notation

∂iu =
∂u

∂xi
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for the weak ith partial derivative of a function u. If u has a weak ith

partial derivative for each i = 1, . . . , n, then we call the Rn-valued locally

integrable function

∇u := (∂1u, . . . , ∂nu)

the weak derivative or gradient of u. Recall that the standard Euclidean

norm is used in Rn unless otherwise stated, so that

|∇u|2 = (∂1u)2 + · · ·+ (∂un)2 .

Remark 6.1.2 (a) If u is continuously differentiable, then by integra-

tion by parts the weak derivative agrees with the classical derivative, and

we use the same notation ∇u = (∂1u, . . . , ∂nu) for the gradient. It is not

true, however, that a locally integrable function that is almost every-

where differentiable with locally integrable almost everywhere defined

(classical) gradient necessarily possesses a weak gradient. The function

may miss the key property of being absolutely continuous on lines as

discussed in Section 6.1. For example, the standard Cantor function

c : [0, 1]→ [0, 1] is a continuous increasing surjection with c′(x) = 0 for

almost every x ∈ [0, 1], but c does not possess weak derivatives. See also

Theorem 6.1.13.

(b) In the language of distribution theory, the weak partial derivative

∂iu is precisely the distributional (ith partial) derivative of the distribu-

tion u ∈ L1
loc(Ω), assumed to be representable by an element in L1

loc(Ω).

We will not discuss distributions further in this book.

The Dirichlet space L1,p(Ω), 1 ≤ p < ∞, consists of all real-valued

functions u in L1
loc(Ω) with weak derivative ∇u in Lp(Ω : Rn). The

expression

‖u‖L1,p(Ω) :=

(∫
Ω

|∇u(x)|p dx
)1/p

(6.1.3)

defines a seminorm on L1,p(Ω); it is not a norm because it vanishes for

(locally) constant functions which may not be identically zero.

The Sobolev space W 1,p(Ω), 1 ≤ p <∞, is the normed space of func-

tions u in L1,p(Ω) ∩ Lp(Ω) equipped with the norm

‖u‖W 1,p(Ω) := ‖u‖Lp(Ω) + ‖u‖L1,p(Ω). (6.1.4)

Because the equality of the integrals in (6.1.1) is seen to persist under

Lp-limits, we have that W 1,p(Ω) is a Banach space for every 1 ≤ p <∞.

As in the case of Lebesgue spaces Lp, we call the members of the

spaces L1,p(Ω) and W 1,p(Ω) functions, even though strictly speaking
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they are equivalence classes of functions, with two functions identified if

and only if they agree outside a set of measure zero. Later, in Proposition

7.1.31, we will consider a finer equivalence relation, defined in terms

of capacity. This finer relation leads to a more precise description of

the pointwise behavior of Sobolev functions and is important for the

geometric development in this book.

We next demonstrate the important fact that smooth functions are

dense in W 1,p(Ω). In particular, this leads to an alternate description of

the Sobolev space as the closure of smooth functions under the norm (6.1.4).

To conform with standard notation, we make the following definition.

Definition 6.1.5 Denote by H1,p(Ω) the norm closure of the linear

subspace C∞(Ω) ∩W 1,p(Ω) in W 1,p(Ω).

Theorem 6.1.6 We have that

H1,p(Ω) = W1,p(Ω) . (6.1.7)

Moreover, the linear subspace C∞c (Rn) of H1,p(Rn) is dense in W 1,p(Rn).

For the proof, we recall that the convolution between a locally in-

tegrable function v and a bounded compactly supported measurable

function η is given by

v ∗ η(x) =

∫
Rn
v(x− y) η(y) dy =

∫
Rn
v(y) η(x− y) dy . (6.1.8)

Proof of Theorem 6.1.6 It suffices to show that every function u ∈
W 1,p(Ω) can be approximated in the Sobolev norm by functions in

C∞(Ω). We prove this in the case Ω = Rn only, with the smaller space

C∞c (Rn). The general case requires only routine technical modifications

using partition of unity. (See, for example, [81, Theorem 2, p. 125] or

[193, Theorem 1.45, p. 25].) Note that in general C∞c (Ω) fails to be dense

in W 1,p(Ω), cf. [2, p. 57, Theorem 3.23].

Thus, let u ∈W1,p(Rn). We first claim that u can be approximated in

W 1,p(Rn) by compactly supported functions in W1,p(Rn). To this end,

fix R > 0 and let ϕ ∈ C∞c (Rn) be such that 0 ≤ ϕ ≤ 1, ϕ = 1 on

B(0, R), and |∇ϕ| ≤ 2 on Rn. It easily follows from the definitions that

u(1− ϕ) belongs to W 1,p(Rn) with

∇(u(1− ϕ)) = (1− ϕ)∇u− u∇ϕ.

Moreover, the Sobolev norm of u(1 − ϕ) can be estimated from above
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by the expression

3

(∫
Rn\B(0,R)

|u|p dx

)1/p

+

(∫
Rn\B(0,R)

|∇u|p dx

)1/p

,

which tends to zero as R → ∞. This proves the claim, and it follows

that we can assume, initially, that u vanishes outside a compact set.

Next, we consider the convolution u∗η as in (6.1.8), where η ∈ C∞c (Rn)

is a fixed function. Given a standard basis vector ei, we can estimate the

expression ∣∣∣∣u ∗ η(x+ rei)− u ∗ η(x)

r
− u ∗ ∂iη(x)

∣∣∣∣
from above by∫

Rn
|u(y)|

∣∣∣∣η(x+ rei − y)− η(x− y)

r
− ∂iη(x− y)

∣∣∣∣ dy
=

∫
Rn
|u(y)||∂iη(xr,y − y)− ∂iη(x− y)| dy ,

for some xr,y ∈ Rn such that |xr,y−x| ≤ r. From the uniform continuity

of ∂iη, and the compactness of the support of u, we obtain that u ∗ η
is differentiable on Rn with derivative u ∗ ∇η. We repeat the argument

with η replaced by ∂jη for any 1 ≤ j ≤ n. Continuing inductively, we

conclude that u ∗ η is a smooth function, and hence its derivative is

its weak derivative. If we choose η to be in addition symmetric (that is,

η(z) = η(−z), which can be ensured by choosing η so that η(z) = η(|z|)),
then we see by the fact that u has a weak derivative that

∂i(u ∗ η) = u ∗ ∂iη = ∂iu ∗ η . (6.1.9)

To produce a sequence of such smooth convolutions approximating u

in the Sobolev norm, fix a nonnegative symmetric function η ∈ C∞c (Rn)

such that
∫
Rn η(y) dy = 1, set

ηε(x) := ε−nη(x/ε) , ε > 0 ,

and let uε = u ∗ ηε. By the preceding argument, uε ∈ C∞c (Rn) and

∂iuε = (∂iu)ε for each i = 1, . . . , n. It therefore suffices to show that,

given v ∈ Lp(Rn), we have that vε → v in Lp(Rn) as ε → 0. Since

continuous functions are dense in Lp(Rn), and since convolution with ηε
is a linear operation which does not increase Lp-norm, it follows that

we may assume, initially, that v is (uniformly) continuous with compact
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support. The preceding understood, we use Hölder’s inequality to obtain

|vε(x)− v(x)|p =

∣∣∣∣∫
Rn

(v(x− y)− v(x))ηε(y) dy

∣∣∣∣p
≤
(∫

Rn
|v(x− y)− v(x)|p|ηε(y)| dy

)(∫
Rn
|ηε(y)| dy

)p−1

=

∫
Rn
|v(x− y)− v(x)|p|ηε(y)| dy .

Then an application of Fubini’s theorem shows that∫
Rn
|vε(x)−v(x)|p dx ≤

∫
Rn

∫
Rn
|v(x−y)−v(x)|p|ηε(y)| dx dy . (6.1.10)

Since spt(ηε) ⊂ B(0, ε), it follows that the right hand side of (6.1.10)

converges to zero as ε→ 0 by the continuity of translations on Lp(Rn :

V ) (see Remark 3.3.54).

This completes the proof of Theorem 6.1.6.

Remark 6.1.11 The proof of (6.1.9) shows, more generally, that

∂ν(u ∗ ϕ) = u ∗ ∂νϕ = u ∗ (∇ϕ · ν) (6.1.12)

for each unit vector ν ∈ Rn, where ∂ν signifies the directional derivative

of a function ϕ ∈ C∞c (Rn) in the direction of ν. We will later show, see

Theorem 6.1.13, that each u ∈ W 1,p(Ω) has a representative such that

the partial derivatives ∂iu exist almost everywhere.

Local Sobolev spaces. The definitions for the local Dirichlet and

Sobolev spaces L1,p
loc(Ω) and W 1,p

loc (Ω) are obvious. To wit, a function

belongs to L1,p
loc(Ω) if it belongs to L1,p(Ω′) for each open set Ω′ with

compact closure in Ω, and similarly for W 1,p
loc (Ω).

A modification to the proof of Theorem 6.1.6 yields smooth approx-

imations to Sobolev functions in the class W1,p
loc(Ω), with convergence

of the approximants and their partial derivatives in Lploc(Ω). More pre-

cisely, given u ∈W1,p
loc(Ω) and given Ω′ compactly contained in Ω, there

exists a sequence of smooth functions on Ω′ converging to u in W 1,p(Ω′).

See [81, p. 123, Theorem 1].

There are obvious obstacles in attempts to abstract the preceding def-

inition of Sobolev classes W1,p(Ω) to general metric spaces. There are no

smooth functions in general metric spaces, and in any event one cannot

integrate by parts. We next give more promising, alternate definitions

for the classical Sobolev spaces. Recall the definition for absolutely con-

tinuous functions from 4.4.
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Absolute continuity on lines. A real-valued function u on Ω is said

to be absolutely continuous on lines in Ω if the restriction of u to almost

every compact line segment in Ω, parallel to the coordinate axes of Rn,

is absolutely continuous. (See 4.4.)

More precisely, in the present context, a function u : Ω → R is ab-

solutely continuous on lines in Ω if for every subspace Vi := {x =

(x1, . . . , xn) : xi = 0} ⊂ Rn, i = 1, . . . , n, there is a set of Lebesgue

(n − 1)-measure zero Ni ⊂ Vi with the following property: for every

y ∈ Vi \Ni the function t 7→ u(y+ tei) is absolutely continuous on every

compact interval [a, b] such that y + tei ∈ Ω for a ≤ t ≤ b.
An elementary but important observation based on (5.3.12) is that a

function u as above is absolutely continuous on lines in Ω if and only if

u is absolutely continuous on p-almost every compact line segment that

is parallel to a coordinate axis of Rn and contained in Ω. The value of

p ≥ 1 is immaterial. See Section 5.3.

An absolutely continuous real-valued function on an interval [a, b] is

differentiable almost everywhere on [a, b]. Thus, by Fubini’s theorem, a

real-valued function u that is absolutely continuous on lines in Ω has

classical partial derivatives mn-almost everywhere on Ω. If u is in addi-

tion measurable, then the partial derivatives can be shown to be mea-

surable as well, by noting that for each rational number h 6= 0 the map

x 7→ h−1(u(x+hei)−u(x)) is measurable and that the partial derivatives

are limits (as h→ 0) of these maps almost everywhere in Ω, see Corol-

lary 3.1.5. If these derivatives belong in addition to Lp(Ω), 1 ≤ p < ∞,

then u is said to be of class ACLp(Ω).

By using Fubini’s theorem and integration by parts (valid for ab-

solutely continuous functions of one variable), it is easy to see that a

locally integrable function of class ACLp(Ω) belongs to the Dirichlet

space L1,p(Ω). The weak derivatives in this case are the classical partial

derivatives. The following theorem shows the converse, giving an alter-

nate characterization of Sobolev classes on open sets in Euclidean space.

Recall that by a Lebesgue representative of u we mean a function ũ that

agrees with u almost everywhere in Ω.

Theorem 6.1.13 A function u ∈ L1
loc(Ω) belongs to the Dirichlet space

L1,p(Ω) if and only if there is a Lebesgue representative of u that belongs

to the class ACLp(Ω). In particular,

W1,p(Ω) = Lp(Ω) ∩ACLp(Ω).

Proof As explained before the statement of the theorem, only the ne-
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cessity part requires a proof. Thus, let u ∈ L1,p(Ω). The family of all

compact line segments in Ω can be expressed as a countable union of

families of line segments, each contained in a relatively compact subdo-

main of Ω. It therefore suffices to consider segments that lie in a fixed

relatively compact subdomain Ω′ of Ω.

From the proof of Theorem 6.1.6, we know that since ∇u ∈ Lp(Ω,Rn),

the convolutions uε have the property that ∂iuε = (∂iu)ε converges in

Lp(Ω′) to ∂iu. This does not require u itself to be in Lp(Ω′).

Fuglede’s lemma 5.2 together with Proposition 3.3.23 guarantees that,

for a subsequence, ∫
γ

|∂iuεk − ∂iu| ds→ 0 (6.1.14)

for p-almost every line segment γ in Ω′ and every i = 1, . . . , n, provided

we choose appropriate (Borel) representatives of ∂iu and and a sequence

εk → 0. Moreover, by Lemma 5.2.8 we have that∫
γ

|∂iu| ds <∞ (6.1.15)

for p-almost every curve γ in Ω′, for every i = 1, . . . , n.

We continue to work with the subsequence chosen above. Since, as

pointed out in the proof of Theorem 6.1.6, uε are smooth in Ω′, they are

absolutely continuous on all line segments parallel to the direction of

the vector ei, i = 1, · · · , n. Furthermore, since u ∈ L1(Ω′), we know that

uε converges to u in L1(Ω), and hence by passing to a subsequence if

necessary, we can also ensure that uεk = uk converges almost everywhere

in Ω′ to u. We re-define u so that u(x) = limk uk(x) whenever this limit

exists. It follows by using Fubini’s theorem that for almost every line

segment in Ω′ that is parallel to the direction of ei, we have uk → u

pointwise outside a set of H1-measure zero.

Next, let α be a compact line segment on Ω′, parallel to the ith co-

ordinate axis, such that (6.1.14) and (6.1.15) hold for every compact

subsegment γ of α and in addition uj → u H1-almost everywhere on α.

By the preceding discussion and by (5.2.5), almost every such compact

line segment α in Ω′ has this property. We assume that α as a curve is

(isometrically) parametrized by arc length. Let s, r ∈ [0, length(α)] such

that r < s and uk(α(r)) → u(α(r)) and uk(α(s)) → u(α(s)); almost

every r, s in [0, length(α)] satisfy this condition. By the fundamental
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theorem of calculus applied to the smooth functions uk, we see that

|u(α(r))− u(α(s))| = lim
k
|uk(α(r))− uk(α(s))|

≤ lim
k

∫
α|[r,s]

|∂iuk| ds =

∫
α|[r,s]

|∂iu| ds.

Given that
∫
α
|∂iu| ds is finite, absolute continuity of u on α follows

from absolute continuity of the integral, provided we show that the limit

limk uk(α(s)) exists for all s ∈ [0, length(α)]; recall that u coincides with

the above limit, whenever it exists. To this end, notice from (6.1.14) that

lim
k

∫
α|[r,s]

∂iuk ds =

∫
α|[r,s]

∂iu ds (6.1.16)

for all 0 ≤ r ≤ s ≤ length(α). Fixing r so that limk uk(α(r)) exists, it

immediately follows from the fundamental theorem of calculus applied

to the smooth functions uk together with absolute continuity of the

integral and (6.1.15) that the limit also exists at every r ≤ s ≤ length(α).

Especially, the limit exists at length(α), and the analogous argument

then gives the existence of the limit for all s.

This completes the proof of Theorem 6.1.13.

A function u : Ω → R is said to be absolutely continuous on a curve

γ in Ω if γ : [0, length(γ)] → Ω is rectifiable, parametrized by the arc

length, and the function u ◦ γ : [0, length(γ)]→ R is absolutely continu-

ous, cf. 4.4.

By using the preceding concept, we formulate an important general-

ization of Theorem 6.1.13.

Theorem 6.1.17 A function u ∈ L1
loc(Ω) belongs to the Dirichlet space

L1,p(Ω) if and only if there is a Lebesgue representative of u that is

absolutely continuous on p-almost every compact curve in Ω and the

partial derivatives of u belong to Lp(Ω).

The formulation requires an explanation. If the function u is absolutely

continuous on p-almost every compact curve in Ω, then in particular u

is absolutely continuous on lines and hence possesses classical partial

derivatives almost everywhere. This follows from (5.3.12).

Proof The sufficiency in Theorem 6.1.17 follows from Theorem 6.1.13.

Toward necessity, we follow the line of argument in the proof of Theorem

6.1.13. Instead of line segments we consider general rectifiable curves

and we replace ∂uk with ∇uk and similarly for u. The convergence of

our subsequence to u almost everywhere guarantees that, for p-almost
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every curve, we have m1-almost everywere convergence along the curve

in question, see Lemma 5.2.15.

Remarks 6.1.18 (a) Changing the value of a function u ∈ W1,p(Ω)

arbitrarily on a hyperplane does not change the representative of u in

W1,p(Ω). However, after such a change, u may not be absolutely contin-

uous on lines. Thus the representative of a Sobolev function offered by

Theorem 6.1.13 is “better” than an arbitrary representative. Although

it is not clear at this point, Theorem 6.1.17 offers a better yet rep-

resentative called a quasicontinuous representative. Representatives in

ACLp(Ω) can be changed in sets whose projections to the coordinate

hyperplanes have zero mn−1 measure, whereas quasicontinuous repre-

sentatives can be changed only in sets of capacity zero, which is a more

stringent condition when p ≥ n − 1. For the development in this book,

it is important to understand these distinctions in general. The theory

of capacity will be developed fully in Chapter 7.

(b) The characterization of Sobolev functions as functions that are ab-

solutely continuous on lines, with appropriately integrable partial deriva-

tives, immediately yields a removability result. If F ⊂ Rn is a closed

set whose projections to each coordinate hyperplane has mn−1 measure

zero, and if u is a member of W 1,p(Ω \ F ) for some open neighborhood

Ω of F , then u belongs to W 1,p(Ω). Note that such an F must have

Lebesgue n-measure zero, so that the extension of u is automatic; what

is nontrivial is that this extension is in the Sobolev space W 1,p(Ω).

6.2 Upper gradients

It follows from Theorem 6.1.17 that each function u ∈ L1,p(Ω) has a

representative that satisfies the condition

|u(γ(a))− u(γ(b))| ≤
∫
γ

|∇u| ds

for p-almost every compact curve γ : [a, b] → Ω. We use this inequality

as a starting point for defining a substitute for the derivative in general

metric measure spaces. In effect, we only have a substitute for the size

of the derivative.

For the rest of this chapter, we assume that X = (X, dX , µ) is a metric

measure space as defined in Section 3.3 (that is, (X, d) is separable and

µ is a locally finite Borel regular measure on X), and that Z = (Z, dZ)
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is a metric space. We also assume that 1 ≤ p < ∞ unless otherwise

specifically stated.

Definition. A Borel function ρ : X → [0,∞] is said to be an upper

gradient of a map u : X → Z if

dZ(u(γ(a)), u(γ(b))) ≤
∫
γ

ρ ds (6.2.1)

for every rectifiable curve γ : [a, b] → X. We say that ρ is a p-weak

upper gradient of u if (6.2.1) holds for p-almost every rectifiable curve

in X. If u : A → Z is defined only on a subset A of X, then we speak

about upper gradients or p-weak upper gradients of u in A with self-

explanatory meaning, where A is considered as a metric measure space

itself.

The concept of an upper gradient is purely metric and makes sense

for functions defined on an arbitrary metric space. The concept of a

p-weak upper gradient depends on the underlying measure structure

as well as on p. The pure upper gradient theory does not seem to be

very fruitful because this concept is not stable under limiting processes,

and so the main emphasis in this book is on weak upper gradients.

Moreover, p-weak upper gradients have richer properties if they are in

addition p-integrable. This extra assumption is forced in most of the

ensuing discussion, and remarks are made illuminating to what extent

it is needed.

The following lemma shows that in considering p-weak upper gradients

we do not move very far from upper gradients.

Lemma 6.2.2 If g is a non-negative Borel measurable function on

X that is finite-valued µ-almost everywhere and u : X → Z has g as

a p-weak upper gradient in X, then there is a sequence (gk) of upper

gradients of u such that g ≤ gk+1 ≤ gk and that ‖g − gk‖Lp(X) → 0 as

k →∞.

Proof Let Γ be the collection of all non-constant compact rectifiable

curves in X for which the upper gradient inequality fails for the pair

(u, g). Then by assumption, Modp(Γ) = 0, and so by Lemma 5.2.8

we have a non-negative Borel measurable function ρ on X such that∫
γ
ρ ds = ∞ for each γ ∈ Γ and ρ ∈ Lp(X). Now the functions gk =

g + 2−kρ forms a sequence of upper gradients of u that satisfies our

requirements. This completes the proof of this lemma.
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We refer to (6.2.1) as the upper gradient inequality for the pair (u, ρ)

on γ. If ρ is an upper gradient, or a p-weak upper gradient of u, then

the pair (u, ρ) is called a function-upper gradient pair. Note that the

potential dependence on p is supressed in the latter terminology, matters

being usually clear from the context.

Examples and basic properties. In general, a given function has

infinitely many distinct upper gradients: if ρ is an upper gradient of

a function, then so is ρ + σ for every nonnegative Borel function σ.

Moreover, the pointwise maximum of two upper gradients is an upper

gradient.

The function ρ ≡ ∞ is an upper gradient of every function.

If X has no nonconstant rectifiable curves, then ρ ≡ 0 is an upper

gradient of every function on X.

If u is L-Lipschitz, then ρ ≡ L is an upper gradient of u.

If ρ is an upper gradient of a function u : X → Z, and if z0 ∈ Z, then

ρ is also an upper gradient of the real-valued function x 7→ dZ(u(x), z0).

More generally, if W is a metric space and f : Z → W is L-Lipschitz,

then Lρ is an upper gradient of the function f ◦ u : X →W whenever ρ

is an upper gradient of u.

If ρ is an upper gradient of a function u : X → Z and if A ⊂ X, then

the restriction ρ|A : A → [0,∞] is an upper gradient of the restriction

u|A : A→ Z.

The collection of upper gradients of a given function u is a convex

set: if ρ and σ are two upper gradients of u and if 0 ≤ λ ≤ 1, then

(1− λ)ρ+ λσ is an upper gradient of u.

If Z = (Z, | · |) is a normed space, if two functions u1, u2 : X → Z have

respective upper gradients ρ1 and ρ2, and if λ ∈ R, then |λ|ρ1 + ρ2 is an

upper gradient of the function λu1 + u2, and ρ1 is an upper gradient of

the function |u1|.
Analogous statements hold for p-weak upper gradients. Furthermore,

because of Lemma 6.2.2, the Lp-closure of the convex set of all p-

integrable upper gradients of u is the convex set of all p-integrable p-weak

upper gradients of u; see Corollary 6.3.12.

The fundamental theorem of calculus implies that if u is a smooth real-

or Banach space-valued function on an open set Ω in Rn, then |∇u| is

an upper gradient of u. Moreover, (the proof of) Theorem 6.1.17 implies

that |∇u| is a p-weak upper gradient of a function u ∈ L1,p(Ω), provided

that both u and |∇u| are pointwise defined. Here we need to take a
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good representative for u guaranteed by Theorem 6.1.17, while any Borel

representative for |∇u| is a p-weak upper gradient by Lemma 5.2.16 (cf.

Lemma 6.2.8). Analogous remarks hold if Ω is replaced by a Riemannian

manifold and |∇u| is the length of the Riemannian gradient of u.

The pointwise lower Lipschitz-constant function of a map u : X → Z

is given by

lipu(x) := lim inf
r→0

sup
y∈B(x,r)

dZ(u(x), u(y))

r
. (6.2.3)

Similarly, the pointwise upper Lipschitz-constant function of u : X → Z

is given by

Lipu(x) := lim sup
r→0

sup
y∈B(x,r)

dZ(u(x), u(y))

r
. (6.2.4)

Lemma 6.2.5 Let u : X → Z be continuous. Then lipu and Lipu are

Borel functions.

Proof Define, for x ∈ X and r > 0,

lru(x) := inf
s<r

sup
y∈B(x,s)

dZ(u(x), u(y))

s
,

and

Lru(x) := sup
s<r

sup
y∈B(x,s)

dZ(u(x), u(y))

s
.

Because lipu(x) = limr→0 lru(x) and Lipu(x) = limr→0 Lru(x) for ev-

ery x ∈ X, it suffices to show that the functions lru and Lru are Borel

for every r > 0 (Proposition 3.3.22). We will do this for lr, the proof

being similar for Lr.

Thus, fix r > 0. The function

uys(x) :=
dZ(u(x), u(y))

s
· χB(x,s)(y) =

dZ(u(x), u(y))

s
· χB(y,s)(x)

is lower semicontinuous for every y ∈ X and s > 0. Therefore, the

function

us(x) := sup
y∈X

uys(x) = sup
y∈B(x,s)

dZ(u(x), u(y))

s

is lower semicontinuous, hence Borel, for every s > 0. Recall that lower

semicontinuity is characterized by the condition that the super level

sets {u > τ} for τ ∈ R are open. Hence the supremum of a collection
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of lower semicontinuous functions is lower semicontinuous. Let (sn) be

a countable dense set in (0,∞). We claim that

lru(x) = inf
sn<r

usn(x)

for every x ∈ X. Because the infimum of a countable set of Borel func-

tions is Borel (consider the pre-image of [a,∞) for each a ∈ R), the

assertion follows from this. To prove the claim, fix x ∈ X. Then fix

ε > 0 and choose s < r such that

dZ(u(x), u(y))

s
< lru(x) + ε

for every y ∈ B(x, s). There exists sn ∈ (max{s− ε, s/2}, s) such that

dZ(u(x), u(y))

sn
=

s

sn
· dZ(u(x), u(y))

s
<

s

max{s− ε, s/2}
· (lru(x) + ε)

for every y ∈ B(x, sn). Thus

inf
sn<r

usn(x) ≤ s

max{s− ε, s/2}
· (lru(x) + ε) .

Because obviously lru(x) ≤ infsn<r usn(x), the claim follows by letting

ε→ 0 in the preceding inequality. The lemma is proved.

Lemma 6.2.6 If u : X → Z is locally Lipschitz, then lipu is an upper

gradient of u.

Proof By the preceding discussion, lipu is a nonnegative Borel func-

tion. Let γ : [0, length(γ)] → X be a nonconstant rectifiable curve

parametrized by arc length. Because u is locally Lipschitz, the map

u ◦ γ : [0, length(γ)] → Z is absolutely continuous, and we find from

(4.4.26) that

dZ(u(γ(a)), u(γ(b))) ≤
∫ length(γ)

0

|(u ◦ γ)′(t)| dt , (6.2.7)

where we have the metric differential of u ◦ γ on the right hand side.

On the other hand, for t ∈ (0, length(γ)) and for h ∈ R with |h| small

enough, we have

dZ((u ◦ γ)(t), (u ◦ γ)(t+ h))

|h|
≤ sup
y∈B(γ(t),|h|))

dZ(u(γ(t)), u(y))

|h|
.

Because the left hand side of this inequality tends to |(u◦γ)′(t)| as |h| →
0 for m1-almost every t (Theorem 4.4.8), we infer that |(u ◦ γ)′(t)| ≤
lipu(γ(t)) for m1-almost every t ∈ (0, length(γ)). The lemma follows

from this and from (6.2.7).
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Next we record an important robustness property of weak upper gra-

dients. The lemma follows directly from Lemma 5.2.16.

Lemma 6.2.8 If ρ is a p-weak upper gradient of a map u : X → Z and

if σ : X → [0,∞] is a Borel function such that σ = ρ almost everywhere

in X, then σ is a p-weak upper gradient of u. In particular, if E is a

Borel set of measure zero and ρ is a p-weak upper gradient of u, then

ρ · χX\E is a p-weak upper gradient of u.

The following simple lemma will also be used later.

Lemma 6.2.9 Let A ⊂ X be closed, let ρ be an upper gradient of a

map u : A → Z, and let z0 ∈ Z. Define u0 : X → Z by u0(x) = u(x)

if x ∈ A and u(x) = z0 if x ∈ X \ A, and define ρ0 : X → [0,∞] by

ρ0(x) = ρ(x) if x ∈ A and ρ0(x) =∞ if x ∈ X \A. Then ρ0 is an upper

gradient of u0 in X.

Proof The assertion is clear since for every nonconstant rectifiable curve

γ in X that meets X \ A we must have
∫
γ
ρ0 ds = ∞ because A is

closed.

Remarks 6.2.10 (a) The (analogous) assertion in Lemma 6.2.8 for

upper gradients is false: the function ρ ≡ 1 is an upper gradient of every

1-Lipschitz function on R2, but ρ · χR2\L need not be an upper gradient

of such a function if L ⊂ R2 is a line.

(b) Lemma 6.2.9 is not true for an arbitrary subset A ⊂ X: consider

A = R \ {0} ⊂ R and the function χ(0,∞) : R \ {0} → R together with

upper gradient ρ ≡ 0.

6.3 Maps with p-integrable upper gradients

In this section, we study maps that have p-integrable upper gradients.

Recall the standing assumption in this chapter that X = (X, dX , µ) is

a metric measure space, that Z = (Z, dZ) is a metric space, and that

1 ≤ p <∞ unless otherwise specifically stated.

Absolute continuity on curves. By Theorem 6.1.17, a classical Sobolev

function in Rn has a representative that is absolutely continuous on p-

almost every curve. We next prove an analogous fact for functions defined

on arbitrary metric measure spaces.

We generalize the definition given just before Theorem 6.1.17. A map
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u : X → Z is said to be absolutely continuous on a curve γ in X if

γ is rectifiable and the map u ◦ γs : [0, length(γ)] → Z is absolutely

continuous as defined in 4.4. (Recall the notation γs for the arc length

parametrization of γ, from (5.1.6).)

We begin with the following lemma, which follows directly from the

definitions and from the absolute continuity of the integral. We leave its

verification to the reader.

Lemma 6.3.1 Let u : X → Z be a map and let γ be a rectifiable

compact curve in X. Assume that ρ : X → [0,∞] is a Borel function

such that ρ is integrable on γ and that the pair (u, ρ) satisfies the upper

gradient inequality (6.2.1) on γ as well as on each compact subcurve of

γ. Then u is absolutely continuous on γ.

The next proposition is fundamental.

Proposition 6.3.2 Suppose that ρ is a p-integrable p-weak upper gra-

dient of a map u : X → Z. Then p-almost every compact rectifiable

curve γ in X has the following property: ρ is integrable on γ and the

pair (u, ρ) satisfies the upper gradient inequality (6.2.1) on γ and each

of its compact subcurves. In particular, every map u : X → Z that has a

p-integrable p-weak upper gradient is absolutely continuous on p-almost

every compact curve in X.

Proof Denote by Γ0 the family of all compact rectifiable curves γ such

that either the upper gradient inequality (6.2.1) does not hold, or that

ρ is not integrable on γ. Then Modp(Γ0) = 0 by the definition for weak

upper gradients, (5.2.6), and by Lemma 5.2.8. Next, if Γ is the family of

all compact curves in X that have a subcurve in Γ0, then Modp(Γ) = 0

by (5.2.5). The first assertion follows.

The second assertion follows from the first and from Lemma 6.3.1.

The argument in the preceding proposition is typical in the theory of

modulus, and will be repeatedly used in this book.

Next we show how the metric differential along curves is related to up-

per gradients. Recall the definition of a metric differential from Theorem

4.4.8.

Proposition 6.3.3 Let u : X → Z be a map and let γ : [0, length(γ)]→
X be a rectifiable curve parametrized by arc length. Assume that ρ : X →
[0,∞] is a Borel function such that ρ is integrable on γ and that the pair

(u, ρ) satisfies the upper gradient inequality (6.2.1) on γ and each of
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its compact subcurves. Then u is absolutely continuous on γ and the

inequality

|(u ◦ γ)′(t)| ≤ (ρ ◦ γ)(t) (6.3.4)

holds for almost every t ∈ [0, length(γ)], where |(u ◦ γ)′(t)| denotes the

metric differential. In particular, if ρ is a p-integrable p-weak upper gra-

dient of a function u : X → Z, then (6.3.4) holds for p-almost every

curve γ : [0, length(γ)]→ X parametrized by arc length. Furthermore, if

u has a p-integrable p-weak upper gradient in X and ρ is a non-negative

p-integrable Borel measurable function on X such that (6.3.4) holds for

p-almost every absolutely continuous rectifiable curve γ in X, then ρ is

a p-weak upper gradient of u.

Proof The absolute continuity of u on γ follows from Lemma 6.3.1.

Next, we observe that the hypotheses give

dZ((u ◦ γ)(t), (u ◦ γ)(t+ h))

h
≤ 1

h

∫ t+h

t

(ρ ◦ γ)(s) ds

for every t ∈ [0, length(γ)) and for every h ∈ (0, length(γ) − t). For

almost every t, as h → 0, the left hand side of this inequality tends to

|(u ◦ γ)′(t)| (by Theorem 4.4.8) and the right hand side tends to (ρ ◦
γ)(t) (by the Lebesgue differentiation theorem). Hence we conclude that

(6.3.4) holds. The penultimate assertion follows from the first assertion

and from Proposition 6.3.2. Towards the final claim, recall that if u has a

p-integrable p-weak upper gradient on X, then u is absolutely continuous

on p-almost every curve γ. The proof is completed by an application of

Proposition 4.4.25 to u ◦ γ.

Localization. A reasonable notion of a derivative must satisfy the con-

dition that every locally constant map has the zero function for a deriva-

tive. In this section, we demonstrate that the notion of a p-integrable

p-weak upper gradient is suitable for this property. The main result in

this regard is Corollary 6.3.16. We also establish the important lattice

property of upper gradients (Corollary 6.3.12).

Lemma 6.3.5 Suppose that u : X → Z is absolutely continuous on

p-almost every compact rectifiable curve in X. If there exists c ∈ Z

such that u ≡ c µ-almost everywhere in X, then the collection ΓE of all

nonconstant curves in X that intersect the set

E := {x ∈ X : u(x) 6= c}

has p-modulus zero. In particular, ρ ≡ 0 is a p-weak upper gradient of u.
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Proof We have that p-almost every nonconstant rectifiable curve γ in

X has the following two properties: u is absolutely continuous on γ and

the length of γ in E is zero (Lemma 5.2.15). In the present situation,

therefore, we must have that u ◦ γ ≡ c, and in particular γ cannot meet

E at all. On the other hand, every curve in ΓE meets E. This gives

Modp(ΓE) = 0 by (5.2.5) as required. The second assertion is clear from

the first.

Proposition 6.3.2 and Lemma 6.3.5 yield the following corollary.

Corollary 6.3.6 Suppose that u : X → Z has a p-integrable p-weak

upper gradient and that there exists c ∈ V such that u ≡ c µ-almost

everywhere in X. Then ρ ≡ 0 is a p-weak upper gradient of u.

Remark 6.3.7 Lemma 6.3.5 does not hold if the hypothesis of ab-

solute continuity along p-almost every curve is relaxed. Consider, for

example, the characteristic function of a point in R; the collection of all

nonconstant curves in R that meet the point has nonzero 1-modulus.

The converse to the second assertion is not true in general. If the metric

space X contains no rectifiable curves, then the zero function is an upper

gradient of any function on X. In Section 7.5, we study a condition on

X which suffices for the following assertion: the only maps on X which

have the zero function as a p-weak upper gradient are the (essentially)

constant functions.

Next we explain further techniques for constructing new upper gradi-

ents from old.

Lemma 6.3.8 Suppose that σ and τ are two p-integrable p-weak upper

gradients of a map u : X → Z. If E is a Borel subset of X, then the

function

ρ = σ · χE + τ · χX\E (6.3.9)

is a p-weak upper gradient of u.

Proof From the hypotheses we have that p-almost every compact rec-

tifiable curve γ in X enjoys the following properties: u is absolutely

continuous on γ, the function σ + τ is integrable on γ, and the upper

gradient inequality (6.2.1) holds for both pairs (u, σ) and (u, τ) on γ

as well as on each of its compact subcurves. (See Proposition 6.3.2 and

Lemma 5.2.8.) Let γ : [0, `] → X be such a curve, parametrized by arc

length. We prove that the upper gradient inequality (6.2.1) holds for the

pair (u, ρ) on γ, where ρ is as in (6.3.9).
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Because E′ := γ−1(E) is a Borel subset of [0, `], there is a sequence of

compact sets (Fn) such that F1 ⊂ F2 ⊂ · · · ⊂ E′ and that m1(E′\Fn)→
0 as n → ∞ (see (3.3.38)). Put Un := [0, `] \ Fn. Then Un is relatively

open in [0, `], and so it is the union of a pairwise disjoint collection of

intervals. Enumerate the intervals I1 = (a1, b1), I2 = (a2, b2), . . . . Denote

the restrictions of γ to the closure of these intervals by γ1, γ2, . . . . We

then have that

dZ(u(γ(0)), u(γ(`))) ≤ dZ(u(γ(0)), u(γ(a1))) + dZ(u(γ(a1)), u(γ(b1)))

+ dZ(u(γ(b1)), u(γ(`)))

≤
∫
γ\γ1

σ ds+

∫
γ1

τ ds ,

with obvious notation γ\γ1. Proceeding by induction, we obtain that

dZ(u(γ(0)), u(γ(`))) ≤
∫
γ\
⋃

1≤i≤j γi

σ ds+

∫
⋃

1≤i≤j γi

τ ds

for each positive integer j, which turns into

dZ(u(γ(0)), u(γ(`))) ≤
∫
Fn

σ(γ(t)) dt+

∫
Un

τ(γ(t)) dt (6.3.10)

upon applying the Lebesgue dominated convergence theorem. Finally,

another application of the dominated convergence theorem yields

dZ(u(γ(0)), u(γ(`))) ≤
∫
E′
σ(γ(t)) dt+

∫
[0,`]\E′

τ(γ(t)) dt =

∫
γ

ρ ds

as required. The proof of the lemma is complete.

Corollary 6.3.11 Suppose that σ and τ are two p-integrable p-weak

upper gradients of a map u : X → Z. Then the function min(σ, τ) is a

p-integrable p-weak upper gradient of u.

Proof Apply Lemma 6.3.8 to the Borel set E = {σ < τ}.

A lattice in Lp(X) is a collection of functions that is closed under

pointwise minimum and maximum operations. Corollary 6.3.11 together

with Fuglede’s lemma 5.2 and the remarks in 6.2 implies the following

result.

Corollary 6.3.12 The collection of all p-integrable p-weak upper gra-

dients of a map u : X → Z is a closed convex lattice inside Lp(X).

It will be shown below in Theorem 6.3.20 that the set of p-weak upper

gradients as in the preceding corollary, if nonempty, has a unique element
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of smallest Lp-norm. This follows from Corollary 2.4.16 for p > 1 by the

uniform convexity of Lp(X), but there is a proof that works for p = 1

as well, see Theorem 6.3.20.

Remark 6.3.13 Divide [0, 1] into two disjoint Borel sets A and B

such that every open subinterval of [0, 1] meets both A and B on a set

of positive m1-measure. Then σ = ∞ · χA and τ = ∞ · χB are upper

gradients of every function u : [0, 1] → V , but min(σ, τ) ≡ 0. Thus

Corollary 6.3.11 is not true for arbitrary upper gradients.

Lemma 6.3.14 Suppose that u : X → Z is absolutely continuous on

p-almost every compact rectifiable curve. Let E be a Borel subset of X

and assume that there are maps v, w : X → Z such that u = v µ-almost

everywhere on E and u = w µ-almost everywhere on X \E. If v and w

possess p-integrable p-weak upper gradients σ and τ , respectively, then

ρ = σ · χE + τ · χX\E (6.3.15)

is a p-integrable p-weak upper gradient of u.

Proof We will show that both ρ1 = σ+τ ·χX\E and ρ2 = σ ·χE +τ are

p-weak upper gradients of u. Because both ρ1 and ρ2 are p-integrable,

Lemma 6.3.8 then gives the desired conclusion. By symmetry, it suffices

to show that ρ1 is a p-weak upper gradient of u.

As earlier, it follows from the definitions, from the basic properties

of modulus, from Lemma 5.2.15, and from Proposition 6.3.2, that p-

almost every compact rectifiable curve γ in X enjoys the following three

properties: the maps u, v, and w are all absolutely continuous on γ,

the two map-upper gradient pairs (v, σ) and (w, τ) satisfy the upper

gradient inequality (6.2.1) on γ and each of its compact subcurves, and

the length of γ is zero in the sets

E′ := {x ∈ E : u(x) 6= v(x)} , F ′ := {x ∈ X \ E : u(x) 6= w(x)} .

Let γ : [0, `] → X be such a curve parametrized by arc length. We will

show that (6.2.1) holds on γ for the pair (u, ρ1).

Since u, v, w are continuous on γ, we have that γ−1({u 6= v} ∩ {u 6=
w}) = γ−1(E′ ∩ F ′) must be open. Since the length of γ inside E′ ∪ F ′
is zero, it follows that γ does not intersect E′ ∩ F ′. Therefore at each

point of γ either u = v or else u = w. Since γ−1({u = v}) is closed,

its complement in [0, `] is a pairwise disjoint union of relatively open

intervals that are mapped by γ into X \(E∪F ′). Now a repetition of the

argument in the proof of Lemma 6.3.8 tells us that (u, ρ1) satisfies (6.2.1).
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This completes the proof of Lemma 6.3.14.

Lemma 6.3.14 implies an important localization property for inte-

grable upper gradients:

Corollary 6.3.16 Let ρ be a p-integrable p-weak upper gradient of a

map u : X → Z and let c ∈ Z. Then the function ρ·χX\E is a p-integrable

p-weak upper gradient of u for every Borel set E ⊂ {x ∈ X : u(x) = c}.

Proof The constant map v ≡ c has σ ≡ 0 as a p-integrable upper

gradient and u|E = v. The assertion therefore follows from Proposition

6.3.2 and Lemma 6.3.14.

Remark 6.3.17 As earlier (cf. Remark 6.3.13), the assumption that ρ

be p-integrable in Corollary 6.3.16 is necessary. If u is the characteristic

function of the origin in R, then the function ρ1 =∞·χR\{0} is an upper

gradient of u, but ρ2 ≡ 0 is not.

Minimal upper gradients. A p-weak upper gradient ρ of a map u :

X → Z is said to be a minimal p-weak upper gradient if it is p-integrable

and if ρ ≤ σ almost everywhere in X whenever σ is a p-integrable p-weak

upper gradient of u. Obviously, such a p-weak upper gradient, if it exists,

is unique up to a set of measure zero (courtesy of Lemma 6.2.8). Also

note that the minimal p-weak upper gradient has the smallest Lp-norm

amongst all upper gradients of u.

We denote the minimal p-weak upper gradient of a map u by ρu. The

existence of minimal upper gradients is guaranteed under rather general

circumstances by the ensuing Theorem 6.3.20.

If we consider functions with values in a normed space, then minimal

upper gradients enjoy the following simple properties:

ρu = ρ−u , ρu+v ≤ ρu + ρv , ρ|u| ≤ ρu , ρλu = |λ|ρu , (6.3.18)

where λ ∈ R. We will prove later that ρu = ρ|u| for measurable functions

u : X → R (Corollary 6.3.27). Moreover, if W is a metric space and

f : Z →W is L-Lipschitz, then

ρf◦u ≤ Lρu . (6.3.19)

Note that the definition for a minimal p-weak upper gradient depends

on p. To keep matters simple, this a priori dependence on p is suppressed

in the notation. It turns out that in a large class of metric measure

spaces the minimal p-weak upper gradient of a real-valued function is

independent of p, although this is not true in general. See Section 13.5.
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The minimal p-weak upper gradient ρu should be thought of as a

substitute for |∇u|, or the length of a gradient, for functions defined in

metric measure spaces.

Theorem 6.3.20 The collection of all p-integrable p-weak upper gra-

dients of a map u : X → Z is a closed convex lattice inside Lp(X) and,

if nonempty, contains a unique element of smallest Lp-norm. In partic-

ular, if a map has a p-integrable p-weak upper gradient, then it has a

minimal p-weak upper gradient.

Proof It was already recorded in Corollary 6.3.12 that the collection

U of all p-integrable p-weak upper gradients of u is a closed convex

lattice inside Lp(X). It is a general fact that every such set, if nonempty,

contains a unique element of smallest Lp-norm. Indeed, assume that

(ρi) ⊂ U is a sequence such that

lim
i→∞

||ρi||p = inf{||ρ||p : ρ ∈ U}.

By the lattice property (Corollary 6.3.11), replacing ρi with min1≤j≤i ρj
if necessary, we can assume that the sequence (ρi) is pointwise decreas-

ing. The limit function

ρu := lim
i→∞

ρi.

is Borel by Proposition 3.3.22. By the Lebesgue monotone convergence

theorem, we have that ρi → ρu in Lp(X), so that by Fuglede’s lemma 5.2

we know that ρu ∈ U . It is clear that ρu has the required property of

minimality.

Remarks 6.3.21 (a) In the definition for minimal upper gradients, it

is important to restrict to p-integrable upper gradients, for otherwise the

existence cannot be guaranteed even in simple situations. The function

u(x) = x on X = [0, 1] has ρu(x) ≡ 1 as the minimal weak upper

gradient (for all p ≥ 1) as defined above, but the function σ =∞·χO is

an upper gradient of u for every dense open set O ⊂ [0, 1]; in particular,

by choosing O appropriately, we have that σ < ρu on a set of positive

measure.

(b) As mentioned earlier, in the preceding proof of Theorem 6.3.20, for

p > 1 we could have invoked the uniform convexity of Lp(X) together

with Corollary 2.4.16 to conclude that there is a unique element ρu of

smallest Lp-norm U . The fact that U is a lattice allows us to give an

argument which works for all p ≥ 1.
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Proposition 6.3.22 Let u, v : X → Z be two maps with respective

minimal p-weak upper gradients ρu and ρv. If u = v almost everywhere

in a Borel set E, then ρu = ρv almost everywhere in E.

Proof By the existence of p-integrable p-weak upper gradients, both

u and v are absolutely continuous on p-almost every compact curve

(Proposition 6.3.2). We thus have from Lemma 6.3.14 that ρu ·χE + ρv ·
χX\E is a p-integrable p-weak upper gradient of v. The minimality of ρv
implies that ρv ≤ ρu almost everywhere in E, and the lemma follows by

symmetry.

We use Proposition 6.3.22 to show that minimal upper gradients be-

have well under truncation of real-valued functions. The next proposition

also shows that the class of functions with p-integrable upper gradients

forms a lattice.

Proposition 6.3.23 Let u1, u2 : X → R be two measurable functions

with respective minimal p-weak upper gradients ρu1 and ρu2 . Then the

following equalities are valid pointwise almost everywhere in X:

ρmin{u1,u2} = ρu1
· χ{u1≤u2} + ρu2

· χ{u2<u1} , (6.3.24)

ρmax{u1,u2} = ρu1
· χ{u1>u2} + ρu2

· χ{u2≥u1} . (6.3.25)

Remark 6.3.26 Proposition 6.3.23 does not assert that the functions

on the right in equalities (6.3.24) and (6.3.25) are the minimal upper

gradients of min(u1, u2) and max(u1, u2), respectively. The proposition

only implies that such an assertion holds for Borel representatives of

these functions.

Proof of Proposition 6.3.23 First let ρ1, ρ2 be a choice of p-integrable

upper gradients of u1, u2 respectively. Let γ be a non-constant compact

rectifiable curve in X, and consider u = min{u1, u2}. Denoting the two

endpoints of γ by x and y, without loss of generality let u(x) ≥ u(y).

Then, without loss of generality, suppose that u(y) = u1(y) ≤ u2(y).

Then u(x) ≤ u1(x), and so

|u(x)−u(y)| = u(x)−u(y) ≤ u1(x)−u1(y) ≤
∫
γ

ρ1 ds ≤
∫
γ

(ρ1 + ρ2) ds.

It follows that ρ1 + ρ2 is a p-integrable upper gradient of u, and so u is

absolutely continuous on p-almost every curve. Thus the triple u, u1, u2

of functions satisfies the hypotheses of Lemma 6.3.14, with E a Borel set

containing {x ∈ X : u1(x) ≤ u2(x)} with equal measure. Thus (6.3.24)
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is verified for u by combining Lemma 6.3.14 together with Proposi-

tion 6.3.22. A similar argument also verifies (6.3.25) for max{u1, u2}.
This completes the proof of Proposition 6.3.23.

Because |u| = max{u,−u} and because ρu = ρ−u, we have the follow-

ing corollary to Proposition 6.3.23.

Corollary 6.3.27 If u : X → R is measurable and has a p-integrable

p-weak upper gradient, then ρu = ρ|u|.

The next proposition shows that a product rule is valid for real-valued

functions with p-integrable upper gradients.

Proposition 6.3.28 Let V be a Banach space. Assume that u : X → V

and m : X → R are measurable functions that are absolutely continuous

on p-almost every compact rectifiable curve in X. Assume further that

ρ and σ are p-weak upper gradients of u and m respectively. Then every

Borel representative of |m| · ρ + |u| · σ is a p-weak upper gradient of

m · u : X → V . In particular, if |m| · ρ+ |u| · σ is in Lp(X), then

ρm·u ≤ |m| · ρ+ |u| · σ

almost everywhere in X.

Proof Let τ be a Borel representative of the function |m| · ρ + |u| · σ
(Proposition 3.3.23). Let γ : [0, length(γ)] → X be a rectifiable curve

parametrized by arc length so that the length of γ in the set

{τ 6= |m| · ρ+ |u| · σ}

is zero, that the upper gradient inequality holds for both pairs (u, ρ)

and (m,σ) on γ as well as each of its compact subcurves, and that

the sum ρ + σ is integrable on γ. In particular, both u and m, and

hence the product m · u, are absolutely continuous on γ. By Lemma

5.2.15 and Proposition 6.3.2, p-almost every compact curve γ for which∫
γ
ρ+ σ <∞ has these properties. Next, by using the definition for the

metric differential in (4.4.9), and Proposition 6.3.3, we deduce that

|((m · u) ◦ γ)′(t)| ≤ |(m ◦ γ)(t)| · |(u ◦ γ)′(t)|+ |(m ◦ γ)′(t)| · |(u ◦ γ)(t)|
≤ |(m ◦ γ)(t)| · (ρ ◦ γ)(t) + (σ ◦ γ)(t) · |(u ◦ γ)(t)|
= τ(t)

for almost every t ∈ [0, length(γ)]. The proposition follows from these

remarks together with the inequality (6.3.4) of Proposition 6.3.3.
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Upper gradients and p-exceptional sets. Recall the definition for

a p-exceptional set from Section 5.2. The first assertion in the following

proposition is just a rephrasing of Lemma 6.3.5. The second follows from

the first and from Proposition 6.3.2.

Proposition 6.3.29 Suppose that u : X → Z is absolutely continuous

on p-almost every rectifiable curve in X. If there exists c ∈ Z such that

u ≡ c almost everywhere in X, then the set {x ∈ X : u(x) 6= c} is p-

exceptional. In particular, if u : X → Z has a p-integrable p-weak upper

gradient and if for some c ∈ Z we have that u ≡ c almost everywhere in

X, then the set {x ∈ X : u(x) 6= c} is p-exceptional.

Thus p-exceptional sets can be used, for example, to measure the am-

biguity in pointwise defined representatives for maps with p-integrable

p-weak upper gradients. The next proposition illustrates this remark.

(See also Proposition 7.1.31).

Proposition 6.3.30 Let (ui) be a sequence of maps ui : X → Z with

(ρi) a corresponding sequence of p-integrable p-weak upper gradients.

Assume that there exists a map u : X → Z together with a p-exceptional

set E ⊂ X such that limi→∞ ui(x) = u(x) for every x ∈ X\E. Assume

further that there exists a Borel function ρ : X → [0,∞] such that ρi → ρ

in Lp(X) as i→∞. Then ρ is a p-weak upper gradient of u.

Proof By the hypotheses, and by Fuglede’s lemma 5.2, we find that

p-almost every compact rectifiable curve γ in X satisfies the follow-

ing properties: the upper gradient inequality (6.2.1) holds for each pair

(ui, ρi) on γ, γ does not meet E, and limi→∞
∫
γ
ρi ds =

∫
γ
ρ ds. Let

γ : [a, b]→ X be such a curve. Then

dZ(u(γ(a)), u(γ(b))) = lim
i→∞

dZ(ui(γ(a)), ui(γ(b))) ≤ lim
i→∞

∫
γ

ρi ds

which equals
∫
γ
ρ ds. The proof is complete.

6.4 Notes to Chapter 6

The classical theory of Sobolev spaces permeates modern mathematics.

The theory was systematically developed by Sobolev [253], [254] starting

from the mid 1930s, with his influential book published in 1950 [255],

[256]. Sobolev’s theory had important predecessors, and in particular the

idea of functions absolutely continuous on lines evolved in the papers by
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Levi [183], Tonelli [269], and Nikodym [219]. A treatment of Sobolev

functions (in the Euclidean setting) in terms of absolute continuity on

line segments can also be found in [273], where the terminology ACLp
was used. The notion of p-exceptional sets in the Euclidean setting was

studied in [220]. See [212, Chapter 1.8, p. 19] and [202, p. 29] for further

comments and references to important early works.

The approximation of Sobolev functions by smooth functions (Theo-

rem 6.1.6) is a version of the classical results of Deny and Lyons [73],

and Meyers and Serrin [207]. A Lipschitz density result for vector-valued

Sobolev functions on certain classes of metric measure spaces will be

proven in Theorem 8.2.1.

There exist several comprehensive monographs on classical Sobolev

spaces, e.g., [1], [2], [81], [193], [202], [212], [290].

Upper gradients were introduced in [124], [125]. They were initially

called “very weak gradients”, but the befitting term “upper gradient”

was soon suggested. Functions with p-integrable p-weak upper gradients

were subsequently studied in [168], while the theory of Sobolev spaces

based on upper gradients was systematically developed in [247], [248],

and by Cheeger in [53]. We will discuss this approach to Sobolev spaces

starting in Chapter 7. For a recent use of the machinery of upper gra-

dients in the study of geometric integration theory à la Whitney in the

metric space context, see [228].

The elegant proof of Theorem 6.3.20 was pointed out to us by Piotr

Haj lasz. It avoids the use of uniform convexity of Lp-spaces for p > 1, as

in Remarks 6.3.21 (b). For the existence of minimal weak upper gradients

related to more general Banach lattices than Lp see Malý [194].
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In this chapter, we introduce and study Sobolev spaces of functions de-

fined on arbitrary metric measure spaces with values in a Banach space.

Central to this discussion is the theory of upper gradients developed

in the previous chapter. We also discuss capacity. Capacity is an outer

measure on a given metric measure space, defined with the aid of the

Sobolev norm, and is used in this book to describe pointwise behavior

of functions in Sobolev and Dirichlet classes.

We assume throughout this chapter that X = (X, d, µ) is a metric

measure space as defined in 3.3, and that V is a Banach space. We also

assume that 1 ≤ p <∞ unless otherwise specifically stated.

7.1 Vector-valued Sobolev functions on metric
spaces

The theory of weak upper gradients developed in Sections 6.2 and 6.3

replaces the theory of weak or distributional derivatives in the construc-

tion of Sobolev classes of functions on metric measure spaces. Note that

in 6.2 and 6.3, we mostly studied maps with values in an arbitrary met-

ric space. To obtain a linear function space, we need to have a linear

target; moreover, for reasons of measurability and Bochner integration,

we need to assume that we have a Banach space.

Dirichlet classes. In Section 6.1, we introduced the Dirichlet space

L1,p(Ω) as the space of those locally integrable functions on an open set

Ω in Rn that have distributional derivatives in Lp(Ω). The importance

of the Dirichlet spaces lies in the fact that imposing the p-integrability

condition for the function, in addition to its gradient, is sometimes an

unnecessarily strong requirement. We next discuss analogs of Dirichlet

spaces for functions defined on metric measure spaces.

The Dirichlet space, or Dirichlet class, D1,p(X : V ) consists of all

measurable functions u : X → V that possess a p-integrable p-weak

upper gradient in X. For brevity, we set D1,p(X) := D1,p(X : R).

A measurable function u : X → V belongs to the Dirichlet space

D1,p(X : V ) if and only if it possesses a p-integrable upper gradient

(Lemma 6.2.2).

In contrast to Section 6.1, the definition for a function in a Dirichlet

space does not include the requirement of local integrability. It includes

the requirement of measurability, albeit not Borel measurability. How-

ever it will be shown in Proposition 7.1.2 that for functions in open sets
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in Rn the two definitions are equivalent. Moreover, in Chapter 9 we will

show that for real-valued functions, even the a priori requirement of mea-

surability can be removed if X supports a Poincaré inequality; using the

Pettis measurability theorem 3.1 one can even remove the requirement

of measurability for more general functions on such X.

Dirichlet classes D1,p(X : V ) are vector spaces, and we can equip

them with the seminorm

||u||D1,p(X:V ) := ||ρu||Lp(X) , (7.1.1)

where ρu is the minimal p-weak upper gradient of u. However, in this

book, we rarely emphasize the seminorm structure on D1,p(X : V ). We

consider D1,p(X : V ) simply as a collection, or a vector space, of point-

wise defined functions.

Proposition 7.1.2 Let Ω ⊂ Rn be open and let u ∈ D1,p(Ω). Then u

is locally integrable in Ω. In particular, we have that

D1,p(Ω) = L1,p(Ω) (7.1.3)

in the following sense: if u ∈ D1,p(Ω), then u ∈ L1,p(Ω); if u ∈ L1,p(Ω)

is a function, then u has a Lebesgue representative in D1,p(Ω).

Note that the equality in (7.1.3) has to be interpreted properly, as

the members of L1,p(Ω) are (Lebesgue) equivalence classes of functions,

whereas members ofD1,p(Ω) are functions that are necessarily absolutely

continuous on p-almost every curve.

Proof We wish to show that u ∈ L1
loc(Ω). To this end, we fix R > 0,

and we would like to show that u ∈ L1(ΩR), where ΩR consists of points

in Ω that are a distance at least 4R away from ∂Ω and are at most

a distance 4/R from a fixed point x0 ∈ Ω. We consider a p-integrable

upper gradient g of u (such g exists by Lemma 6.2.2). It follows from the

existence of such g that, necessarily, |u(x)| <∞ for almost every x ∈ Ω.

Fix such a point x ∈ ΩR. Points y ∈ B(x,R) can be represented by polar

coordinates (τ, θ) based at x, with θ in the unit sphere Sn−1. Let Ly be

the (radial) line segment connecting x to y. Then by the upper gradient

inequality (6.2.1),

|u(x)− u(y)| ≤
∫
Ly

g ds =

∫ τ

0

g(s, θ) ds

Integrating with respect to the variable y in B(x,R), we obtain the
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estimate∫
B(x,R)

|u(y)− u(x)| dy ≤
∫
Sn−1

∫ R

0

τn−1

∫ τ

0

g(s, θ) ds dτ dθ

≤
∫
Sn−1

∫ R

0

τn−1

∫ R

0

g(s, θ) ds dτ dθ.

An application of Tonelli’s theorem (see for example [236, p. 309]) yields∫
B(x,R)

|u(y)− u(x)| dy ≤
∫ R

0

τn−1

(∫
Sn−1

∫ R

0

g(s, θ)

sn−1
sn−1 ds dθ

)
dτ

=
Rn

n

∫
B(x,R)

g(y)

|x− y|n−1
dy.

Thus to conclude that u ∈ L1(B(x,R)) it suffices to know that the last

term in the above sequence of inequalities is finite. This may not be the

case for every x ∈ ΩR, but it is enough for us to show that this holds for

almost every x ∈ ΩR, for then we can cover ΩR by such balls B(x,R),

and the compactness of ΩR then yields the desired result.

The map x →
∫
Rn

g(y)
|x−y|n−1 dy is called the Riesz potential of g. This

potential is closely connected with the maximal function of g, as we show

now. For non-negative integers i, we set Bi = B(x, 2−iR). Then∫
B(x,R)

g(y)

|x− y|n−1
dy =

∞∑
i=0

∫
Bi\Bi+1

g(y)

|x− y|n−1
dy

≤
∞∑
i=0

∫
Bi

g(y)

(2−(i+1)R)n−1
dy

≤ CnR
∞∑
i=0

2−(i+1)

∫
Bi

g(y) dy

≤ CnR
∞∑
i=0

2−(i+1)MgR(x) = C RMgR(x),

where gR is the zero extension of g outside ΩR. We are now in a position

to use Theorem 3.5.6, obtaining∣∣∣∣{x ∈ ΩR :

∫
B(x,R)

g(y)

|x− y|n−1
dy > t

}∣∣∣∣ ≤ ∣∣∣∣{x ∈ ΩR : MgR(x) >
t

CR

}∣∣∣∣
≤ C R

t

∫
ΩR

g(y) dy

for t > 0. This immediately yields that the integral
∫
B(x,R)

g(y)
|x−y|n−1 dy

is finite almost everywhere in ΩR, completing the proof.
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Remark 7.1.4 The above proof yields as a side product an important

inequality known as a Poincaré inequality. Let us fix a ball B ⊂ Ω. Then

the above proof also tells us that when x ∈ B and R is the radius of B,∫
B

|u(y)− u(x)| dy ≤ C RMg̃(x),

where g̃ = g χB . Now integrating over x ∈ B, we obtain∫
B

∫
B

|u(y)− u(x)| dy dx ≤ C R
∫
B

Mg̃(x) dx

≤ C R
(∫

B

Mg̃(x)p dx

)1/p

.

Hence if p > 1, we may apply the second part of Theorem 3.5.6 to obtain∫
B

|u(x)−uB | dx ≤
∫
B

∫
B

|u(y)−u(x)| dy dx ≤ C R
(∫

B

g(x)p dx

)1/p

.

The inequality∫
B

|u(x)− uB | dx ≤ C R
(∫

B

g(x)p dx

)1/p

(7.1.5)

is generally called a (1, p)-Poincaré inequality; in the setting of metric

measure spaces, we will study this inequality in Chapter 8. In the Eu-

clidean setting considered here, the above inequality is valid even with

p = 1, see (8.1.2) for a proof formulated in the special case of a smooth

function and the modulus of its gradient.

Lemma 7.1.6 If u ∈ D1,p(X : V ) and if v : X → V is a function that

agrees with u outside a p-exceptional set, then v belongs to D1,p(X : V ).

Conversely, if two functions in D1,p(X : V ) agree almost everywhere,

then they agree outside a p-exceptional set.

Proof Let E := {x ∈ X : u(x) 6= v(x)}. Then, by assumption, the

collection of all curves γ in X that meet E has p-modulus zero. In

particular, every p-integrable p-weak upper gradient of u is also a p-

integrable p-weak upper gradient of v, and the first assertion follows.

Next, assume that u, v ∈ D1,p(X : V ) are such that the set E :=

{u 6= v} has measure zero. Since u− v has a p-integrable p-weak upper

gradient, we have that E is p-exceptional by Proposition 6.3.29.
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Truncation properties of Dirichlet functions. An important fea-

ture of classical first order Sobolev spaces is that they are closed under

truncation of functions. The Dirichlet classes on metric measure spaces

bear the same hallmark.

The following simple fact follows from the basic definitions by Corol-

lary 6.3.27.

Lemma 7.1.7 If u is a function in the class D1,p(X : V ), then |u| is

in the class D1,p(X) and

|| |u| ||D1,p(X) = ||u||D1,p(X:V ) .

The next result follows from Proposition 6.3.23.

Proposition 7.1.8 Let u1 and u2 be two functions in D1,p(X) with re-

spective minimal p-weak upper gradients ρu1
and ρu2

. Then the following

equalities are valid pointwise almost everywhere in X:

ρmin{u1,u2} = ρu1
· χ{u1≤u2} + ρu2

· χ{u2<u1} , (7.1.9)

ρmax{u1,u2} = ρu1
· χ{u1>u2} + ρu2

· χ{u2≥u1} . (7.1.10)

In particular, if u ∈ D1,p(X) and t ∈ R, then

ρut ≤ ρu (7.1.11)

where ut ∈ D1,p(X) is either of the two functions min{u, t} or max{u, t}.

As in Remark 6.3.26, we cannot assert that the functions on the right

in (7.1.9) and (7.1.10) are p-weak upper gradients, for they may not be

Borel. However, by modifying them on a set of measure zero, we obtain

Borel representatives for which the above identity holds.

The last claim in Proposition 7.1.8 has a version for Banach space-

valued functions as well. We also discover that truncated functions are

dense in the Sobolev and Dirichlet classes. To explain this, we first define

what is meant by a truncation of Banach space-valued functions.

For t > 0, consider the mapping rt : V → V defined by

rt(v) :=
t

|v|
v if |v| > t , and rt(v) := v if |v| ≤ t . (7.1.12)

Lemma 7.1.13 The mapping rt is a Lipschitz retraction from V to

the closed ball Bt := {v ∈ V : |v| ≤ t}. More precisely, rt : V → Bt is a

3-Lipschitz surjection fixing Bt pointwise.
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Proof It suffices to verify the Lipschitz property of rt. Assume first that

a, b ∈ V with |a|, |b| ≥ t. Then

|rt(a)− rt(b)| = t

∣∣∣∣ a|a| − b

|b|

∣∣∣∣ = t

∣∣∣∣ |b|a− |b|b+ |b|b− |a|b
|a||b|

∣∣∣∣
≤ 2t

|a− b|
|a|

≤ 2 |a− b| .

If |a| ≥ t and |b| < t, there is a point b′ on the line segment [a, b] (the

collection of points a+ t(b− a) ∈ V , 0 ≤ t ≤ 1) such that |b′| = t. Then

by the preceding computation,

|rt(a)− rt(b)| ≤ |rt(a)− rt(b′)|+ |rt(b′)− rt(b)|
≤ 2|a− b′|+ |b− b′| ≤ 3|a− b| .

By symmetry, and by the fact that rt(v) = v for |v| ≤ t, we have that

rt : V → Bt is 3-Lipschitz as asserted.

We define a two-sided truncation of a function u : X → V to be

Ttu := rt ◦ u : X → V , t > 0 . (7.1.14)

Note that |Ttu(x)| ≤ t for every x ∈ X, and that

Ttu = max{min{u, t},−t} (7.1.15)

if V = R. Furthermore,

|Ttu(x)| ≤ |u(x)| and lim
t→∞

Ttu(x) = u(x) (7.1.16)

for every x ∈ X. It follows that

lim
t→∞

||Ttu− u||Lp(X:V ) = 0 (7.1.17)

if u ∈ Lp(X : V ) for some 1 ≤ p < ∞, by the dominated convergence

theorem applied to |Ttu − u|, dominated by 2|u|.

Proposition 7.1.18 Let u ∈ D1,p(X : V ). Then

lim
t→∞

||ρ(u−Ttu)||Lp(X) = 0 . (7.1.19)

Proof From the basic properties of minimal upper gradients, (6.3.18)

and (6.3.19), and from Lemma 7.1.13, we obtain that

ρu−Ttu ≤ ρu + ρTtu ≤ ρu + 3ρu = 4ρu .
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On the other hand, using Proposition 6.3.22 and Borel regularity of the

measure, we infer that ρu−Ttu = 0 almost everywhere in {|u| ≤ t}. Hence∫
X

ρpu−Ttu dµ ≤ 4p
∫
{|u|>t}

ρpu dµ→ 0

as t→∞, proving (7.1.19).

Characterizations of Dirichlet functions. We present some useful

characterizations of functions in the Dirichlet classes. By the aid of these

characterizations, many problems about Banach space-valued functions

can be reduced to the real-valued case.

Theorem 7.1.20 Let u : X → V be a measurable function. Then the

following four conditions are equivalent:

(i). u has a µ-representative in the Dirichlet class D1,p(X : V ).

(ii). There exists a p-integrable Borel function ρ : X → [0,∞] with the

following property: for each 1-Lipschitz function ϕ : V → R there

exists a µ-representative uϕ of the function ϕ ◦ u in D1,p(X) so that

the minimal upper gradient ρuϕ of uϕ satisfies ρuϕ ≤ ρ almost every-

where.

(iii). There exists a p-integrable Borel function ρ : X → [0,∞] with the

following property: for each v∗ in the dual space V ∗ with dual norm

|v∗| ≤ 1 there exists a µ-representative uv∗ of the function 〈v∗, u〉 in

D1,p(X) such that the minimal upper gradient ρuv∗ of uv∗ satisfies

ρuv∗ ≤ ρ almost everywhere.

(iv). There exists a p-integrable Borel function ρ : X → [0,∞] with the

following property: for each z ∈ u(X) there exists a µ-representative

uz of the function x 7→ |u(x)− z| in D1,p(X) such the minimal upper

gradient ρuz of uz satisfies ρuz ≤ ρ almost everywhere.

Moreover, if u : X → V is a function in D1,p(X : V ), then there exists

a countable set of linear functionals (v∗i ) with |v∗i | ≤ 1 and a countable

set of points (zi) in u(X) such that the equalities

ρu(x) = sup
i
ρuv∗

i
(x), (7.1.21)

and

ρu(x) = sup
i
ρuzi (x) (7.1.22)

hold for almost every x in X.
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Proof of Proposition 7.1.20 We first prove the implication (i) ⇒ (ii).

Let u0 ∈ D1,p(X : V ) be a µ-representative of u, and let ρ : X →
[0,∞] be any p-integrable upper gradient of u0. We claim that ρ satisfies

the requirement in (ii). Indeed, let ϕ : V → R be 1-Lipschitz. Then,

by (6.3.19), ρ is also an upper gradient of the function uϕ := ϕ ◦ u0.

Because uϕ is also measurable (Theorem 3.1.8), we have that uϕ belongs

to D1,p(X). Obviously, uϕ agrees with ϕ ◦u almost everywhere, and the

minimal upper gradient ρuϕ is essentially majorized by ρ. This proves

the implication.

The implications (ii) ⇒ (iii) and (ii) ⇒ (iv) are clear, since the

functions v∗ ∈ V ∗, |v∗| ≤ 1, and the functions dz, z ∈ V , given by

dz(v) = |v − z|, are 1-Lipschitz and real-valued.

Next we prove the implication (iii)⇒ (i). Because u : X → V is mea-

surable, there exists a set Z in X of measure zero such that u(X\Z) is a

separable subset of V (Theorem 3.1). Hence we can choose a countable

set (vi) ⊂ V whose closure in V contains the difference set

u(X\Z)− u(X\Z) ⊂ V .

Next, select a countable subset (v∗i ) of V ∗ such that 〈v∗i , vi〉 = |vi| and

that |v∗i | = 1 for each i. Such a set exists by the Hahn–Banach theorem.

Let Zi be the collection of all the points in X at which uv∗i ∈ D1,p(X)

differs from 〈v∗i , u〉. Then the measure of the set Z0 = Z ∪
⋃
i Zi is zero,

and uv∗i (x) = 〈v∗i , u(x)〉 for every i and for every x ∈ X \ Z0.

Let ρ : X → [0,∞] be the p-integrable Borel function guaranteed by

the hypotheses. Then the Borel function ρ∗u, given by

ρ∗u(x) := sup
i
ρuv∗

i
(x)

for x ∈ X, is in Lp(X). Furthermore, it follows from Proposition 6.3.2,

from Lemmas 5.2.16 and 5.2.15, and from the subadditivity of the mod-

ulus (5.2.6) that p-almost every compact rectifiable curve γ : [a, b]→ X

satisfies the following three properties: ρ∗u is integrable on γ, the upper

gradient inequality (6.2.1) holds for each pair (uv∗i , ρ
∗
u) on γ as well as

on each of its subcurves, and the length of γ in Z0 is zero. Denote the

collection of all such nonconstant curves by Γ.

Assume now that γ ∈ Γ is a curve with both end points γ(a), γ(b)

outside Z0. Then we can pick a subsequence (vij ) converging to u(γ(a))−
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u(γ(b)). Consequently, with an obvious notation v∗ij , we have that

|u(γ(a))− u(γ(b))| = lim
j→∞

|vij |

≤ lim sup
j→∞

(
|〈v∗ij , vij − u(γ(a)) + u(γ(b))|〉

+ |〈v∗ij , u(γ(a))− u(γ(b))〉|
)

≤ lim sup
j→∞

|vij − u(γ(a)) + u(γ(b))|

+ |uv∗ij (γ(a))− uv∗ij (γ(b))|

≤
∫
γ

ρ∗u ds .

(7.1.23)

Next assume that γ ∈ Γ is a curve with at least one end point in Z0. Say

γ(a) ∈ Z0. Choose a sequence (tk) ⊂ [a, b] such that tk → a, as k →∞,

and that γ(tk) /∈ Z0 for each k. Then, by arguing as in (7.1.23), we find

that

|u(γ(tk))− u(γ(tl))| ≤
∫
γ|[tk,tl]

ρ∗u ds ,

where γ|[tk, tl] is the restriction of γ to [tk, tl]. Because ρ is integrable on

γ, it follows that the sequence (u(γ(tk))) is convergent in V , and that the

limit is independent of the sequence (tk). In fact, the limit is independent

of the curve γ as well, for if γ1 : [a1, b1]→ X is another curve in Γ with

γ1(a1) = γ(a), and if (sm) ⊂ [a1, b1] is a sequence converging to a1 with

γ1(sm) /∈ Z0, then we have that

|u(γ1(sm))− u(γ(tk))| ≤
∫
γ1|[a1,sm]

ρ∗u ds +

∫
γ|[a,tk]

ρ∗u ds → 0

as m, k →∞.

We can now define a function u0 by first setting u0(x) = u(x) if x 6∈ Z0.

If x ∈ Z0 and if there is a nonconstant rectifiable curve γ : [a, b] → X

in Γ with γ(a) = x, then u0(x) is defined as the limit in the preceding

argument. Thus u0 is defined outside of a p-exceptional set of measure

zero; this is the subset of Z0 that none of the curves in Γ meet and u0

can be defined arbitrarily there. The upper gradient inequality (6.2.1)

holds for the pair (u0, ρ
∗
u) on each curve in Γ, and hence we conclude

that u0 ∈ D1,p(X : V ) and that the minimal p-weak upper gradient of

u0 is bounded above by ρ∗u.

The proof for the implication (iv)⇒ (i) is similar, using the fact that

||u(x)− vij | − |u(y)− vij || → |u(x)− u(y)|
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for a subsequence (vij ) of a dense set (vi) in u(X \ Z0), converging to

u(y), where Z0 is a set of measure zero as in the proof of (iii)⇒ (i).

Finally, let us prove (7.1.21) and (7.1.22). As above, we set

ρ∗u(x) := sup
i
ρuv∗

i
(x)

for x ∈ X, where the functionals v∗i are chosen as in the proof of the

implication (iii)⇒ (i). From the above argument, we know that ρu ≤ ρ∗u
almost everywhere in X. On the other hand, because the maps v 7→
〈v∗i , v〉 are 1-Lipschitz, it is clear that ρ∗u ≤ ρu almost everywhere.

The proof for the statement involving the functions dz, z ∈ u(X), is

similar, and Theorem 7.1.20 is now completely verified.

Sobolev classes. Now we will define the Sobolev classes. The definition

is akin to that for functions in the Dirichlet classes, but an integrability

requirement is placed on the functions as well, and not only on the

upper gradients. Moreover, in contrast with D1,p, the Sobolev classes

are equipped with a norm. Recall that X is an arbitrary metric measure

space as in Section 3.3, V is a Banach space, and 1 ≤ p <∞.

Let Ñ1,p(X : V ) denote the collection of all p-integrable functions u

that have an upper gradient in Lp(X). We emphasize that in this defini-

tion genuine functions, as opposed to equivalence classes, are considered.

Thus,

Ñ1,p(X : V ) = D1,p(X : V ) ∩ Lp(X : V ) .

In the above equality, D1,p(X : V ) consists of functions, and so Lp(X :

V ) stands in for the collection of functions that are p-integrable. With

the help of Proposition 6.3.29, we will soon remove this ambiguity in

notation.

It follows from the definitions that Ñ1,p(X : V ) is a vector space. We

equip it with the seminorm

||u||Ñ1,p(X:V ) = ||u||Lp(X:V ) + ||ρu||Lp(X), (7.1.24)

where ρu is the minimal p-weak upper gradient of u guaranteed by The-

orem 6.3.20. We recall again that a function u has an upper gradient

in Lp(X) if and only if it has a p-weak upper gradient in Lp(X) as

demonstrated by Lemma 6.2.2. Moreover, Lemma 6.2.2 implies that the

expression in (7.1.24) can be written equivalently as

||u||Ñ1,p(X:V ) := ||u||Lp(X:V ) + inf ||ρ||Lp(X), (7.1.25)

where the infimum is taken over all upper gradients ρ of u.
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The seminorm in (7.1.24) is not a norm in general. For example, if E is

a nonempty p-exceptional subset of X of zero measure, and if c ∈ V \{0},
then the function u = χE · c is a nonzero function from X to V with

||u||Ñ1,p(X:V ) = 0.

We obtain a normed space N1,p(X : V ) by passing to equivalence

classes of functions in Ñ1,p(X : V ), where u1 ∼ u2 if and only if ||u1 −
u2||Ñ1,p(X:V ) = 0. (Compare Remark 2.1.16.) Thus,

N1,p(X : V ) := Ñ1,p(X : V )/{u ∈ Ñ1,p(X : V ) : ||u||Ñ1,p(X:V ) = 0}.
(7.1.26)

The normed space N1,p(X : V ) of equivalence classes of functions in

Ñ1,p(X : V ) is called the Sobolev space of V -valued functions on X. We

write

||u||N1,p(X:V )

for the (quotient) norm of u ∈ N1,p(X : V ). If V = R, we abbreviate

N1,p(X) := N1,p(X : R) . (7.1.27)

It will be shown later in Section 7.3 that N1,p(X : V ) is a Banach

space. Before this, we explore some basic properties of the Sobolev spaces

N1,p(X : V ).

If Y ⊂ X is an arbitrary open subset, then we have the metric measure

space (Y, d, µY ) (see 3.3), and it follows from the definitions that the

restriction map u 7→ u|Y yields a bounded operator Ñ
1,p

(X : V ) →
Ñ1,p(Y : V ),

||u|Y ||Ñ1,p(Y :V ) ≤ ||u||Ñ1,p
(X:V )

. (7.1.28)

Moreover, (7.1.28) and the definition for the quotient norm in (2.1.17)

give that also

||u|Y ||N1,p(Y :V ) ≤ ||u||N1,p(X:V ) , (7.1.29)

where the inequality is naturally interpreted in terms of equivalence

classes.

We next define local Sobolev spaces. Let Ñ1,p
loc (X : V ) be the vector

space of functions u : X → V with the property that every point x ∈ X
has a neighborhood Ux in X such that u ∈ Ñ1,p(Ux : V ). Two functions

u1 and u2 in Ñ
1,p

loc(X : V ) are said to be equivalent if every point x ∈ X
has a neighborhood Ux in X such that the restrictions u1|Ux and u2|Ux
determine the same element in N1,p(Ux : V ). It follows from (7.1.28)

that such a neighborhood can be assumed to be open. The local Sobolev
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space N1,p
loc(X : V ) is the vector space of equivalence classes of functions

in Ñ
1,p

loc(X : V ) under the preceding equivalence relation.

As in Lebesgue’s theory, we speak of functions rather than equivalence

classes of elements in N1,p(X : V ). To be able to do this with care, it

is important to understand the amount of ambiguity in chosen repre-

sentatives. A good rule of thumb is given in Lemma 7.1.6. For further

information see Corollary 7.2.10, and Section 7.5, especially Proposi-

tion 7.5.2.

We next clarify the equivalence relation in the general context of local

Sobolev spaces.

Lemma 7.1.30 Two functions u1, u2 in Ñ
1,p

loc(X : V ) determine the

same element in N1,p
loc(X : V ) if and only if u1 − u2 = 0 in N1,p(X : V ).

Proof It suffices to prove the following: a function u : X → V deter-

mines the zero element in N1,p
loc(X : V ) if and only if ||u||Ñ1,p(X:V ) = 0.

If ||u||Ñ1,p(X:V ) = 0, then, by (7.1.28), we know that u determines the

zero element in N1,p
loc(X : V ).

Assume next that u = 0 in N1,p
loc(X : V ). Then E := {x ∈ X : u(x) 6=

0} has measure zero (Lemma 3.3.31). We will show in addition that E

is p-exceptional. To this end, fix x ∈ X and let Ux be a neighborhood of

x such that u|Ux = 0 in N1,p(Ux : V ). It follows from Lemma 7.1.6 that

E ∩ Ux is p-exceptional. Consequently, Lemma 5.2.10 gives that E is p-

exceptional. The preceding understood, we have that ρ ≡ 0 is a p-weak

upper gradient of u, and hence that ||u||Ñ1,p(X:V ) = 0 as required. The

lemma follows.

We summarize the preceding discussion in the following proposition.

Proposition 7.1.31 If u ∈ Ñ
1,p

loc(X : V ) and if v : X → V is a

function that agrees with u outside a p-exceptional set of measure zero,

then v belongs to Ñ
1,p

loc(X : V ) and the two functions determine the same

element in N1,p
loc(X : V ). In particular, if in addition u ∈ Ñ

1,p
(X : V ),

then also v ∈ Ñ
1,p

(X : V ), and the two functions determine the same

element in N1,p(X : V ).

Conversely, if two functions in Ñ
1,p

loc(X : V ) agree almost everywhere,

then they agree outside a p-exceptional set. In particular, if two µ-

representatives of a function in an equivalence class in N1,p
loc(X : V )

both lie in Ñ
1,p

loc(X : V ), then they differ only in a p-exceptional set of

measure zero.
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Proof The assertions in the first paragraph of the proposition follow

directly from the definitions and from Lemmas 7.1.6 and 7.1.30. The

first assertion in the second paragraph follows from Lemma 7.1.6. Finally,

the last assertion follows from the assertion before it, and from Lemma

3.3.31. The proposition is proved.

Proposition 7.1.31 implies that a function in N1,p
loc(X : V ), and in par-

ticular a function in N1,p(X : V ), is well-defined outside a p-exceptional

subset of measure zero. While p-exceptionality is an easily defined con-

dition for “small sets”, an alternate description intrinsically in terms of

the Sobolev space N1,p(X : V ) would also be desirable. Such a charac-

terization is proven later, in Corollary 7.2.10, in terms of capacity. This

characterization is also used in the proof that N1,p(X : V ) is a Banach

space.

Nontriviality of Sobolev classes. Every function in N1,p(X : V )

belongs to the Lebesgue space Lp(X : V ) by definition, and the inclusion

N1,p(X : V ) ⊂ Lp(X : V ) is a bounded embedding. (Note that this

inclusion is indeed an injection, by Proposition 7.1.31.) Sometimes the

Sobolev space reduces to the Lebesgue space; in other words, the equality

N1,p(X : V ) = Lp(X : V ) (7.1.32)

may hold. The precise meaning of this equality of spaces is that every

Lebesgue equivalence class in Lp(X : V ) determines a unique equivalence

class in N1,p(X : V ).

Equality (7.1.32) holds for all spaces X without nonconstant recti-

fiable curves; thus it holds for all totally disconnected spaces and for

all snowflake spaces X for example. A metric space (X, d) is called a

snowflake space if there exists ε > 0 such that d1+ε is a metric on X.

Note that (X, d1−δ) is a snowflake space for every 0 < δ < 1.

More generally, the equality in (7.1.32) occurs if the p-modulus of the

collection of all nonconstant curves in X is zero. It turns out that the

converse also holds.

We say that the Sobolev space N1,p(X : V ) is nontrivial if it is strictly

contained in Lp(X : V ).

Proposition 7.1.33 The Sobolev space N1,p(X : V ) is nontrivial if

and only if the p-modulus of the collection of all nonconstant curves in

X is positive.

Proof As mentioned just before the proposition, the necessity part of

the assertion is clear from the definitions.
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To prove the sufficiency, we use the subadditivity of modulus and the

countable covering of X by open balls of the form B(xi, q), where (xi) is

a fixed countable dense subset of X and q is a positive rational number,

to conclude that there is an open ball B inX with the following property:

the p-modulus of the family Γ of all curves in X with one end point in

B and the other in X \B is positive.

The preceding understood, we claim that the Lp-function χB ·c, where

c is a fixed nonzero vector in V , cannot have a representative in N1,p(X :

V ). Towards a contradiction, suppose that u is such a representative. By

Borel regularity, there exists a Borel set E in X of measure zero such that

u|B \E ≡ c and that u|X \ (B ∪E) ≡ 0. It follows that there is a curve

γ in X that intersects both B \E and X \ (B ∪E), parametrized by the

arc length, such that u is absolutely continuous on γ, and that γ meets

E in a set of zero length (Proposition 6.3.2 and Lemma 5.2.15). This is a

contradiction, because, on the dense set γ \E, the absolutely continuous

function u takes on only two vector values, 0 and c, and it takes on

both values on sets of positive length, violating absolute continuity. The

proposition follows.

Remark 7.1.34 If the Sobolev space N1,p(X : V ) is nontrivial, then

the canonical embedding N1,p(X : V ) → Lp(X : V ) is never isometric.

Indeed, by the proof of Proposition 7.1.33, and by Lemma 3.3.28 and

(5.2.5), we can find two concentric balls of finite measure, B(x, r) ⊂
B(x,R) ⊂ X, 0 < r < R, such that the p-modulus of all the curves that

start in B(x, r) and end in X \ B(x,R) is positive. This implies that

the p-integrable Lipschitz function u(z) = dist(z,X \ B(x,R)) cannot

have the zero function as its minimal p-weak upper gradient. (Here we

understand that u takes values in V by fixing an isometric embedding

R→ V .) We leave the details of this argument to the reader.

By Theorem 6.1.6, functions with compact support are dense in the

Sobolev space W 1,p(Rn). An analogous fact holds true in general for

mappings into a normed vector space V . For the purposes of the next

proposition, we say that a function u : X → V has bounded support if

u = 0 outside a bounded set in X.

Proposition 7.1.35 The vector subspace of N1,p(X : V ) consisting of

bounded functions with bounded support is dense in N1,p(X : V ).

Proof Let u ∈ N1,p(X : V ). By Proposition 7.1.18, it suffices to show

that u can be approximated in N1,p(X : V ) by functions with bounded

support. To this end, we may assume that X is unbounded. Fix x0 ∈ X,
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and for each i = 1, 2, . . . fix a 1-Lipschitz function ϕi : X → [0, 1]

such that ϕi|B(x0,i) = 1 and that ϕi|X\B(x0,2i) = 0. We claim that

the functions ui := ϕi · u yield an approximating sequence as desired.

Indeed, every Borel representative of the function ϕi · ρu + |u|ρϕi is a

p-integrable p-weak upper gradient of ui (Proposition 6.3.28). Hence in

particular ui ∈ N1,p(X : V ) for every i. Similarly, by (6.3.18) and by

Proposition 6.3.22, we find that the minimal p-weak upper gradient of

u− ui satisfies ρu−ui |B(x0,i) = 0, and on X \B(x0, i) we have

ρu−ui ≤ 2ρu + |u| .

It follows that∫
X

ρpu−ui dµ =

∫
X\B(x0,i)

ρpu−ui dµ

≤ 2p+1

(∫
X\B(x0,i)

ρpu + |u|p dµ

)
→ 0

as i→∞. Because also ui → u in Lp(X : V ), the proposition follows.

Metric space-valued Sobolev maps. By the embedding theorems

of Chapter 3, one can consider metric space-valued Sobolev mappings

on X in the present framework. Assume that Y = (Y, dY ) is a metric

space, y0 ∈ Y , and consider the Kuratowski embedding Y ⊂ l∞(Y ) as

in Theorem 4.1.

We define the Sobolev and Dirichlet classes of mappings from X to Y

as follows:

N1,p(X : Y ) := {u ∈ N1,p(X : l∞(Y )) : u(x) ∈ Y for a.e. x ∈ X}

and similarly,

D1,p(X : Y ) := {u ∈ D1,p(X : l∞(Y )) : u(x) ∈ Y for a.e. x ∈ X} .

The class N1,p(X : Y ) depends on the choice of the base point y0, but

for simplicity this dependence is suppressed from the notation. If µ(X) is

finite, then there is a natural bijection between the classes corresponding

to different base points, which is an isometry between subsets of the

normed space N1,p(X : l∞(Y )).

Analogously we can consider the local version of N1,p(X : Y ), which

we denote N1,p
loc (X : Y ). This is the class of all maps f : X → l∞(Y )

such that each x ∈ X has a bounded open neighborhood Ux for which
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f |Ux ∈ N1,p(Ux : Y ). Given that X is a metric measure space and hence

µ is locally finite, we can also require µ(Ux) to be finite. Hence it is

clear that membership in the local class is independent of the base point

y0 ∈ Y .

Because the elements in N1,p(X : l∞(Y )) and N1,p
loc (X : l∞(Y )) are

equivalence classes of functions, we should think of the elements in the

classes N1,p(X : Y ) and N1,p
loc (X : Y ) in the same way. Because two

equivalent functions agree almost everywhere, the given definitions are

consistent.

The next result describes the classes N1,p(X : Y ) and D1,p(X : Y )

in more precise terms. The Kuratowski embedding with respect to y0 is

still understood, and we let Y denote the metric completion of Y .

Proposition 7.1.36 A function u : X → l∞(Y ) is in the class N1,p(X :

Y ) if and only if u : X → l∞(Y ) is p-integrable, u(x) ∈ Y for almost ev-

ery x in X, and there exists a p-integrable Borel function ρ : X → [0,∞]

such that for every nonconstant rectifiable curve γ : [a, b]→ X we have

|u(γ(a))− u(γ(b))| ≤
∫
γ

ρ ds. (7.1.37)

Similarly, a function u : X → l∞(Y ) is in the class D1,p(X : Y ) if and

only if u : X → l∞(Y ) is measurable, u(x) ∈ Y for almost every x in X,

and there exists a p-integrable Borel function ρ : X → [0,∞] such that

(7.1.37) holds for every nonconstant rectifiable curve γ : [a, b]→ X.

Moreover, in both cases, if the two equivalent conditions hold, then

u(x) ∈ Y for all x outside a p-exceptional subset in X.

Proof The first two claims are simple reformulations of the definitions

as given in 7.1 and 7.1. To prove the last claim, we may assume that

u ∈ D1,p(X : Y ) and that Y is complete. Let E denote the set of points

x ∈ X such that u(x) /∈ Y . Now p-almost every curve γ : [a, b] → X

enjoys the following two properties: γ meets E on a set of zero length

(Lemma 5.2.15) and u is absolutely continuous on γ. In particular, such

a curve γ cannot meet E at all, for else u maps a nondegenerate subcurve

of γ outside Y , which is impossible. This proves the proposition.

In what follows, `(γ) denotes the length of a rectifiable curve γ.

Proposition 7.1.38 Suppose that (Y, dY ) is a complete metric space.

A map f : X → Y is in D1,p(X : Y ) if and only if there is a non-negative

p-integrable Borel function ρ on X such that whenever γ : [0, `(γ)]→ X



7.1 Vector-valued Sobolev functions on metric spaces 191

is a non-constant rectifiable curve in X,

dY (f(γ(`(γ))), f(γ(0))) ≤
∫
γ

ρ ds. (7.1.39)

Moreover, a map in D1,p(X : Y ) can be modified on a p-exceptional set

of measure zero to obtain a map into Y . Furthermore, if µ(X) is finite,

then f ∈ N1,p(X : Y ) if and only if f ∈ D1,p(X : Y ) and the function

x 7→ dY (f(x), y0) is p-integrable for some (and hence every) y0 ∈ Y .

Proof It is clear from the definition of D1,p(X : Y ) and the proof of

Proposition 6.3.28 that if f, ρ satisfies (7.1.39), then f ∈ D1,p(X : Y ).

Note that this does not require completeness of (Y, dY ), but the next

argument does.

Now suppose that f ∈ D1,p(X : Y ), and that ρ is a p-integrable upper

gradient of f : X → l∞(Y ). Let E ⊂ X be the set of points in X that are

mapped by f into l∞(Y ) \ Y . Then by the definition of D1,p(X : Y ) we

know that µ(E) = 0, and so p-almost every nonconstant rectifiable curve

γ : [a, b]→ X has length(E ∩ γ) = 0. By discarding a further collection

of nonconstant compact rectifiable curves, of p-modulus zero, we can

also ensure that f is absolutely continuous on γ. It follows that (because

Y is complete) f ◦ γ([a, b]) ⊂ Y ; that is, p-almost every nonconstant

compact rectifiable curve in X does not intersect E. It follows that E is

p-exceptional, and so re-defining f on E if necessary, we obtain a map

from X into Y that satisfies (7.1.39).

The last assertion of the proposition follows from the first part, since

the only difference between D1,p(X : Y ) and N1,p(X : Y ) is the integra-

bility of f .

Proposition 7.1.38 shows that there is an intrinsic way of determining

membership in D1,p(X : Y ) and N1,p
loc (X : Y ) that is independent of the

embedding of Y into a Banach space. One should however keep in mind

that the metric on N1,p(X : Y ) does indeed depend on the embedding

of Y into a Banach space (just as the space Lp(X : Y ) depends on the

embedding of Y ); see the discussion in Section 7.6. However, if Y is

complete, then given N1,p(X : Y ), the metric imposed on this function

space, via an isometric embedding of Y into a Banach space, makes

N1,p(X : Y ) complete. Furthermore, the topology on N1,p(X : Y ) is

independent of the embedding of Y ; this fact is useful in considering

related variational problems.
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7.2 The Sobolev p-capacity

We recall that throughout this chapter, X = (X, d, µ) is an arbitrary

metric measure space and 1 ≤ p <∞.

The p-capacity of a set E ⊂ X is defined to be the (possibly infinite)

number

Capp(E) := inf

(∫
X

|u|p dµ +

∫
X

ρpu dµ

)
, (7.2.1)

where the infimum is taken over all functions u ∈ N1,p(X) such that

u ≥ 1 on E outside a p-exceptional set of measure zero.

Functions u as in the preceding paragraph are called p-admissible, or

sometimes just admissible, for the set E. Recall that functions in N1,p(X)

are well defined up to p-exceptional sets of measure zero (Proposition

7.1.31), and so the preceding definition makes sense; two equivalent func-

tions in N1,p(X) are simultaneously admissible. It is convenient to as-

sume that admissible functions always satisfy u ≥ 1 everywhere on E;

obviously this assumption can be made without loss of generality. Note

that we can alternatively use the following equivalent definition: the infi-

mum in (7.2.1) is taken over all functions u ∈ Ñ1,p(X) such that u ≥ 1

on E.

If no admissible functions exist, we set Capp(E) =∞. If Capp(E) = 0,

we say that E is a set of zero p-capacity, or that E has zero p-capacity.

Every p-exceptional set of zero measure has zero p-capacity, since the

characteristic function of that set is an admissible function. Proposi-

tion 7.2.8 below shows that the converse is also true.

In the classical theory of Sobolev spaces in Rn, in the definition of

capacity, it is customary to require that the admissible test functions u

as above satisfy u ≥ 1 in a neighborhood of E. In the theory of N1,p(X)

spaces, even when X = Rn with the usual distance and measure, such a

requirement is not needed. This advantage is due to the better pointwise

behavior of functions in N1,p(X). In Chapter 8 we will show that under

the assumption that X supports a (1, p)-Poincaré inequality (as we saw

at the beginning of this chapter in (7.1.5), X = Rn has this property),

the two approaches give the same value for Capp.

The capacity satisfies

Capp(∅) = 0 , (7.2.2)

moreover, monotonicity holds:

Capp(E1) ≤ Capp(E2) (7.2.3)
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if E1 ⊂ E2.

Lemma 7.2.4 The p-capacity Capp is a countably subadditive set func-

tion, hence an outer measure on X. That is,

Capp

( ∞⋃
i=1

Ei

)
≤
∞∑
i=1

Capp(Ei) (7.2.5)

whenever (Ei) is a sequence of sets in X.

The proof of Lemma 7.2.4 is less straightforward than what one might

expect, for we have not yet proven that N1,p(X) is a Banach space.

Indeed, the subadditivity condition (7.2.5) is needed later for our proof

of Theorem 7.3.6.

First, we require a simple but useful lemma.

Lemma 7.2.6 The p-capacity Capp(E) is equal to the infimum of∫
X

|u|p dµ +

∫
X

ρpu dµ

over all functions u ∈ N1,p(X) such that 0 ≤ u ≤ 1 on X and u = 1

on E.

Proof Given a function u ∈ N1,p(X) such that u ≥ 1 in E, we apply

Proposition 7.1.8 and infer that the function max{0,min{u, 1}} is in

N1,p(X), and is admissible with norm not exceeding that of u.

Proof of Lemma 7.2.4 We may assume that the sum on the right in

(7.2.5) is finite. Fix ε > 0. Then for each i = 1, 2, . . . pick a (pointwise

defined) function ui ∈ N1,p(X) such that 0 ≤ ui ≤ 1, ui = 1 on Ei, and

that ∫
X

upi dµ+

∫
X

ρpui dµ ≤ Capp(Ei) + 2−iε .

By Proposition 7.1.8, the functions vj = max{ui : 1 ≤ i ≤ j} are in

N1,p(X) with the limit v(x) := limj→∞ vj(x) well defined at every point

x in X. Note that v = 1 on
⋃∞
i=1Ei. Next, let ρi = ρui be the minimal

p-weak upper gradient of ui. Then, by Proposition 7.1.8, the function

σj = max{ρi : 1 ≤ i ≤ j} is a p-weak upper gradient of vj . Furthermore,

because

0 ≤ vpj ≤
j∑
i=1

upi



194 Sobolev spaces

and because

0 ≤ σpj ≤
j∑
i=1

ρpi ,

we have that

‖vj‖pLp(X) + ‖ρvj‖
p
Lp(X) ≤

∞∑
i=1

(
‖ui‖pLp(X) + ‖ρi‖pLp(X)

)
≤
∞∑
i=1

Capp(Ei) + ε

(7.2.7)

for each j. In particular, the limit σ(x) := limj→∞ σj(x) is a Borel

function, belongs to Lp(X) and σj → σ in Lp(X) by the monotone

convergence theorem. It therefore follows from Proposition 6.3.30 that

v is in N1,p(X) with σ its p-weak upper gradient. It is immediate that v

is admissible for
⋃∞
i=1Ei. Finally, because also vj → v in Lp(X), (7.2.7)

gives that

Capp

( ∞⋃
i=1

Ei

)
≤ ‖v‖pLp(X) + ‖σ‖pLp(X) ≤

∞∑
i=1

Capp(Ei) + ε .

By letting ε → 0, we obtain that (7.2.5) holds, and the proposition is

proved.

The next proposition characterizes p-exceptional sets in terms of ca-

pacity.

Proposition 7.2.8 A subset E ⊂ X is of zero p-capacity if and only

if µ(E) = 0 and E is p-exceptional.

Proof As mentioned earlier, a p-exceptional set of measure zero has zero

p-capacity essentially by definition; namely, the characteristic function

χE is both p-integrable and has the zero function as a p-weak upper

gradient; that is, χE ∈ N1,p(X) with norm zero.

Assume next that Capp(E) = 0. For each positive integer i we can

find a function ui ∈ N1,p(X) so that 0 ≤ ui ≤ 1, ui = 1 on E, and

‖ui‖pLp(X) + ‖ρui‖
p
Lp(X) ≤ 2−i . (7.2.9)

As in the proof of (7.2.5), we find that for positive integers j ≥ j0
the functions vj = min{ui : j0 ≤ i ≤ j} are in N1,p(X) with p-weak

upper gradients σj = max{ρi : j0 ≤ i ≤ j} by Proposition 7.1.8.

Moreover, the limit function wj0(x) := limj→∞ vj(x) belongs to N1,p(X)

with gj0 := limj→∞ σj as a p-weak upper gradient (Proposition 6.3.30).
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In particular, ‖wj0‖N1,p(X) ≤ 2−j0/p by (7.2.9). A further application of

the monotone convergence theorem gives a limit function v ∈ N1,p(X)

for which ‖v‖N1,p(X) = 0; notice that (wj) is monotone increasing and

(gj) is decreasing. Since v|E = 1, we obtain from Proposition 7.1.31 that

E is p-exceptional and of measure zero. This completes the proof.

The following corollary rephrases part of Proposition 7.1.31 in terms

of capacity.

Corollary 7.2.10 Two functions in Ñ
1,p

(X : V ) determine the same

element in N1,p(X : V ) if and only if they agree outside a set of zero

p-capacity. Moreover, if two functions in Ñ
1,p

(X : V ) agree almost ev-

erywhere, then they agree outside a set of zero p-capacity.

Remark 7.2.11 The condition that E has measure zero in Propo-

sition 7.2.8 is essential. If X has no rectifiable curves, then X itself if

p-exceptional, but not of measure zero and hence not of capacity zero.

Also consider the example X = (Rn, |x− y|,mn + δ0) as in Section 5.2;

then the origin is p-exceptional for 1 ≤ p ≤ n, but not of p-capacity zero.

Later in Section 7.5, we will explore a condition on X that guarantees

the conclusion in Proposition 7.2.8 without the requirement that the

measure of E be zero.

As pointed out in the comment before (7.2.2), when X satisfies a

Poincaré inequality as in Chapter 8, one may require that admissible

functions u for Capp also satisfy u ≥ 1 on a neighborhood of E. However,

even without these additional conditions on X, the following proposi-

tion tells us that if X is proper, then this additional assumption on test

functions is legitimate for sets of capacity zero. Recall that X is proper

if closed and bounded subsets of X are compact. The proposition be-

low is a key ingredient in proving quasicontinuity of Sobolev functions

(Section 7.4). The properness condition on X can be relaxed to local

compactness, with appropriate modifications. For example, in the lo-

cally compact setting, we can reduce the situation of Proposition 7.2.12

(by countable subadditivity of capacity) to sets E that lie in an open

subset of X with compact closure; then in Lemma 7.2.13 we may assume

that F contains the complement of this open set. To keep the notation

in the proof simple, we will assume that X is proper.

Proposition 7.2.12 Let X be a proper metric measure space. Then

inf{Capp(U) : E ⊂ U and U an open subset of X} = 0 for every E ⊂
X such that Capp(E) = 0.
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To prove Proposition 7.2.12 we need the following lemma.

Lemma 7.2.13 Let X be a proper metric measure space and ρ be

a nonnegative lower semicontinuous function on X with ρ ∈ Lploc(X).

Then, given a non-empty closed set F ⊂ X and τ > 0 such that ρ ≥ τ

on X \ F , the map u : X → R defined by

u(x) = min

{
1, inf

γ

∫
γ

ρ ds

}
,

where the infimum is taken over compact rectifiable curves γ with an

end point in F and an end point x, is lower semicontinuous and hence

is measurable, and in addition ρ is an upper gradient of u and so u

belongs to N1,p
loc (X).

Proof To prove that u is lower semicontinuous, we need to show that

for each a > 0 the sub-level set Fa := {x ∈ X : u(x) ≤ a} is a closed

set. Observe that F ⊂ Fa. To prove that Fa is closed, we proceed by

considering a sequence (xj) in Fa that converges to x ∈ X. If the tail

end of the sequence lies in F or if x ∈ F , we are done; so we assume

that for each j, xj 6∈ F and that x 6∈ F .

If there is no rectifiable curve connecting xj to F for some j, then

u(xj) = 1 for that choice of j, and so a ≥ 1 because xj ∈ Fa, from

which it would follow that x ∈ Fa = X. Hence we may assume without

loss of generality that for each j there is a compact rectifiable curve γj ,

parametrized by the arc length, such that γj(0) = xj , γj(`j) ∈ F with `j
the length of γj , γj([0, `j)) ⊂ X \F , and

∫
γj
ρ ds ≤ a+ j−1. Since ρ ≥ τ ,

it follows that `j ≤ a
τ + 1

τj ≤
1+a
τ =: M . We can extend the domain of

definition of each γj to [0,M ] by setting γj(t) = γj(`j) for t ∈ [`j ,M ].

Now by the Arzelà–Ascoli theorem 5.1.10 there is a subsequence, also

denoted γj , that converges uniformly on [0,M ] to a 1-Lipschitz map

γ∞, which satisfies γ∞(0) = x, γ∞(M) ∈ F (because F is closed), and

length(γ∞) ≤ a
τ . By (5.1.15), we have

∫
γ∞

ρ ds ≤
∫m

0
ρ ◦ γ∞(t) dt, where

m = lim infj `j . On the other hand,

lim inf
j→∞

∫
γj

ρ ds = lim inf
j→∞

∫ `j

0

ρ ◦ γj(t) dt,

and for fixed ε > 0, for sufficiently large j we have `j ≥ m− ε. Hence by

Fatou’s lemma, by the lower semicontinuity of ρ, and by the fact that
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the curves γj are arc length parametrized,

a ≥ lim inf
j→∞

∫
γj

ρ ds ≥ lim inf
j→∞

∫ m−ε

0

ρ ◦ γj(t) dt

≥
∫ m−ε

0

lim inf
j→∞

ρ ◦ γj(t) dt ≥
∫ m−ε

0

ρ ◦ γ∞(t) dt.

Letting ε → 0, we see that
∫
γ∞

ρ ds ≤
∫m

0
ρ ◦ γ∞(t) dt ≤ a, that is,

u(x) ≤ a, from which we conclude that x ∈ Fa, that is, Fa is closed.

It remains to show that ρ is an upper gradient of u. For this, we fix

a compact rectifiable curve γ in X and let x, y denote the end points of

γ. If both u(x) and u(y) equal 1, then clearly |u(x) − u(y)| ≤
∫
γ
ρ ds.

So we now assume that u(y) < 1. For ε > 0 let βε be a rectifiable

curve with an end point in F and the other end point y such that 1 >

u(y) ≥
∫
βε
ρ ds − ε; then the concatenation γ + βε of γ and βε is a

rectifiable path in X connecting F to x. First suppose that u(x) = 1.

Then |u(x)− u(y)| = u(x)− u(y). Since u(x) ≤
∫
γ+βε

ρ ds, we see that

|u(x)− u(y)| = u(x)− u(y) ≤
∫
γ+βε

ρ ds+ ε−
∫
βε

ρ ds.

Because
∫
βε
ρ ds is finite, we can subtract it from

∫
γ+βε

ρ ds to obtain

|u(x) − u(y)| = u(x) − u(y) ≤
∫
γ
ρ ds + ε. Letting ε → 0 yields the

upper gradient inequality in the case that u(x) = 1. If both u(x) < 1

and u(y) < 1, then a repetition of the argument above yields u(x) −
u(y) ≤

∫
γ
ρ ds, and reversing the role of x and y in the argument yields

u(y) − u(x) ≤
∫
γ
ρ ds. Together, these two inequalities verify the upper

gradient property in the case u(x), u(y) < 1.

This completes the proof.

Now we are ready to prove Proposition 7.2.12.

Proof of Proposition 7.2.12 By the subadditivity property of the p-

capacity Capp (see Lemma 7.2.4), we may assume that E is bounded.

Since Capp(E) = 0, it follows that µ(E) = 0; hence for each positive inte-

ger j we can find a bounded open set Uj ⊃ E such that µ(Uj) ≤ 1/j; see

Lemma 3.3.37. Again since Capp(E) = 0, by Proposition 7.2.8 we know

that χE ∈ N1,p(X). In particular, there is a non-negative Borel mea-

surable function ρ on X such that ρ ∈ Lp(X) and whenever γ is a non-

constant, compact rectifiable curve intersecting E, we have
∫
γ
ρ ds =∞.

By the Vitali–Carathéodory theorem 4.2, we may assume that ρ is lower

semicontinuous. Note that X \ Uj is a closed set and that ρ + χUj is a

lower semicontinuous function.
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An application of Lemma 7.2.13 with F = X \Uj and the lower semi-

continuous function ρ + χUj , and τ = 1, gives a function uj ∈ N1,p(X)

with upper gradient ρ + χUj such that uj is also lower semicontinuous.

Since for every non-constant compact rectifiable curve γ that intersects

E we have
∫
γ
ρ ds = ∞, we see that uj = 1 on E. Furthermore, for

x 6∈ Uj , we have uj(x) = 0; hence by Proposition 6.3.22, (1 + ρ)χUj is

a p-weak upper gradient of uj . By the lower semicontinuity of uj , the

level set Vj := {x ∈ X : uj(x) > 3/4} is an open set containing E,

and the function 4
3uj is admissible for computing the p-capacity of Vj .

Therefore,(
3

4

)p
Capp(Vj) ≤

∫
X

upj dµ+

∫
Uj

(1 + ρ)p dµ

≤ (1 + 2p)µ(Uj) +

∫
Uj

ρp dµ ≤ 1 + 2p

j
+

∫
Uj

ρp dµ.

Since ρ ∈ Lp(X), it follows that as j →∞ the last term above tends to

zero. This completes the proof of the proposition.

7.3 N1,p(X : V ) is a Banach space

The goal of this section is to demonstrate that the normed space N1,p(X :

V ) as defined in Section 7.1 is a Banach space.

We first introduce the concept of quasiuniform convergence (compare

with Egoroff’s theorem 3.1). A sequence of functions ui : X → V con-

verges p-quasiuniformly to a function u : X → V if for every ε > 0 there

exists a set Fε ⊂ X such that Capp(Fε) < ε and that ui → u uniformly in

X \ Fε. Obviously, a p-quasiuniformly convergent sequence of functions

converges pointwise outside a set of p-capacity zero, or, equivalently,

outside a set of p-exceptional set of measure zero (Proposition 7.2.8).

Next we formulate and prove the following crucial result. The reader

should compare the ensuing proof with that of Proposition 2.3.13.

Proposition 7.3.1 Every Cauchy sequence of functions in N1,p(X :

V ) contains a p-quasiuniformly convergent subsequence. Moreover, the

pointwise limit function belongs to N1,p(X : V ) and is independent of

the chosen subsequence.

Proof Every Cauchy sequence in N1,p(X : V ) is a Cauchy sequence in

Lp(X : V ). Therefore any two limit functions agree almost everywhere,
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and so the independence assertion of the proposition follows from the

first two and Proposition 7.1.31.

Now choose a subsequence (ui) of a given Cauchy sequence in N1,p(X :

V ) such that (ui) converges pointwise almost everywhere to its Lp-limit

ũ, and that

‖ui − ui+1‖pLp(X:V ) + ‖ρi+1,i‖pLp(X) ≤ 2−i(p+1) , (7.3.2)

where we denote by ρi,j the minimal p-weak upper gradient of ui − uj .
In general,

ui = u1 +

i−1∑
k=1

(uk+1 − uk)

has

ρi = ρ1 +

i−1∑
k=1

ρk+1,k

as a p-weak upper gradient. Moreover,

‖ρj − ρj+i‖Lp(X) ≤
j+i−1∑
k=j

‖ρk+1,k‖Lp(X) ≤
∞∑
k=j

2−k → 0

as j →∞. It follows that (ρi) is a Cauchy sequence in Lp(X), and hence

converges in Lp(X) to a nonnegative Borel function ρ. Define a function

u by

u(x) = lim
i→∞

ui(x) , (7.3.3)

wherever this limit exists. Since ui → ũ almost everywhere, the limit

exists and satisfies u(x) = ũ(x) for almost every x. In particular, u ∈
Lp(X : V ). (For this membership, it is immaterial how u is defined on

the set where the limit in (7.3.3) does not exist.)

We next show that the sequence (ui) converges to u p-quasiuniformly.

This implies in particular that the limit in (7.3.3) exists outside a set

of p-capacity zero, and so the second claim of the proposition (the limit

function belongs to N1,p(X : V )) follows from Propositions 6.3.30 and

7.2.8. To this end, define

Ei = {x ∈ X : |ui(x)− ui+1(x)| > 2−i},

and

Fj =

∞⋃
i=j

Ei .



200 Sobolev spaces

If x /∈ Fj , then we have |ui(x)−ui+1(x)| ≤ 2−i for all i ≥ j. This implies

that the sequence (ui(x)) is a Cauchy sequence in V , and hence has a

limit; by (7.3.3), this is u(x). Moreover,

|u(x)− ui(x)| ≤ 2−i+1 (7.3.4)

whenever i ≥ j and x /∈ Fj ; that is, ui → u uniformly in X \ Fj . On the

other hand, the function 2i|ui−ui+1| belongs to N1,p(X) (Lemma 7.1.7),

and satisfies 2i|ui − ui+1| ≥ 1 on Ei by the definition of Ei. Therefore,

by inequality (7.3.2),

Capp(Ei) ≤ 2ip‖ui − ui+1‖pLp(X) + 2ip‖ρi+1,i‖pLp(X) ≤ 2−i .

Thus, by the subadditivity property (7.2.5), we find that

Capp(Fj) ≤
∞∑
i=j

2−i = 2−j+1

for j = 1, 2, . . . The proposition follows from this and from (7.3.4).

Remark 7.3.5 If, in the preceding proof of Proposition 7.3.1, the se-

quence (ui) consists of continuous functions, then the sets Fj are open.

In particular, it follows that the pointwise limit function u is continu-

ous outside an open set of arbitrarily small (prescribed) capacity. This

observation will be used later in Section 7.4.

Theorem 7.3.6 The normed space N1,p(X : V ) is a Banach space.

Proof Let (ui) be a Cauchy sequence in N1,p(X : V ). By considering a

subsequence if necessary, we may assume that the sequence (ui) satisfies

the conclusions of Proposition 7.3.1, and the condition in (7.3.2) with

pertinent notation. In particular, the functions ui converge pointwise to

a function u ∈ N1,p(X : V ) outside a p-exceptional set E of measure

zero. Because

u(x)− ui(x) =

∞∑
k=i

uk+1(x)− uk(x)

for x ∈ X\E, and because

n∑
k=i

ρk+1,k →
∞∑
k=i

ρk+1,k

in Lp(X) by the assumption (7.3.2), we deduce from Proposition 6.3.30
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that
∞∑
k=i

ρk+1,k

is a p-weak upper gradient of u−ui. Moreover, inequality (7.3.2) further

gives that

‖u− ui‖N1,p(X:V ) ≤
∞∑
k=i

(
‖uk − uk+1‖Lp(X:V ) + ‖ρk+1,k‖Lp(X)

)
≤ 2

∞∑
k=i

(
‖uk − uk+1‖pLp(X:V ) + ‖ρk+1,k‖pLp(X)

)1/p

≤ 2

∞∑
k=i

2−k(1+1/p) ≤ 4 · 2−i .

Therefore ui → u in N1,p(X : V ) as i→∞, and the theorem follows.

An important consequence of reflexivity is the weak (pre-)compactness

of bounded sequences, as in Theorem 2.4.1. The following proposition

and its corollaries show that even without reflexivity, a version of weak

compactness holds on N1,p(X). In many applications, this suffices.

Proposition 7.3.7 Let (ui) be a sequence of functions in N1,p(X : V )

with (ρi) a corresponding p-weak upper gradient sequence. If ui → u

in Lp(X : V ) and if ρi → ρ in Lp(X), then u has a representative

in N1,p(X : V ) with each Borel representative of ρ as its p-weak upper

gradient. Moreover, a subsequence of (ui) converges pointwise to this

representative of u outside a set of p-capacity zero.

We will prove this proposition after Remark 7.3.14 below.

We single out three consequences of Proposition 7.3.7; these are Theo-

rems 7.3.8, 7.3.9, and 7.3.12. They are essentially variants of each other,

but deserve separate formulations.

Recall that Lp(X : V ), 1 < p < ∞, is reflexive if V is reflexive (see

3.2). In particular, we can have V = R in the following.

Theorem 7.3.8 Assume that 1 < p < ∞ and that Lp(X : V ) is

reflexive. Let (ui) be a bounded sequence in N1,p(X : V ) with (ρi), a

corresponding sequence of p-weak upper gradients, bounded in Lp(X).

Then there exists a function u ∈ N1,p(X : V ) together with a p-weak

upper gradient ρ ∈ Lp(X) such that u belongs to the closure of the convex

hull of the sequence (ui) in Lp(X : V ) and ρ belongs to the closure of

the convex hull of the sequence (ρi) in Lp(X). More precisely, there is a
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sequence (ũj) whose members are convex combinations of the functions

ui, and there is a sequence (ρ̃j) whose members are convex combinations

of the functions ρi, such that (ũj , ρ̃j) is a function-upper gradient pair

for each j, that ũj → u in Lp(X : V ), and that ρ̃j → ρ in Lp(X).

Proof Because the pertinent Lp-spaces are reflexive, we can apply The-

orem 2.4.1 together with Mazur’s lemma 2.3 and infer that a sequence

of convex combinations of the functions ui converges to a function u in

Lp(X : V ). By passing to another subsequence, we may likewise assume

that the corresponding convex combination sequence of weak upper gra-

dients converges in Lp(X) to some function ρ. (Recall that the property

of being an upper gradient is preserved under convex combinations.) The

assertion, therefore, follows from Proposition 7.3.7.

In many situations we do not wish to insist on reflexivity of V (which

means that we cannot insist on the reflexivity of Lp(X : V )). However,

in such situations, we often deal with a bounded sequence of functions

in N1,p(X : V ) that converges in Lp(X : V ). This is for example the

case when one considers discrete convolutions in N1,p(X : V ) as in the

proofs of Theorems 10.3.4 and 10.4.3. Thus the following theorem comes

in handy.

Theorem 7.3.9 Assume that 1 < p < ∞ and that (ui) is a bounded

sequence in N1,p(X : V ) that converges weakly in Lp(X : V ) to a function

u. Then u has a representative in N1,p(X : V ) such that

||u||Lp(X:V ) ≤ lim inf
i→∞

||ui||Lp(X:V ) , ||ρu||Lp(X) ≤ lim inf
i→∞

||ρui ||Lp(X) .

(7.3.10)

In particular,

||u||N1,p(X:V ) ≤ lim inf
i→∞

||ui||N1,p(X:V ) . (7.3.11)

Proof By passing to subsequences if necessary, we may assume that

lim inf
i→∞

||ρui ||Lp(X) = lim
i→∞

||ρui ||Lp(X) ,

and that ρui converges weakly in Lp(X) to a function ρ (Theorem 2.4.1

together with Theorem 2.4.9 and Proposition 2.4.19). By Mazur’s lemma

2.3, we can form sequences (ũj) and (ρ̃j) of convex combinations of the

sequences (ui) and (ρui), respectively, such that (ũj , ρ̃j) is a function-

upper gradient pair for each j, that ũj → u in Lp(X : V ), and that

ρ̃j → ρ in Lp(X). The assertion now follows from Proposition 7.3.7
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and from the lower semicontinuity of norms under weak convergence

(Proposition 2.3.5).

For further reference, we single out the following direct consequence

of Theorem 7.3.9 and Theorem 2.4.1.

Theorem 7.3.12 Assume that 1 < p < ∞ and that Lp(X : V ) is

reflexive. Then every bounded sequence (ui) in N1,p(X : V ) has a sub-

sequence that converges weakly in Lp(X : V ) to a function u such that

u ∈ N1,p(X : V ) and that

||u||N1,p(X:V ) ≤ lim inf
i→∞

||ui||N1,p(X:V ) . (7.3.13)

Remark 7.3.14 In the situation of Theorem 7.3.12, it is not true in

general that every bounded sequence in N1,p(X : V ) contains a subse-

quence that converges weakly in N1,p(X : V ). In fact, such an assertion

is tantamount to reflexivity of N1,p(X : V ) by the Eberlein–Šmulian

theorem [74, p. 17].

Proof of Proposition 7.3.7 To simplify our notation, we write ρ for the

given Borel representative of the limit of the sequence (ρi). We may

assume that ui → u pointwise almost everywhere. By Proposition 6.3.30,

it suffices to prove that there exists a representative ũ of u such that

lim
i→∞

ui(x) = ũ(x) (7.3.15)

for x outside a p-exceptional set. Let E denote the set where the limit on

the left in (7.3.15) does not exist, and define ũ(x) accordingly for x /∈ E.

Then E has measure zero. We claim that E is in addition p-exceptional.

To prove this, observe first that p-almost every compact rectifiable

curve γ in X has the following properties: the length of γ in E is zero,

the upper gradient inequality (6.2.1) holds for each pair (ui, ρi) on γ and

all of its subcurves, each function ui is absolutely continuous on γ, each

function ρi is integrable on γ, ρ is integrable on γ, and

lim
i→∞

∫
γ′
ρi ds =

∫
γ′
ρ ds (7.3.16)

for every subcurve γ′ of γ. (This assertion follows from the basic prop-

erties of modulus, such as (5.2.5) and Lemma 5.2.8, and from Proposi-

tion 6.3.2, Lemma 5.2.15, and Fuglede’s lemma 5.2.) Let γ : [a, b] → X

be such a curve. We claim that γ does not meet E.

Towards proving this claim, we will establish that the family (ui)

satisfies the following equicontinuity property on γ: given t ∈ [a, b] and
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given ε > 0, there is δ > 0 such that |ui(γ(s)) − ui(γ(t))| < ε for every

i whenever s ∈ [a, b] satisfies |s− t| < δ. To prove this, fix t ∈ [a, b] and

ε > 0. Then observe that, for every δ > 0, we have

lim sup
i→∞

sup
s∈[a,b],|s−t|<δ

|ui(γ(s))−ui(γ(t))| ≤ lim sup
i→∞

∫
γt,δ

ρi ds =

∫
γt,δ

ρ ds ,

(7.3.17)

where γt,δ denotes the restriction of γ to {r ∈ [a, b] : |r − t| ≤ δ}. In

particular, by the integrability of ρ on γ, we can find i0 ≥ 1 and δ > 0

such that

|ui(γ(s))− ui(γ(t))| < ε

whenever i ≥ i0 and s ∈ [a, b] satisfies |s− t| < δ. The desired equiconti-

nuity property follows. (Note that each ui is continuous on γ.) Now we

show that the limit in (7.3.15) exists for every point x = γ(t). Indeed,

fix t ∈ [a, b] and fix ε > 0. Then fix δ > 0 as in the equicontinuity

requirement corresponding to t and ε. Because the length of γ in E is

zero, we can find s ∈ [a, b] such that |s − t| < δ and that γ(s) /∈ E. In

particular, we have that

|ui(γ(t))− uj(γ(t))| ≤ |ui(γ(t))− ui(γ(s))|+ |ui(γ(s))− uj(γ(s))|
+ |uj(γ(s))− uj(γ(t))|

≤ 2ε+ |ui(γ(s))− uj(γ(s))| .

Because ui(γ(s)) → u(γ(s)), this gives that (ui(γ(t))) is a Cauchy se-

quence in V and hence has a limit; that is, γ ∩ E is empty.

We have thus established that p-almost every non-constant compact

rectifiable curve in X avoids E. In particular, E is p-exceptional, and

the theorem follows.

Remark 7.3.18 By using the argument in the beginning of the proof

for Proposition 7.3.1, and the argument in the proof of Proposition 7.3.7,

one obtains a proof of the fact that N1,p(X : V ) is a Banach space, with-

out discussing capacities. However, the conclusion that every Cauchy

sequence in N1,p(X : V ) subconverges p-quasiuniformly is useful extra

information.

The proof for the following result illustrates the use of Proposition 7.3.7

and its consequences.

Proposition 7.3.19 Assume 1 < p < ∞. If E1 ⊂ E2 ⊂ . . . is an
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increasing sequence of subsets of X, then

Capp

( ∞⋃
i=1

Ei

)
= lim
i→∞

Capp(Ei). (7.3.20)

Proof By the monotonicity property (7.2.3), it suffices to show that the

limit on the right in (7.3.20) is at least as big as the expression on the

left. We may assume that the limit is finite.

Fix ε > 0. For each i we can find a function ui ∈ N1,p(X) such that

0 ≤ ui ≤ 1, that ui = 1 on Ei, and that

||ui||pLp(X) + ||ρui ||
p
Lp(X) ≤ Capp(Ei) + ε . (7.3.21)

(See Lemma 7.2.6.) The sequence (ui) is bounded in N1,p(X), in par-

ticular it is bounded in Lp(X). By passing to a subsequence, we may

assume that ui converges weakly in Lp(X) to a function u. We obtain

from the proof of Theorem 7.3.9 that a sequence of convex combinations

(ũj) of the sequence (ui) converges to u in Lp(X), and that (7.3.10)

holds. It follows from Proposition 7.3.7 that u = 1 on E :=
⋃∞
i=1Ei,

except perhaps on a set of p-capacity zero. Therefore, by (7.3.10) and

(7.3.21),

Capp(E) ≤ ||u||pLp(X) + ||ρu||pLp(X) ≤ lim
i→∞

Capp(Ei) + ε .

By letting ε→ 0, we complete the proof.

We have not excluded the case p = 1 in Proposition 7.3.19 by accident.

Indeed, the sets Ei = B(0, 1 − 1/i) ⊂ Rn form an increasing sequence

whose union is B(0, 1). If we equip Rn with the Euclidean distance and

the weighted Lebesgue measure corresponding to the weight ω(x) = 1 +

χRn\B(0,1)(x), then limi→∞ Cap1(Ei) = ωn−1 but Cap1(
⋃
iEi) = 2ωn−1;

see the reasoning in Section 5.3.

The following lemma demonstrates the local nature of Sobolev func-

tions.

Lemma 7.3.22 Let 1 < p < ∞. Suppose that (Ωn) is a sequence

of open subsets of X with Ωn ⊂ Ωn+1 for each positive integer n, and

suppose that with Ω =
⋃
n Ωn, f ∈ Lp(Ω) and that for each positive

integer n there is a function fn ∈ N1,p(Ωn : V ) with an upper gradient

gn ∈ Lp(Ωn) such that fn → f in Lp(Ωn0 : V ) for each n0 ∈ N and

that
∫

Ωn
gpn dµ ≤ 1. Then there is a function f̂ ∈ N1,p(Ω : V ) such that

f̂ = f almost everywhere in Ω and f̂ has a p-weak upper gradient g in

Ω with
∫

Ω
gp dµ ≤ 1.
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Proof An application of Lemma 3.3.19 yields a subsequence (gnk) and

a function g∞ ∈ Lp(Ω) such that (gnk) converges weakly in Lp(Ω) to

g∞. By a modification of g∞ on a set of µ-measure zero if necessary, we

may also assume that g∞ is Borel measurable.

Next, for each positive integer k0 we apply Theorem 7.3.9 to the se-

quence (fnk+k0 ) with respect to the open set Ωk0 to obtain a function

f̂k0 ∈ N1,p(Ωk0 : V ) such that f̂k0 is an Lp(Ωk0 : V )-representative of

f |Ωk0 .

Next, observe that given two positive integers k0 and k1 with k0 ≤
k1, the two functions f̂k0 , f̂k1 coincide µ-almost everywhere in Ωk0 , and

so from Proposition 7.1.31, we know that f̂k0 and f̂k1 belong to the

same equivalence class in N1,p(Ωk0 : V ). Thus the function f̂ defined

by f̂(x) = f̂k0(x) when x ∈ Ωk0 is well-defined and equals f µ-almost

everywhere in Ω. Furthermore, from (7.3.10) we know that the mimimal

p-weak upper gradient g∞ of f̂ satisfies∫
Ω

gp∞ dµ ≤ 1.

Since Ω =
⋃
n Ωn and for each positive integer n we have Ωn ⊂ Ωn+1,

it follows that g∞ is a p-weak upper gradient of f̂ in Ω. Note that by

Lemma 3.3.19 the function g∞ is measurable on Ω. A careful examination

of the proof of that lemma reveals that g∞ is also Borel because each

Ωn is open. Because
∫

Ω
gp∞ dµ ≤ lim supk→∞

∫
Ω
Gpk dµ with Gk the zero-

extension of gk to Ω, we see that f̂ has a p-weak upper gradient in Lp(Ω)

with norm at most 1. This completes the proof of the lemma.

7.4 The space HN1,p(X : V ) and quasicontinuity

The Sobolev space N1,p(X : V ) contains a distinguished closed subspace

that is isomorphic to the completion HN1,p(X : V ) of locally Lipschitz

functions in the norm of N1,p(X : V ). This subspace is also denoted by

HN1,p(X : V ). We abbreviate

HN1,p(X) := HN1,p(X : R) .

Recall that a function u : X → V is locally Lipschitz if every point in

X has a neighborhood where u is Lipschitz. There are always noncon-

stant locally Lipschitz functions in N1,p(X : V ). For example, choose a

ball B ⊂ X and put u(x) := dist(x,X \B).
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A priori the elements of HN1,p(X : V ) are Cauchy sequences (ϕi) in

N1,p(X : V ) of locally Lipschitz functions ϕi : X → V . The following

more concrete description of HN1,p(X : V ) follows from Proposition

7.3.1.

Proposition 7.4.1 With each element (ϕi) in HN1,p(X : V ) there is a

uniquely associated function u ∈ N1,p(X : V ) that is a representative of

the Lp(X : V )-limit of the sequence (ϕi). Moreover, a function u : X →
V is in HN1,p(X : V ) if and only if there exists a Cauchy sequence (ϕi)

in N1,p(X : V ) of locally Lipschitz functions that converges to u both in

N1,p(X : V ) and p-quasiuniformly.

A function u : X → V is said to be p-quasicontinuous if for every

ε > 0 there exists an open set Gε ⊂ X with Capp(Gε) < ε such that the

restriction u|X\Gε is continuous.

By Remark 7.3.5 we obtain the following result.

Theorem 7.4.2 Functions in HN1,p(X : V ) are p-quasicontinuous.

Remark 7.4.3 Later in Theorem 8.2.1, we prove that under favorable

assumptions locally Lipschitz continuous functions are dense in N1,p(X :

V ); thus, in such cases, we have the equality

N1,p(X : V ) = HN1,p(X : V ) . (7.4.4)

In particular, if (7.4.4) holds and X is locally compact (in particular,

if X is complete and µ is doubling), then functions in N1,p(X : V ) are

p-quasicontinuous; see [16].

We are now in a position to establish the equality between classical

Sobolev spaces and the spaces N1,p for open sets in Euclidean spaces. In

the following, we write N1,p(Ω) for an open set Ω ⊂ Rn, equipped with

the Euclidean distance and Lebesgue n-measure. Recall the definition

for H1,p(Ω) from Definition 6.1.5.

Theorem 7.4.5 Let Ω ⊂ Rn be open. Then

N1,p(Ω) = W 1,p(Ω) = H1,p(Ω) (7.4.6)

in the following precise sense: a function from any of the three spaces

has a representative in the other two and this correspondence is a linear

isometry between the three Banach spaces. The representatives that be-

long to N1,p(Ω) are precisely those functions that are p-quasicontinuous;

these functions are pointwise uniquely defined up to a set of p-capacity

zero.



208 Sobolev spaces

Proof The equality W 1,p(Ω) = H1,p(Ω) follows from Theorem 6.1.6.

Next, for the inclusion H1,p(Ω) ⊂ N1,p(Ω) it suffices to show that for

all smooth ϕ ∈ H1,p(Ω) we have ‖ϕ‖N1,p(Ω) ≤ ‖ϕ‖H1,p(Ω). Since |∇ϕ|
is an upper gradient of ϕ by the fundamental theorem of calculus, this

inequality does indeed hold true. Now an application of Proposition 7.3.7

together with Theorem 7.3.8 shows that H1,p(Ω) ⊂ N1,p(Ω) in the sense

of the second paragraph of the theorem.

Finally to show that N1,p(Ω) ⊂W 1,p(Ω) with ‖ϕ‖W 1,p(Ω) ≤ ‖ϕ‖N1,p(Ω),

we note by the absolute continuity of the integral (see Remark 2.3.16)

and by Propositions 6.3.2 and 6.3.3 that functions in N1,p(Ω) are abso-

lutely continuous on almost every line segment in Ω parallel to coordi-

nate axes with partial derivatives majorized by any p-integrable upper

gradient of the function. It follows that N1,p(Ω) ⊂ Lp(Ω) ∩ ACLp(Ω).

Thus by Theorem 6.1.13 we have N1,p(Ω) ⊂W 1,p(Ω).

Given u ∈ N1,p(Ω), Theorem 6.1.6 thus gives us a sequence of smooth

functions ϕi that converges to u in W 1,p(Ω). By Lemma 6.2.6, ρi(x) =

|∇ϕi(x)| is an upper gradient of ϕi; hence this sequence is Cauchy also

in N1,p(Ω). If we knew that ρi is the minimal p-weak upper gradient of

ϕi, we could conclude that ‖ϕ‖W 1,p(Ω) ≤ ‖ϕ‖N1,p(Ω).

It remains to be verified that |∇ϕ| is the minimal p-weak upper gradi-

ent of a smooth function ϕ ∈ H1,p(Ω). To see this, let ρ be an arbitrary

p-integrable upper gradient of such a function ϕ. By Fubini’s theorem,

we easily infer that almost every point x ∈ Ω satisfies

lim
ε→0

1

ε

∫
[x,x+εei]

ρ ds = ρ(x)

for every i = 1, . . . , n. On the other hand,

lim
ε→0

|ϕ(x)− ϕ(x+ εei)|
ε

= |∂iϕ(x)|

for every x ∈ Ω. This implies that |∂iϕ(x)| ≤ ρ(x) for almost every x ∈ Ω

and every i = 1, . . . , n. We can repeat the above argument in a rotated

coordinate system to conclude that, given a unit vector ν in Rn,

|∇ϕ(x) · ν| = |∂νϕ(x)| ≤ ρ(x)

for almost every x ∈ Ω, where ∂νϕ(x) is the derivative of ϕ at x in the

direction ν. By employing a countable dense collection of unit vectors

(νi), we find that

|∇ϕ(x) · νi| ≤ ρ(x)
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for almost every x ∈ Ω and for every νi. The density of the collection

(νi) then gives that |∇ϕ| ≤ ρ almost everywhere in Ω, as required.

The discussion about Sobolev spaces in the Euclidean setting will not

be complete without a consideration of the weighted Euclidean setting

as in [128]. A weight ω on Rn is a non-negative measurable function that

is positive almost everywhere. Such a weight is said to be a p-admissible

weight if the weighted measure µω = ω dmn is doubling and there are

constants C, λ ≥ 1 such that whenever u is a measurable function on Rn
with a weak derivative ∇u, and B is a ball in Rn,

ω(B)−1

∫
B

|u−uB |ω dmn ≤ C rad(B)

(
ω(λB)−1

∫
λB

|∇u|p ω dmn

)1/p

.

Here, given a measurable set A ⊂ Rn, the measure of ω(A) is given

by
∫
A
ω dmn. The potential theory associated with such a weight was

considered in [128]. The corresponding weighted Sobolev space is the

completion of smooth functions on Rn under the norm

‖u‖W 1,p(Rn,ω) :=

(∫
Rn
|u|pω dmn

)1/p

+

(∫
Rn
|∇u|pω dmn

)1/p

.

For a general weight ω, it is not clear that if v is in the weighted Sobolev

class, then it necessarily has a weak derivative. However, it turns out

that when ω is a p-admissible weight in the above sense, each function

in the weighted Sobolev class does have a weak derivative that belongs to

Lp(Rn, µω). The monograph [31] discusses the relationship between the

weighted Sobolev class and the upper gradients for p-admissible weights

see [31, Appendix A]. Combining Proposition A.12 and Proposition A.13

of [31] shows that W 1,p(Rn, ω) = N1,p(Rn, µω).

7.5 Main equivalence classes and the
MECp-property

Given a nonnegative Borel function ρ : X → [0,∞] and two points

x, y ∈ X, we write x ∼ρ y if either x = y or there exists a rectifiable

curve γ : [a, b] → X such that γ(a) = x and γ(b) = y and that ρ is

integrable on γ.

This definition yields an equivalence relation ∼ρ among the points in

X, and we have a corresponding collection of ∼ρ-equivalence classes. If

there exists an equivalence class Gρ ⊂ X such that µ(X\Gρ) = 0, then
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this class Gρ is said to be a main equivalence class for ρ. In fact, given

ρ, there is at most one such class.

A metric measure space X is said to have the p-main equivalence class

property, or to satisfy MECp, if X has at least two points, if every open

set in X has positive measure, and if there exists a main equivalence

class for every nonnegative p-integrable Borel function ρ on X.

The following result shows that MECp is a local property.

Proposition 7.5.1 A connected metric space satisfies MECp if and

only if every point in the space has an open neighborhood that satisfies

MECp.

Proof The necessity part of the claim is obvious. To prove the suf-

ficiency, denote by Ux an open neighborhood of a point x ∈ X such

that Ux satisfies MECp. In particular, Ux has at least two points and

µ(Ux) > 0. Let ρ be a nonnegative p-integrable Borel function on X. The

restriction of ρ to Ux is p-integrable as well, and hence has a measurable

set Gx ⊂ Ux as the main equivalence class. As X is separable, there is a

countable cover {Ui} of X by sets of the type Ui := Uxi (Lemma 3.3.27).

Set Gρ :=
⋃
iGxi . We claim that Gρ is the main equivalence class for

the function ρ.

It follows from the definitions that µ(X \Gρ) = 0. Let x, y ∈ Gρ and

choose open sets Uix and Uiy from our fixed countable cover containing

x and y, respectively. By the connectedness of X, we can find a finite

sequence of open sets Uix = Uz1 , . . . , Uzk = Uiy from the countable cover

such that Uzi∩Uzi+1 6= ∅ for i = 1, . . . , k−1. Note that as µ(Uz2 \Gz2) =

0 = µ(Uz3 \Gz3), and µ(Uz2 ∩Uz3) > 0, there is a point z′2 ∈ Gz2 ∩Gz3 .

By the definition of the p-main equivalence class property, there must

be a curve γ1 joining x and z′2 so that ρ is integrable on γ1. Similarly,

there must be a point z′3 ∈ Gz3 ∩ Gz4 and a curve γ2 joining z′2 and z′3
in Gz2 so that ρ is integrable on γ2. Continuing similarly, we obtain a

curve γ = γ1 ∪ · · · ∪ γk joining x and y such that ρ is integrable on γ.

The proposition follows.

The following proposition shows that spaces with the MECp property

have many of the expected properties for Sobolev functions.

Proposition 7.5.2 Suppose that X has the p-main equivalence class

property. Then the following three assertions hold:

(i). A subset of X has zero p-capacity if and only if it is p-exceptional.

(ii). If a function u : X → V in the Dirichlet class D1,p(X : V ) has the
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zero function as a p-weak upper gradient, then there exists c ∈ V such

that u ≡ c outside a set of zero p-capacity.

(iii). If a measurable function u : X → V has the property that u ◦ γ ≡ c

for p-almost every curve γ in X, for some vector c ∈ V , then u ≡ c

outside a set of zero p-capacity.

Proof To prove (i), it suffices to show that every p-exceptional subset of

X has measure zero (Proposition 7.2.8). To this end, suppose that E ⊂ X
is p-exceptional. Let ρ be a p-integrable nonnegative Borel function such

that ∫
γ

ρ ds =∞

for every rectifiable nonconstant curve γ that meets E (Lemma 5.2.8).

This means that each point in E belongs to a singleton ∼ρ-equivalence

class all by itself. Recall that because X satisfies MECp, non-empty open

sets have positive measure, and X has at least two points. It follows that

isolated points of X must carry positive measure. Therefore if a singleton

set is the main equivalence class of ρ, then X can have no other point

(because singleton sets are closed sets), which is not possible. It follows

that no singleton set can be the main equivalence class of ρ. It follows

in particular that no point in E can be equivalent to a point in a main

equivalence class Gρ. Hence E must have measure zero, as required.

To prove (ii), we show that u must take on a constant value almost

everywhere in X. The claim then follows from Lemma 7.1.6 and from

(i). To this end, choose a nonnegative p-integrable Borel function ρ on

X such that ∫
γ

ρ ds =∞

for every nonconstant rectifiable curve γ on which the upper gradient

inequality (6.2.1) does not hold for the pair (u, 0). Then the main equiv-

alence class Gρ satisfies µ(X \ Gρ) = 0, and for every pair of distinct

points x, y ∈ Gρ there exists a rectifiable curve γ joining x and y such

that ∫
γ

ρ ds <∞ .

The upper gradient inequality is valid for the pair (u, 0) on every such

γ. In particular, we infer that u is constant on Gρ, as desired.

Finally, under the hypotheses of (iii), the zero function is a p-weak

upper gradient of u, and hence u ∈ D1,p(X : V ). Now we obtain from
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(2) that u ≡ c′ outside a set of zero p-capacity for some constant c′ ∈ V .

The set E := {x ∈ X : u(x) 6= c′} must have measure zero, and hence

p-almost every curve γ in X that meets E meets E in a set of zero

length (Lemma 5.2.15). (Note that we have such curves by (i).) We find

therefore that c = c′.

The proposition is proved.

Examples (a) It is not hard to see, by using Fubini’s theorem, that Rn,

equipped with the Euclidean metric and the Lebesgue measure, satisfies

MECp for every n ≥ 1 and every p ≥ 1. In particular, we obtain from

Proposition 7.5.2 that a subset E ⊂ Rn has zero p-capacity if and only

if it is p-exceptional.

(b) The subset B(e1, 1) ∪ B(−e1, 1) in Rn, where e1 = (1, 0, . . . , 0),

satisfies MECp if and only if p > n.

7.6 Notes to Chapter 7

The Sobolev spaces N1,p were called Newtonian spaces in [247], [248],

[129], and in much of the recent literature. This nomenclature is moti-

vated by the fact that the definition is based on upper gradients and,

therefore, ultimately on the fundamental theorem of calculus. We have

opted to return to the more familiar term of a Sobolev space. There is

one caveat however. Various competing definitions appear in the litera-

ture for Sobolev spaces of functions defined on metric spaces, and it is

not always true that these spaces are the same. To emphasize this dif-

ference, the symbol N1,p is used (where N stands for Newton) instead

of, say, W 1,p. Some of the other possible definitions will be discussed

in Chapter 10. See Section 10.6 for further references. The index 1 in

N1,p(X : V ) refers to the fact that the functions in question are asso-

ciated with the first order Sobolev calculus. At the time of writing this

text, the theory of higher order Sobolev calculus in metric spaces was

less developed; see however [187] and the references therein.

Theorem 7.1.20, appearing first in [129], is inspired by the works of

Ambrosio [6] and Reshetnyak [233], [232], [231].

For Sobolev spaces on weighted Euclidean spaces, see [128]. A com-

parison between weighted Sobolev spaces and the corresponding up-

per gradient-based Sobolev spaces N1,p associated with the weighted

Lebesgue measure, for p-admissible weights, can be found in Appendix A

of [31].
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The term Dirichlet space for the class D1,p studied in Section 7.1 refers

to the fact that functions in this space are not required to be p-integrable;

one only assumes that their Dirichlet energy (the integral of the p-th

power of the gradient) are finite. The careful treatment of measurability

issues in Theorem 7.1.8 is new. There are other observations, such as

Proposition 7.1.33, that are previously unpublished.

Proposition 7.2.12 first appeared in [34]. An exposition of the potential

theory associated with N1,p-spaces can be found in the monograph [31]

of A. Björn and J. Björn. The outer capacity property given in Propo-

sition 7.2.12 and the quasicontinuity property studied in Section 7.4 are

used extensively in the study of Perron solutions and resolutivity of con-

tinuous functions, see for example [33], [32] and [31].

The example following the proof of Proposition 7.3.19 is due to Riikka

Korte.

The MECp property was first identified by Ohtsuka in the Euclidean

setting [220]. Although [220] was published in 2003, versions of it were in

circulation much earlier. The thesis [247], containing a systematic study

of real-valued N1,p-spaces, benefitted from Ohtsuka’s work.

Ambrosio, Gigli, and Savare demonstrated in [16] that for p > 1 con-

tinuous functions are dense in N1,p(X) when µ is locally doubling and

X is locally complete. The reflexivity of N1,p(X) under these conditions

was established by Ambrosio, Colombo, and Di Marino in [12].

The Sobolev space N1,p(X), 1 < p < ∞, is not always reflexive. Ex-

amples to this effect were given in [122, page 212].

In [111] and [110] Haj lasz proved that the property of density of Lips-

chitz mappings in N1,p(X : Y ) is not invariant under biLipschitz changes

in the metric of the target space Y , and that the norm on N1,p(X : Y )

depends on the embedding of Y into a Banach space.
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In this chapter, we introduce and discuss Poincaré inequalities in met-

ric measure spaces. These inequalities are formulated by using upper

gradients for real- or Banach space-valued functions in arbitrary metric

measure spaces. After the definition, we prove fundamental pointwise

estimates in doubling metric measure spaces supporting a Poincaré in-

equality. These estimates involve maximal functions and they constitute

alternative, useful descriptions of Poincaré inequalities. The pointwise es-

timates can be used to show, for example, that the validity of a Poincaré

inequality in doubling metric measure spaces is independent of the tar-

get Banach space. We also establish the quasiconvexity of complete and

doubling metric measure spaces that support a Poincaré inequality. This

fact is applied to show that for the validity of a Poincaré inequality in

such spaces it suffices to consider Lipschitz functions with continuous

upper gradients. The density of Lipschitz functions in a Sobolev space

is also established.

Throughout this chapter, we let X = (X, d, µ) be a metric measure

space as defined in Section 3.3 and V a Banach space. Unless otherwise

stipulated, we assume that 1 ≤ p < ∞. This latter assumption is often

repeated for emphasis.

8.1 Poincaré inequality and pointwise inequalities

In this section, we define a Poincaré inequality for real- as well as vector-

valued functions. Then we show how in doubling metric measure spaces

this inequality can be expressed in the form of various pointwise esti-

mates.

A measurable function u : X → V is said to be integrable on balls if

u ∈ L1(B : V ) for every ball B ⊂ X.

Poincaré inequality for real-valued functions. We first define the

Poincaré inequality for real-valued functions.

Definition. We say that X supports a p-Poincaré inequality if every

ball in X has positive and finite measure and if there exist constants

C > 0 and λ ≥ 1 such that∫
B

|u− uB | dµ ≤ C diam(B)

(∫
λB

ρp dµ

)1/p

(8.1.1)
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for every open ball B in X, for every function u : X → R that is inte-

grable on balls, and for every upper gradient ρ of u in X. The parameters

p, C, and λ are called the data of the Poincaré inequality (8.1.1). We

sometimes say that (X, d, µ) supports a p-Poincaré inequality to signify

our metric and measure; notice that the definition of an upper gradi-

ent depends on the metric in question. We also say that X supports a

Poincaré inequality if it supports a p-Poincaré inequality for some p ≥ 1.

Recall that the barred integral sign denotes integral average, that

uB =
∫
B
u dµ stands for the mean value of u over the ball B, and that

λB is a ball with same center as B but with λ radius that is λ times the

radius of B. Recall that balls may have more than one center and more

than one radius; hence, strictly speaking, a ball denotes the ball (as a

set) together with its preassigned center and radius. Also recall that it

follows from our assumptions that µ(U) > 0 whenever U is a nonempty

open set.

It is immediate from Hölder’s inequality that if a space supports a p-

Poincaré inequality for some p, then it supports a q-Poincaré inequality

for all q ≥ p.
If u is a smooth function in an open ball B ⊂ Rn, then∫

B

|u− uB | dx ≤ C(n) diam(B)

∫
B

|∇u| dx , (8.1.2)

where C(n) > 0 is a constant that depends only on n. In some texts on

Sobolev spaces the radius of B is used instead of the diameter diam(B).

Since in the metric setting the radius of a ball is not uniquely determined,

we use the diameter instead. Observe however that if rad(B) is a pre-

determined radius of B, then diam(B) ≤ 2 rad(B).

We have already seen a proof of a weaker version of the above state-

ment in Remark 7.1.4. A modification of that proof yields (8.1.2). For

the convenience of the reader, we now give a complete proof of (8.1.2).

As in the proof of Proposition 7.1.2, fix x ∈ B and use polar coordi-

nates y = (τ, θ) based at x (that is, τ = |x−y| and θ = |x−y|−1(x−y)).

Then for smooth functions u we have

|u(x)− u(y)| ≤
∫ τ

0

|∇u(s, θ)| ds.

Let ˜|∇u| be the zero-extension of |∇u| to Rn \ B; ˜|∇u| = |∇u|χB . Let

R be the radius of B. Then

|u(x)− u(y)| ≤
∫ 2R

0

˜|∇u|(s, θ) ds.
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Integrating with respect to y ∈ B ⊂ B(x, 2R), we obtain∫
B

|u(x)− u(y)| dy ≤
∫
B

∫ 2R

0

˜|∇u|(s, θ) ds dy
≤
∫
B(x,2R)

∫ 2R

0

˜|∇u|(s, θ) ds dy
≤
∫
Sn−1

∫ 2R

0

τn−1

∫ 2R

0

˜|∇u|(s, θ) ds dτ dθ
≤ C Rn

∫
Sn−1

∫ 2R

0

˜|∇u|(s, θ)
sn−1

sn−1 ds dθ

= C Rn
∫
B(x,2R)

˜|∇u|(z)
|x− z|n−1

dz

≤ C Rn
∫

4B

˜|∇u|(z)
|x− z|n−1

dz.

An application of Tonelli’s theorem now yields∫
B

∫
B

|u(x)− u(y)| dy dx ≤ C Rn
∫
B

∫
4B

˜|∇u|(z)
|x− z|n−1

dz dx

= C Rn
∫

4B

(∫
B

1

|x− z|n−1
dx

) ˜|∇u|(z) dz
≤ C Rn

∫
4B

(∫
B(z,2R)

1

|x− z|n−1
dx

) ˜|∇u|(z) dz.
A polar coordinate integration yields

∫
B(z,2R)

1
|x−z|n−1 dx = CnR, and

so we have∫
B

∫
B

|u(x)− u(y)| dy dx ≤ C Rn+1

∫
4B

˜|∇u|(z) dz
= C Rn+1

∫
B

|∇u(z)| dz,

from which (8.1.2) follows.

We emphasize that the preceding argument strongly uses several dis-

tinctive features of Euclidean space, specifically polar coordinates and

the convexity of balls (the latter property was already used in the proof

of Proposition 7.1.2).

As a consequence of (8.1.2) and Theorems 7.4.5 and 6.1.6 it follows

that Rn supports a p-Poincaré inequality for all function-upper gradient

pairs and all p ≥ 1. On the other hand, if X contains no nonconstant

rectifiable curves and has more than one point, then X cannot support
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a Poincaré inequality. Between these two extreme cases, there is a rich

supply of spaces that support a Poincaré inequality. We do not present

further examples at this juncture, but refer to Chapter 14.

It follows easily that every space that supports a Poincaré inequality

must be connected (Proposition 8.1.6). We prove in Theorem 8.3.2 the

more difficult result that every complete and doubling metric measure

space that supports a Poincaré inequality is quasiconvex. Spaces that

support a Poincaré inequality, and satisfy some additional geometric

measure theoretic conditions, admit a remarkable amount of first order

differential analysis. This will become evident later.

The Poincaré inequality in (8.1.1) differs from the Euclidean inequal-

ity (8.1.2) in two respects. First, the right hand side is the averaged

Lp-integral instead of the averaged L1-integral. Secondly, the integra-

tion on the right hand side is over a larger ball than on the left hand

side. Generally speaking, these two differences constitute a weakening

of inequality (8.1.2). Under suitable conditions on the underlying metric

measure space, (8.1.1) can be shown to be equivalent to certain ostensi-

bly stronger inequalities. This self-improving aspect of the left hand side

if inequality (8.1.1) will be discussed in more detail later in Chapter 9,

see Theorem 9.1.15.

The strongest inequality is the 1-Poincaré inequality. Different expo-

nents present genuinely distinct cases. One can show that, given 1 ≤
p < q, there exist (compact and doubling) metric measure spaces that

support a q-Poincaré inequality, but not a p-Poincaré inequality. It is

a deep fact that if a complete and doubling metric measure space sup-

ports a p-Poincaré inequality for some p > 1, then it also supports a

q-Poincaré inequality for some q < p. We will prove this result in Chap-

ter 12. Examples of spaces supporting a Poincaré inequality appear in

Chapter 14.

One could axiomatize a Poincaré inequality in many ways similar to

that in the preceding. Here we require that inequality (8.1.1) holds for

all (open) balls and for all function-upper gradient pairs (u, ρ), where u

is integrable on balls. Alternatively, one could require that (8.1.1) holds

for functions that are not necessarily globally defined (cf. Proposition

8.1.53), or that it holds for continuous or Lipschitz functions only (cf.

Theorem 8.1.53, Theorem 8.4.1, Theorem 8.4.2).

The following is a direct consequence of the definition and Lemma 6.2.2.

Proposition 8.1.3 Suppose that X supports a p-Poincaré inequality.

If u : X → R is a function that is integrable on balls and possesses a
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p-integrable p-weak upper gradient in X, then∫
B

|u− uB | dµ ≤ C diam(B)

(∫
λB

ρpu dµ

)1/p

(8.1.4)

for every open ball B in X, where ρu is the minimal p-weak upper gra-

dient of u, and C, λ are as in (8.1.1).

The requirement that u be integrable on balls can be replaced with

the weaker requirement that u be measurable on balls, as the following

lemma shows.

Lemma 8.1.5 Suppose that X supports a p-Poincaré inequality. Then

each measurable function u : X → R with an upper gradient ρ ∈ Lploc(X)

is integrable over a given ball.

Proof For each positive integer n we consider the truncated function

un = max{−n,min{n, u}}.

Then by Proposition 6.3.23, ρ is a p-weak upper gradient of un. Since

un is bounded and measurable, it is integrable on balls; hence we can

apply the Poincaré inequality to the pair (un, ρ) to obtain∫
B

∫
B

|un(x)− un(y)| dµ(x) dµ(y) ≤ 2

∫
B

|un − (un)B | dµ

≤ 2C diam(B)

(∫
λB

ρp dµ

)1/p

.

Note that the sequence of functions ϕn : B×B → R given by ϕn(x, y) =

|un(x)− un(y)| is monotone increasing. Hence we can invoke the mono-

tone convergence theorem to conclude that∫
B

∫
B

|u(x)− u(y)| dµ(x) dµ(y) ≤ 2C diam(B)

(∫
λB

ρp dµ

)1/p

<∞.

Hence it follows that u is integrable on the ball B.

As a simple topological consequence of the Poincaré inequality, we

establish the following.

Proposition 8.1.6 Every space that supports a Poincaré inequality is

connected.

Proof Suppose that X supports a Poincaré inequality. Assume that X

has two disjoint non-empty open subsets U , V such that X = U ∪ V .

Then the function u = χU has the zero function ρ ≡ 0 as an upper
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gradient. On the other hand, it is clear that (8.1.1) cannot hold for any

ball B in X that meets both U and V . The proposition follows.

Pointwise inequalities. The Poincaré inequality (8.1.1) can be char-

acterized in terms of pointwise inequalities between functions and their

upper gradients, at least when the underlying metric measure space is

doubling. Many such characterizations express relationships between two

functions, and as such have nothing to do with upper gradients. More-

over, the proofs for general Banach space-valued functions are no harder.

Recall that for R > 0 the restricted maximal function is given by

MR u(x) = sup
0<r<R

∫
B(x,r)

|u(y)| dµ(y) ,

whenever u : X → V is a locally integrable function. Recall also the

definition of a doubling metric measure space from Section 3.4.

Theorem 8.1.7 Suppose that X is a doubling metric measure space

and that 1 ≤ p < ∞. Let u : X → V be integrable on balls and let

g : X → [0,∞] be measurable. Then the following three conditions are

equivalent.

(i). There exist constants C > 0 and λ ≥ 1 such that∫
B

∣∣u− uB∣∣ dµ ≤ C diam(B)

(∫
λB

gp dµ

)1/p

(8.1.8)

for every open ball B in X.

(ii). There exist constants C > 0 and λ ≥ 1 such that

|u(x)− uB | ≤ C diam(B)
(
Mλ diam(B) g

p(x)
)1/p

(8.1.9)

for every open ball B in X and for almost every x ∈ B.

(iii). There exist constants C > 0 and λ ≥ 1 and A ⊂ X with µ(A) = 0

such that

|u(x)− u(y)| ≤ C d(x, y)
(
Mλd(x,y) g

p(x) +Mλd(x,y) g
p(y)

)1/p
(8.1.10)

for every x, y ∈ X \A.

The constants C and λ are not necessarily the same in each occurrence,

but they depend only on each other and on the doubling constant of µ.

While we have tried to be careful about notation in this book, the

reader should be aware that some existing literature takes a more relaxed
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approach, asserting for instance that (8.1.10) is required to hold for

almost every x, y ∈ X; we point out here that this statement about

almost every x, y ∈ X is in the sense we have specified above, where the

exceptional set A is a subset of X with µ(A) = 0 rather than a set K in

X ×X with (µ× µ)(K) = 0.

Remark 8.1.11 The proof of Theorem 8.1.7 will show that if (i) holds,

then (8.1.9) and (8.1.10) hold for all Lebesgue points x and y of u.

Proof of Theorem 8.1.7 First we prove the implication (i) ⇒ (ii). Let

B ⊂ X be an open ball, and let x ∈ B be a Lebesgue point of u. By

Theorem 3.4.3 and the Lebesgue differentiation theorem, almost every

point is such a point. Write r = diam(B) and Bi = B(x, 2−ir) for

each nonnegative integer i; we may clearly assume that r > 0. Then

limi→∞ uBi = u(x). Using the doubling property of µ together with

(8.1.8), we obtain

|u(x)− uB0
| ≤

∞∑
i=0

|uBi − uBi+1
| ≤

∞∑
i=0

∫
Bi+1

|u− uBi | dµ

≤ C
∞∑
i=0

∫
Bi

|u− uBi | dµ

≤ C
∞∑
i=0

2−i r

(∫
λBi

gp dµ

)1/p

= C r (Mλr g
p(x))1/p .

Here C depends only on the doubling constant of µ and on the constants

in inequality (8.1.8). It follows that

|u(x)− uB | ≤ |u(x)− uB0 |+ |uB0 − uB |
≤ C r (Mλr g

p(x))1/p + |uB0 − uB | .

The last term in the preceding line can be estimated as earlier, by using

the doubling property of µ and noting that B ⊂ 2B0,

|uB − uB0 | ≤ |uB − u2B0 |+ |u2B0 − uB0 |

≤
∫
B

|u− u2B0 | dµ+

∫
B0

|u− u2B0 | dµ

≤ 2C

∫
2B0

|u− u2B0
| dµ

≤ C r
(∫

2λB0

gp dµ

)1/p

≤ C r (M2λr g
p(x))1/p.

This concludes the proof of (8.1.9).
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To verify the implication (ii)⇒ (iii), consider a countable collection of

open balls B1, B2, . . . whose centers run through a fixed countable dense

set in X and whose radii run through the positive rationals. Let Ai ⊂ Bi
be the set of points such that µ(Bi \Ai) = 0 and (8.1.9) holds for every

x ∈ Ai (with B = Bi). Next, denote Ci = Bi \Ai and set A = X \
⋃
i Ci.

We have that µ(X \ A) = 0. Moreover, if x, y ∈ A, then it follows from

the definitions that x, y ∈ Ai for some Bi such that diam(Bi) ≤ 3d(x, y).

Thus,

|u(x)− u(y)| ≤ |u(x)− uBi |+ |u(y)− uBi | ,

and the claim follows from this by applying (8.1.9).

It remains to prove the implication (iii)⇒ (i). Assume first that p > 1.

Fix a ball B in X. Without loss of generality we assume that gp ∈
L1(3λB), where λ ≥ 1 is as in (iii). By applying Cavalieri’s principle

(3.5.5) and the weak-type estimate (3.5.7) for the maximal function, we

obtain∫
B

|u− uB | dµ ≤
∫
B

∫
B

|u(x)− u(y)| dµ(x) dµ(y)

≤ C diam(B)

∫
B

(M(gpχ3λB)(x))
1/p

dµ(x)

= C diam(B)µ(B)−1

∫ ∞
0

µ({x ∈ B : M(gpχ3λB)(x) > tp}) dt

≤ C diam(B)µ(B)−1

(∫ t0

0

µ(B) dt+

∫ ∞
t0

(
C

tp

∫
3λB

gp dµ

)
dt

)
= C diam(B)µ(B)−1

(
t0µ(B) + Ct1−p0

∫
3λB

gp dµ

)
.

The claim follows upon choosing

t0 =

(
µ(B)−1

∫
3λB

gp dµ

)1/p

.

It remains to consider the case p = 1 in the implication (iii) ⇒ (i).

This case is more involved, and will be derived from a more general

result Theorem 8.1.18. (See, however, Theorem 8.1.29 and the comment

preceding it.)

For later purposes also, we introduce the following concept.

A metric measure space X = (X, d, µ) is said to satisfy a relative lower
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volume decay of order Q ≥ 0 if there is a constant C0 ≥ 1 such that(s
r

)Q
≤ C0

µ(B(x, s))

µ(B(a, r))
(8.1.12)

whenever a ∈ X, x ∈ B(a, r), and 0 < s ≤ r. Note that Q = 0 only if

µ({x}) > 0 for every x ∈ X.

Lemma 8.1.13 Every doubling metric measure space satisfies a rela-

tive lower volume decay of order log2 Cµ. More precisely, we have that(s
r

)log2 Cµ
≤ 4log2 Cµ

µ(B(x, s))

µ(B(a, r))
(8.1.14)

whenever a ∈ X, x ∈ B(a, r), and 0 < s ≤ r.

Here, as usual, Cµ denotes the doubling constant of µ from (3.4.8).

Proof Let a, x, s, and r be as in the statement with 2−k−1r < s ≤ 2−kr

for some nonnegative integer k. Then B(a, r) ⊂ B(x, 2k+2s), which gives

µ(B(a, r)) ≤ Ck+2
µ µ(B(x, s)) ≤ C2

µ

(r
s

)log2 Cµ
µ(B(x, s))

as required.

Remark 8.1.15 A doubling metric measure space may satisfy a rela-

tive lower volume decay of order Q strictly less than the number log2 Cµ.

For example, if X consists of two points, both of positive measure, then

(8.1.12) holds with Q = 0 but Cµ ≥ 2.

The above lemma gives us a useful reverse doubling condition for µ

when X is connected. When x ∈ X and 0 < r < diam(X)/2, there is a

point z ∈ X \ B(x, 2r); and so ∂B(x, 3r/2) is nonempty, and hence we

can find a point w ∈ B(x, 2r) such that d(x,w) = 3r/2, and B(w, r/2) ⊂
B(x, 2r) \B(x, r). Therefore by the above relative lower decay property,

1− µ(B(x, r))

µ(B(x, 2r))
=
µ(B(x, 2r) \B(x, r))

µ(B(x, 2r))
≥ 1

C
. (8.1.16)

Thus with 0 < c = 1− (C)−1 < 1, we see that

µ(B(x, r)) ≤ c µ(B(x, 2r)). (8.1.17)

Theorem 8.1.18 Suppose that X is a doubling metric measure space

satisfying a relative lower volume decay of order Q > 0. Let u : X → V

be integrable on balls and let h : X → [0,∞] be measurable. Let B be an

open ball in X and assume that there is a set A ⊂ X with µ(A) = 0 and

|u(x)− u(y)| ≤ d(x, y) (h(x) + h(y)) (8.1.19)



224 Poincaré inequalities

for every x, y ∈ 2B \ A. Then there exists a constant C > 0 depending

only on the constants in (8.1.12) such that∫
B

|u− uB | dµ ≤ C diam(B)

(∫
2B

hq dµ

)1/q

, (8.1.20)

where q = Q/(Q+ 1).

Now let us assume Theorem 8.1.18 and show how the proof of Theorem

8.1.7 can be completed with it. Thus, suppose that (iii) holds for p = 1.

We use the fact (Lemma 8.1.13) that X satisfies a relative lower volume

decay estimate with constants C0 and Q depending only on the doubling

constant of µ. Fix an open ball B in X and let q be as in (8.1.20). We

may assume that g ∈ L1(6λB). Then Lemma 3.5.10 gives that(∫
2λB

(M4λ rad(B)g)q dµ

)1/q

≤ C

∫
6λB

g dµ , (8.1.21)

where C > 0 depends only on the doubling constant of µ. Since the

assumption (8.1.10) implies that (8.1.19) holds for the function h =

CM4λ rad(B)g, we obtain from (8.1.20) and from (8.1.21) that∫
B

|u− uB | dµ ≤ C diam(B)

∫
6λB

g dµ

for some constant C > 0 that depends only on the data in (8.1.10) and

the doubling constant of µ; the constant λ ≥ 1 is as in (8.1.10). This

gives (8.1.8) as desired and hence the remaining implication (iii) ⇒ (i)

is proved in all cases.

Therefore, assuming Theorem 8.1.18, the proof for Theorem 8.1.7 is

complete.

Proof of Theorem 8.1.18 Let Q, u, h, and B be as in the hypothe-

ses, and put q = Q/(Q + 1). We make some simplifying reductions.

If rad(B) > diam(B), then, writing x for the assigned center of B we

have B = B(x, rad(B)) = B(x,diam(B)), and so we may assume that

rad(B) ≤ diam(B). Then by simultaneously replacing the metric d by

(rad(B))−1d and the function h by rad(B) · h, we may assume that

rad(B) = 1. Similarly, by replacing the measure µ by (µ(2B))−1µ, we

may assume that µ(2B) = 1.

Next, we may assume that

0 <

(∫
2B

hq dµ

)1/q

≤ 21/q h(x) (8.1.22)



8.1 Poincaré inequality and pointwise inequalities 225

for every x ∈ 2B. Indeed, if the first inequality fails, then u = uB almost

everywhere in B, and if the second inequality fails, then we may replace

h by the function

h(x) +

(∫
2B

hq dµ

)1/q

.

Finally, we may assume that h <∞ almost everywhere in 2B.

The preceding understood, we consider the sets

Ek := {x ∈ G : h(x) ≤ 2k}

for every integer k, where G ⊂ 2B is a set such that µ(2B \G) = 0 and

that (8.1.19) holds whenever x, y ∈ G. Then Ek ⊂ Ek+1, µ(Ek)→ µ(2B)

as k → ∞, µ(Ek) → 0 as k → −∞, and u|Ek is 2k+1-Lipschitz. Let k0

be the integer for which

µ(Ek0−1) <
µ(2B)

2
=

1

2
≤ µ(Ek0) . (8.1.23)

By multiplying both u and h by 2−k0 , we may assume that k0 = 0. It

follows from (8.1.23) and the fact µ(2B) = 1 that

1

2
≥ µ(E−1) = 1− µ({x ∈ G : h(x) > 2−1}),

and so, by Chebyshev’s inequality

µ({x ∈ G : h(x) > 2−1}) = µ({x ∈ G : h(x)q > 2−q}) ≤ 2q
∫

2B

hq dµ

we obtain

2−(1+1/q) ≤
(∫

2B

hq dµ

)1/q

.

Furthermore, because µ(E0) ≥ 1
2 > 0, there is a point x ∈ G with

h(x) ≤ 1; hence by (8.1.22), we have(∫
2B

hq dµ

)1/q

≤ 21/q.

Combining these two inequalities, we conclude that

2−(1+1/q) ≤
(∫

2B

hq dµ

)1/q

≤ 21/q . (8.1.24)

We fix an integer k1 > 0 = k0, to be determined later, that depends

only on the doubling constant of µ.
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We have µ(Ek1) > 0 by (8.1.23), and hence there is a vector v0 ∈ V
such that

ess infx∈Ek1 |u(x)− v0| = 0 .

(For example, we may choose v0 = u(z) for any Lebesgue point z ∈ Ek1
of u by the Lebesgue differentiation theorem 3.4.) We may replace u by

u− v0 and assume to begin with that

ess infx∈Ek1 |u(x)| = 0 . (8.1.25)

Since ∫
B

|u− uB | dµ ≤ 2

∫
B

|u− v0| dµ ,

with the preceding reductions understood, it suffices to prove that∫
B

|u| dµ ≤ C (8.1.26)

for some constant C > 0 that depends only on the doubling constant

of µ (by the doubling property of µ and µ(2B) = 1, we know that

C−1
µ ≤ µ(B) ≤ 1).

If µ(B \ Ek1+1) = 0, then (8.1.26) follows from (8.1.25) by the fact

that u|Ek1+1
is 2k1+2-Lipschitz, for we also have rad(B) = 1.

We may assume, therefore, that µ(B\Ek1+1) > 0. For each k ≥ k1 +1,

set

rk := 16C
1/Q
0 · µ(2B \ Ek−1)1/Q . (8.1.27)

Here C0 is the constant from (8.1.12). By combining Chebyshev’s in-

equality and (8.1.24), we find that

rk+1 ≤ 16C
1/Q
0 · 2−qk/Q

(∫
2B

hq dµ

)1/Q

≤ 16C
1/Q
0 · 2−qk/Q · 21/Q

for every k ≥ k1. An appropriate choice for k1 then gives the estimate

rk+1 ≤ b 2−(k+1−k1)q/Q , b =
1

2
· (2q/Q − 1) . (8.1.28)

Such a choice of k1 depends solely on C0, q and Q, not on u, h, or B.

Suppose now that k ≥ k1 + 1 is such that µ((Ek+1 \ Ek) ∩ B)) > 0

(if such a k does not exist, then µ(B \ Ek1+1) = 0, contradicting our

assumption). Then in particular rk+1 > 0. Pick a point xk+1 ∈ (Ek+1 \
Ek) ∩B. From (8.1.28) we find that the ball B(xk+1, rk+1) lies entirely

in 2B. Hence the inequalities (8.1.12) and (8.1.27) give

µ(B(xk+1, rk+1)) ≥ 2Qµ(2B \ Ek) ,
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which implies that µ(B(xk+1, rk+1)∩Ek) > 0. Therefore, and observing

(8.1.28), we can pick a point xk ∈ B(xk+1, rk+1) ∩ Ek such that

d(xk+1, xk) ≤ rk+1 ≤ b 2−(k+1−k1)q/Q .

We claim that we can continue in a similar fashion to find points

xk+1 ∈ (Ek+1 \ Ek) ∩B ,
xk ∈ B(xk+1, rk+1) ∩ Ek ,

...

xk+1−i ∈ B(xk+1−(i−1), rk+1−(i−1)) ∩ Ek+1−i ,

...

xk1 ∈ B(xk1+1, rk1+1) ∩ Ek1 ,

for every i = 1, . . . , k+1−k1. To prove the claim, suppose that xk+1−i has

been chosen for some 1 ≤ i ≤ k− k1. If a ∈ X is such that B = B(a, 1),

then by (8.1.28)

d(a, xk+1−i) ≤ d(a, xk+1) + · · ·+ d(xk+1−(i−1), xk+1−i)

≤ 1 + rk+1 + · · ·+ rk+1−(i−1)

≤ 1 + b

i−1∑
m=0

2−(k+1−k1−m)q/Q ≤ 1 +
1

2
.

Noting that rk+1−i ≤ b < 1/2, this implies thatB(xk+1−i, rk+1−i) ⊂ 2B.

Using Lemma 8.1.13 again, and the definition for rk, we thus obtain

µ(B(xk+1−i, rk+1−i)) ≥ 2Qµ(2B \ Ek−i) .

Hence a point xk−i can be chosen as required. This finishes the proof of

the claim.

Because u is 2k1+1-Lipschitz continuous on Ek1 , it follows from (8.1.25)

that |u(xk1)| ≤ 2k1+1 diam(Ek1) ≤ 4 · 2k1+1. By using the sequence



228 Poincaré inequalities

xk+1, xk, . . . , xk1 as in the preceding claim, we now estimate

|u(xk+1)| ≤
k−k1∑
i=0

|u(xk+1−i)− u(xk−i)|+ |u(xk1)|

≤ 2

k−k1∑
i=0

2k+1−id(xk+1−i, xk−i) + 4 · 2k1+1

≤ 2

k−k1∑
i=0

2k+1−irk+1−i + 4 · 2k1+1

≤ 2b

k−k1∑
i=0

2k+1−i2−(k+1−k1−i)q/Q + 4 · 2k1+1

≤ C 2(k+1−k1)(1−q/Q) ,

where we used (8.1.28), (8.1.25), and the fact that u|Ek is 2k+1-Lipschitz.

Because this estimate holds for every point xk+1 ∈ (Ek+2 \ Ek+1) ∩ B,

if the latter set has positive measure, we deduce that∫
B

|u| dµ ≤
∞∑
j=1

∫
(Ek1+j+1\Ek1+j)∩B

|u| dµ+

∫
Ek1+1

|u| dµ

≤ C

∞∑
j=1

2j(1−q/Q)µ(Ek1+j+1 \ Ek1+j) + C

≤ C

∞∑
j=1

2j(1−q/Q) · 2−jq
∫
Ek1+j+1\Ek1+j

|h|q dµ+ C

= C

∞∑
j=1

∫
Ek1+j+1\Ek1+j

|h|q dµ+ C

≤ C

∫
2B

|h|q dµ+ C ≤ C ,

where we also used Chebyshev’s inequality, the choice of q = Q/(Q+ 1),

and (8.1.24).

This completes the proof of (8.1.26), and hence that of Theorem

8.1.18.

If we restrict ourselves to real-valued functions and their upper gra-

dients, then there is a more direct alternative proof for the implication

(iii)⇒ (i) in Theorem 8.1.7 for p = 1. We wish to present this proof also,

as it involves important techniques. For completeness, we formulate the
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pertinent statement as a separate theorem, although it is a special case

of Theorem 8.1.7.

Theorem 8.1.29 Suppose that X is a doubling metric measure space.

Assume that there exist constants C > 0 and λ ≥ 1 such that

|u(x)− u(y)| ≤ C d(x, y)
(
Mλd(x,y) ρ(x) +Mλd(x,y) ρ(y)

)
(8.1.30)

for every x, y ∈ X \ A whenever u : X → R is integrable on balls and

ρ : X → [0,∞] is an upper gradient of u, where A ⊂ X with µ(A) = 0

depends on u (and a priori could depend on ρ as well). Then X supports a

1-Poincaré inequality with data depending only on C, λ, and the doubling

constant of µ.

The following lemma is crucial; it expresses the interesting fact that a

weak-type estimate implies a strong-type estimate when function-upper

gradient pairs are considered (cf. Theorem 3.5.6).

Lemma 8.1.31 Let X be a metric measure space, let 1 ≤ p ≤ q <∞,

and let B ⊂ X be a ball such that 0 < µ(B) < ∞. Assume that there

exist constants C1 > 0 and λ ≥ 1 such that

µ({x ∈ B : |u(x)− uB | > s}) ≤ C1 s
−q
(∫

λB

ρp dµ

)q/p
(8.1.32)

for each s > 0, for each measurable function u : λB → R that is inte-

grable in B, and for each upper gradient ρ of u in λB. Then there exists

a constant C2 > 0 such that(∫
B

|u− uB |q dµ
)1/q

≤ C2

(∫
λB

ρp dµ

)1/p

(8.1.33)

for each measurable function u : λB → R that is integrable in B and for

each upper gradient ρ of u in λB. We can choose C2 = 32C
1/q
1 .

Remark 8.1.34 An examination of the proof of the above lemma

yields a stronger result. We actually obtain that (8.1.33) holds under the

following weaker assumption: Whenever u : λB → [0,∞] is integrable,

has an upper gradient ρ in λB and u satisfies

µ ({x ∈ B : u(x) = 0}) ≥ 1

2
µ(B),

then (8.1.32) holds.

Proof of Lemma 8.1.31 Let u : λB → R be a measurable function

that is integrable in B. We may obviously assume that u possesses a
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p-integrable upper gradient in λB. It then follows from Theorem 6.3.20

that u has a minimal p-weak upper gradient ρu in the ball λB. If u is

constant almost everywhere on B then there is nothing to be proved.

Assume that u is non-constant on B and pick a real number t such that

µ({x ∈ B : u(x) ≥ t}) ≥ 1

2
µ(B) and µ({x ∈ B : u(x) ≤ t}) ≥ 1

2
µ(B).

Because(∫
B

|u− uB |q dµ
)1/q

≤ 2

(∫
B

|u− t|q dµ
)1/q

, (8.1.35)

it suffices to verify inequality (8.1.33) with uB replaced by t.

By considering the function u− t, we may assume that t = 0. We will

only estimate the integral of the positive part u+ of u, as the reasoning

for the negative part u− is identical. Note that by Proposition 6.3.23,

the minimal p-weak upper gradient ρu+ agrees almost everywhere with

the function ρu ·χ{u>0}. To simplify our notation, we write u for u+ and

assume thus that u ≥ 0 and that µ({x ∈ B : u(x) = 0}) ≥ µ(B)/2.

For each integer j we define a function vj by setting

vj(x) := max{0,min{u(x)− 2j , 2j}}.

Notice that

µ({x ∈ B : vj(x) = 0}) ≥ µ(B)/2 . (8.1.36)

It follows from Proposition 6.3.23 that the minimal p-weak upper gradi-

ent ρvj satisfies

ρvj = ρu · χLj (8.1.37)

almost everywhere in λB, where Lj := {x ∈ λB : 2j ≤ u(x) < 2j+1}.
Recalling that vj ≤ 2j we have by (8.1.36) that (vj)B ≤ 2j−1, which

implies

µ({x ∈ B : u(x) ≥ 2j+1}) = µ({x ∈ B : vj(x) ≥ 2j})
≤ µ({x ∈ B : |vj(x)− (vj)B | ≥ 2j−1}) .

Consequently, we deduce from our weak-type assumption (8.1.32) that

µ(Lj+1 ∩B) ≤ µ({x ∈ B : |vj(x)− (vj)B | ≥ 2j−1})

≤ C1 · 2q 2−qj
(∫

λB

ρp dµ

)q/p
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for every upper gradient ρ of vj in λB. By Lemma 6.2.2 and by (8.1.37),

we conclude therefore that

µ(Lj+1 ∩B) ≤ C1 · 2q 2−qj

(∫
Lj

ρpu dµ

)q/p
.

Finally, this gives∫
B

uq dµ ≤
∑
j∈Z

2q(j+2)µ(Lj+1 ∩B) ≤ 23qC1

∑
j∈Z

(∫
Lj

ρpu dµ

)q/p

≤ 23qC1

(∫
λB

ρpu dµ

)q/p
since q ≥ p. The proof is completed upon observing that ρu is almost

everywhere less than or equal to any p-integrable upper gradient of u

in λB, and that for the constant C2 we pick up two additional factors

of 2 from (8.1.35) and from the splitting u = u+ − u−. The lemma

follows.

Proof of Theorem 8.1.29 Let u : X → R be a function that is inte-

grable on balls and let ρ be an upper gradient of u in X. Then fix an

open ball B in X.

From Remark 8.1.34, we infer that we only need to verify the weak-

type inequality

µ({x ∈ B : u(x) > s}) ≤ C diam(B) s−1

∫
λB

ρ dµ (8.1.38)

for s > 0 under the assumption that u ≥ 0 and µ({x ∈ B : u(x) =

0}) ≥ µ(B)/2. The constants C > 0 and λ ≥ 1 in (8.1.38) are allowed to

depend only on the constants appearing in (8.1.30) and on the doubling

constant of µ. As usual, we let C and λ denote any such constants.

To prove (8.1.38), fix s > 0 and let x ∈ B \ A be such that u(x) > s.

By assumption (8.1.30), for every such x and for every y ∈ B \ A such

that u(y) = 0, we have

µ(B(w, rw)) ≤ C d(x, y) s−1

∫
B(w,rw)

ρ dµ (8.1.39)

for some 0 < rw < λd(x, y), where w = x or w = y. Assume first that

for every y ∈ B \A with u(y) = 0 we can find x ∈ B such that inequality

(8.1.39) holds for w = y. By the 5B-covering lemma 3.3, we may cover

the set {y ∈ B : u(y) = 0} by countably many balls B(yi, 5ryi) such that
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the balls B(yi, ryi) are pairwise disjoint and satisfy (8.1.39) for w = yi.

Then by the doubling property of µ,

µ(B) ≤ 2µ({y ∈ B : u(y) = 0}) ≤ 2
∑
i

µ(B(yi, 5ryi))

≤ C
∑
i

µ(B(yi, ryi)) ≤ C diam(B) s−1

∫
λB

ρ dµ .

Hence inequality (8.1.38) follows in this case.

If the above assumption fails, then there is some y ∈ B \ A with

u(y) = 0 such that for each x ∈ B \ A with u(x) > s, we know that

inequality (8.1.39) holds with w = x. By similarly using the 5B-covering

lemma, we obtain a countable collection of balls B(xi, rxi) such that

µ({x ∈ B : u(x) > s}) ≤
∑
i

µ(B(xi, 5rxi)) ≤ C
∑
i

µ(B(xi, rxi))

≤ C diam(B) s−1

∫
λB

ρ dµ.

Thus inequality (8.1.38) always holds, and the proof is complete.

Poincaré inequality for Banach space-valued functions. The Poin-

caré inequality for Banach space-valued functions can be defined analo-

gously to Definition 8.1.

Definition 8.1.40 We say that X supports a p-Poincaré inequality

for V -valued functions, or for functions valued in V , if every ball in X

has positive and finite measure and if there exist constants C > 0 and

λ ≥ 1 such that∫
B

|u− uB | dµ ≤ C diam(B)

(∫
λB

ρp dµ

)1/p

(8.1.41)

for every open ball B in X, for every function u : X → V that is

integrable on balls, and for every upper gradient ρ of u in X. As before,

the data of inequality (8.1.41) consists of the triple (p, C, λ).

If V = R, we generally retain the abbreviated terminology of Sec-

tion 8.1. Alternatively, we say that X supports a Poincaré inequality for

real-valued functions.

It turns out that for doubling metric measure spaces, the validity of a

Poincaré inequality is independent of the target Banach space. The proof

of this result relies on the fundamental pointwise estimates of Theorem

8.1.7.
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Theorem 8.1.42 Let 1 ≤ p <∞. If a doubling metric measure space

supports a p-Poincaré inequality for functions valued in some Banach

space, then it supports a p-Poincaré inequality for functions valued in an

arbitrary Banach space. The data in the conclusion depends only on the

data in the assumption and on the doubling constant of the underlying

measure.

Proof Suppose that X supports a p-Poincaré inequality for functions

valued in a fixed Banach space. Because every Banach space contains

a subspace isometric to R, it follows that X supports a p-Poincaré in-

equality for real-valued functions with the same data. This understood,

we show that if V is a Banach space and u : X → V is a function that

is integrable on balls, and if ρ : X → [0,∞] is an upper gradient of u in

X, then

|u(x)−u(y)| ≤ C d(x, y)
(
Mλd(x,y) ρ

p(x) +Mλd(x,y) ρ
p(y)

)1/p
(8.1.43)

for every x, y ∈ X \A, and for some C > 0 and λ ≥ 1 as required, where

A ⊂ X with µ(A) = 0 depends on u. This suffices by Theorem 8.1.7.

We argue similarly to the proof of the implication (iii)⇒(i) in Propo-

sition 7.1.20. Thus, we first single out a set Z ⊂ X of measure zero such

that u(X \ Z) is separable (via the Pettis measurability theorem 3.1),

and then let (vi) be a countable set in V whose closure contains the

difference set

u(X \ Z)− u(X \ Z) ⊂ V .

Next, we pick a countable subset (v∗i ) of V ∗ such that 〈v∗i , vi〉 = |vi| and

that |v∗i | ≤ 1 for each i (the Hahn–Banach theorem). Set ui := 〈v∗i , u〉.
Then ρ is an upper gradient of every ui (cf. section 6.2). Because ui is

integrable on balls and because X supports a p-Poincaré inequality, it

follows from Theorem 8.1.7 that

|ui(x)− ui(y)| ≤ C d(x, y)
(
Mλd(x,y)ρ

p(x) +Mλd(x,y)ρ
p(y)

)1/p
(8.1.44)

for all x, y outside a set Zi ⊂ X of measure zero, for some C > 0 and

λ ≥ 1 as required.

We now set A := Z ∪
⋃∞
i=1 Zi and fix x, y ∈ X \ A. Upon choosing a

subsequence (vik) converging to u(x)− u(y), we find that

|uik(x)− uik(y)− |vik || = |〈v∗ik , u(x)− u(y)− vik〉| → 0

as ik → ∞. In particular, |uik(x) − uik(y)| → |u(x) − u(y)| as ik → ∞.

This together with (8.1.44) proves (8.1.43), and the theorem follows.
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In contrast to Banach space-valued functions with upper gradients,

the situation with metric space-valued Sobolev maps is more delicate. By

embedding the target metric space into a Banach space one can consider

the corresponding Poincaré inequality; however, the mean value fB of a

metric space-valued map on a ball B ⊂ X need not be in the embedded

image of the target metric space even if the target space is complete.

A more suitable version of the Poincaré inequality in this setting is the

following:∫
B

∫
B

dY (f(x), f(y)) dµ(y) dµ(x) ≤ C diam(B)

(∫
λB

ρp dµ

)1/p

(8.1.45)

whenever f : λB → Y has ρ as a (p-weak) upper gradient in λB. Note

that, because

1

2

∫
B

∫
B

dY (f(x), f(y)) dµ(y) dµ(x) ≤
∫
B

|f − fB | dµ

≤
∫
B

∫
B

dY (f(x), f(y)) dµ(y) dµ(x),

in the event that the target space itself happens to be a Banach space,

the above version of Poincaré inequality is equivalent to the one given

in (8.1.41). Now the geometry of the target space Y plays a role in de-

termining whether X supports such a Poincaré inequality. If Y happens

to be a singleton set, then regardless of the structure of X, the above

version of the Poincaré inequality holds. Furthermore, if balls in X have

the MECp property in the sense of Section 7.5 and the target space Y is

a discrete space, then a function f : λB → Y , with B a ball in X, is con-

stant µ-almost everywhere in B if it has an upper gradient ρ ∈ Lp(λB);

in this case also (8.1.45) holds. Thus the validity of (8.1.45) is not equiv-

alent to X supporting a Poincaré inequality for all real-valued functions.

However, we have the following result.

Proposition 8.1.46 Suppose that Y is a metric space that contains

a nontrivial quasiconvex curve. Then X supports the Poincaré type in-

equality (8.1.45) for Y -valued functions if and only if X supports a p-

Poincaré inequality for real-valued functions.

A curve γ : [a, b] → Y into a metric space is said to be quasiconvex

(with constant c > 0) if γ is absolutely continuous and

c dY (γ(t), γ(s)) ≥ length(γ|[t,s]) = |t− s| (8.1.47)

whenever a ≤ t < s ≤ b.
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Proof Let γ be a nontrivial quasiconvex curve in Y ; to simplify the

notation, we assume that γ : [0, 1] → Y , with appropriate changes left

to the reader for more general curves. Since we can always embed Y

into a Banach space isometrically, the comments above together with

Theorem 8.1.42 show that if X supports a p-Poincaré inequality for

real-valued functions then it supports (8.1.45). This does not require

any condition on Y .

To prove the converse, suppose that X supports (8.1.45) for Y -valued

functions. Let B ⊂ X be a ball and f : λB → R have an upper gradient

ρ ∈ Lp(λB). For a positive integer n we consider the truncated function

fn : λB → [−n, n] given by fn = max{−n,min{f, n}}. Then ρ is still an

upper gradient of fn. Let Fn : λB → Y be given by Fn(x) = γ( 1
2n fn(x)+

1
2 ). From (6.3.19) and (6.3.18), it follows that ρn = C

2nρ is a p-weak upper

gradient of Fn on λB. Now an application of (8.1.45) yields∫
B

∫
B

dY (Fn(x), Fn(y)) dµ(x) dµ(y) ≤ C diam(B)

2n

(∫
λB

ρp dµ

)1/p

.

(8.1.48)

On the other hand, since γ is quasiconvex we know that

dY (Fn(x), Fn(y)) ≥ C−1 1
2n |fn(x)− fn(y)|,

which together with (8.1.48) gives∫
B

∫
B

|fn(x)− fn(y)| dµ(x) dµ(y) ≤ C diam(B)

(∫
λB

ρp dµ

)1/p

.

By the monotone convergence theorem we conclude that∫
B

∫
B

|f(x)− f(y)| dµ(x) dµ(y) ≤ C diam(B)

(∫
λB

ρp dµ

)1/p

,

which, by the comments above, implies the p-Poincaré inequality (8.1.1).

The following theorem summarizes various characterizations of the

Poincaré inequality. Theorem 8.1.49 is a direct consequence of Theo-

rem 8.1.7, Theorem 8.1.42, Remark 8.1.11, Proposition 8.1.46 and the

definitions.

Theorem 8.1.49 Suppose that X is a doubling metric measure space,

that V is a Banach space, and that 1 ≤ p <∞. Then the following four

conditions are equivalent.

(i). X supports a p-Poincaré inequality for real-valued functions.
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(ii). X supports a p-Poincaré inequality for V -valued functions.

(iii). There exist constants C > 0 and λ ≥ 1 such that

|u(x)− uB | ≤ C diam(B)
(
Mλ diam(B) ρ

p(x)
)1/p

(8.1.50)

for every open ball B in X and for almost every x ∈ B whenever

u : X → V is integrable on balls and ρ is an upper gradient of u in

X.

(iv). There exist constants C > 0 and λ ≥ 1 such that

|u(x)− u(y)| ≤ C d(x, y)
(
Mλd(x,y) ρ

p(x) +Mλd(x,y) ρ
p(y)

)1/p
(8.1.51)

for every x, y ∈ X \A whenever u : X → V is integrable on balls and

ρ is an upper gradient of u in X; here A ⊂ X such that µ(A) = 0 is

a set whose choice depends on u.

(v). If Y is a metric space that contains a non-trivial quasiconvex curve,

then there exist constants C > 0 and λ ≥ 1 such that whenever

u : X → Y is integrable on balls and ρ is an upper gradient of u in

X, we have∫
B

∫
B

dY (f(x), f(y)) dµ(y) dµ(x) ≤ C diam(B)

(∫
λB

ρp dµ

)1/p

.

(8.1.52)

Moreover, (8.1.50) and (8.1.51) hold for all Lebesgue points x and y of u.

The various constants are not necessarily the same in each occurrence,

but they depend only on each other and on the doubling constant of

the underlying measure, with the constants associated with (8.1.52) also

depending on the constant c in (8.1.47).

We close this section by showing that there is flexibility in the preced-

ing definition 8.1.40 for a Poincaré inequality; the functions need not be

globally defined.

Theorem 8.1.53 Suppose that X supports a p-Poincaré inequality

for V -valued functions for some 1 ≤ p <∞. Then there exist constants

C ≥ 1 and λ ≥ 1 depending only on the data associated with the Poincaré

inequality (8.1.41) such that, for every open ball B ⊂ X,∫
B

|u− uB | dµ ≤ C diam(B)

(∫
λB

ρp dµ

)1/p

(8.1.54)

whenever u : λB → V is integrable in B and ρ is an upper gradient of u

in λB.
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Similarly, we have local versions of inequalities (8.1.50) and (8.1.51).

Theorem 8.1.55 Suppose that X is a doubling metric measure space

that supports a p-Poincaré inequality for V -valued functions for some

1 ≤ p <∞. Then there exist constants C ≥ 1 and λ ≥ 1 depending only

on the data associated with the Poincaré inequality (8.1.41) and on the

doubling constant of the underlying measure such that, for every open

ball B ⊂ X,

|u(x)− uB | ≤ C diam(B)
(
Mλ diam(B) ρ

p(x)
)1/p

(8.1.56)

and

|u(x)−u(y)| ≤ C d(x, y)
(
Mλd(x,y) ρ

p(x) +Mλd(x,y) ρ
p(y)

)1/p
(8.1.57)

whenever u : λB → V is integrable in B, ρ is an upper gradient of u in

λB, and x, y ∈ B are Lebesgue points of u. In particular, given such u,

inequalities (8.1.56) and (8.1.57) hold for every x, y ∈ B \ A, where A

is the set of all points in X that are not Lebesgue points of u; note that

µ(A) = 0.

For the proofs of these two theorems, we require the following simple

lemma.

Lemma 8.1.58 Let u : X → Z be a map between two metric spaces,

let A ⊂ X be closed, and let ρ : A → [0,∞] be an upper gradient of the

restriction u|A : A → Z. Then the function ρ̄ : X → [0,∞] defined by

ρ̄(x) = ρ(x) if x ∈ A and ρ̄(x) =∞ if x ∈ X \A is an upper gradient of

u in X.

Proof The assertion follows from the fact that for every nonconstant

rectifiable curve γ in X that intersects the open set X \A we must have∫
γ
ρ̄ ds =∞.

Remark 8.1.59 Lemma 8.1.58 is not true for an arbitrary subset

A ⊂ X. Consider A = R \ {0} ⊂ R and the function u = χ(0,∞) : R→ R
together with upper gradient ρ ≡ 0 on A.

Proof of Theorem 8.1.53 Assume that B = B(x, r) and write Bj =

B(x, (1− 2−j)r), uj = u|Bj , for j = 1, 2, . . . . Then

|uj − (uj)Bj | ≤ |u|+
1

µ(B1)

∫
B

|u| dµ ,
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which gives by the dominated convergence theorem that

lim
j→∞

∫
Bj

|uj − (uj)Bj | dµ =

∫
B

|u− uB | dµ . (8.1.60)

Similarly, by the monotone convergence,

lim
j→∞

∫
λBj

ρp dµ =

∫
λB

ρp dµ . (8.1.61)

On the other hand, because Bj is closed and because ρ is an upper

gradient of u in λBj , we obtain from Lemma 8.1.58 that the pair (ūj , ρ̄j)

is a function-upper gradient pair in X, where ūj(x) = u(x) if x ∈ λBj
and ūj(x) = 0 if x ∈ X\λBj , and ρ̄j(x) = ρ(x) if x ∈ λBj and ρ̄j(x) =∞
if x ∈ X \ λBj . By assumption we have, therefore, that∫

Bj

|uj − (uj)Bj | dµ =

∫
Bj

|ūj − (ūj)Bj | dµ

≤ C diam(Bj)

(∫
λBj

ρ̄pj dµ

)1/p

= C diam(Bj)

(∫
λBj

ρp dµ

)1/p

.

The assertion now follows from (8.1.60) and (8.1.61).

Proof of Theorem 8.1.55 Let B = B(x0, r) be an open ball in X, let

u : 3λB → V be integrable in B, and let ρ be an upper gradient of

u in 3λB, where λ ≥ 1 is a constant such that inequalities (8.1.50)

and (8.1.51) hold. We consider balls Bj = B(x0, (1 − 2−j)r) and func-

tions uj = u|Bj , for j = 1, 2, . . .. Arguing as in the proof of Theorem

8.1.53, we find function-upper gradient pairs (ūj , ρ̄j) in X such that

ūj |3λBj = u|3λBj and that ρ̄j |3λBj = ρ|3λBj . The assertion now follows

from Theorem 8.1.49 upon observing the following three facts: every

Lebesgue point of u in B belongs to Bj for j sufficiently large, uBj → uB
as j →∞, and B(x, λdiam(Bj)) ⊂ 3λBj for x ∈ Bj .

8.2 Density of Lipschitz functions

In Section 7.4, we defined the space HN1,p(X : V ) as the closure of

locally Lipschitz functions in N1,p(X : V ). According to Proposition

7.4.1, a function u : X → V belongs to HN1,p(X : V ) if and only if there
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exists a Cauchy sequence (ϕi) of locally Lipschitz functions in N1,p(X :

V ) converging to u both in N1,p(X : V ) and pointwise p-quasiuniformly.

Recall from Section 7.3 that the convergence is p-quasiuniform if for

every ε > 0 there is a measurable set of p-capacity no more than ε such

that the sequence converges uniformly to the limit function outside this

set. By Remark 7.3.5 we can in addition assume that the set of small

p-capacity is also open if the functions in the approximating sequence

are continuous (see also Theorem 7.4.2.).

We next prove the important fact that in doubling metric measure

spaces X with p-Poincaré inequality the identity HN1,p(X : V ) =

N1,p(X : V ) holds.

Theorem 8.2.1 Let 1 ≤ p < ∞. Suppose that X is a doubling met-

ric measure space that supports a p-Poincaré inequality. Then Lipschitz

functions are dense in N1,p(X : V ) and HN1,p(X : V ) = N1,p(X : V ).

If X is in addition locally compact, then every function in N1,p(X : V )

is p-quasicontinuous.

We do not know to what extent the doubling assumption is necessary

for the conclusion of Theorem 8.2.1, even when V = R (cf. Remark 7.4.3

and Section 8.5).

Proof The second claim in the theorem follows from the first and from

Theorem 7.4.2.

To prove the first claim, let u be a function in N1,p(X : V ). We need

to find a sequence of Lipschitz functions converging to u in N1,p(X : V ).

For this, we may assume that u vanishes outside some ball (Proposition

7.1.35). By picking a representative, we may also assume that u is point-

wise defined everywhere. Let ρu be the minimal p-weak upper gradient

of u. By Theorem 8.1.49, there is a set E ⊂ X of measure zero such that

|u(x)− u(y)| ≤ C d(x, y) (Mρpu(x) +Mρpu(y))
1/p

(8.2.2)

whenever x, y ∈ X \ E. For t > 0 write

Et = {x ∈ X : Mρpu(x) > tp} .

Then (8.2.2) implies that the restriction of u to X \ (Et∪E) is Lipschitz

continuous with constant C1 t, where C1 > 0 is independent of t. By

Theorem 4.1.21, we find a C2 t-Lipschitz function ut : X → V such that

ut(x) = u(x) for x ∈ X \ (Et ∪ E), where C2 > 0 is independent of t.

Let B0 be a ball in X such that u(x) = 0 for every x ∈ X \ B0. We
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claim that Et ⊂ 2B0 for every large enough t > 0. To see this, suppose

that x ∈ Et ∩ (X \ 2B0), and let B be a ball centered at x such that

tp <

∫
B

ρpu dµ .

Because ρu = 0 in X \ B0 (Proposition 6.3.22), B must meet B0. It

follows that B0 ⊂ 3B, which implies

tp < C

∫
3B

ρpu dµ ≤ C
1

µ(B0)

∫
X

ρpu dµ := tp0.

This proves the claim.

It follows that ut = u = 0 almost everywhere in X \ 2B0 for t ≥ t0.

Because ut is C2t-Lipschitz on X, we deduce that |ut|, for t ≥ t0, is

bounded in X by a constant C3 t, where C3 > 0 is independent of t.

Hence ∫
X

|u− ut|p dµ =

∫
{u6=ut}

|u− ut|p dµ

≤ C

∫
{u6=ut}

|u|p dµ+ C tpµ({u 6= ut}) ,

where C > 0 is independent of t ≥ t0. Since µ({u 6= ut}) ≤ µ(Et), it

follows from the preceding inequality and from Proposition 3.5.15 that

ut → u in Lp(X) as t→∞.

Next, let F be a Borel set containing Et ∪E such that µ(F ) = µ(Et ∪
E). Then u − ut = 0 in X \ F , and it follows from (6.3.18) and from

Proposition 6.3.22 that

ρu−ut(x) ≤ (ρu(x) + C2 t)χF (x)

for almost every x ∈ X. In particular,∫
X

ρpu−ut dµ ≤ C

∫
F

ρpu dµ+ C tp µ(Et) ,

where C > 0 is independent of t ≥ t0. As earlier, we find that ρu−ut → 0

in Lp(X) as t→∞. We have thus proved that

lim
t→∞

||u− ut||N1,p(X:V ) = 0

and the theorem follows.

At various points of this book we have assumed that the metric space

X is complete. As we demonstrate next, in many of these situations the

assumption of completeness (which is equivalent to properness in the
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presence of the doubling property) is not very restrictive. Recall that a

measure µ defined on a metric subspace X of Z has a null-extension µ

to Z given by (3.3.14).

Lemma 8.2.3 Suppose that (X, d, µ) is a locally compact metric space

and µ is a doubling measure supporting a p-Poincaré inequality. Then

the metric completion X̂ of X also supports a p-Poincaré inequality when

equipped with the null-extension of µ. Furthermore, the null-extension µ

is also doubling. The constants related to the doubling and Poincaré in-

equality properties of (X̂, d, µ) depend only on the doubling and Poincaré

constants of (X, d, µ). Moreover, every u ∈ N1,p(X) has an extension

û ∈ N1,p(X̂) with ‖û‖N1,p(X̂) = ‖u‖N1,p(X).

Proof To check that µ is doubling on X̂, we fix x0 ∈ X̂ and r > 0.

Choose x1 ∈ X such that d(x1, x0) < r/4 (if x0 ∈ X then we can choose

x1 = x0). Then,

µ(B̂(x0, 2r)) = µ(X ∩ B̂(x0, 2r)) ≤ µ(B(x1, 3r))

≤ C2
µ µ(B(x1, 3r/4)) ≤ C2

µµ(X ∩ B̂(x0, r)) = C2
µµ(B̂(x0, r)).

Here B̂ denotes a ball in X̂ centered at a point in X̂, while B denotes a

ball in X with center in X. We can therefore conclude that µ is doubling

with constant C2
µ, where Cµ is the doubling constant of µ.

We now use the doubling property of µ to verify the Poincaré inequal-

ity for X̂. Indeed, because we assume X to be locally compact, X is an

open subset of X̂. So if û is a µ-measurable function on X̂ with upper

gradient ρ̂, then the µ-measurable function u = û|X has the Borel func-

tion ρ = ρ̂|X as an upper gradient in X. Hence, if B̂(x0, r) is a ball in

X̂, then by the p-Poincaré inequality on X applied to the ball B(x1, 2r)

with x1 ∈ X such that d(x1, x0) < r/4,

2−1

∫
B̂(x0,r)

|û− (û)B̂(x0,r)
| dµ ≤

∫
B̂(x0,r)

|û− uB(x1,2r)| dµ

≤ C2
µ

∫
B(x1,2r)

|u− uB(x1,2r)| dµ

≤ 2C2
µ CP r

(∫
B(x1,2λr)

ρp dµ

)1/p

≤ 2C2
µ CP r

(∫
B̂(x0,3λr)

ρ̂p dµ

)1/p

.
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To verify the final claim, note that if u ∈ N1,p(X), then u can be ap-

proximated in N1,p(X) by Lipschitz functions in X; see Theorem 8.2.1.

Lipschitz functions on X uniquely extend to X̂, and these extensions lie

in N1,p
loc(X̂). Since X is an open subset of X̂, it follows from Lemma 6.3.8

that minimal p-weak upper gradients of the Lipschitz functions on X

are also minimal p-weak upper gradients on X̂ of the extended Lips-

chitz functions. It follows that for Lipschitz functions in N1,p(X) the last

claim of Lemma 8.2.3 holds with the N1,p-norm of the extended function

equalling the N1,p-norm of the original Lipschitz function. The density of

Lipschitz functions in N1,p(X) together with Proposition 7.3.1 completes

the proof provided we know that CapXp (E) = 0 implies CapX̂p (E) = 0

for E ⊂ X. Here CapXp and CapX̂p are the p-capacities with respect to

the Sobolev spaces N1,p(X) and N1,p(X̂) respectively.

Let E ⊂ X be such a set. Since X is locally compact and separable,

we can find an increasing sequence (Kn) of compact sets with X =⋃
nKn. Set En = Kn ∩E. Then for each n we have CapXp (En) = 0, and

hence by Proposition 7.2.8, En is p-exceptional with respect to X. It

follows that there is a non-negative Borel measurable (with respect to X)

function ρ ∈ Lp(X) such that
∫
γ
ρ ds =∞ whenever γ is a non-constant

rectifiable curve in X that intersects E; see Lemma 6.2.2. We now show

that En is p-exceptional with respect to X̂ as well. If β is a non-constant

rectifiable curve in X̂ that intersects En, then since En ⊂ Kn and Kn

is a compact subset of X with X open in X̂, β must have a subcurve in

X that intersects En. The line integral of ρ on this subcurve is therefore

infinite. We extend ρ by zero to X̂; since ρ is Borel measurable in X,

it follows that this extension, also denoted ρ, is Borel measurable in X̂.

Thus
∫
β
ρ ds makes sense, and we have

∫
β
ρ ds =∞. Because ρ ∈ Lp(X),

we also have ρ ∈ Lp(X̂) because µ(X̂ \X) = 0. Thus by Lemma 6.2.2 we

know that En is p-exceptional in X̂, and because µ(En) = µ(En) = 0,

we may use Proposition 7.2.8 again to conclude that CapX̂p (En) = 0.

Now the subadditivity of CapX̂p guarantees that CapX̂p (E) = 0.

The proof is now complete.

Note that in the above lemma we needed the doubling and Poincaré

inequality properties of X itself in order to extend functions in N1,p(X)

to N1,p(X̂) without increasing the norm. Without this assumption, such

an extension is impossible, as demonstrated by the metric measure space

that is the Euclidean (planar) slit disc. We use Lemma 8.2.3 to extend the
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outer capacity property for null-capacity sets from the context of proper

metric spaces to locally compact metric spaces, see Proposition 7.2.12.

Lemma 8.2.4 Suppose that X is locally compact, and µ is a doubling

measure supporting a p-Poincaré inequality. If Capp(K) = 0, then for

each ε > 0 we can find an open set Uε ⊃ K such that Capp(Uε) < ε.

Proof By Lemma 8.2.3 we know that Capp(K) = CapX̂p (K), and so

K ⊂ X̂ with (X̂, d, µ) satisfying the hypotheses of Proposition 7.2.12. It

follows that for every ε > 0 we can find an open set Ûε ⊂ X̂ with K ⊂ Ûε
such that Capp(Ûε ∩ X) ≤ CapX̂p (Ûε) < ε. The first inequality follows

from the fact that for each A ⊂ X̂ we have Capp(A ∩X) ≤ CapX̂p (A).

Since Ûε ∩X is open in X, the proof of the lemma is complete.

We now use Theorem 8.2.1 and Lemma 8.2.4 to extend the outer

capacity property of Proposition 7.2.12 beyond sets of zero p-capacity.

Corollary 8.2.5 Let 1 ≤ p < ∞. Let X be a locally compact dou-

bling metric measure space that supports a p-Poincaré inequality. Then

Capp(A) = inf{Capp(U) : X ⊃ U open, A ⊂ U} whenever A ⊂ X.

Proof Denote the desired infimum by αA. If Capp(A) is infinite there

is nothing to prove, hence we may assume that Capp(A) < ∞. Let

u ∈ N1,p(X) be admissible for Capp(A); u ≥ 1 on A except for a set of

zero p-capacity. Truncating if necessary, we also assume that u ≥ 0 on X.

By Theorem 8.2.1 we know that u is equivalent to a p-quasicontinuous

function. Hence, by Lemma 8.2.4, for a fixed η > 0 there is an open set

Kη ⊂ X with Capp(Kη) < η such that u is equal to its p-quasicontinuous

representative outside of Kη. For fixed 0 < ε < 1, the set Uε := {x ∈
X : u(x) > 1 − ε} satisfies A ⊂ Uε ∪ Kη. Moreover, there is an open

set Vε,η with Capp(Vε,η) < η such that Uε ∪ Kη ∪ Vε,η is open. Note

that Capp(Kη ∪ Vε,η) < 2η; so we can find a non-negative function

w ∈ N1,p(X) such that w ≥ 1 on Kη ∪ Vε,η and
∫
X

[wp + gpw] dµ < 2η.

The function max{(1−ε)−1u,w} satisfies max{(1−ε)−1u,w} ∈ N1,p(X),

max{(1− ε)−1u,w} ≥ 1 on the open set Uε ∪Kη ∪ Vε,η, and so

αA ≤ Capp(Uε ∪Kη ∪Vε,η) ≤ (1− ε)−p
∫
X

[up + gpu] dµ+

∫
X

[wp + gpw] dµ,

that is, αA ≤ (1− ε)−p
∫
X

[up + gpu] dµ+ 2η. Letting ε→ 0, then η → 0,

and then taking the infimum over all admissible functions u for A yields

αA ≤ Capp(A). The reverse inequality follows from the monotonicity of

p-capacity.
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8.3 Quasiconvexity and Poincaré inequality

A metric space Z is said to be C-quasiconvex, C ≥ 1, if each pair of

points x, y ∈ Z can be joined by a rectifiable curve γ in Z such that

length(γ) ≤ C dZ(x, y) . (8.3.1)

We also say that Z is quasiconvex if it is C-quasiconvex for some C. The

self-explanatory term quasiconvex metric is also used. The least C such

that (8.3.1) holds is called the quasiconvexity constant of the metric.

Quasiconvexity is an important geometric consequence of the Poincaré

inequality for complete, doubling metric measure spaces. For example,

in quasiconvex metric measure spaces every function with a bounded

upper gradient is necessarily Lipschitz continuous.

Theorem 8.3.2 Every complete and doubling metric measure space

that supports a Poincaré inequality is quasiconvex. The quasiconvexity

constant depends only on the doubling constant of the measure and the

data associated with the Poincaré inequality.

A related but stronger notion is annular quasiconvexity. A metric

space Z is annularly C-quasiconvex for some constant C ≥ 1 if whenever

z ∈ Z and r > 0, each pair of points x, y ∈ B(z, r) \ B(z, r/2) can be

connected in B(z, Cr) \B(z, r/C) by a C-quasiconvex curve. The asso-

ciation between annular quasiconvexity and Poincaré inequalities will be

explored in the next chapter; see Theorem 9.4.1.

Remark 8.3.3 The ensuing proof of Theorem 8.3.2 shows that the

conclusion of the theorem holds under weaker hypotheses. It suffices to

assume that the Poincaré inequality (8.1.1) holds for every Lipschitz

function u : X → V and for every Lipschitz continuous upper gradient

ρ : X → [0,∞) of u (with constants C and λ independent of u, ρ, and B,

of course). Alternatively, it suffices to assume that there are constants

C > 0 and λ ≥ 1 such that∫
B

|u− uB | dµ ≤ C diam(B)

(∫
λB

(Lipu)p dµ

)1/p

(8.3.4)

for every open ball B in X and for every Lipschitz function u : X → R,

where we recall (see (6.2.4)) that the pointwise upper Lipschitz-constant

function is defined by

Lipu(x) = lim sup
r→0

sup
y∈B(x,r)

|u(x)− u(y)|
r

. (8.3.5)
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The conclusions are similarly quantitative in that the quasiconvexity

constant only depends on the doubling constant of the measure and the

data associated with the various Poincaré inequalities. These remarks

will be used later in Section 8.4.

Proof of Theorem 8.3.2 Let X be a complete and doubling metric mea-

sure space that supports a p-Poincaré inequality; evidently, we may as-

sume that p > 1. Fix a point x ∈ X. Given an integer k ≥ 1, a finite

sequence x = x0, x1, . . . , xl = y of points in X is said to be a k-chain

from x to y if d(xi+1, xi) ≤ 1/k for each 0 ≤ i ≤ l − 1. We claim that

for each point y ∈ X, and for each k ≥ 1, there is a k-chain from x

to y. To see this, observe that the set Ux, consisting of all those points

y ∈ X such that there exists a k-chain from x to y, is open. Because

the complement X \ Ux is open as well, and because X is connected

(Proposition 8.1.6), we must have that Ux = X as claimed. If we assume

the weaker hypotheses of Remark 8.3.3, then we do not a priori have

connectivity of X, but notice that dist(Ux, X \Ux) ≥ 1/k, which implies

that the characteristic function χUx is Lipschitz and has ρ ≡ 0 as an

upper gradient, which in turn also yields Ux = X.

Next, define a function uk : X → [0,∞) by setting

uk(y) := inf

l−1∑
i=0

d(xi+1, xi) ,

where the infimum is taken over all k-chains from x to y. Then uk is

1-Lipschitz in every ball of radius at most 1/k, so that the constant

function ρ ≡ 1 is an upper gradient of uk (Lemma 6.2.6). Since also

uk(x) = 0, it follows from Proposition 8.1.7 that

uk(y) ≤ C d(x, y) [Mλd(x,y)ρ
p(x) +Mλd(x,y)ρ

p(y)]1/p ≤ C d(x, y)

(8.3.6)

whenever y ∈ X, where C > 0 depends only on the data in the hypothe-

ses. Note that because uk is continuous, every point is a Lebesgue point

of uk.

Now fix a point y ∈ X with y 6= x. Choose, for each integer k ≥
max{1, 2/d(x, y)}, a k-chain x = xk,0, xk,1, . . . , xk,l(k) = y such that

l(k)−1∑
i=0

d(xk,i+1, xk,i) ≤ 2uk(y) ≤ 2C d(x, y) , (8.3.7)

where C > 0 is as in (8.3.6), and that

max{d(xk,i−1, xk,i), d(xk,i, xk,i+1)} ≥ 1/2k (8.3.8)
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for each i = 1, 2, . . . , l(k)− 1. Requirement (8.3.7) can be accomplished

by the definition for uk and by (8.3.6), and requirement (8.3.8) can be

accomplished by first taking any k-chain such that (8.3.7) holds and

then dispensing with extra points, if necessary. One easily computes

from (8.3.7) and (8.3.8) that

l(k)− 1

4k
≤ 2C d(x, y) .

Consequently,

d(x, y) ≤ l(k)

k
≤ 10C d(x, y) (8.3.9)

for all k ≥ k0.

Next, abbreviate L := 2Cd(x, y) and εk := L/l(k), and let

Nk := {0, εk, 2 εk, . . . , (l(k)− 1) εk, L} ⊂ [0, L]

be an εk-net in [0, L]. It follows from (8.3.9) that

1

5k
≤ εk ≤

2C

k
(8.3.10)

for all k ≥ k0. Therefore, the map γk : Nk → X, γk(iεk) := xk,i, is

5-Lipschitz for k ≥ k0. We will show that the sequence (γk) gives rise

to a 5-Lipschitz map γ : D → X defined on a dense subset D ⊂ [0, L]

such that 0, L ∈ D with γ(0) = x and γ(L) = y. Such a map extends

to a 5-Lipschitz map [0, L] → X, thus providing a curve from x to y of

length at most 5L = 10C d(x, y), where C > 0 is the constant in (8.3.6)

with dependence as required.

It remains to construct the map γ. This is done via a familiar Arzelà–

Ascoli type argument as we next explain. First we note that all the

images γk(Nk) lie in some fixed compact subset K of X; this is because

X is proper (Lemma 4.1.14). Denote by

Dn := {m2−nL : m = 0, 1, . . . , 2n}

the set of all dyadic points in [0, L] at the level n = 0, 1, 2, . . . . We

set γ(0) = x and γ(L) = y. Next consider the point z = L/2. There

is a subsequence γk1 , γk2 , . . . of the sequence (γk) such that for some

points zkj ∈ Nkj we have both zkj → z and γkj (zkj ) → wz ∈ K. We

set γ(z) = wz. Because each map γk is 5-Lipschitz, the element wz
is independent of the choice of the subsequence. From the properties

of the maps γk we have that γ : D1 → X is 5-Lipschitz. By using

appropriate subsequences of (γkj ), we argue similarly and define γ(z)

for points z ∈ D2 \D1 so as to obtain a 5-Lipschitz map γ : D2 → X.
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Continuing in this manner, by passing to further subsequences, we obtain

a 5-Lipschitz map γ : D → X, where D =
⋃
nDn, as desired. We leave

the details to the reader.

The proof of Theorem 8.3.2 is now completed by extending the 5-

Lipschitz map on the dense set D to [0, L].

Length spaces and geodesic spaces. A metric space is said to be a

length space if the distance between every pair of points in the space is

equal to the infimum of the lengths of the curves joining the points.

A metric space is said to be geodesic if every pair of points in the space

can be joined by a curve whose length is equal to the distance between

the points. Such a curve is called a geodesic between the two points. We

also say that a metric e on Z is a geodesic metric (resp. length metric)

if (Z, e) is a geodesic metric space (resp. length metric space).

A geodesic space is always a length space. If V is a normed space of

dimension at least two, then V \ {0} is always a length space, but in

general not geodesic. On the other hand, we have the following result.

Lemma 8.3.11 Proper length spaces are geodesic.

Proof This is a straightforward application of the Arzelà–Ascoli theo-

rem 5.1.10. Indeed, given two points x and y in a proper length space

Z, let γi : [0, li] → Z be curves joining x and y, parametrized by the

arc length, where li = length(γi) satisfy dZ(x, y) ≤ li → dZ(x, y) as

i→∞. We may assume that there is some finite positive number l such

that γi(0) = x, γi(li) = y, and li ≤ l for all i. By defining γi(t) = y for

li ≤ t ≤ l, we have a sequence of 1-Lipschitz maps γi : [0, l] → Z. (See

Section 5.1.) Now Theorem 5.1.10 gives a subsequence γij that converges

uniformly on [0, l] to a map γ : [0, l] → Z. This map is 1-Lipschitz and

satisfies γ(0) = x and γ(t) = y for dZ(x, y) ≤ t ≤ l. The restriction

γ|[0,dZ(x,y)] is therefore a geodesic from x to y. The lemma follows.

The property of being geodesic is often useful for technical consider-

ations. We will use the next proposition several times in this book.

Proposition 8.3.12 Suppose that (Z, dZ) is a proper and rectifiably

path connected metric space. Define, for x, y ∈ Z,

d̂(x, y) := inf
γ

length(γ) , (8.3.13)

where the infimum is taken over all curves γ that join x and y in Z.

Then d̂ is a geodesic metric in Z and, if (Z, dZ) is quasiconvex, then

dZ(x, y) ≤ d̂(x, y) ≤ C dZ(x, y) (8.3.14)



248 Poincaré inequalities

for all x, y ∈ X, where C ≥ 1 is the quasiconvexity constant of dZ .

Proof The proof is similar to that of Lemma 8.3.11. First we observe

that d̂ is indeed a metric. Secondly, the first inequality in (8.3.14) holds

by (5.1.12), and thus (8.3.14) is immediate if (Z, dZ) is quasiconvex.

Next, given x, y ∈ Z, let γi : [0, li] → Z be curves parametrized by the

arc length such that γi(0) = x, γi(li) = y, and that li → l := d̂(x, y)

as i→∞. Because we may assume that l ≤ li ≤ C dZ(x, y), arguing as

in the proof of Lemma 8.3.11 we obtain a 1-Lipschitz map γ : [0, l] →
(Z, dZ) such that γ(0) = x and γ(l) = y. Because dZ ≤ d̂, we have that

γ : [0, l]→ (Z, d̂) is 1-Lipschitz as well, and hence provides a geodesic as

desired. The proposition follows.

In general, two metrics d1 and d2 in a set Z are said to be biLipschitz

equivalent if there is a constant C ≥ 1 such that

C−1d2(x, y) ≤ d1(x, y) ≤ C d2(x, y) (8.3.15)

for every pair of points x, y ∈ Z.

We have the following corollary to Theorem 8.3.2 and Proposition

8.3.12.

Corollary 8.3.16 A complete and doubling metric measure space that

supports a Poincaré inequality admits a geodesic metric that is biLips-

chitz equivalent to the underlying metric. The biLipschitz constant de-

pends only on the doubling constant of the measure and on the data of

the Poincaré inequality.

Remark 8.3.17 In light of Remark 8.3.3, the conclusion of Corollary

8.3.16 holds for complete and doubling metric measure spaces that sup-

port a Poincaré inequality for Lipschitz functions and their Lipschitz

continuous upper gradients.

Lemma 8.3.18 Let d1 and d2 be two biLipschitz equivalent metrics on

X. If a measure µ on X is doubling with respect to d1, then it is also dou-

bling with respect to d2. If in addition (X, d1, µ) supports a p-Poincaré

inequality, then also (X, d2, µ) supports a p-Poincaré inequality.

Proof The first claim is easily verified from the definitions; we leave

it to the reader. Let C be the biLipschitz constant relating d1 to d2. If

ρ is an upper gradient of a function u with respect to the metric d2,

then Cρ is an upper gradient of u with respect to the metric d1. Thus,

given a function u that is integrable on balls and an upper gradient ρ
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of u with respect to d2, we have the Poincaré inequality (8.1.1) with ρ

replaced by Cρ, for all d1-balls. By the first claim and Theorem 8.1.7, we

conclude with the pointwise estimate (8.1.10), with the maximal function

taken with respect to d1. Doubling allows us to replace d1 by d2 in this

estimate, and the claim follows from Theorem 8.1.7.

8.4 Continuous upper gradients and pointwise
Lipschitz constants

This section is devoted to the proof of the following theorem (and its

variant Theorem 8.4.2), which will be applied when the stability of the

Poincaré inequality under convergence of metric spaces is studied in

Chapter 11.

Theorem 8.4.1 Suppose that X is a complete and doubling metric

measure space. Let 1 ≤ p <∞. Then X supports a p-Poincaré inequality

if and only if there exist constants C > 0 and λ ≥ 1 such that (8.1.1)

holds for every open ball B in X, for every Lipschitz function u : X → R,

and for every Lipschitz continuous upper gradient ρ : X → [0,∞) of u

in X. The data of the Poincaré inequalities depend only on each other

and on the doubling constant of the measure.

For the next theorem, recall the definition for the pointwise upper

Lipschitz-constant function from (8.3.5).

Theorem 8.4.2 Suppose that X is a complete and doubling metric

measure space. Let 1 ≤ p <∞. Then X supports a p-Poincaré inequality

if and only if there exist constants C > 0 and λ ≥ 1 such that∫
B

|u− uB | dµ ≤ C diam(B)

(∫
λB

(Lipu)p dµ

)1/p

(8.4.3)

for every open ball B in X and for every Lipschitz function u : X → R.

The data of the Poincaré inequalities depend only on each other and on

the doubling constant of the measure.

We first prove a simple lemma which reduces the latter theorem to

the former. (Note that necessity is clear in both statements, since every

Lipschitz function in a doubling metric measure space is integrable on

balls.)
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Lemma 8.4.4 Suppose that Z is a C-quasiconvex metric space and

that u : Z → V is a function. Then

Lipu(x) ≤ C ρ(x) (8.4.5)

for every x ∈ Z and for every continuous upper gradient ρ of u in Z.

Proof Let ρ be a continuous upper gradient of u and fix x ∈ X. Let

r > 0 and pick a point y ∈ B(x, r). Choose a curve γ joining x to y such

that length(γ) ≤ Cd(x, y). Then

|u(x)− u(y)| ≤
∫
γ

ρ ds ≤ C r max
z∈B(x,Cr)

ρ(z)

and the desired inequality follows.

Suppose now that X supports a Poincaré inequality for all Lipschitz

functions and their pointwise upper Lipschitz constants as in (8.4.3).

Then by Remark 8.3.3 X is quasiconvex, and we obtain from Lemma

8.4.4 that X supports a Poincaré inequality for all Lipschitz functions

and their Lipschitz continuous upper gradients. All this is quantitative

as well. Thus Theorem 8.4.2 is a consequence of Theorem 8.4.1.

Proof of Theorem 8.4.1 As pointed out earlier, the necessity part of

the statement is obvious. The proof of the sufficiency part requires a

repeated application of Theorem 8.1.7. Thus, assume that the Poincaré

inequality (8.1.1) holds, with some unspecified data, for every Lipschitz

function in X and for every Lipschitz continuous upper gradient of that

function in X. Then, by Theorem 8.1.7, we have that (8.1.10) holds for

every such pair of functions, with constants that depend only on the

initial data; we will denote these constants for definiteness by C1 and

λ1 (instead of C and λ). We also have that X is L-quasiconvex, where

L ≥ 1 depends only on the data (Remark 8.3.3).

Next, fix a function u : X → R that is integrable on balls, fix an upper

gradient ρ : X → [0,∞] of u, and fix an open ball B in X. It is no loss

of generality to assume that ρ ∈ Lp(21Lλ1B), for else (8.1.1) obviously

holds for λ = 21Lλ1. For each given δ > 0, the Vitali-Carathéodory

theorem 4.2 together with the dominated convergence theorem implies

that there is ε > 0 and a lower semicontinuous function ρ̂ : 21Lλ1B →
[ε,∞) such that ρ|21Lλ1

≤ ρ̂ in 21Lλ1B and that∫
6λ1B

ρ̂p dµ ≤
∫

6λ1B

ρp dµ+ δ . (8.4.6)

Replacing ρ with ρ̂ if necessary, we may clearly assume that ρ is lower
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semicontinuous in 21Lλ1B and satisfies ρ ≥ ε in 21Lλ1B for some ε > 0.

The preceding understood, we will prove that

|u(x)− u(y)| ≤ 2LC1 d(x, y)
(
Mλ1d(x,y)ρ

p(x) +Mλ1d(x,y)ρ
p(y)

)1/p

(8.4.7)

for every pair of points x, y ∈ E, where E ⊂ 2B is such that µ(2B\E) =

0. The claim then follows from Theorem 8.1.7; recall that X can be

covered by a countable number of balls.

To this end, we abbreviate σ := Lλ1. By the local integrability of u, we

know that |u(x)| <∞ almost everywhere. It thus suffices to verify (8.4.7)

for each pair x, y ∈ 2B of points with |u(x)| < ∞ and |u(y)| < ∞. Fix

such x, y. We may clearly assume that u(x) = 1 and u(y) = 0. Because

ρ|21σB is lower semicontinuous, Proposition 4.2.2 implies that there is an

increasing sequence of Lipschitz functions ρi : 21σB → [ε,∞) converging

pointwise to ρ in 21σB. We define, for each i, a function ui : 10σB → R
by setting

ui(z) = inf
γ

∫
γ

ρi ds ,

where the infimum is taken over all rectifiable curves that join z to y in

20σLB. Note that there exists at least one such curve for every z ∈ 10σB

by the L-quasiconvexity.

We next show that ui is Lipschitz for every i. Thus, fix i. Let z, w ∈
10σB be two distinct points, and suppose that ui(z) ≥ ui(w). Fix δ > 0

and pick a rectifiable curve γw,y joining w to y in 20σLB such that∫
γw,y

ρi ds ≤ ui(w) + δ .

By the L-quasiconvexity of X, we may join z to w by a rectifiable curve

γz,w such that length(γz,w) ≤ Ld(z, w); in particular, γz,w lies in 20σLB.

Let γ be the curve obtained by concatenating γw,y and γz,w. Then

|ui(z)− ui(w)| = ui(z)− ui(w) ≤
∫
γ

ρi ds−
∫
γw,y

ρi ds+ δ

≤
∫
γz,w

ρi ds+ δ ≤Mi Ld(z, w) + δ ,

where

Mi := sup
20σB

ρi <∞ .

By letting δ tend to zero, we conclude that ui : 10σB → R is Lipschitz
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with constant MiL. By using the Lipschitz extension lemma 4.1, we ex-

tend both ρi (from 21σB) and ui (from 10σB) to be Lipschitz functions

in all of X. These extensions are still denoted by ρi and ui.

As in the proof of Lemma 7.2.13, we see that ρi is an upper gradient

of ui in 10σB. By arguing as in the proof of Lemma 8.4.4, we also obtain

from the preceding that

Lipui(z) ≤ Lρi(z) (8.4.8)

for every z ∈ 10σB.

Next, put vi := ϕ · ui, where

ϕ(z) = min{1, (σ rad(B))−1 dist(z,X \ 9σB)} .

Then ϕ : X → [0, 1] is a Lipschitz function with ϕ = 1 on 8σB. In

particular, vi : X → R is a Lipschitz function that vanishes outside 9σB

and satisfies vi|8σB = ui|8σB. Consider the Lipschitz function η given

by

η(z) :=


0 if z ∈ 6σB ∪ (X \ 11σB),

dist(z,6σB)
dist(X\8σB,6σB) if z ∈ 8σB \ 6σB,

1 if z ∈ 9σB \ 8σB,

1− dist(z,9σB)
dist(X\11σB,9σB) if z ∈ 11σB \ 9σB.

Because (σ rad(B))−1χ9σB\8σB is an upper gradient of ϕ, it follows that

(σ rad(B))−1η is a Lipschitz upper gradient of ϕ. We use this function

to obtain a Lipschitz upper gradient of vi as follows: Set

τi(z) := ρi(z) + (σ rad(B))−1 sup
10σB

|ui| · η(z).

Then, by (8.4.8), and by the definitions for vi and τi, we have

Lip vi(z) ≤ Lipui(z) + Lipϕ(z) · sup
10σB

|ui| ≤ Lτi(z)

for every z ∈ X. We deduce from Lemma 6.2.6, therefore, that Lτi is a

Lipschitz continuous upper gradient of the Lipschitz function vi. Hence,

by the assumption, by Remark 8.1.11, and by the notational conventions

made in the beginning of the proof, we have

|vi(x)− vi(y)| ≤ C1 d(x, y)
(
Mλ1d(x,y)τ

p
i (x) +Mλ1d(x,y)τ

p
i (y)

)1/p

.

(8.4.9)

Since vi|8σB = ui|8σB , since τi|6σB = ρi|6σB , and since ρi ≤ ρ, we obtain
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from (8.4.9) that in fact

|ui(x)− ui(y)| ≤ LC1 d(x, y)
(
Mλ1d(x,y)ρ

p(x) +Mλ1d(x,y)ρ
p(y)

)1/p

.

(8.4.10)

Therefore, to prove (8.4.7) (under our various reductions), it suffices to

show that |ui(x)| ≥ 1/2 for some i.

Suppose on the contrary that ui(x) < 1/2 for all i. By the definition of

ui, we find a sequence (γi) of rectifiable curves joining x and y in 20σB

such that ∫
γi

ρi < 1/2 (8.4.11)

for each i. Because ρi ≥ ε, inequality (8.4.11) gives that length(γi) ≤
1/2ε. The preceding understood, we argue as in the proof of Lemma

8.3.11. We may assume that there is H > 0 such that length(γi) → H,

that each γi : [0, Hi]→ X is 1-Lipschitz with γi(0) = x and γi(Hi) = y,

where Hi = max{H, length(γi)}, and that γi|[0,length(γi)] is parametrized

by the arc length. By the Arzelà–Ascoli theorem 5.1.10, we can further

assume that the maps γi converge uniformly in [0, H] to a 1-Lipschitz

map γ : [0, H]→ X. (Note that X is proper by Lemma 4.1.14.)

Fix i0 and 0 < δ < H. Since ρi0 is continuous, Fatou’s lemma gives∫ H−δ

0

ρi0(γ(t)) dt =

∫ H−δ

0

lim
i→∞

ρi0(γi(t)) dt ≤ lim inf
i→∞

∫ H−δ

0

ρi0(γi(t)) dt

≤ lim inf
i→∞

∫ length(γi)

0

ρi0(γi(t)) dt = lim inf
i→∞

∫
γi

ρi0 ds .

Using first the fact that the sequence (ρi) is increasing, and letting then

δ → 0, we obtain from the preceding and from (8.4.11) that∫ H

0

ρi0(γ(t)) dt ≤ lim inf
i→∞

∫
γi

ρi ds ≤ 1/2 .

Combining this with Lemma 5.1.14 yields
∫
γ
ρi0 ds ≤ 1/2. Finally, since

the functions ρi increase to ρ in 21σB and since the image of γ lies in

20σB, we deduce that∫
γ

ρ ds = lim
i0→∞

∫
γ

ρi0 ds ≤ 1/2 .

Since |u(x)−u(y)| = 1, we contradict the fact that ρ is an upper gradient

of u. This completes the proof of (8.4.7), and hence of Theorem 8.4.1.
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Finally, we point out that the requirement of completeness in this

section can be relaxed to local completeness, see Lemma 8.2.3.

8.5 Notes to Chapter 8

The argument using concentric balls with dyadically decreasing radii, as

in the proof of Theorem 8.1.7, is known in the literature as a telescop-

ing argument [120]. The inequality (8.1.10) should be compared to the

Haj lasz inequality (10.2.1), which is the basis for the Haj lasz–Sobolev

space considered in [108]; see Chapter 10. Theorem 8.1.7 first made its

appearance in [129]. The result from Theorem 8.1.7 for real-valued func-

tions can be found in [125] and [114]. Theorem 8.1.18 is from [108],

and is extensively used to develop the theory for Banach space-valued

Sobolev functions. The truncation technique, employed in the proof of

Theorem 8.1.7, is originally due to Maz’ya [201], [200], [198].

One of the consequences of the Poincaré inequality, the density of

Lipschitz functions (see Theorem 8.2.1), holds for real-valued functions

in a larger context. The proof of Theorem 8.2.1 given here is originally

due to Semmes. It has been shown in [16] that for p > 1, if the metric

space is complete and the measure is doubling, then Lipschitz functions

are always dense in N1,p(X). Thus, when X is complete and the measure

is doubling, functions in N1,p(X) are always quasicontinuous.

The quasiconvexity of metric measure spaces supporting a Poincaré

inequality (Theorem 8.3.2) was first recorded by Cheeger in [53]. Various

versions of the proof of quasiconvexity can also be found in [114], [244],

[69], [125], [150], and [31].

Theorem 8.4.1 and Theorem 8.4.2 are due to Keith [150]. A weaker

version of Theorem 8.4.2 appeared in [126], where it was shown that

to verify that a doubling metric measure space supports a p-Poincaré

inequality it suffices to verify the Poincaré inequality for Lipschitz func-

tions and all their upper gradients. It will be shown in Chapter 13 that if

the metric measure space is doubling and supports a p-Poincaré inequal-

ity, then the minimal p-weak upper gradient of a Lipschitz function is

its pointwise Lipschitz-constant function (see Theorem 13.5.1). All these

arguments can be viewed as variants of a part of an argument due to

Ziemer [287], [288], [289] for the coincidence of variational p-capacity of

a compact set E in a Euclidean domain Ω and the p-modulus of the

family of curves joining E to the complement of Ω.



9

Consequences of Poincaré inequalities
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In this chapter, we discuss some further consequences of Poincaré in-

equalities in metric measure spaces. We show that many Sobolev type

inequalities follow from a basic Poincaré inequality in doubling metric

measure spaces. The Lebesgue differentiation theorem tells us that ev-

ery integrable function has µ-almost every point as a Lebesgue point.

We strengthen the Lebesgue point property for Sobolev functions and

show that p-capacity almost every point is a Lebesgue point of a func-

tion in N1,p(X : V ). Finally, we also demonstrate that a metric space

supporting a Poincaré inequality necessarily has the MECp property in

the sense of Section 7.5.

Throughout this chapter, we let X = (X, d, µ) be a metric measure

space as defined in Section 3.3 and V a Banach space and suppose that X

is locally compact and supports a p-Poincaré inequality. Unless otherwise

stipulated, we assume that 1 ≤ p <∞.

9.1 Sobolev–Poincaré inequalities

The Poincaré inequality (8.1.1), or its Banach space-valued counterpart

(8.1.41), gives control over the mean oscillation of a function in terms

of the p-means of its upper gradient. In many classical situations, for

example in Euclidean space Rn, various Sobolev–Poincaré inequalities

demonstrate that one similarly can control the q-means of the function

|u−uB | for certain values of q > 1. Analogous results are valid in metric

measure spaces satisfying a Poincaré inequality. This is the topic of the

current section.

We recall one of the pointwise estimates (8.1.56) that follows from the

p-Poincaré inequality in a doubling metric measure space X. If B is an

open ball in X and if u : λB → V is integrable in B with ρ an upper

gradient of u in λB, then

|u(x)− uB | ≤ C diam(B)
(
Mλ diam(B)ρ

p(x)
)1/p

(9.1.1)

for almost every x ∈ B. Here λ ≥ 1 and C > 0 are fixed constants de-

pending only on the data associated with X. It follows from the mapping

properties of the maximal operator (Theorem 3.5.6) and from (9.1.1)

that u ∈ Lq(B) for all q < p provided ρ ∈ Lp(λB). Moreover, an ap-

plication of Lemma 8.1.31 shows that u is in fact p-integrable in B in

this case and that the following strengthening of the Poincaré inequality

holds.
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Theorem 9.1.2 Suppose that X is a doubling metric measure space

supporting a p-Poincaré inequality for some 1 ≤ p < ∞. Then there

are constants C > 0 and λ ≥ 1 depending only on the data associated

with the Poincaré inequality and the doubling constant of the underlying

measure such that∫
B

|u− uB |p dµ ≤ C diam(B)p
∫
λB

ρp dµ (9.1.3)

whenever B is an open ball in X, u is a measurable real-valued function

in λB that is integrable in B, and ρ is an upper gradient of u in λB.

Proof The discussion preceding the statement of the theorem, together

with inequality (8.1.32) with q = p give the following weak-type inequal-

ity:

µ({x ∈ B : |u(x)− uB | ≥ s}) ≤ C s−p diam(B)p
∫
λB

ρp dµ .

The claim (9.1.3) then follows from Lemma 8.1.31.

Recall that, if ρ ∈ Lp(λB) is an upper gradient of u : λB → V in λB,

then |u| : λB → R also has ρ as an upper gradient in λB (see (6.3.18)).

Corollary 9.1.4 Suppose that X is a doubling metric measure space

supporting a p-Poincaré inequality for some 1 ≤ p < ∞. Let V be a

Banach space, B be a ball in X, and u : λB → V be measurable such

that ρ ∈ Lp(λB) is an upper gradient of u. Then(∫
B

|u− uB |p dµ
)1/p

≤ 2C diam(B)

(∫
λB

ρp dµ

)1/p

.

Proof Because of Lemma 8.1.5, we know that |u| ∈ L1(B) and so by

Proposition 3.2.4 the Banach space-valued function u is integrable on

B. Thus we have∫
B

|u− uB | dµ ≤ C diam(B)

(∫
λB

ρp dµ

)1/p

. (9.1.5)

Observe that x 7→ |u(x)− uB | is a composition of a 1-Lipschitz function

with u. Hence, by (6.3.19), ρ is an upper gradient of this function as

well. Applying Theorem 9.1.2 to this real-valued function, we have(∫
B

∣∣∣∣|u− uB | − (∫
B

|u− uB | dµ
) ∣∣∣∣p dµ)1/p

≤ C diam(B)

(∫
λB

ρp dµ

)1/p

.
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Because(∫
B

|u− uB |p dµ
)1/p

−
∫
B

|u− uB | dµ

≤
(∫

B

∣∣∣∣|u− uB | − (∫
B

|u− uB | dµ
) ∣∣∣∣p dµ)1/p

,

we obtain the desired inequality by applying (9.1.5) to the real-valued

function |u− uB |.

The argument leading to Theorem 9.1.2 can be improved on in two

respects. First, (9.1.1) was proved by chaining the Poincaré inequality.

The use of the maximal function to replace the entire sum obtained from

the chaining argument is too crude. A better estimate can be obtained

by splitting the sum into two parts and estimating only one of them

by a maximal function. In this way, we can improve the integrability of

|u − uB | beyond p. Second, if we know that balls in X are reasonably

shaped, say the metric is geodesic, then the chaining can be done more

effectively so that one never has to leave the original ball B. In this way,

we can dispense with the factor λ in the right hand side of (9.1.3).

We will now embark on establishing these improvements. We will split

the discussion into two parts, corresponding to the real- and Banach

space-valued cases, respectively.

Let us begin with a chaining estimate. Recall the definition for a

geodesic metric space from Section 8.3.

Lemma 9.1.6 Suppose that X is a geodesic and doubling metric mea-

sure space. Let B = B(x0, r0) be an open ball in X and let x ∈ B. Then

for every λ ≥ 1 and for every 0 < ε < (r0 − d(x0, x))/10 there is a se-

quence B0, B1, . . . , Bk+1 of open balls in X with the following properties:

(i). B0 = B(x0, r0/2λ) and Bk+1 = B(x, ε/λ);

(ii). λBi ⊂ B for every i = 0, 1, . . . , k + 1;

(iii). x ∈ (2λ+ 1)Bi for every i = 0, 1, . . . , k + 1;

(iv). max{µ(Bi), µ(Bi+1)} ≤ C µ(Bi ∩Bi+1) for every i = 0, 1, . . . , k;

(v).
∑k+1
i=0 χλBi(y) ≤ C χB(y) for every y ∈ X;

(vi). min{ 1
2λ ,

2λ
6(2λ+1)} rad(Bi) ≤ rad(Bi+1) ≤ 2 rad(Bi) for every i =

0, 1, . . . , k;

(vii). rad(Bi+1) ≤ 2λ
2λ+1 rad(Bi) for all but at most three indices i = 0, 1, . . . , k;

The constant C ≥ 1 depends only on λ and the doubling constant of the

underlying measure.
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Proof Fix λ and ε. Assume first that x ∈ B\B(x0,
2
3r0). Pick a geodesic

γx joining x to x0. Put s = (2λ+ 1)/2λ and B̂0 = B(x, ε/λ). Then trace

along γx starting from x towards x0 until we leave B̂0 at a point z1. Set

B̂1 = B(z1, sε/λ). Assuming that B̂i = B(zi, s
iε/λ) has been defined for

i ≥ 1 and B(x0, r0/2λ) ∩ B̂i = ∅, we trace along γx from zi towards x0

until we leave B̂i at a point zi+1. Then, set B̂i+1 = B(zi+1, s
i+1ε/λ).

The process terminates after a finite number of steps. More precisely, we

note that B̂0∩B(x0, r0/2λ) = ∅, and write k−1 = i ≥ 1 for the smallest

integer i such that B(x0, r0/2λ) ∩ B̂i 6= ∅. Next, pick a point zk from

the geodesic γx such that zk lies in B̂k−1 and satisfies d(x0, zk) = r0/2λ;

such a point exists because γx is a geodesic. Then set B̂k = B(zk, r0/2λ)

and B̂k+1 = B(x0, r0/2λ). Finally, define Bi = B̂k+1−i for 0 ≤ i ≤
k + 1. It remains to be checked that this chain of balls has the desired

properties (i)–(vii).

First, condition (i) is clear. Condition (ii) is also clear for i = 0, 1, k+1.

To check the remaining cases, fix 1 ≤ i ≤ k − 1 and pick z ∈ λB̂i. Then

d(x0, z) ≤ d(x0, zi) + d(zi, z) < d(x0, x)−
i−1∑
j=0

sjε/λ+ εsi

= d(x0, x)− ε
(

1

λ
· s

i − 1

s− 1
− si

)
= d(x0, x)− ε (si − 2) .

So we have λB̂i ⊂ B if d(x0, x)− ε(si − 2) ≤ r0. Thus, suppose that

d(x0, x)− ε(si − 2) = d(x0, x) + ε(2− si) > r0.

In this case, we have 0 < r0 − d(x0, x) < ε(2 − si). By the condition

imposed on ε, this indicates that 2− si > 10, which is impossible. Hence

we have λB̂i ⊂ B as required.

Thus, (ii) follows.

Next for (iii), we first observe that

d(zi, x) <
ε

λ

i∑
j=1

sj =
ε

λ
· s(s

i − 1)

s− 1
< (2λ+ 1)

si ε

λ

for i = 1, . . . , k − 1. Furthermore, d(zi, x) ≤ r0 ≤ (2λ + 1) r02λ also for

i = k, k + 1. Because also x ∈ Bk+1, we have that (iii) holds.

To prove condition (iv), for i = 0, 1, . . . , k − 2 pick a point yi in the

geodesic γx between zi and zi+1 satisfying

d(zi+1, yi) = d(zi, yi) = d(zi, zi+1)/2 ,
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where we understand that z0 = x. For yk−1 pick a point in γx between

zk−1 and zk that satisfies

d(zk, yk−1) = min{r0/4λ, d(zk, zk−1)/2} ,

and for yk pick a point in γx such that d(x0, yk) = r0/4λ. By putting

t′i = d(zi+1, yi), we have from the construction that

B(yi, t
′
i) ⊂ B̂i ∩ B̂i+1 (9.1.7)

for every i = 0, . . . , k, where we understand further that zk+1 = x0.

Now (iv) follows from (9.1.7) by using the doubling condition of the

measure provided we can show that all the ratios between rad(B̂i),

rad(B̂i+1), and t′i are bounded from above and below by a constant

that depends only on λ. Indeed, this is clear for i = 0, . . . , k− 2 because

rad(B̂i+1) = s rad(B̂i) = 2s t′i. We also have rad(B̂k+1) = rad(B̂k) =

2t′k, and so it remains to study the case i = k− 1. For this, we have the

estimate

ε

λ
· 1− sk

1− s
=
ε

λ

k−1∑
i=0

si ≥ r0

6

which gives

r0 ≤
6s

s− 1
· rad(B̂k−1). (9.1.8)

On the other hand, from (ii) and from the definitions, we have that

λ rad(B̂k−1) ≤ r0(1− 1/2λ) . (9.1.9)

Thus (iv) follows.

Next we will prove (v). Suppose that z ∈ λB̂i ∩ λB̂i+j for some i =

0, . . . , k − 2 and j ≥ 1. Then

2ε si (sj−1) =

i+j−1∑
k=i

εsk

λ
= d(zi, zi+j) ≤ λ

(
siε

λ
+
si+jε

λ

)
= ε si(1 + sj),

from which we obtain that j ≤ log(3)/ log( 2λ+1
2λ ), proving (v).

Condition (vi) is clear for i = 2 . . . , k, as well as for i = 0. For the

remaining case i = 1, we have that rad(B1) = rad(B̂k) = r0/2λ and

rad(B2) = rad(B̂k−1), and (vi) follows from (9.1.8) and (9.1.9) in this

case as well.

Finally, it is clear that (vii) holds for every index i = 2, . . . , k.

This finishes the proof in the case x ∈ B \B(x0,
2
3r0).

Assume now that x ∈ B(x0,
2
3r0). Set r′0 = 3

2d(x0, x), B′ = B(x0, r
′
0),
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and ε′ = min{ε, (r′0 − d(x0, x))/20}. It follows from the first part of the

proof, applied to B′ and ε′, that there are balls B′0, B
′
1, . . . , B

′
k′+1 such

that (ii)–(vi) hold; in addition,B′k′+1 ⊂ B(x, ε) andB′0 = B(x0, r
′
0/2λ) ⊂

B(x0, r0/2λ), and (vii) holds except for i = 0, 1. Next, let l be the small-

est nonnegative integer satisfying (2λ)l+1r′0 > r0. Put B′−i = (2λ)iB′0 for

i = 0, 1, . . . , l and B′−l−1 = B(x0, r0/2λ). Now all the assertions (i)–(vii)

are valid upon reindexing the balls: Bi = B′i−l−1 for i = 0, 1, . . . , k + 1,

where k = k′ + l + 1.

The proof of Lemma 9.1.6 is complete.

We use Lemma 9.1.6 to establish the following improvement on esti-

mate (8.1.56) in geodesic spaces. In the following statement, the phrase

“the data of the hypotheses” refers to the constants in the Poincaré in-

equality together with the doubling constant of the underlying measure.

Lemma 9.1.10 Suppose that X is a geodesic and doubling metric

measure space supporting a p-Poincaré inequality for some 1 ≤ p < ∞,

and suppose that V is a Banach space. Let λ ≥ 1 be a constant that

depends only on the data of the hypotheses such that the conclusions in

Theorems 8.1.53 and 8.1.55 are satisfied. Assume that B = B(x0, r0) is

an open ball in X, that u : B → V is an integrable function, and that

ρ : B → [0,∞] is a p-integrable upper gradient of u in B. Finally, let

x ∈ B and let 0 < ε < (r0 − d(x0, x))/10.

Then for a sequence of balls B0, B1, . . . , Bk+1 ⊂ B, associated with x,

ε, and λ as in Lemma 9.1.6, we have that

|uBk+1
− uB0 | ≤ C

k+1∑
i=0

diam(Bi)

(∫
λBi

ρp dµ

)1/p

. (9.1.11)

In particular, if x is a Lebesgue point of u, we have that

|u(x)− uB0 | ≤ C diam(B) (Mρp(x))
1/p

, (9.1.12)

where M denotes the maximal function as defined in (3.5.1), applied to

the zero extension of ρ to the complement of B.

In both inequalities, (9.1.11) and (9.1.12), C > 0 is a constant that

depends only on the data of the hypotheses.

Note that the existence of a constant λ ≥ 1 as in the statement of the

lemma is made possible by Theorem 8.1.49.

Proof Let B0, B1, . . . , Bk+1 be a chain of balls in B as in Lemma 9.1.6
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corresponding to x, λ, and ε. We estimate

|uBk+1
− uB0

| ≤
k∑
i=0

|uBi+1
− uBi |

≤
k∑
i=0

|uBi+1
− uBi∩Bi+1

|+ |uBi − uBi∩Bi+1
|

≤
k∑
i=0

∫
Bi∩Bi+1

(
|u− uBi+1

|+ |u− uBi |
)
dµ

≤ C
k+1∑
i=0

∫
Bi

|u− uBi | dµ

≤ C
k+1∑
i=0

diam(Bi)

(∫
λBi

ρp dµ

)1/p

,

where we used the Poincaré inequality (Theorems 8.1.53 and 8.1.49)

together with Lemma 9.1.6 (ii) and (iii). This establishes (9.1.11). Next,

by Lemma 9.1.6 (iii), and by doubling, we obtain from (9.1.11) that

|uBk+1
− uB0

| ≤ C (Mρp(x))
1/p

k+1∑
i=0

diam(Bi) . (9.1.13)

Because uBk+1
→ u(x) at a Lebesgue point x, as ε → 0, and be-

cause the radii of the balls Bi behave geometrically as described in

Lemma 9.1.6 (vi) and (vii), in particular, by (vii) we have diam(Bi) ≤

C
(

2λ
2λ+1

)i
r0/λ, we obtain (9.1.12) from (9.1.13). The lemma follows

upon noticing that in a geodesic space the diameter of a ball, with

nonempty complement, is not smaller than its radius.

In the classical Sobolev-Poincaré inequalities in Rn, the dimension n

plays a special role, especially in the embedding theorems of Sobolev

and Morrey. For our versions of the Sobolev-Poincaré type estimate, a

suitable substitute for this threshold parameter is given by a lower decay

order of the measure of balls. We say that X has relative lower volume

decay of order Q > 0 if(diam(B′)

diam(B)

)Q
≤ C0

µ(B′)

µ(B)
(9.1.14)

whenever B′ ⊂ B are balls in X. Note that Lemma 8.1.13 implies

that when µ is doubling, inequality (9.1.14) always holds for some Q ≤
log2 Cµ whenever the two balls are concentric. By the doubling property
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of µ, it is easy to see that (9.1.14) is valid for all pairs of balls B′ ⊂ B if

and only if it is valid for concentric balls; the constant C0 may change

but the exponent Q remains the same.

We establish the following real-valued case first.

Theorem 9.1.15 Suppose that X is a geodesic and doubling metric

measure space supporting a p-Poincaré inequality for some 1 ≤ p < ∞.

Assume moreover that X has relative lower volume decay (9.1.14) of

order Q ≥ 1. Then there are positive constants C and c, depending only

on the data of the hypotheses such that the following three statements

hold whenever B is an open ball in X, u : B → R is an integrable

function, and ρ : B → [0,∞] is a p-integrable upper gradient of u in B:

(i). If p < Q, then(∫
B

|u− uB |p
∗
dµ
)1/p∗

≤ C diam(B)
(∫

B

ρp dµ
)1/p

, (9.1.16)

where p∗ = pQ/(Q− p).

(ii). If p = Q, then∫
B

exp

( |u− uB |
c diam(B)

(∫
B
ρQ dµ

)1/Q
)Q/(Q−1)

 dµ ≤ C . (9.1.17)

(iii). If p > Q, then

‖u− uB‖L∞(B) ≤ C diam(B)
(∫

B

ρp dµ
)1/p

. (9.1.18)

Remark 9.1.19 An application of Hölder’s inequality together with

Theorem 9.1.15 reveals that when µ is doubling andX is a geodesic space

supporting a p-Poincaré inequality, X actually supports the following

version of a Poincaré inequality:(∫
B

|u− uB |p dµ
)1/p

≤ C diam(B)

(∫
B

ρp dµ

)1/p

.

Proof Let B = B(x0, r0) be an open ball in X, let u : B → R be an

integrable function, and let ρ be a p-integrable upper gradient of u in

B. In what follows, we let C > 0 denote any constant that only depends

on the data as described in the assertion. Moreover, we let λ ≥ 1 be

a constant, depending only on the data, such that the conclusions in

Theorems 8.1.53 and 8.1.55 are satisfied.

We note that it suffices to establish (9.1.16) and (9.1.18) with uB
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replaced by uB0
, where B0 = B(x0, r0/2λ). This follows from the simple

estimate

|u−uB | ≤ |u−uB0
|+|uB0

−uB | ≤ |u−uB0
|+
∫
B

|u−uB0
| dµ . (9.1.20)

The preceding understood, we now proceed to study the three cases.

Case p < Q. Let x ∈ B be a Lebesgue point of u such that |u(x)−uB0
| >

0 (Theorem 3.4). If no such point exists, there is nothing to prove, since

then u is constant. Pick 0 < ε < (r0 − d(x0, x))/10 such that

|u(x)− uB0 | ≤ 2 |uB(x,r) − uB0 | (9.1.21)

for 0 < r ≤ ε. Let B0, . . . , Bk+1 be a chain of balls in B as in Lemma 9.1.6

corresponding to x, λ and ε. Then (9.1.11) of Lemma 9.1.10 gives

|uBk+1
− uB0 | ≤ C

k+1∑
i=0

diam(Bi)

(∫
λBi

ρp dµ

)1/p

. (9.1.22)

Next, fix 0 < t ≤ 2r0. We have from (9.1.22) that

|uBk+1
− uB0

| ≤ C (St + St) , (9.1.23)

where

St :=
∑

diam(Bi)≤t

diam(Bi)

(∫
λBi

ρp dµ

)1/p

and

St :=
∑

diam(Bi)>t

diam(Bi)

(∫
λBi

ρp dµ

)1/p

.

Condition (vii) of Lemma 9.1.6 tells us that, by starting with the ball Bi0
of smallest index i0 for which diam(Bi) ≤ t, we actually have diam(Bi) ≤

C
(

2λ
2λ+1

)i−i0
t for Bi satisfying diam(Bi) ≤ t, and hence by Lemma

9.1.6 (iii) and the doubling condition, we obtain

St ≤ C t (Mρp(x))
1/p

.
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To estimate St, we apply (9.1.14) to obtain

St =
∑

diam(Bi)>t

diam(Bi)

(∫
λBi

ρp dµ

)1/p

=
∑

diam(Bi)>t

diam(Bi)µ(λBi)
−1/p

(∫
λBi

ρp dµ

)1/p

≤ C
∑

diam(Bi)>t

(diam(Bi))
(1−Q/p)(diam(B))Q/pµ(B)−1/p

(∫
B

ρp dµ

)1/p

≤ C t(1−Q/p)(diam(B))Q/p
(∫

B

ρp dµ

)1/p

,

where in the last step we used the fact 1 − Q/p < 0 and the geometric

nature of our series of diameters (Lemma 9.1.6 (vi) and (vii)); using the

largest index i for which the ball Bi satisfies diam(Bi) ≥ t, by Lemma

9.1.6 (vii) we see that diam(Bi) ≥ C−1
(

2λ+1
2λ

)i−i0
t.

By combining the preceding estimates for St and St with (9.1.21) and

(9.1.23), we arrive at

|u(x)−uB0 | ≤ C

(
t (Mρp(x))

1/p
+ t(1−Q/p)(diam(B))Q/p

(∫
B

ρp dµ

)1/p
)
.

(9.1.24)

Next, note that

t (Mρp(x))
1/p ≤ t(1−Q/p)(diam(B))Q/p

(∫
B

ρp dµ

)1/p

if and only if

t ≤ diam(B)

(∫
B

ρp dµ

)1/Q

(Mρp(x))−1/Q . (9.1.25)

If the right hand side in (9.1.25) does not exceed diam(B) ≤ 2r0, then

we take t equal to the right hand side, and obtain from (9.1.24) that

|u(x)− uB0
| ≤ C diam(B)

(∫
B

ρp dµ

)1/Q

(Mρp(x))(Q−p)/pQ ;

whence

|u(x)− uB0 |pQ/(Q−p) ≤ C (diam(B))pQ/(Q−p)

·
(∫

B

ρp dµ

)p/(Q−p)
Mρp(x) .

(9.1.26)
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If, on the other hand, the right hand side in (9.1.25) is greater than

diam(B), then we take t = diam(B), and similarly obtain from (9.1.24)

that

|u(x)− uB0
| ≤ C diam(B)

(∫
B

ρp dµ

)1/p

. (9.1.27)

We conclude that for almost every point x ∈ B, we have that either

(9.1.26) or (9.1.27) holds.

Let A1 denote the set of those points in B for which (9.1.26) holds

and let A2 consist of those points in B that satisfy (9.1.27). For s > 0,

write Es = {x ∈ B : |u(x)− uB0
| > s}. Applying (9.1.26) and the weak

type estimate for the maximal function Theorem 3.5.6), we arrive at

µ(A1 ∩ Es) ≤ µ

({
Mρp > C (diam(B))−p

∗
(∫

B

ρp dµ

)−p∗/Q
sp
∗
})

≤ C (diam(B))p
∗
s−p

∗
(∫

B

ρp dµ

)p∗/Q(∫
B

ρp dµ

)
= C (diam(B))p

∗
µ(B)s−p

∗
(∫

B

ρp dµ

)p∗/p
,

where we recall the notation p∗ = pQ/(Q − p). Applying (9.1.27) we

obtain that A2 ∩ Es = ∅ whenever s ≥ C diam(B)
(∫
B
ρp dµ

)1/p
, while

for all smaller s we find that

µ(A2 ∩ Es) ≤ µ(B) ≤ C (diam(B))p
∗
µ(B)s−p

∗
(∫

B

ρp dµ

)p∗/p
.

In conclusion, by combining the preceding inequalities, we arrive at the

estimate

µ({|u− uB0
| > s}) ≤ C (diam(B))p

∗
µ(B)s−p

∗
(∫

B

ρp dµ

)p∗/p
≤ C (diam(B))p

∗
µ(B)−p

∗/Qs−p
∗
(∫

B

ρp dµ

)p∗/p
.

The claim now follows from this last estimate and from Lemma 8.1.31.

Note that although Lemma 8.1.31 does not directly apply in this sit-

uation, the proof of the lemma does apply; because of condition (i) of

Lemma 9.1.6, µ(B0) is comparable to µ(B) and one simply chooses the

cut off level t using B0.

Case p = Q. From (9.1.16) and Hölder’s inequality we already know
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that we can bound the averaged Lq-norm of |u − uB | by the averaged

LQ-norm of ρ for every q < ∞. The key in the present case will be to

estimate the constant in this inequality and to expand the exponential

function as a power series. By (9.1.20), it is direct to verify using Hölder’s

inequality that we may replace uB by uB0
.

Fix q > max{Q,Q/(Q−1)} and a Lebesgue point x ∈ B of u. Then fix

0 < δ < q−1, to be determined later. Arguing as in (9.1.21) and (9.1.22),

we find a chain of balls B0, . . . , Bk+1 (Lemma 9.1.6) and obtain from

Lemma 9.1.10 that

|u(x)− uB0
| ≤ C

k+1∑
i=0

diam(Bi)

(∫
λBi

ρQ dµ

)1/Q

≤ C
k+1∑
i=0

diam(Bi)
1−δµ(Bi)

1/q−1/Q

·
(

(diam(Bi))
qδ

∫
λBi

ρQ dµ

)1/q

·
(∫

λBi

ρQ dµ

)1/Q−1/q

.

Since (Q−1)/Q+ 1/q+ (1/Q−1/q) = 1, we can use Hölder’s inequality

to estimate the last sum from above by

C

(
k+1∑
i=0

(
(diam(Bi))

1−δµ(Bi)
1/q−1/Q

) Q
Q−1

)Q−1
Q

·

(
k+1∑
i=0

(diam(Bi))
qδMρQ(x)

)1/q

·
(∫

B

ρQ dµ

)1/Q−1/q

,

where we also replaced the averaged integrals
∫
λBi

ρQ dµ by the maximal

function CMρQ(x) and used the bounded overlap of the balls λBi to

estimate the last sum (Lemma 9.1.6 (ii), (iii) and (v)).

We pause here to record the estimate

|u(x)− uB0
| ≤ C T1 T2 T3 , (9.1.28)

where the three terms are

T1 =

(
k+1∑
i=0

(
(diam(Bi))

1−δµ(Bi)
1/q−1/Q

)Q/(Q−1)
)(Q−1)/(Q)

,

T2 =

(
k+1∑
i=0

(diam(Bi))
qδMρQ(x)

)1/q

, T3 =

(∫
B

ρQ dµ

)1/Q−1/q

.
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To estimate T2, we write a = 2λ/(2λ + 1) and use Lemma 9.1.6 (i)

and (vii) to obtain

k+1∑
i=0

(diam(Bi))
qδMρQ(x) ≤ C

rqδ0

1− aqδ
MρQ(x) ≤ C(qδ)−1rqδ0 MρQ(x) .

In the last inequality we also employed the fact that qδ < 1. So, by the

choice of a, we have 1−aqδ = (2λ+1)−qδ [(2λ+1)qδ− (2λ)qδ] and hence

(1− aqδ)−1 ≤ C (qδ)−1 (2λ)−1 [2λ(2λ+ 1)]qδ ≤ Cλ (qδ)−1.

Thus,

T2 ≤ C (qδ)−1/qrδ0(MρQ(x))1/q . (9.1.29)

Next, to estimate T1, we use the lower bound on measures (9.1.14)

and argue as earlier, now using the fact that qδ < 1 ≤ Q < q, to obtain

k+1∑
i=0

(
(diam(Bi))

1−δµ(Bi)
1/q−1/Q

)Q/(Q−1)

≤ C (r
1−Q/q
0 µ(B)1/q−1/Q)Q/(Q−1)

k+1∑
i=0

(diam(Bi))
(Q/q−δ)Q/(Q−1)

≤ C q(Q− δq)−1
(
r1−δ
0 µ(B)1/q−1/Q

)Q/(Q−1)

.

If we let δ = Qq−2, then q(Q − δq)−1 = q(Q − Q/q)−1 ≤ q, since

q ≥ Q/(Q− 1).

Combining the above estimates, (9.1.28) yields

|u(x)− uB0
| ≤ C r0 q

1
q+Q−1

Q µ(B)1/q−1/Q

·
(∫

B

ρQ dµ

)1/Q−1/q

(MρQ(x))1/q,
(9.1.30)

where C > 0 in particular is independent of q > max{Q,Q/(Q−1)}. We

proceed to estimate the integral of |u− uB0 |q/2. Recalling that (9.1.30)

is valid for almost every point x ∈ B, we arrive at∫
B

|u− uB0
|q/2 dµ ≤ Cq rq/20 q1/2+q(Q−1)/2Qµ(B)1/2−q/2Q

·
(∫

B

ρQ dµ

)q/2Q−1/2 ∫
B

(MρQ)1/2dµ.

Lemma 3.5.10 gives in turn that∫
B

(
MρQ

)1/2
dµ ≤ C

(
µ(B)

∫
B

ρQ dµ

)1/2
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and hence we conclude that∫
B

|u− uB0
|q/2 dµ ≤ Cqq1/2+q(Q−1)/2Q

(
rQ0

∫
B

ρQ dµ

)q/2Q
, (9.1.31)

where C does not depend on q > max{Q,Q/(Q− 1)}. Notice that esti-

mate (9.1.31) holds as well for 1 ≤ q ≤ max{Q,Q/(Q− 1)} by Hölder’s

inequality and the first part of the theorem.

Now, for t > 0,

exp{(t|u(x)− uB0
|)Q/(Q−1)} =

∞∑
m=1

(m!)−1(t|u(x)− uB0
|)mQ/(Q−1).

Integrating over B and using estimate (9.1.31), we obtain∫
B

exp{(t|u(x)− uB |)Q/(Q−1)} dµ

≤ 1 + C

∞∑
m=1

(m!)−1m1/2+m

(
tQrQ0

∫
B

ρQ dµ

)m/(Q−1)

.

The above series converges provided

t r0

(∫
B

ρQ dµ

)1/Q

< e
−Q−1

Q

and the proof of (9.1.17) is thereby complete.

Case p > Q. As in the beginning of the proof of the case p = Q, we find

balls B0, . . . , Bk+1 as in Lemma 9.1.6 such that

|u(x)− uB0 | ≤ C

k+1∑
i=0

diam(Bi)µ(Bi)
−1/p

(∫
Bi

ρp dµ

)1/p

given a Lebesgue point x of u in B0. By combining this with the mea-

sure decay estimate (9.1.14) and the geometric decay of the radii of Bi
(Lemma 9.1.6 (vi) and (vii)), we deduce

|u(x)− uB0 | ≤ C

k+1∑
i=1

(diam(Bi))
(1−Q/p)(diam(B))Q/p

· µ(B)−1/p

(∫
Bi

ρp dµ

)1/p

≤ C diam(B)

(∫
B

ρp dµ

)1/p

,
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as desired.

The proof of Theorem 9.1.15 is complete.

Now we turn to the general Banach space-valued case. The statement

will remain the same, but the proof will differ in the case p < Q.

Theorem 9.1.32 Suppose that X is a geodesic and doubling metric

measure space supporting a p-Poincaré inequality for some 1 ≤ p < ∞
and that V is a Banach space. Assume further that X has the relative

lower volume decay property (9.1.14) of order Q ≥ 1.

Then there are positive constants C and c, depending only on the data

of the hypotheses, such that the following three statements hold whenever

B is an open ball in X, u : B → V is an integrable function, and

ρ : B → [0,∞] is a p-integrable upper gradient of u in B:

(i). If p < Q, then

(∫
B

|u− uB |p
∗
dµ
)1/p∗

≤ C diam(B)
(∫

B

ρp dµ
)1/p

, (9.1.33)

where p∗ = pQ/(Q− p).

(ii). If p = Q, then

∫
B

exp

( |u− uB |
c diam(B)

(∫
B
ρQ dµ

)1/Q
)Q/(Q−1)

 dµ ≤ C . (9.1.34)

(iii). If p > Q, then

‖u− uB‖L∞(B:V ) ≤ C diam(B)
(∫

B

ρp dµ
)1/p

. (9.1.35)

Proof An inspection of the proof of Theorem 9.1.15 reveals that both

(9.1.34) and (9.1.35) follow from (9.1.33) together with the general argu-

ments given in the proof; the fact that u is real-valued there plays no role.

Hence the burden of proof here is to establish (9.1.33) for V -valued func-

tions. This is done using the technique employed in the proof of Corol-

lary 9.1.4 and the real-valued result from Theorem 9.1.15 as follows. As

in the proof of Corollary 9.1.4, we note that the function x 7→ |u(x)−uB |
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also has ρ as an upper gradient in B, and so by (9.1.16),

(∫
B

|u− uB |p
∗
dµ

)1/p∗

−
∫
B

|u− uB | dµ

≤

(∫
B

∣∣∣∣|u− uB | −∫
B

|u− uB | dµ
∣∣∣∣p∗ dµ

)1/p∗

≤ C diam(B)

(∫
B

ρp dµ

)1/p

.

It remains to estimate
∫
B
|u − uB | dµ. The proof is completed via the

estimate (9.1.12) and the argument that we employed to prove Theorem

9.1.2.

The assumption that X be geodesic allowed us to integrate g over B

instead of over the larger ball λB in Theorem 9.1.15 and Theorem 9.1.32.

Even without this assumption, one can still obtain Sobolev–Poincaré

type inequalities, provided we use larger balls. For this, we restrict our

attention to the quasiconvex case that is easily handled by our previous

results. Indeed, if X is quasiconvex (as is the case if X is complete

and supports a p-Poincaré inequality, see Theorem 8.3.2), then we may

consider the associated geodesic metric d̂X as in Proposition 8.3.12. Then

d̂X is biLipschitz equivalent to the original metric d of X because of the

quasiconvexity. Therefore, by Lemma 8.3.18, the metric measure space

(X, d̂X , µ) is a geodesic space that supports a p-Poincaré inequality (with

the same p) with the constants depending on the constants associated

with the original p-Poincaré inequality and the quasiconvexity constant.

We may apply Theorem 9.1.32 to (X, d̂X , µ), and then use the fact that

d and d̂X are biLipschitz equivalent, to obtain the following corollary to

Theorem 9.1.32.

Corollary 9.1.36 Suppose that X is a quasiconvex and doubling met-

ric measure space supporting a p-Poincaré inequality for some 1 ≤ p <

∞ and that V is a Banach space. Assume moreover that X has the rel-

ative lower volume decay property (9.1.14) of order Q ≥ 1. Then there

are positive constants C, τ and c depending only on the data of the hy-

potheses such that the following three statements hold whenever B is an

open ball in X, u : B → V is an integrable function, and ρ : B → [0,∞]

is a p-integrable upper gradient of u in B:
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(i). If p < Q, then(∫
B

|u− uB |p
∗
dµ
)1/p∗

≤ C diam(B)
(∫

τB

ρp dµ
)1/p

, (9.1.37)

where p∗ = pQ/(Q− p).
(ii). If p = Q, then

∫
B

exp

( |u− uB |
c diam(B)

(∫
τB

ρQ dµ
)1/Q

)Q/(Q−1)
 dµ ≤ C . (9.1.38)

(iii). If p > Q, then

‖u− uB‖L∞(B:V ) ≤ C diam(B)
(∫

τB

ρp dµ
)1/p

. (9.1.39)

When p > Q, it is possible to obtain a better estimate than (9.1.35)

and (9.1.39), namely the Morrey embedding theorem which states that

functions in N1,p(X : V ) are Hölder continuous. Notice that this follows

for suitable Lebesgue representatives from (9.1.39) and (9.1.14) via the

triangle inequality. We will give a more refined statement in Section 9.2

after discussing Lebesgue points of Sobolev functions.

9.2 Lebesgue points of Sobolev functions

In Theorem 3.4 we saw that if a function is locally integrable in X then

µ-almost every point in X is a Lebesgue point of that function. Given

that the Sobolev functions as considered in this book are better defined

(for example, quasicontinuous), there should be a refined version of this

result for Sobolev functions. The goal of this section is to study such a

result.

We again assume that the measure on X is doubling. Hence it follows

from the discussion in Section 4.1 that X is a doubling metric space and

by Lemma 4.1.12, for each K ≥ 1 there is a constant C = CK > 0 such

that for every r > 0 we can find a countable cover of X of the form

{B(xi, r)}i such that
∑
i χB(xi,Kr) ≤ C.

Correspondingly, as in Section 4.1, we can find a partition of unity

subordinate to the above cover; for every i there is a C/r-Lipschitz

function ϕr,i : X → [0, 1] such that the support of ϕr,i lies in B(xi, 2r),

and
∑
i ϕr,i ≡ 1.
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Given a measurable function u : X → V , let

ur(x) :=
∑
i

ϕr,i(x)uB(xi,r).

Such a function ur is called a discrete convolution of u. This concept was

studied by Coifman and Weiss in [63].

Let (rj) be an enumeration of the positive rationals, and let M∗u :=

supj |u|rj . Recall also the maximal functionMu(x) = supr>0

∫
B(x,r)

|u| dµ.

Lemma 9.2.1 There exists a constant C > 0 so that for every mea-

surable function u : X → V ,

1

C
Mu ≤M∗u ≤ CMu.

Proof Let x ∈ X. Then

|u|rj (x) =
∑
i

ϕrj ,i(x)|u|B(xi,rj).

If i is such that ϕrj ,i(x) 6= 0, then x ∈ B(xi, 2rj), which in turn implies

that B(xi, 2rj) ⊂ B(x, 4rj). Therefore, by the doubling property of µ,

|u|rj (x) ≤
∑
i

ϕrj ,i(x)|u|B(x,4rj)
µ(B(x, 4rj))

µ(B(xi, rj))
≤ C|u|B(x,4rj) ≤ CMu(x).

Taking the supremum over j yields the second inequality.

On the other hand, if r > 0, we can find rj such that rj/4 ≤ r < rj/2.

Let Ij(x) = {i ∈ N : B(xi, rj)∩B(x, r) 6= ∅}. By the doubling property

of µ this is a nonempty finite set. For each i ∈ Ij(x) we have B(x, r) ⊂
B(xi, 2rj) and B(xi, rj) ⊂ B(x, 6r). By the doubling property of µ,

|u|B(x,r) ≤ C |u|B(xi,2rj).

Therefore,

|u|B(x,r) ≤ C
∑

i∈Ij(x)

ϕrj ,i(x)|u|B(xi,2rj) = C |u|2rj ≤ CM∗u(x).

Now taking the supremum over all r > 0 yields the first inequality.

In what follows, we assume that X supports a better Poincaré in-

equality. As will be seen in Chapter 12, this requirement is not at all

restrictive when X is complete and µ is doubling.

Proposition 9.2.2 Suppose that p > 1, u ∈ N1,p(X : V ), gu ∈ Lp(X)

is the minimal p-weak upper gradient of u, and X supports a q-Poincaré



274 Consequences of Poincaré inequalities

inequality for some 1 ≤ q < p. Then for every r > 0 the discrete con-

volution ur ∈ N1,p(X : V ) and there is a constant C > 0 independent

of u, r such that C (Mgqu)1/q ∈ Lp(X) is a p-weak upper gradient of ur.

Moreover, M∗u belongs to N1,p(X) with C (Mgqu)
1/q

as a p-weak upper

gradient.

Proof Note that

ur(x) = u(x) +
∑
i

ϕr,i(x)[uB(xi,r) − u(x)].

Therefore, by (6.3.18) and Proposition 6.3.28,

gu +
∑
i

{
C

r
|uB(xi,r) − u|+ gu

}
χB(xi,2r)

is a p-weak upper gradient of ur. Note that the sum is really a locally

finite sum.

If x ∈ B(xi, 2r), then

|u(x)− uB(xi,r)| ≤ |u(x)− uB(x,4r)|+ |uB(x,4r) − uB(xi,r)|,

and by the Poincaré inequality,

|uB(x,4r) − uB(xi,r)| ≤
∫
B(xi,r)

|u− uB(x,4r)| dµ

≤ C
∫
B(x,4r)

|u− uB(x,4r)| dµ

≤Cr

(∫
B(x,4r)

gqu dµ

)1/q

≤ Cr (Mgqu(x))
1/q

.

Moreover, by (8.1.9), for µ-almost every x ∈ X,

|u(x)− uB(x,4r)| ≤ Cr (Mgqu)
1/q

(x).

Therefore, for µ-a.e. x ∈ B(xi, 2r),

|u(x)− uB(xi,r)| ≤ Cr (Mgqu)
1/q

(x).

By the Lebesgue differentiation theorem 3.4, for µ-a.e. x ∈ X we have

gu(x) ≤ (Mgqu(x))
1/q

. So C (Mgqu)
1/q

is a p-weak upper gradient of ur.

Moreover, by Theorem 3.5.6 and by the fact that q < p, this function is

p-integrable.



9.2 Lebesgue points of Sobolev functions 275

Given k, since at most C balls B(xi, 2r) intersect the ball B(xk, r),

we see by an application of Hölder’s inequality that∫
B(xk,r)

|ur|p dµ ≤ C
∑
i

B(xi,2r)∩B(xk,r)6=∅

µ(B(xk, r))

µ(B(xi, r))

∫
B(xi,r)

|u|p dµ

≤ C
∫
B(xk,3r)

|u|p dµ

and summing over k we conclude that ur ∈ N1,p(X : V ).

Towards the last claim, notice that |u| ∈ N1,p(X) with gu as a p-

weak upper gradient of |u| because of (6.3.18). Again by (6.3.18) and by

the first part of our claim, for each j we have that |u|rj ∈ N1,p(X)

with C (Mgqu)
1/q

as a p-weak upper gradient. For k ∈ N, let vk =

max1≤j≤k |u|rj . Then by Proposition 6.3.23, vk ∈ N1,p(X) with the

same p-weak upper gradient.

By Lemma 9.2.1 and by Theorem 3.5.6, we know that M∗u ∈ Lp(X),

and hence by the monotone convergence theorem, vk →M∗u in Lp(X).

Now by the second part of Proposition 7.3.7, M∗u ∈ N1,p(X) with

C (Mgqu)
1/q

as a p-integrable p-weak upper gradient.

Lemma 9.2.3 If 0 < r < 1 and x ∈ X, then

Capp(B(x, r)) ≤ C µ(B(x, r))

rp
.

Proof Let u : X → R be the Lipschitz function given by

u(y) = min

{
dist(y,X \B(x, 2r))

r
, 1

}
.

Then u = 1 on B(x, r), 0 ≤ u ≤ 1 on X, and u is supported on B(x, 2r).

Moreover, u is 1
r -Lipschitz. Hence

Capp(B(x, r)) ≤ ‖u‖pN1,p(X) ≤ Cµ(B(x, 2r)) +
µ(B(x, 2r))

rp
.

Since r < 1, the conclusion follows from the doubling property of µ.

Lemma 9.2.4 If f is a nonnegative function in L1
loc(X), and

E =

{
x ∈ X : lim sup

r→0+

rp
∫
B(x,r)

f dµ > 0

}
,

then Capp(E) = 0.



276 Consequences of Poincaré inequalities

Proof We prove this lemma for the case f ∈ L1(X), the local version

being similar. It suffices to show that the set

Eε :=

{
x ∈ X : lim sup

r→0+

rp
∫
B(x,r)

f dµ > ε

}
has zero p-capacity for each ε > 0. Fix ε > 0.

Recall that, by the absolute continuity of integrals, for every ε1 > 0

there exists τ > 0 such that whenever A ⊂ X is a measurable set with

µ(A) ≤ τ , then
∫
A
f dµ < ε1. For fixed ε1 > 0, let τ be as above, and

choose 0 < δ < 1/5 such that

δp

ε

∫
X

f dµ < τ.

Note that for every x ∈ Eε there is some rx with 0 < rx < δ such that

rpx

∫
B(x,rx)

f dµ > ε. (9.2.5)

We can cover Eε by such balls, and by the 5B-covering lemma 3.3, we

can find a countable pairwise disjoint subcollection {Bi := B(xi, ri)}i
such that Eε ⊂

⋃
iB(xi, 5ri). Now by Lemma 9.2.3, as 5ri ≤ 5δ < 1,

Capp(Eε) ≤
∑
i

Capp(B(xi, 5ri)) ≤ C
∑
i

µ(Bi)

rpi
,

and hence by the choice of such balls in the cover, and by (9.2.5),

Capp(Eε) ≤
C

ε

∑
i

∫
Bi

f dµ =
C

ε

∫
⋃
i Bi

f dµ.

On the other hand,

µ

(⋃
i

Bi

)
=
∑
i

µ(Bi) ≤
∑
i

rpi
ε

∫
Bi

f dµ ≤ δp

ε

∫
X

f dµ < τ.

Therefore we have

Capp(Eε) ≤
C

ε
ε1,

and letting ε1 → 0, we have Capp(Eε) = 0. The lemma is now proved.

Lemma 9.2.6 Suppose that p > 1 and that X supports a q-Poincaré

inequality for some 1 ≤ q < p. If u ∈ N1,p(X : V ), then for every λ > 0,

Capp ({x ∈ X : Mu(x) > λ}) ≤ C

λp
‖u‖pN1,p(X:V ).
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Proof Let

Eλ = {x ∈ X : CM∗u(x) > λ}

where C is the comparison constant given by Lemma 9.2.1. Then

{x ∈ X : Mu(x) > λ} ⊂ Eλ,

and hence the desired p-capacity is estimated from above by Capp(Eλ).

Thus it suffices to prove the above estimate for Eλ.

Observe that C
λM

∗u is in N1,p(X) by Proposition 9.2.2, and hence

is admissible for estimating the p-capacity of Eλ. By Proposition 9.2.2

again and by Lemma 9.2.1 and the Hardy–Littlewood maximal theo-

rem 3.5.6 with exponents p > 1 and p/q > 1,

Capp(Eλ) ≤ C

λp
‖M∗u‖pN1,p(X)

≤ C

λp

(
‖M∗u‖pLp(X) + ‖ (Mgqu)

1/q ‖pLp(X)

)
≤ C

λp

(
‖|u|‖pLp(X) + ‖gu‖pLp(X)

)
≤ C

λp
‖u‖pN1,p(X:V ).

Thus the lemma is proved.

We say that a property holds for p-almost every point in X if the set

of points for which the property does not hold has p-capacity zero. As

in the Lebesgue differentiation theorem 3.4, a point x ∈ X is a Lebesgue

point of a measurable function u if

lim
r→0

∫
B(x,r)

|u− u(x)| dµ = 0.

Recall from Corollary 9.1.36 that(∫
B

|u− uB |p∗ dµ
)1/p∗

≤ C diam(B)

(∫
τB

gpu dµ

)1/p

(9.2.7)

whenever u ∈ N1,p(X : V ) and B is a ball in X, provided that X

supports a p-Poincaré inequality.

We now come to the main theorem of this section.

Theorem 9.2.8 Suppose p > 1 and that X supports a q-Poincaré

inequality for some 1 ≤ q < p, and that µ satisfies the relative lower

volume decay property (9.1.14) of order Q ≥ 1. Let u ∈ N1,p(X : V ).

Then p-almost every point in X is a Lebesgue point of u. Furthermore,
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if p < Q, then for p-almost every x ∈ X,

lim
r→0

∫
B(x,r)

|u− u(x)|p
∗
dµ = 0 (9.2.9)

where

p∗ =
pQ

Q− p
.

Proof Let

A =

{
x ∈ X : lim sup

r→0
rp
∫
B(x,r)

gpu dµ > 0

}
.

Since gu ∈ Lp(X), we have gpu ∈ L1(X), and hence by Lemma 9.2.4,

Capp(A) = 0. By the Poincaré inequality, if x ∈ X \A,(∫
B(x,r)

|u− uB(x,r)| dµ

)p
≤ C rp

∫
B(x,λr)

gpu dµ→ 0 as r → 0,

that is

lim
r→0

∫
B(x,r)

|u− uB(x,r)| dµ = 0 (9.2.10)

whenever x ∈ X \A. Since X supports a p-Poincaré inequality, we know

that Lipschitz functions are dense in N1,p(X : V ); see Theorem 8.2.1.

Let (un) be a sequence of Lipschitz functions in N1,p(X : V ) such that

‖u − un‖pN1,p(X:V ) ≤ 2−n(p+1) for each n and there exists a set K with

Capp(K) = 0 such that un → u pointwise everywhere in X \ K. We

can do so because of Proposition 7.3.7. For n ∈ N, let An = {x ∈
X : M(u − un)(x) > 2−n}, and set En = A ∪ K ∪

(⋃
k≥nAk

)
. By

Lemma 9.2.6,

Capp(An) ≤ C2np‖u− un‖pN1,p(X:V ) ≤ C 2−n.

Then, by the subadditivity of p-capacity (Lemma 7.2.4),

Capp(En) ≤ 2C 2−n.

Note that

|uk(x)− uB(x,r)| ≤
∫
B(x,r)

|u− uk(x)| dµ

≤
∫
B(x,r)

|uk − u| dµ+

∫
B(x,r)

|uk − uk(x)| dµ

≤M(uk − u)(x) +

∫
B(x,r)

|uk − uk(x)| dµ.
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Hence, if x ∈ X \ En and k ≥ n, then

lim sup
r→0

|uk(x)− uB(x,r)| ≤ lim sup
r→0

∫
B(x,r)

|u− uk(x)| dµ

≤M(uk − u)(x) ≤ 2−k.

(9.2.11)

Therefore, for every x ∈ X \ En and for every l ≥ k ≥ n,

|uk(x)−ul(x)| ≤ lim sup
r→0

|uk(x)−uB(x,r)|+lim sup
r→0

|ul(x)−uB(x,r)| ≤ 21−k,

that is, (uk) converges uniformly on X \En to u. (Note that as K ⊂ En,

un → u pointwise on X \En.) Thus, u is continuous on X \En. On the

other hand, by (9.2.11), if x ∈ X \ En and k ≥ n, then for l ≥ k,

lim sup
r→0

∫
B(x,r)

|u− u(x)| dµ

≤ lim sup
r→0

∫
B(x,r)

|u− uk(x)| dµ+ |uk(x)− u(x)|

≤ 2−k + |uk(x)− u(x)|,

and since uk(x)→ u(x) as k →∞, we see that

lim sup
r→0

∫
B(x,r)

|u− u(x)| dµ = 0.

Thus, each point x ∈ X \ En is a Lebesgue point of u.

To obtain equation (9.2.9) in the case p < Q, we can apply (9.2.7)

instead of the Poincaré inequality to the estimates before (9.2.10); this

gives

lim
r→0

∫
B(x,r)

|u− uB(x,r)|p∗ dµ = 0.

Hence for x ∈ X \ En, using the fact that x is a Lebesgue point of u,

lim sup
r→0

∫
B(x,r)

|u− u(x)|p∗ dµ

≤ 2p∗ lim
r→0

∫
B(x,r)

|u− uB(x,r)|p∗ dµ+ 2p∗ lim
r→0
|u(x)− uB(x,r)|p∗

which equals zero. By taking E = ∩nEn, we see that Capp(E) = 0

and the above discussion holds for each x ∈ X \ E. This completes the

proof.

Now we prepare to prove a Morrey type embedding theorem.
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Lemma 9.2.12 Suppose that X is a quasiconvex and doubling metric

measure space supporting a p-Poincaré inequality for some 1 ≤ p < ∞
and that V is a Banach space. Assume moreover that X has relative

lower volume decay (9.1.14) of order Q ≥ 1. If p > Q, then given a ball

B ⊂ X and a measurable function u : 4λB → V with upper gradient

ρ ∈ Lp(4λB), there is a set E ⊂ B with Capp(E) = 0 such that

|u(x)− u(y)| ≤ C diam(B)Q/p d(x, y)1−Q/p
(∫

4λB

ρp dµ

)1/p

whenever x, y ∈ B \ E.

Proof Let E0 be the collection of all non-Lebesgue points of u. Then by

the Lebesgue Differentiation Theorem 3.4 we know that µ(E0) = 0. We

will first prove the above inequality for all x, y ∈ B\E0. To do so, for each

k ∈ Z we set Bk = B(x, 2−kd(x, y)) if k ≥ 0, and Bk = B(y, 2kd(x, y)) if

k < 0. Then note that for each k ∈ Z we have 1
2Bk ⊂ Bk+1 ⊂ 2Bk ⊂ 4B.

Since x, y are Lebesgue points of u, as before we obtain

|u(y)− u(x)| ≤
∑
k∈Z
|uBk − uBk+1

|

≤ C
∑
k∈Z

∫
2Bk

|u− u2Bk | dµ

≤ C
∑
k∈Z

2−|k|d(x, y)

(∫
2λBk

ρp dµ

)1/p

≤ C d(x, y)1−Q/p
∑
k∈Z

2−|k|(1−Q/p)
(

diam(Bk)Q

µ(Bk)

∫
2λBk

ρp dµ

)1/p

.

An application of (9.1.14) together with the fact that 1−Q/p > 0 now

gives

|u(y)−u(x)| ≤ C d(x, y)1−Q/p
∑
k∈Z

2−|k|(1−Q/p)
(

diam(B)Q

µ(B)

∫
2λBk

ρp dµ

)1/p

;

the desired conclusion follows upon noting that 2λBk ⊂ 4λB for each k ∈
Z.

By the above argument, we know that u|X\E0
is Hölder continuous,

and hence admits a Hölder continuous extension ũ to X. Let E be the

collection of all points in E0 at which u and ũ differ. To complete the

proof, it suffices now to show that Capp(E) = 0. Since u ∈ N1,p(X : V ),

we know that the collection Γ of non-constant compact rectifiable curves



9.2 Lebesgue points of Sobolev functions 281

in X on which u is not continuous has zero p-modulus. Because µ(E) ≤
µ(E0) = 0, we know that the collection Γ+

E of non-constant rectifiable

curves γ satisfyingH1(γ−1(E)) > 0 has zero p-modulus. Since Γ contains

all those non-constant compact rectifiable curves that intersect E but

do not lie in Γ+
E , we know that the collection ΓE of all the non-constant

compact rectifiable curves that intersect E is a subcollection of Γ ∪ Γ+
E .

It follows that Modp(ΓE) = 0, and hence by Proposition 7.2.8 we know

that Capp(E) = 0. This completes the proof.

Lemma 9.2.13 Suppose that X is locally compact and satisfies the

hypotheses of Lemma 9.2.12 for some p > Q. Let E ⊂ X. If Capp(E) =

0, then E is empty.

Proof By the countable subadditivity of p-capacity and the separability

of X, we may assume that E ⊂ B for some ball B in X with diam(B) <

1/C, where C is the constant from the conclusion of Lemma 9.2.12.

Suppose that E is nonempty. By the outer capacity property of Corol-

lary 8.2.5, for every ε > 0 we can find a nonempty open set U with

E ⊂ U ⊂ B such that Capp(U) < ε. By the definition of p-capacity, now

we can find u ∈ N1,p(X) with 0 ≤ u ≤ 1, u = 1 on U , such that∫
X

up dµ+

∫
X

ρpu dµ < ε.

We fix 0 < ε < 2−p µ(B). Since U is non-empty and open, it has a

Lebesgue point of u; hence by Lemma 9.2.12,

‖1− u‖L∞(B) ≤
C diam(B)

µ(B)1/p

(∫
X

ρp dµ

)1/p

≤ C diam(B)

µ(B)1/p
ε1/p <

1

µ(B)1/p
ε1/p <

1

2
.

It follows that for µ-almost every y ∈ B we have u(y) ≥ 1/2, which

means that
µ(B)

2p
≤
∫
X

up dµ < ε,

which violates the assumption on ε above. The above contradiction com-

pletes the proof.

Combining Lemma 9.2.12 with Lemma 9.2.13 yields the following Mor-

rey embedding theorem.

Theorem 9.2.14 Suppose that X is a quasiconvex and doubling metric

measure space supporting a p0-Poincaré inequality for some 1 ≤ p0 <∞
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and that V is a Banach space. Assume moreover that there are constants

C0 ≥ 1 and Q ≥ 1 such that inequality (9.1.14) holds whenever B′ ⊂ B

are balls in X. If p > Q such that p ≥ p0, then given a ball B ⊂ X and

a measurable function u : 4λB → V with upper gradient ρ ∈ Lp(4λB),

whenever x, y ∈ B,

|u(x)− u(y)| ≤ C diam(B)Q/p d(x, y)1−Q/p
(∫

4λB

ρp dµ

)1/p

.

In particular, functions u ∈ L1,p(X : V ) are locally (1 − Q/p)-Hölder

continuous.

9.3 Measurability of equivalence classes and MECp

Recall from Section 7.5 that, given a non-negative Borel measurable

function ρ on X, two points x, y ∈ X are equivalent with respect to ρ,

x ∼ρ y, if there is a compact rectifiable curve γ in X connecting x to

y with
∫
γ
ρ ds finite. The relation ∼ρ is an equivalence relation; denote

by [x]ρ := {y ∈ X : y ∼ρ x} the equivalence class of a point x ∈ X. By

Proposition 8.1.6, we know that if X supports a p-Poincaré inequality,

then X is connected. However, to prove that under this assumption X

has to be rectifiably path-connected and that it has the MECp property

in the sense of Section 7.5, we need to know that [x]ρ is measurable.

The goal of this section is to address this issue. In particular, we show

that under the assumption of completeness, separability, and p-Poincaré

inequality, X must be rectifiably path connected, satisfies MECp, and

every function with a p-integrable upper gradient is measurable. For this

we do not assume that the measure µ is doubling.

Analytic sets are subsets of complete separable metric spaces that are

obtained as images of complete separable metric spaces under contin-

uous maps (see [149]). Borel sets are analytic sets, and analytic sets

are measurable with respect to any Borel measure on X ([149, Theo-

rem 14.2]). Furthermore, images of analytic sets under continuous maps

into a complete separable metric space are analytic sets.

The standing assumptions for this section are:

X is a complete separable metric space and µ is a locally finite Borel

regular measure on X such that non-empty open sets have positive mea-

sure.

Theorem 9.3.1 If ρ : X → [0,∞] is a Borel function, then for all
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x ∈ X the set [x]ρ is measurable. Furthermore, if F ⊂ X is a closed set,

then the function u : X → [0,∞] defined by

u(x) = inf
γ

∫
γ

ρ ds,

with the infimum taken over all rectifiable curves that connect x to F , is

measurable.

The following are easy corollaries of the above theorem; note that

we do not need to assume that µ is doubling here. If µ is doubling,

the conclusion of the second corollary is an immediate consequence of

Theorem 8.3.2.

Corollary 9.3.2 Let E,F ⊂ X be two compact sets and X be complete.

Let Γ(E,F ;X) denote the collection of all paths in X connecting E to

F . Then

Modp(Γ(E,F ;X)) = inf
u

∫
X

ρpu dµ,

where the infimum is taken over all measurable functions u in X that

satisfy u ≥ 1 on E and u ≤ 0 on F .

The quantity on the right hand side of the above equality is known in

literature as the relative p-capacity of the condenser (E,F ;X).

Corollary 9.3.3 Rectifiable path components of X are measurable. In

particular, if X supports a Poincaré inequality, then X is rectifiably path

connected.

The following result is another corollary to Theorem 9.3.1.

Theorem 9.3.4 If X is proper and supports a p-Poincaré inequality,

then X has the MECp property, and every function with a p-integrable

upper gradient is measurable.

Note that if X has no non-constant rectifiable curves, then every func-

tion has a p-integrable upper gradient. Thus, functions with p-integrable

upper gradients are not necessarily measurable in a general setting.

The remainder of this section is devoted to the proofs of Theorem 9.3.1

and Theorem 9.3.4. First we record some preliminary results.

Lemma 9.3.5 Let Z be a topological space and Y be a collection of

functions g : Z → [0,∞]. Suppose that Y satisfies the following four

conditions:
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(i). all continuous functions g : Z → [0,∞] are in Y,

(ii). if (gi)i is a monotone increasing sequence of functions in Y, then

limi gi ∈ Y,

(iii). if r, s > 0 and g, f ∈ Y, then rg + sf ∈ Y,

(iv). if g ∈ Y with 0 ≤ g ≤ 1, then 1− g ∈ Y.

Then every Borel function g : Z → [0,∞] is in Y.

Proof Let A1 denote the collection of all sets E ⊂ Z for which χE ∈ Y.

Since continuous functions are in Y, from Proposition 4.2.2 and Condi-

tion (ii) it follows that lower semicontinuous functions are in Y. If U is

an open subset of Z then χU is a lower semicontinuous function on Z;

it follows now that U ∈ A1.

By Condition (iv), if E ∈ A1 then Z \ E ∈ A1. By Condition (ii),

if (Ei) is an increasing sequence (that is, Ei ⊂ Ei+1) of sets from A1,

then
⋃
iEi ∈ A1. Furthermore, if E,F ∈ A1 with E ⊂ F , then repeated

applications of Conditions (iii) and (iv) tell us that χE , 1−χF , 1−χF +

χE , 1− (1−χF +χE) = χF\E are in Y and so F \E ∈ A1. Also, Z ∈ A1

(since open sets are in A1).

Collections A1 that satisfy the conclusions in the above paragraph are

called λ-classes [149]. We will now show that A1 contains the σ-algebra

generated by the collection of all open subsets of Z, namely the collection

of all Borel subsets of Z (this is called the π − λ-theorem in literature).

We would like to prove that A1 is closed under finite intersections, but

we are not able to do so directly. However, this is trivially true for the

sub-collection of open subsets.

By replacing A1 with the intersection A of all λ-classes that contain

the collection O of all open subsets of Z if necessary, we may assume

that A is the smallest λ-class of subsets of Z that contains O. Let A0 be

the collection of all E ∈ A such that whenever U is an open subset of Z

we have U ∩E ∈ A. We now claim that A0 is a λ-class containing O. To

see this, note that Z ∈ A0. If (Ej) is an increasing sequence of sets from

A0 and U is open, then
⋃
j Ej ∈ A because A is a λ-class, and from

U ∩
⋃
j Ej =

⋃
j(Ej ∩U) it follows that the increasing sequence (Ej ∩U)

also is in A by the definition of A0, whence we conclude that
⋃
j Ej is

also in A0. If E,F ∈ A0 such that E ⊂ F , then we have that F \E ∈ A
and that U ∩ (F \E) = (U ∩ F ) \ (U ∩E) ∈ A because U ∩E ⊂ U ∩ F
and U ∩ E,U ∩ F ∈ A. We have verified that A0 is a λ-class; hence by

the assumed minimality of A we know that A0 = A. Hence, whenever

E ∈ A and U is an open subset of Z, we have that E ∩ U ∈ A.

We now show that A is closed under finite intersections. To see this, fix
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E ∈ A and consider the collection A(E) of all sets F ∈ A for which F ∩
E ∈ A. As in the previous paragraph, we can show thatA(E) is a λ-class,

and by the previous paragraph, it containsO. Hence by the minimality of

A we see that A = A(E), that is, A is closed under taking intersections

with E. Since E ∈ A was arbitrary, it follows that A is closed under

finite intersections. Since A is also closed under complementation (that

is, if E is in A then so is Z \ E), it follows that A is an algebra: closed

under finite intersections and finite unions. Finally, since the union of

an increasing sequence of sets from A is in A, it follows that A is a

σ-algebra and hence contains all the Borel sets. Thus we conclude that

A1 also contains all Borel sets.

The above discussion, together with Condition (iii), tells us that non-

negative simple Borel functions are in Y. Now an application of the fact

that every non-negative Borel function is an increasing limit of simple

Borel functions (see for example the proof of Proposition 3.3.22) together

with Condition (ii) yields the desired conclusion.

To prove Theorem 9.3.1 it suffices to show that, given a non-negative

Borel measurable function ρ on X and a point x0 ∈ X, the set [x0]ρ
is an analytic set. We do so by demonstrating that it is the union of

images of a sequence of analytic sets under a continuous map. These

analytic sets are subsets of metric spaces that are themselves subspaces

of a single complete separable metric space; this is the set Y of all curves

γ : [0, 1]→ X that satisfy γ(0) = x0. The metric on Y is given as follows.

If γ, β ∈ Y , then

d∞(γ, β) = sup
0≤t≤1

d(γ(t), β(t)).

It is easy to see that (Y, d∞) is complete (because X is complete), that a

sequence of curves (γi) converges to γ if and only if γi → γ uniformly on

[0, 1], and that (Y, d∞) is separable (because X is separable). For each

L > 0 we consider the collection YL of all L-Lipschitz maps that belong

to Y . Note that YL is a complete subspace of Y under the metric d∞.

If X is proper (as is the case if X is complete and doubling), then YL
is sequentially compact and hence compact. Now we are ready to prove

Theorem 9.3.1.

Proof of Theorem 9.3.1 For L > 0 we consider the complete metric

space YL described above, equipped with the metric d∞, and let πL :

YL → X be given by πL(γ) = γ(1). Then note that πL is a continuous
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map from YL into the complete separable metric space X; hence images

of analytic subsets of YL under πL are analytic in X.

Corresponding to each Borel measurable function g : X → [0,∞]

there is a function ϕg : YL → [0,∞] given by ϕg(γ) =
∫
γ
g ds. Let

YL consist of all such functions g for which ϕg is a Borel function.

We now show that YL satisfies the four conditions that make up the

hypothesis of Lemma 9.3.5. Indeed, if g is a continuous function and

(γi) is a sequence in YL that converges in the metric d∞ (and hence

uniformly) to γ, then
∫
γ
g ds = limi

∫
γi
g ds, so ϕg is continuous and

hence is a Borel function. So Condition (i) of Lemma 9.3.5 is satisfied. If

(gi) is a monotone increasing sequence of functions in YL, then denoting

g = limi gi, an application of the monotone convergence theorem tells

us that for γ ∈ YL,

ϕg(γ) =

∫
γ

g ds = lim
i

∫
γ

gi ds = lim
i
ϕgi(γ),

and so ϕg is the limit of a sequence of Borel functions and hence is Borel

(see for example Proposition 3.3.22). Thus Condition (ii) of Lemma 9.3.5

is also satisfied. Conditions (iii) and (iv) are immediate consequences of

the linearity of line integrals and the fact that a linear combination

of two Borel functions into [0,∞] is Borel. Thus, by the conclusion of

Lemma 9.3.5, all Borel functions g : X → [0,∞] belong to YL. In par-

ticular, if ρ : X → [0,∞] is a Borel function, then ϕρ is a Borel function

from YL to [0,∞], and hence ϕ−1
ρ ([0,∞)), the pre-image of the Borel

set [0,∞), is a Borel subset of the complete separable space YL. Hence

πL(ϕ−1
ρ ([0,∞)) is an analytic subset of X. Because

[x0]ρ =

∞⋃
k=1

πk(ϕ−1
ρ ([0,∞)),

it follows that [x0]ρ is analytic and hence measurable.

A similar argument applied to ZL, the collection of all L-Lipschitz

curves γ from [0, 1] to X with γ(0) ∈ F (with F closed), shows that

the set [F ]ρ, of all points y ∈ X for which there is a point x ∈ F with

x ∼ρ y, is also a measurable set. Furthermore, by considering ϕ−1
ρ ([0, t])

for t ≥ 0 instead of ϕ−1
ρ ([0,∞)), we also see that the level sets of the

function u given in the second part of the statement of Theorem 9.3.1

are measurable sets, and hence u is measurable. This proves the second

part of the theorem and hence completes the proof.

Now we prove the main theorem of this section, Theorem 9.3.4.
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Proof of Theorem 9.3.4 Let ρ ∈ Lp(X) be a non-negative Borel mea-

surable function. We wish to show that there is some x0 ∈ X such that

µ(X \ [x0]ρ) = 0. By the Vitali–Carathéodory theorem 4.2, there is a

lower semicontinuous function ρ0 ∈ Lp(X) such that ρ0 ≥ ρ pointwise

in X. Since for each x ∈ X we have [x]ρ0 ⊂ [x]ρ, it suffices to prove the

result assuming that ρ itself is lower semicontinuous.

The above reduction understood, for each positive integer m we set

Em := {x ∈ X : M(ρp)(x) ≤ mp}.

By the Hardy–Littlewood maximal theorem 3.5.6 we know that µ(X \⋃
mEm) = 0. Since Em ⊂ Em+1, there is a smallest positive integer

m0 for which Em0
is nonempty. We will show that

⋃
m≥m0

Em ⊂ [x0]ρ,

according to which µ(X \ [x0]ρ) = 0. Thus [x0]ρ is the main equivalence

class for ρ.

We define u : X → [0,∞] by setting

u(x) = inf
γ

∫
γ

(1 + ρ) ds,

and set for each positive integer k,

uk(x) = inf
γ

∫
γ

(1 + min{ρ, k}) ds,

where the infimum is taken over all rectifiable curves that connect x to

x0. By Theorem 9.3.1, u, uk are measurable. The goal is to show that u is

finite on
⋃
mEm. Set ρk = min{k, ρ}. As in the proof of Lemma 7.2.13,

we see that 1 + ρk is an upper gradient of uk; by the quasiconvexity of

X (see Theorem 8.3.2), uk is C(1 + k)-Lipschitz continuous on X, and

hence every point is a Lebesgue point of uk. Now we are set to apply

the p-Poincaré inequality. We obtain from (8.1.10) that for x, y ∈ X,

|uk(x)− uk(y)| ≤ C d(x, y) (M(1 + ρk)p(x) +M(1 + ρk)p(y))
1/p

.

Since M(1 + ρk)p ≤ 2pMρpk + 2p ≤ 2pMρp + 2p, we see that uk is

C 21+1/p[mp + 1]1/p-Lipschitz continuous on Em. Since uk ≤ uk+1 for

k ∈ N, we set v = limk→∞ uk, and note that v is also 8Cm-Lipschitz

continuous on Em. Note also that v(x0) = 0; it follows that for all

x ∈
⋃
mEm we have v(x) <∞. Hence to show that u is finite on

⋃
mEm,

it suffices to show that u ≤ v on
⋃
mEm. To this end, fix x ∈

⋃
mEm.

For each k ∈ N there is a rectifiable curve γk connecting x0 to x such

that

v(x) ≥ uk(x) ≥
∫
γk

(1 + ρk) ds − 2−k.



288 Consequences of Poincaré inequalities

First note that length(γk) ≤ v(x) + 2−k, and so by the properness of

X, we may employ the Arzelà–Ascoli theorem to extract a subsequence

of these curves, (γkj ), and a rectifiable curve γ connecting x0 to x such

that γk → γ uniformly. Recall that ρ is lower semicontinuous. We argue

as in the proof of Lemma 7.2.13 to show that
∫
γ
(1 + ρ) ds ≤ v(x). For

k0 ∈ N, by the lower semicontinuity of 1 + ρk0 ,∫
γ

(1 + ρk0) ds ≤ lim inf
k→∞

∫
γk

(1 + ρk0) ds

≤ lim
k→∞

∫
γk

(1 + ρk) ds ≤ v(x),

where we also used the fact that ρk ≥ ρk0 for k ≥ k0. Now an application

of the monotone convergence theorem tells us that
∫
γ
(1 + ρ) ds ≤ v(x).

Thus, u(x) ≤ v(x) < ∞ for every x ∈
⋃
mEm, which in turn implies

that
⋃
mEm ⊂ [x0]ρ, completing the proof that X satisfies MECp.

Now to prove that a function u on X with a p-integrable upper gradi-

ent ρ is measurable on X, we may again assume that ρ is lower semicon-

tinuous. We now proceed as in the proof of the MECp-property above

to consider the measurable sets Em = {x ∈ X : M(ρp)(x) ≤ mp}. We

define f : X ×X → [0,∞] as follows:

f(x, y) = inf
γ

∫
γ

(1 + ρ) ds,

where the infimum is taken over all rectifiable curves γ connecting x to

y in X. By the proof of the MECp property, we know that for x, y ∈ Em,

f(x, y) ≤ 8Cmd(x, y),

and in particular, f(x, y) is finite for x, y ∈
⋃
mEm. Furthermore, for

x, y ∈ Em, because ρ is an upper gradient of u, we have

|u(x)− u(y)| ≤ inf
γ

∫
γ

ρ ds ≤ inf
γ

∫
γ

(1 + ρ) ds = f(x, y) ≤ 8Cmd(x, y).

Here again the infimum is over all rectifiable curves connecting x to y.

It follows that u is 8Cm-Lipschitz continuous on Em, and so uχEm is

measurable on X. For k ≥ m0, set Fk = Ek \
⋃
m<k Em. Then Fk are

measurable, and

u =

∞∑
k=m0

uχFk

is measurable. This completes the proof of the theorem.
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Theorem 9.3.4 is quite useful, for it also tells us that the requirement of

measurability on functions in the results of this chapter and of Chapter 8

can be removed.

We now use Theorem 9.3.4 to provide estimates on the p-modulus of

the family of all rectifiable curves that connect B(x, r) to X \B(x,R).

Lemma 9.3.6 Let X be a complete doubling metric measure space

supporting a p-Poincaré inequality. Suppose also that µ satisfies (9.1.14).

If x ∈ X and 0 < r < R are such that X \ B(x, 3
2R) is nonempty, we

denote the collection of all curves connecting B(x, r) to X \ B(x,R) by

Γ(x, r,R).

(i). If p < Q, then

Modp(Γ(x, r,R)) ≥ 1

C

µ(B(x, r))1−p/Qµ(B(x,R))p/Q

Rp
.

(ii). If p = Q, then

ModQ(Γ(x, r,R)) ≥ 1

C

µ(B(x,R))

RQ

[
log

(
Cµ(B(x,R))

µ(B(x, r))

)]1−Q

.

(iii). If p > Q, then

Modp(Γ(x, r,R)) ≥ 1

C
µ(B(x,R))R−p.

Proof As mentioned in Section 5, lower bounds for modulus are ob-

tained by checking each admissible function for the family of curves. So

let ρ be an admissible function for computing Modp(Γ(x, r,R)); that is, ρ

is a non-negative, Borel measurable function on X such that
∫
γ
ρ ds ≥ 1

for each γ ∈ Γ(x, r,R). In order to apply the Poincaré inequality, we

need a function-upper gradient pair. Thanks to Lemma 8.1.5 and The-

orem 9.3.4, we know that the function u given by

u(x) = min

{
1, inf

γ

∫
γ

ρ ds

}
.

where the infimum is taken over all rectifiable curves γ connecting x to

X\B(x,R), is integrable on balls; it is directly checked as in Lemma 7.2.13

that ρ is an upper gradient of u. Hence we may apply the conclusions of

Theorem 9.1.15 to the pair (u, ρ).

By assumption, X \ 3
2B(x,R) is non-empty; hence by the path con-

nectedness of X (which follows from the p-Poincaré inequality), there
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is a point y ∈ X with d(x, y) = 3
2R. Therefore B(y,R/2) ⊂ B(x, 2R) \

B(x,R), and an application of the doubling property of µ yields

µ(B(x, 2R) \B(x,R)) ≥ µ(B(y,R/2) ≥ 1

C4
µ

µ(B(x,R)).

Note that u = 1 on B(x, r) and u = 0 on X \ B(x,R). Hence, with

B = B(x, 2R),

uB =
1

µ(B(x, 2R))

∫
B(x,2R)

u dµ ≤ µ(B(x,R))

µ(B(x, 2R))
≤
(

1 +
1

C4
µ

)−1

=: c < 1.

Hence |u−uB | ≥ 1−c on B(x, r). So an application of Corollary 9.1.36 (i)

gives (i) of our statement, and Corollary 9.1.36 (ii) gives (ii) of our

statement, while Corollary 9.1.36 (iii) yields (iii) of our statement. Note

that the completeness of X together with Theorem 8.3.2 permit us to

use Corollary 9.1.36.

Recall that if µ is doubling, then there is some Q > 0 for which (9.1.14)

holds. We now explore a stronger condition on µ. We say that µ is Ahlfors

Q-regular if there is a constant C > 0 such that whenever x ∈ X and

0 < r < diam(X),

1

C
rQ ≤ µ(B(x, r)) ≤ C rQ. (9.3.7)

If X satisfies the hypotheses of Lemma 9.3.6 and in addition µ is Ahlfors

Q-regular, then the upper bound from Proposition 5.3.9 for p = Q

and the upper bound estimate found at the end of the proof of Corol-

lary 5.3.11 for p < Q tell us that the lower bound estimates given in

Lemma 9.3.6 for p ≤ Q are the best possible. Finally, when p > Q, we

have the estimate

Modp(Γ(x, r,R)) ≥ cRQ−p > 0,

which reinforces the conclusion of Lemma 9.2.13.

9.4 Annular quasiconvexity

In this section we give an analog of Theorem 8.3.2 for annular quasicon-

vexity.

Theorem 9.4.1 Every complete metric measure space that is Ahlfors

Q-regular and supports a p-Poincaré inequality for some p < Q is annu-

larly quasiconvex. The annular quasiconvexity constant depends only on
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the Ahlfors regularity constants of the measure and the data associated

with the Poincaré inequality.

Proof Let (X, d, µ) be a complete metric measure space which is Ahlfors

Q-regular and supports a p-Poincaré inequality for some p < Q. By

Theorem 8.3.2, X is Cq-quasiconvex for some Cq ≥ 1.

We wish to show that there is a constant Ca ≥ 1, depending only on

the doubling and Poincaré data, such thatX is annularly Ca-quasiconvex.

In other words, we wish to show that for each r > 0 such that B(z, r) \
B(z, r/2) is non-empty, and x, y ∈ B(z, r) \ B(z, r/2), there is a Ca-

quasiconvex curve in B(z, Car) \ B(z, r/Ca) connecting x to y. To this

end, consider C ≥ max{4, Cq}. We may assume without loss of gen-

erality that d(x, y) > r/(2C). Let Γ be the collection of all rectifiable

curves in B(z, C2λr) connecting B(x, r/(2C2)) to B(y, r/(2C2)). Note

that these two balls are contained in B(z, C2r).

By Theorem 9.3.1, if ρ is a non-negative Borel measurable function

on X such that
∫
γ
ρ ds ≥ 1 for each γ ∈ Γ, then defining a function u on

B(z, C2r) by

u(w) = min

{
1,

∫
β

ρ ds

}
where the infimum is over all compact rectifiable curves β in B(z, C2λr)

connecting B(x, r/(2C2)) to w, we have that u is measurable with u = 0

on B(x, r/(2C2)) and u = 1 on B(y, r/(2C2)). Note that r/(2C) <

d(x, y) < 2r. Let B−1 = B(x, r/(2C)), B0 = B(z, Cr), and B1 =

B(y, r/(2C)). Then uB−1
= 0 and uB1

= 1, and so, by the Poincaré

inequality and the doubling property of µ,

1 = |uB−1 − uB1 | ≤ |uB−1 − uB0 |+ |uB0 − uB1 |

≤ 1

µ(B−1)

∫
B−1

|u− uB0 | dµ+
1

µ(B1)

∫
B1

|u− uB0 | dµ

≤ 2C

µ(B0)

∫
B0

|u− uB0 | dµ

≤ C r
(∫

λB0

ρp dµ

)1/p

.

It follows that

µ(B0)

C rp
≤
∫
λB0

ρp dµ ≤
∫
B(z,C2λr)

ρp dµ,
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that is,

Modp(Γ) ≥ µ(B0)

C0 rp
.

We now fix a positive integer m ≥ 4 and split Γ into three sub-families

Γ1, Γ2, and Γ3, where Γ1 is the collection of all curves in Γ that intersect

B(z, r/m), Γ2 is the collection of all curves in Γ that stay in B(z, C2λr)\
B(z, r/m) and have length at least md(x, y), and Γ3 consists of all the

curves in Γ that stay in B(z, C2λr)\B(z, r/m) and have length at most

md(x, y). We wish to show that Γ3 is nonempty. To do so, we show that

the p-modulus of Γ1 and Γ2 are small in comparison to the p-modulus

of Γ.

Since ρ2 := [md(x, y)]−1χB(z,C2λr) is admissible for Γ2, we have

Modp(Γ2) ≤ 1

mp d(x, y)p
µ(B(z, C2λr)) ≤ C2 µ(B0)

mp rp
.

On the other hand, the fact that each curve in Γ1 contains a subcurve

in Γ(z, r/m, r/2) implies that

Modp(Γ1) ≤ Modp(Γ(z, r/m, r/2)),

where Γ(z, r/m, r/2) is as in Lemma 9.3.6. Let i0 be the positive integer

such that 2i0 ≤ m < 2i0+1, and for i = 0, 1, · · · , i0 let B̂i = B(z, 2ir/m).

Define a function g on B(z, r) by

g(w) :=
8

log(m/2) d(z, w)
χB(z,r/2)\B(z,r/m)(w).

Then g is admissible for Γ(z, r/m, r/2), since for any γ ∈ Γ(z, r/m, r/2),

we can find subcurves γi of γ, i = 1, · · · , i0 that lie in the annuli B̂i\B̂i−1

and connect the inner sphere {w ∈ X : d(z, w) = 2i−1m} to the outer

sphere {w ∈ X : d(w, z) = 2im}, we see that

∫
γ

g ds ≥
i0−1∑
i=1

∫
γi

g ds ≥ 8

i0−1∑
i=1

1

log(m/2)

length(γi)

2i+1r/m

≥ 8
1

log(m/2)

i0−1∑
i=1

2i−1r/m

2i+1r/m
≥ 8

i0 − 1

4 log(m/2)

≥ 8
i0

8 log(m/2)
≥ 1.
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It follows from the Ahlfors Q-regularity of µ that

Modp(Γ1) ≤
∫
X

gp dµ =

i0∑
i=1

∫
B̂i\B̂i−1

gp dµ

≤ C

(log(m/2))
p

i0∑
i=1

µ(B̂i \ B̂i−1)

(2ir/m)
p

≤ Cr−p

(log(m/2))
p

i0∑
i=1

(
2i/m

)Q−p
µ(B0) ;

recall that B0 = B(z, 2Cr). By the choice of i0, we have

Modp(Γ1) ≤ C µ(B0)

rp (log(m/2))
p

2i0(Q−p)

mQ−p ≤
C1 µ(B0)

rp (log(m/2))
p .

Thus,

Modp(Γ1 ∪ Γ2) ≤ µ(B0)

rp

(
1

C2mp
+

C1

(log(m/2))
p

)
≤ (C1 + C2)µ(B0)

rp
(log(m/2))

−p
.

Hence if m > 2 e[2C0(C1+C2)]1/p then

Modp(Γ3) ≥ µ(B0)

2C0 rp
> 0

and it follows that there is a rectifiable curve inB(z, C2λr)\B(z, r/(C2λ))

with length at most md(x, y), connecting a point x1 in B(x, r/(2C)) to

a point y1 in B(y, r/(2C)). Quasiconvexity of X ensures that we can

connect x to x1 and y to y1 by quasiconvex curves, and the concatena-

tion of these three curves yields the desired curve verifying the stated

annular quasiconvexity.

The above proof can be adapted to more general doubling measures,

but one needs a relative upper volume decay property (an inequality that

is the reverse of (8.1.14)) with exponent Q > p ≥ 1. Such upper volume

decay property is known to hold when µ is doubling and X is connected.

Note that connectivity of X is guaranteed by the support of a Poincaré

inequality, hence the condition Q > p is the crucial assumption. Note

that the Euclidean line R is Ahlfors 1-regular and supports a 1-Poincaré

inequality, but is not annularly quasiconvex.
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9.5 Notes to Chapter 9

The fact that a p-Poincaré inequality on a doubling metric space implies

improved integrability was first established by Grigor’yan [19], [103] in

the Riemannian manifold setting for p = 2. The corresponding results for

real-valued functions in this chapter were proven in [113], [114]. In [114],

one also finds a Rellich–Kondrachov compact embedding theorem and

a version of the Sobolev embedding theorem on spheres. It is easy to

check that the compact embedding theorem can only hold for finite

dimensional target spaces V and thus we have opted not to include it

here. We have also not included an embedding theorem on spheres as

the formulation is somewhat complicated. Towards the non-compactness

of the embedding, let us simply consider the special case V = `∞; this

argument can easily be generalized to other infinite dimensional Banach

spaces V . We first fix a ball B in X, and an L-Lipschitz function η

supported on 2B with η = 1 on B and 0 ≤ η ≤ 1 on X. We choose the

maps vk : X → V by setting vk(x) = η(x)~ek for every x ∈ X, where ~ek
is the sequence in V whose k-th entry is 1 and all other entries are zero.

It is clear that Lχ2B is an upper gradient for vk and the norm of vk is

at most [1 + L]µ(2B) for each k. Hence the sequence {vk} is bounded.

However, it has no convergent subsequence because the norm of vk − vj
is at least µ(B) for each k, j with k 6= j.

The proof of the capacitary Lebesgue point property in the metric

setting is due to Kinnunen and Latvala, [157]. While their result is

for another Sobolev-type space, called the Haj lasz–Sobolev space (see

Chapter 10), their technique is quite versatile. The classical (Euclidean)

proof of the capacitary Lebesgue point property relied on a Besicov-

itch type covering theorem to verify the capacitary weak type inequal-

ity for maximal functions (as in Lemma 9.2.6). A local version of the

Besicovitch covering theorem would suffice here, since the argument is

essentially localizable. However, it is not known whether there are any

non-Riemannian metric spaces in which a local version of the Besicov-

itch covering theorem holds, see for example [290, p. 119, Lemma 3.3.1]

and [193, p. 89, Theorem 2.54]. The proof in the Euclidean setting is due

to Federer and Ziemer [84]. Earlier work by Giusti [95] indicated that

the set of non-Lebesgue points of a function in W 1,p(Ω) has Hausdorff

dimension at most n− p; this is weaker than the statement that the set

has null p-capacity.

In the metric setting Kinnunen and Latvala avoided the need for a

Besicovitch type covering by proving that the super level set {Mu > t}
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of a Sobolev function u is contained inside the super level set of an-

other related Sobolev function (see Lemma 9.2.1 together with Proposi-

tion 9.2.2). Then it is a straightforward computation to prove the needed

capacitary weak type estimate as in Lemma 9.2.6. The proof of this

lemma also shows that if u is a non-negative function in N1,p(X) and

t > 0, then the p-capacity of the super level set {u > t} is at most

Ct−p‖u‖pN1,p(X). A stronger, integrated version of this in the Euclidean

setting can be found in the comprehensive book of Maz’ja [202, p. 109,

Theorem 2.3.1 and p. 110, Remark]. This version, due to Maz’ja, appears

in [202] for the first time for general 1 ≤ p <∞. For the case p = 2 the

result, due again to Maz’ja, was proved in [199].

Lemma 9.2.3 is standard. For instance, one can obtain this estimate

as a two-sided estimate by letting R→∞ in [202, p. 106, Section 2.2.4].

This lemma indicates for example that if the measure µ is Ahlfors Q-

regular, then for E ⊂ X, Capp(E) = 0 whenever HQ−p(E) = 0. This

is however not a characterization of zero p-capacity sets; if a set is of

p-capacity zero, then its Hausdorff dimension is at most Q− p, but the

(Q− p)-dimensional Hausdorff measure of this set may be positive.

Theorem 9.2.8 does hold true for p = 1 as well, but the proof uses the

concept of relative isoperimetric inequality, which is beyond the scope

of this book. We refer interested readers to the paper [160].

The issues on measurability were dealt with in the paper [139] where

it is also shown that if the metric space supports a p-Poincaré inequal-

ity, then any real-valued function that has an upper gradient in Lploc(X)

must necessarily be measurable. The concept of MECp property was first

studied by Ohtsuka in the Euclidean setting [220]. The study of Borel,

analytic, co-analytic, projective, and universally measurable subsets of

a complete separable metric space falls under the category of descriptive

set theory; see for example [149]. All Borel subsets of a complete separa-

ble metric space are both analytic sets and co-analytic sets (complements

of analytic sets), but not all analytic sets are Borel. However, Suslin

proved that analytic sets that are also co-analytic are necessarily Borel

sets. Analytic sets are universally measurable, and hence µ-measurable

for Borel regular measures µ. For a proof of this (due originally to Suslin

and Lusin) and for a comprehensive treatment of analytic sets see [46,

Chapter 11], where also an example of an analytic set that is not a Borel

set can be found ([46, Section 11.5]).

Theorem 9.4.1 is due to Korte [165]. Annular quasiconvexity is a use-

ful tool in the study of metric spaces. For instance, it has been used by

Mackay [191], who identified new criteria for nontrivial lower bounds on
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the conformal dimension of metric spaces, and by Herron [132], who char-

acterized uniform domains in complete doubling annularly quasiconvex

spaces via qualitative assumptions on Gromov–Hausdorff tangent cones.

See Chapter 11 for further information on Gromov–Hausdorff conver-

gence.
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In this chapter, we discuss the relations between the Sobolev space

N1,p and various other abstract Sobolev spaces defined on metric spaces.

These include Sobolev-type spaces defined by Cheeger, Haj lasz, Haj lasz–

Koskela, and Korevaar–Schoen. Under the assumption of a suitable Poin-

caré inequality various inclusions hold between these spaces. If we as-

sume that p > 1 and a slightly better Poincaré inequality holds, then all

of the spaces in question are equal as sets and have comparable norms.

In many situations the assumption of a slightly better Poincaré inequal-

ity is not overly restrictive; see the discussion in Chapter 12. However,

in the case p = 1 no better Poincaré inequality is available, and hence

in many situations this case is special.

Throughout this chapter, (X, d, µ) denotes a metric measure space as

defined in Section 3.3, V denotes a Banach space, and 1 ≤ p <∞, unless

otherwise specified.

10.1 The Cheeger–Sobolev space

A measurable function u : X → V is said to belong to the Cheeger–

Sobolev space Ch1,p(X : V ) if and only if u ∈ Lp(X : V ) and there

exist a sequence (un) of functions in N1,p(X : V ) converging to u in

Lp(X : V ) and a sequence (ρn) so that ρn is an upper gradient for un
for each n, and lim infn→∞ ||ρn||Lp(X) is finite.

The space Ch1,p(X : V ) is endowed with the norm

||u||Ch1,p(X:V ) = ||u||Lp(X:V ) + inf
(ρn)

lim inf
n→∞

||ρn||Lp(X),

where the infimum is taken over all sequences (ρn) as above. Functions

u as above are sometimes said to belong to the Sobolev space in the

relaxed sense. As usual we write Ch1,p(X) = Ch1,p(X : R). The Sobolev

space Ch1,p(X) was introduced by Cheeger in [53].

For 1 < p < ∞, the space Ch1,p(X : V ) coincides with the Sobolev

space N1,p(X : V ) without any additional assumptions on the underly-

ing space X.

Theorem 10.1.1 The Lp-equivalence class of a function in N1,p(X :

V ) belongs to Ch1,p(X : V ). When p > 1, a function u ∈ Ch1,p(X : V )

has a µ-representative in N1,p(X : V ), and ||u||Ch1,p(X:V ) = ||u||N1,p(X:V ).

Proof The 1-Lipschitz embedding N1,p(X : V ) ⊂ Ch1,p(X : V ) is clear:

choose un = u. By Lemma 6.2.2 there is a sequence (ρn) of p-integrable

upper gradients of u that approximates gu in Lp(X).
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Suppose now that u ∈ Ch1,p(X : V ) and let (un) and (ρn) be as in

the statement of the theorem. By Theorem 7.3.9, u has a representative

in N1,p(X : V ) and by (7.3.10),

||u||N1,p(X:V ) = ||u||Lp(X:V ) + ||gu||Lp(X)

≤ lim inf
n→∞

||un||Lp(X:V ) + lim inf
n→∞

||ρun ||Lp(X)

= ||u||Lp(X:V ) + lim inf
n→∞

||ρun ||Lp(X) .

Taking the infimum over all such sequences (ρn) completes the proof.

In Chapter 13 we will present Cheeger’s differentiation theorem for

Lipschitz functions on doubling metric measure spaces supporting a

Poincaré inequality. In keeping with the overall aims of this book, we

will use the framework of the Sobolev space N1,p(X) in that chapter.

Cheeger’s original proof of his Rademacher theorem used the framework

of the Sobolev space Ch1,p(X).

10.2 The Haj lasz–Sobolev space

A measurable function u : X → V belongs to the Haj lasz–Sobolev space

M1,p(X : V ) if and only if u ∈ Lp(X : V ) and there exists a nonnegative

function g ∈ Lp(X) such that the inequality

|u(x)− u(y)| ≤ d(x, y)(g(x) + g(y)) (10.2.1)

holds for all x, y ∈ X \ E, for some E ⊂ X with µ(E) = 0. The space

M1,p(X : V ) is endowed with the norm

||u||M1,p(X:V ) = ||u||Lp(X:V ) + inf
g
||g||Lp(X),

where the infimum is taken over all g for which (10.2.1) holds. As usual,

we write M1,p(X) = M1,p(X : R). Functions g that satisfy (10.2.1)

are called Haj lasz gradients of f . Note (in contrast with N1,p) that

M1,p(X : V ) is naturally defined as a collection of µ-equivalence classes

of functions agreeing almost everywhere with respect to the measure

in X.

Recall that we have encountered an inequality similar to (10.2.1) be-

fore, in (8.1.10) of Theorem 8.1.7, with g above replaced by (Mhp)1/p

for some p-integrable function h. However, (Mhp)1/p in general does not

belong to Lp(X), and so the requirement that g belongs to M1,p(X : V )

is a priori more stringent. This observation motivates the notation M1,p
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for this Sobolev space. The Sobolev space M1,p(X) was introduced by

Haj lasz in [108].

For continuous functions in M1,p(X : V ), the Haj lasz gradient g can

always be redefined on a set of measure zero so that the defining in-

equality (10.2.1) holds everywhere.

Lemma 10.2.2 Suppose that µ is doubling. Let u be a continuous

function in M1,p(X : V ) with Haj lasz gradient g ∈ Lp(X). Set

g̃(x) := lim sup
r→0

∫
B(x,r)

g(z) dµ(z). (10.2.3)

Then g̃ = g a.e. and

|u(x)− u(y)| ≤ d(x, y)(g̃(x) + g̃(y)) (10.2.4)

for all x, y ∈ X.

Proof The modified function g̃ agrees with g almost everywhere by the

Lebesgue differentiation theorem 3.4. Let x, y ∈ X be arbitrary and let

ε > 0. Choose 0 < δ < ε so small that∫
B(x,r)

g(z) dµ(z) < g̃(x) + ε

and ∫
B(y,r)

g(w) dµ(w) < g̃(y) + ε

whenever 0 < r < δ. Fix such an r. By assumption

|u(z)− u(w)| ≤ d(z, w)(g(z) + g(w))

for a.e. z ∈ B(x, r) and a.e. w ∈ B(y, r). Consequently (recall that

δ < ε), ∣∣∣∣∣
∫
B(x,r)

u(z) dµ(z)−
∫
B(y,r)

u(w) dµ(w)

∣∣∣∣∣
≤
∫
B(x,r)

∫
B(y,r)

|u(z)− u(w)| dµ(w) dµ(z)

≤ (d(x, y) + 2ε)

(∫
B(x,r)

g dµ+

∫
B(y,r)

g dµ

)
< (d(x, y) + 2ε)(g̃(x) + g̃(y) + 2ε).

Since u is continuous, the left hand side converges to |u(x) − u(y)| as

r → 0. Letting ε→ 0 yields (10.2.4) and the proof is complete.
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Lemma 10.2.5 Let µ be a doubling measure. Each continuous function

u in M1,p(X : V ) is in N1,p(X : V ), with

||u||N1,p(X:V ) ≤ 3||u||M1,p(X:V ). (10.2.6)

Observe that no conditions on X are needed for this lemma, save that

µ be doubling. Moreover, the result holds for all p ≥ 1.

Proof Let u ∈ M1,p(X : V ) be continuous. By the previous lemma,

each Haj lasz gradient g of u can be modified on a set of measure zero so

that (10.2.1) holds for all x, y ∈ X. Moreover, the modified function from

(10.2.3) is Borel by the proof of Lemma 6.2.5; notice that in the definition

(10.2.3) we may replace the limit r → 0 by the limit to zero through

rational numbers and that the function uq(x) :=
∫
B(x,q)

g(z) dµ(z) is

lower semicontinous and hence Borel for each q > 0.

We claim that 3 · g is an upper gradient for u. Let x, y ∈ X and let

γ : [0, L]→ X be a rectifiable curve joining x to y. As always, we assume

that γ is parametrized by the arc length.

Fix n ∈ N. For each i = 0, . . . , n− 1, let γi denote the restriction of γ

to [iL/n, (i+ 1)L/n] and let xi be a point in γi with

g(xi) ≤
1

length(γi)

∫
γi

g ds =
n

L

∫
γi

g ds.

Observe that d(xi−1, xi) ≤ 2L/n and d(xi−1, xi) + d(xi, xi+1) ≤ 3L/n

for each i. By a telescoping argument,

|u(x0)− u(xn−1)| ≤
n−1∑
i=1

|u(xi−1)− u(xi)|

≤
n−1∑
i=1

d(xi−1, xi)(g(xi−1) + g(xi))

= d(x0, x1)g(x0) +

n−2∑
i=1

[d(xi−1, xi) + d(xi, xi+1)]g(xi)

+ d(xn−2, xn−1)g(xn−1)

≤ 2L

n

n

L

∫
γ0

g ds+
3L

n

n

L

∫
γ1∪γ2∪···∪γn−2

g ds+
2L

n

n

L

∫
γn−1

g ds

≤ 3

∫
γ

g ds.

Since u is continuous, we may let n→∞ to obtain the desired inequality

|u(x) − u(y)| ≤ 3
∫
γ
g ds. Thus u ∈ N1,p(X : V ) with ||u||N1,p(X:V ) ≤

3||u||M1,p(X:V ) as desired.
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It is an interesting question whether the embedding norm 3 in (10.2.6)

can be improved.

Lemma 10.2.7 Suppose that the measure µ is doubling. The class of

Lipschitz functions in M1,p(X : V ) is dense in M1,p(X : V ).

Proof To prove this lemma, let u ∈ M1,p(X : V ) and let g ≥ 0 be a

Haj lasz gradient of u. For λ > 0 let Eλ := {x ∈ X : g(x) > λ}. Then,

since λ−pgp ≥ 1 on Eλ, we obtain the estimate

µ(Eλ) ≤ 1

λp

(∫
Eλ

gp dµ

)1/p

.

Because µ(Eλ) → 0 as λ → ∞, and p ≥ 1, we see from the above

estimate and the absolute continuity of the integral
∫
gp dµ that also

λpµ(Eλ)→ 0 as λ→∞.

Furthermore, u|X\Eλ is 2λ-Lipschitz continuous. Let uλ : X → V be

a Lipschitz extension of u to X, as given for example by Lemma 4.1.21;

then uλ is 2Cλ-Lipschitz continuous on X. Let gλ := (g+ 3Cλ)χEλ ; we

will now show that gλ is a Haj lasz gradient of u− uλ. This immediately

yields that uλ approximates u in M1,p(X : V ). Observe that if x, y ∈
X \ Eλ, then (u − uλ)(x) = (u − uλ)(y) = 0, and hence the desired

version of (10.2.1) is trivial on X \ Eλ. If x, y ∈ Eλ, then

|(u− uλ)(x)− (u− uλ)(y)| ≤ |u(x)− u(y)|+ |uλ(x)− uλ(y)|
≤ d(x, y)[g(x) + g(y) + 2Cλ]

= d(x, y)[(g(x) + Cλ) + (g(y) + Cλ)]

≤ d(x, y)[gλ(x) + gλ(y)].

Finally, if x ∈ Eλ and y ∈ X\Eλ, then gλ(x) = 3Cλ+g(x) and gλ(y) = 0

with g(y) ≤ λ ≤ Cλ, and so

|(u− uλ)(x)− (u− uλ)(y)| ≤ |u(x)− u(y)|+ |uλ(x)− uλ(y)|
≤ d(x, y)[g(x) + g(y) + 2Cλ]

≤ d(x, y)[g(x) + 3Cλ]

= d(x, y)[gλ(x) + gλ(y)].

Combining the above cases, we see that gλ is indeed a Haj lasz gradient

of u− uλ as desired.

Since two functions in Ñ1,p which agree almost everywhere belong

to the same equivalence class in N1,p (see Proposition 7.1.31), it follows

that the set of equivalence classes of continuous functions in M1,p(X : V )
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embeds into N1,p(X : V ). Thus the closure (in the M1,p-norm) of this set

is a subspace of N1,p. By Lemma 10.2.7, Lipschitz continuous functions

are dense in M1,p(X : V ). Thus this closure is the full Haj lasz-Sobolev

space M1,p(X : V ). We have proved the following.

Theorem 10.2.8 For any p ≥ 1, any metric space X equipped with

a doubling measure µ and any Banach space V , M1,p(X : V ) embeds

continuously into N1,p(X : V ), with embedding norm at most 3.

Combining the above theorem with (8.1.10) of Theorem 8.1.7 yields

the following corollary.

Corollary 10.2.9 Suppose µ is doubling and X supports a q-Poincaré

inequality for some 1 ≤ q < p. Then M1,p(X : V ) = N1,p(X : V ).

As will be seen in Chapter 12, the requirement that X support a q-

Poincaré inequality for some q < p is not restrictive at all whenever X

is complete.

10.3 Sobolev spaces defined via Poincaré inequalities

Another notion of Sobolev space can be defined directly in terms of

Poincaré inequalities.

Fix a constant λ ≥ 1. The Poincaré–Sobolev space P1,p(X : V ) consists

of all functions u ∈ Lp(X : V ) for which there exists a function g ∈
Lp(X) such that∫

B

|u− uB | dµ ≤ diam(B)

(∫
λB

gp dµ

)1/p

(10.3.1)

for all balls B in X.

The definition of P1,p(X : V ) clearly depends on the parameter λ, but

we suppress this dependence in our notation. We emphasize that we do

not assume in the above definition that the function g is either an upper

gradient or a Haj lasz gradient of the function u; the only connection be-

tween these two functions is the one indicated by the Poincaré inequality

in (10.3.1). A function g such that (10.3.1) holds for all balls B in X

will be called a Poincaré gradient of u. The Sobolev space P1,p(X : V )

was introduced by Haj lasz and Koskela in [114]. As with M1,p, elements

of P1,p are µ-equivalence classes of functions. Thus some care should be

taken in comparing P1,p with N1,p.

In this section we consider relationships between the Poincaré–Sobolev
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space P1,p(X : V ) and the earlier Sobolev spaces N1,p(X : V ) and

M1,p(X : V ). We begin with the simplest inclusion. Observe that no

assumptions on X are needed in the following result.

Proposition 10.3.2 If u ∈ M1,p(X : V ) with Haj lasz gradient g, then

u belongs to P1,p(X : V ) with Poincaré gradient 2g.

Proof Integrating the inequality |u(x) − u(y)| ≤ d(x, y)(g(x) + g(y))

(valid for x, y outside of some set E ⊂ X with µ(E) = 0) twice over a

ball B yields∫
B

∫
B

|u(x)− u(y)| dµ(x) dµ(y)

≤ diam(B)

(∫
B

g(x) dµ(x) +

∫
B

g(y) dµ(y)

)
.

The proof is completed by an application of Hölder’s inequality.

The following result is an immediate consequence of the definitions.

Proposition 10.3.3 Assume that X supports a p-Poincaré inequality.

If u is in N1,p(X : V ) with upper gradient g, then the Lp-equivalence class

of u belongs to P1,p(X : V ) with Poincaré gradient Cg, where C depends

only on the data of the Poincaré inequality on X.

To establish the reverse inclusion, we take advantage of the discrete

convolution approximations defined in Section 9.2. In the case 1 < p <∞
the result follows from the weak compactness of N1,p (Theorem 7.3.9).

The case p = 1 is more challenging; we comment on this case in the

notes to this chapter. For simplicity we only consider the case p > 1 in

the following theorem.

Theorem 10.3.4 Assume that the measure on X is doubling, and that

1 < p < ∞. If u ∈ P1,p(X : V ) with Poincaré gradient g, then some

µ-representative of u belongs to N1,p(X : V ) with upper gradient Cg,

where C depends only on the doubling constant of µ.

Proof We consider the discrete convolution approximations (ur) as in

Section 9.2. That is, ur(x) =
∑
i ϕr,i(x)uB(xi,r), where {Bi = B(xi, r)}

is a cover of X with
∑
i χB(xi,6λr) ≤ C and (ϕr,i) denotes the cor-

responding Lipschitz partition of unity. Given the assumptions on the

cover, we know that each ur is locally Lipschitz continous and hence is

also measurable.
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We claim that there exists a constant C, depending only on the dou-

bling constant of µ, so that for each r > 0 the function

gr(x) := C sup
i:Bi3x

(∫
3λBi

g(y)p dµ(y)

)1/p

is an upper gradient of ur. To this end, we show that the inequality

Lipur(x) ≤ C

r
sup

i:3Bi3x

∫
3Bi

|u− u3Bi | dµ (10.3.5)

holds true for every x ∈ X, and then appeal to Lemma 6.2.6; the desired

result then holds since u ∈ P1,p(X : V ). Here

Lipur(x) = lim sup
ρ→0

sup
y∈B(x,ρ)

|ur(x)− ur(y)|
ρ

.

denotes the pointwise upper Lipschitz-constant function of ur as in

(6.2.4).

To prove (10.3.5), fix a ball Bj 3 x from the cover in the first para-

graph of the proof. For 0 < ρ < r and y ∈ B(x, ρ) we compute, using∑
i ϕr,i ≡ 1 and the doubling property of µ, that

|ur(y)− ur(x)| =

∣∣∣∣∣ ∑
i:3Bi3x

(ϕr,i(y)− ϕr,i(x))(uBi − uBj )

∣∣∣∣∣
≤ C

r
d(x, y)

∑
i:3Bi3x

|uBi − uBj |

≤ C

r
d(x, y)

∑
i:3Bi3x

(|uBi − u3Bi |+ |u3Bi − uBj |)

≤ C

r
ρ sup
i:3Bi3x

∫
3Bi

|u− u3Bi | dµ.

The desired estimate (10.3.5) follows upon taking the supremum over

all y ∈ B(x, ρ), dividing by ρ and taking the limit superior as ρ→ 0.

We argue similarly to prove that ur → u in Lp(X : V ). For x ∈ Bj ,

|ur(x)− u(x)| =
∣∣∣∣∑

i

ϕr,i(x)[uBi − u(x)]

∣∣∣∣
≤
∑
i

|uBi − u(x)|ϕr,i(x) ≤
∑

i:2Bi∩Bj 6=∅

|uBi − u(x)|

≤
∑

i:2Bi∩Bj 6=∅

∫
Bi

|u(y)− u(x)| dµ(y).
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Using the fact thatX =
⋃
iBi, the bounded overlap property

∑
i χ6λBi ≤

C, the doubling property of µ, the fact that 5Bj ⊃ Bi whenever 2Bi∩Bj
is nonempty, and Hölder’s inequality, we obtain

∫
X

|ur(x)− u(x)|p dµ(x) ≤
∑
j

∫
Bj

|ur(x)− u(x)|p dµ(x)

≤ C
∑
j

∫
Bj

(∫
5Bj

|u(y)− u(x)| dµ(y)

)p
dµ(x)

≤ C
∑
j

∫
Bj

∫
5Bj

|u(y)− u(x)|p dµ(y) dµ(x)

≤ C
∑
j

∫
Bj

(∫
5Bj

|u(y)− u5Bj |p dµ(y) + |u(x)− u5Bj |p
)
dµ(x)

≤ C rp
∑
j

(∫
Bj

∫
6λBj

g(y)p dµ(y) dµ(x) +

∫
5Bj

|u(x)− u5Bj |p dµ(x)

)

≤ C rp
∑
j

∫
6λBj

gp dµ ≤ C rp
∫
X

gp dµ.

Here we used the fact that the left hand side of (10.3.1) improves to

(∫
B

|u− uB |p dµ
)1/p

≤ C diam(B)

(∫
λB

gp dµ

)1/p

;

this can be verified by examining the proof of Theorem 9.1.32(i). Given

that g ∈ Lp(X) it is now clear that limr→0 ‖ur − u‖Lp(X:V ) = 0.

We have shown that ur ∈ N1,p(X : V ) for each r > 0, and ur converges

in Lp(X : V ) to u. To conclude the proof we appeal to Theorem 7.3.9. To

this end we must show that (ur) is bounded in N1,p(X : V ); it suffices

to verify that (gr) is bounded in Lp(X). We have that

∫
X

gpr dµ = C
∑
i

∫
3Bi

∫
3λBi

g(y)p dµ(y) dµ(x)

≤ C
∑
i

∫
3λBi

g(y)p dµ(y) ≤ C
∫
X

gp dµ;

since g ∈ Lp(X) the proof is complete.
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10.4 The Korevaar–Schoen–Sobolev space

In connection with their study of harmonic mappings into metric spaces

in [164], Korevaar and Schoen introduced yet another notion of Sobolev

space. Historically, this was the first Sobolev space, among those con-

sidered in this chapter, to be defined. In Korevaar and Schoen’s original

definition, the source space was a domain with smooth boundary in a

Riemannian manifold and the target was a metric space. We will con-

sider a variation on their definition, when the source is a metric measure

space and the target is a Banach space. At the conclusion of this section,

we briefly discuss the relationship between our approach and Korevaar

and Schoen’s original theory. This variation appeared first in [168].

Let u : X → V . For x ∈ X and ε > 0, define

epε (x;u) := ε−p
∫
B(x,ε)

|u(y)− u(x)|p dµ(y).

A function u : X → V is said to be in the Korevaar–Schoen–Sobolev

space KS1,p(X : V ) if u ∈ Lp(X : V ) and

Ep(u) := sup
B

lim sup
ε→0

∫
B

epε (x;u) dµ(x) <∞, (10.4.1)

where the supremum is taken over all metric balls B in X. The quantity

Ep(u) in (10.4.1) is called the Korevaar–Schoen p-energy of the function

u. Note that elements of KS1,p are Lp-equivalence classes. We equip

KS1,p(X : V ) with the norm

||u||KS1,p(X:V ) := ||u||Lp(X:V ) + (Ep(u))1/p . (10.4.2)

The principal results of this section are the following two theorems.

Theorem 10.4.3 Assume that the measure on X is doubling. For

p > 1, each element u in KS1,p(X : V ) has a Lebesgue representative ũ

in N1,p(X : V ) satisfying ∫
X

ρpũ dµ ≤ C E
p(u). (10.4.4)

Here C denotes a constant depending only on the doubling constant of

µ and on p.

For the case p = 1, see the notes to this chapter.

Theorem 10.4.5 If µ is a doubling measure, then P1,p(X : V ) ⊂
KS1,p(X : V ).
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Combining Theorems 10.3.3, 10.4.3 and 10.4.5 yields the following

corollary.

Corollary 10.4.6 Assume that the measure on X is doubling, 1 <

p <∞, and that X satisfies a p-Poincaré inequality. Then

P1,p(X : V ) = N1,p(X : V ) = KS1,p(X : V ).

Observe that the definitions of neither the Korevaar–Schoen–Sobolev

space nor the Poincaré–Sobolev space make any reference to either up-

per gradients or to the Poincaré inequality defined using such gradients.

The assumption of the Poincaré inequality in the above corollary is nev-

ertheless necessary; see the example below.

Example 10.4.7 The example of the planar slit disc X = B(0, 1) \
([0, 1]×{0}), equipped with the Lebesgue measure m2 and the Euclidean

metric, demonstrates that without a Poincaré inequality we do not in

general have N1,p(X : V ) ⊂ P1,p(X : V ) nor do we have N1,p(X :

V ) ⊂ KS1,p(X : V ). For this space X, with V = R, we have P1,p(X) =

KS1,p(X) = W 1,p(B(0, 1)) but N1,p(X) = W 1,p(X) 6= W 1,p(B(0, 1)).

To see that without Poincaré inequality we may have KS1,p(X) 6⊂
P1,p(X), we consider the set

Xα := R2 \ {(x, y) ∈ R2 : x > 1 and |y| < x−α}

for α > 1. We equip X = Xα with the Lebesgue measure m2 and

the Euclidean metric. Since Xα is a proper space and the setting is

Euclidean, it is easy to verify that KS1,p(X) = W 1,p(X). On the other

hand, note that with 1 < θ < β < α, the function u = ϕû, where

û(x, y) =


1 if x ≥ 1 and x−α ≤ y ≤ x−β ,
0 if x ≥ 1 and y ≤ −x−α

0 if x < 1 or else x ≥ 1 and y ≥ x−θ

and ϕ ∈ C∞ satisfies ϕ(x, y) = 0 for (x, y) ∈ B((1, 0), 1) and ϕ(x, y) = 1

for (x, y) 6∈ B((1, 0), 2), has an extension to a function in W 1,p(X) when

p ≥ 2. Suppose that this extension, also denoted by u, is in P1,p(X).

Let g ∈ Lp(X), g ≥ 0, be a Poincaré gradient of u. For j ≥ 1, let

zj = (j, j−α) and consider the balls Bj = B(zj , j
−β/2). For sufficiently

large j (for example, j > 161/(α−β)), we know that

1

2
≤ C

∫
Bj

|u− uBj | dm2 ≤ C j−β
(∫

λBj

gp dm2

)1/p

,
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that is, ∫
λBj

gp dm2 ≥
1

C

1

j−β(p−2)
=

1

C
jβ(p−2).

On the other hand, for sufficiently large j the balls λBj are pairwise

disjoint. It follows that if g ∈ Lp(X), we must have
∑∞
j=j0

jβ(p−2) <

∞, which is not possible for p ≥ 2. It follows that when p ≥ 2 no

µ-representative of the function u can be in P1,p(X).

Proof of Theorem 10.4.3 The argument is similar to that in the proof

of Theorem 10.3.4, so we only provide a sketch. Again, as in Section 9.2,

fix ε > 0 and let {Bi = B(xi, ε)}i be a cover of X with
∑
i χ16Bi ≤ C,

and (ϕε,i) the corresponding partition of unity.

Fix a ball B0 = B(x0, R) and δ > 0. By the definition of KS1,p(X : V )

there is a positive number ε0 such that for ε < ε0,∫
B0

∫
B(x,8ε)

|u(x)− u(y)|p

εp
dµ(y) dµ(x) ≤ Ep(u) + δ.

Set uε :=
∑
i uBi ϕε,i. Because

∑
i ϕε,i ≡ 1,

uε(x)− u(x) =
∑
i

(uBi − u(x))ϕε,i(x).

For x ∈ Bj , the bounded overlap property of the cover and the doubling

property of µ imply that

|uε(x)−u(x)|p ≤

 ∑
i:2Bi∩Bj 6=∅

|uBi − u(x)|

p

≤ C
∫
B(x,8ε)

|u(y)−u(x)|p dµ(y).

Hence, assuming ε is sufficiently small (relative to R),∫
1
2B0

|uε(x)− u(x)|p dµ(x) ≤
∑

j:Bj∩
1
2B0 6=∅

∫
Bj

|uε(x)− u(x)|p dµ(x)

≤ C
∑

j:Bj∩
1
2B0 6=∅

∫
Bj

∫
B(x,8ε)

|u(y)− u(x)|p dµ(y) dµ(x)

≤ C εp
∫
B0

∫
B(x,8ε)

|u(y)− u(x)|p

εp
dµ(y) dµ(x)

≤ C εp
(
Ep(u) + δ

)
Since the upper bound in the preceding expression tends to zero as ε→ 0,

we conclude that uε → u in Lp(B0 : V ).
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An argument similar to that in the proof of Theorem 10.3.4 shows

that

gε(x) :=
C

ε
sup

j:Bj3x

∫
4Bj

|u− u4Bj | dµ

is an upper gradient of uε. Note that

gε(x)p ≤ C sup
j:Bj3x

∫
4Bj

∫
B(y,8ε)

|u(y)− u(z)|p

εp
dµ(z) dµ(y)

and hence∫
1
2B0

gpε (x) dµ(x)

≤ C
∑

j:Bj∩
1
2B0 6=∅

∫
Bj

∫
4Bj

∫
B(y,8ε)

|u(y)− u(z)|p

εp
dµ(z) dµ(y) dµ(x)

≤ C
∑

j:Bj∩
1
2B0 6=∅

∫
4Bj

∫
B(y,8ε)

|u(y)− u(z)|p

εp
dµ(z) dµ(y)

≤ C
∫
B0

∫
B(y,8ε)

|u(y)− u(z)|p

εp
dµ(z) dµ(y) ≤ C

(
Ep(u) + δ

)
.

In conclusion, we have constructed an increasing exhaustion of X by

open balls Bn = B(x0, n), n ∈ N, and functions un ∈ N1,p(Bn : V ) with

upper gradients gn ∈ Lp(Bn), so that for each n0, un → u in Lp(Bn : V )

and the values
∫
Bn

gpn dµ remain uniformly bounded in n. The claim now

follows by applying Lemma 7.3.22.

The proof of Theorem 10.4.5 makes use of Riesz potentials Jp,r, p ≥ 1,

r > 0, defined for nonnegative functions g ∈ Lploc(X) by

Jp,rg(x) =

∞∑
k=0

2−kr

(∫
B(x,2−kr)

gp dµ

)1/p

.

The following integral estimates for the Riesz potentials will be proven

after the proof of Theorem 10.4.5.

Lemma 10.4.8 Assume that µ is a doubling measure on X and that

p ≥ 1. Then

(i). there exists a constant C > 0 so that∫
B(x,ε)

(Jp,εg)p dµ ≤ Cεp
∫
B(x,2ε)

gp dµ
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for any x ∈ X and any ε > 0;

(ii). there exists a constant C > 0 so that∫
X

(Jp,εg)p dµ ≤ Cεp
∫
X

gp dµ

for any ε > 0;

Proof of Theorem 10.4.5 Let u ∈ P1,p(X : V ) and choose g ∈ Lp(X) so

that the Poincaré inequality (10.3.1) holds. For Lebesgue points x, y ∈
X of u, and for integers i, we set Bi = B(x, 2−id(x, y)) if i ≥ 0 and

Bi = B(y, 2id(x, y)) if i < 0. Then

|u(x)− u(y)| ≤
∑
i∈Z
|uBi − uBi+1

| ≤
∑
i∈Z

2−|i|d(x, y)

(∫
2λBi

gp dµ

)1/p

≤ C [Jp,2λd(x,y)g(x) + Jp,2λd(x,y)g(y)]

by (10.3.1).

Because of the doubling property of µ, if r1 < r2 then Jp,r1g ≤
C Jp,r2g. For almost every x ∈ X it follows that

epε (x;u) = ε−p
∫
B(x,ε)

|u(x)− u(y)|p dµ(y)

≤ Cε−p
(
Jp,2λεg(x)p +

∫
B(x,ε)

Jp,2λεg(y)p dµ(y)

)

≤ C

(
ε−pJp,4λεg(x)p +

∫
B(x,4λε)

gp dµ

)
by Lemma 10.4.8 (i). Integrating over a ball B ⊂ X yields∫
B

epε (x;u) dµ(x) ≤ Cε−p
∫
B

(Jp,4λεg)p dµ+ C

∫
B

∫
B(x,4λε)

gp dµ dµ(x)

≤ C
∫
X

gp dµ+ C

∫
X

∫
B(x,4λε)

gp dµ dµ(x)

by Lemma 10.4.8 (ii). By Fubini’s theorem and the doubling property

of µ,∫
X

∫
B(x,4λε)

g(y)p dµ(y) dµ(x) =

∫
X

∫
X

χB(x,4λε)(y)

µ(B(x, 4λε))
g(y)p dµ(y) dµ(x)

≤ C
∫
X

∫
X

χB(y,4λε)(x)

µ(B(y, 4λε))
g(y)p dµ(x) dµ(y) = C

∫
X

gp dµ .
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Hence lim supε→0

∫
B
epε (x;u) dµ(x) ≤ C

∫
X
gp dµ. By taking the supre-

mum over all balls, we conclude from the definition (10.4.1) that Ep(u) ≤
C
∫
X
gp dµ <∞. Thus u ∈ KS1,p(X : V ) and the proof is complete.

We will now prove Lemma 10.4.8.

Proof of Lemma 10.4.8 We break the proof into three cases, according

to whether p > Q, p = Q, or p < Q. Here Q is the exponent in (9.1.14).

The proof is similar in technique to that of Theorem 9.1.15.

Let x ∈ X and ε > 0. For z ∈ B(x, ε) and a non-negative integer k0,

Jp,εg(z) =

k0∑
k=0

2−kε

(∫
B(z,2−kε)

gp dµ

)1/p

+

∞∑
k=k0+1

2−kε

(∫
B(z,2−kε)

gp dµ

)1/p

≤ J1 + ε2−k0MχB(x,2ε)g
p(z)1/p,

where MχB(x,2ε)g
p is the Hardy–Littlewood maximal function of the

zero extension of g outside B(x, 2ε). By (9.1.14),

J1 :=

k0∑
k=0

2−kε

(∫
B(z,2−kε)

gp dµ

)1/p

≤
k0∑
k=0

2−kε

µ(B(z, 2−kε))1/p

(∫
B(z,2ε)

gp dµ

)1/p

≤ C ε
k0∑
k=0

2−k(1−Q/p)

(∫
B(x,2ε)

gp dµ

)1/p

.

Now we split the argument into three cases.

Case p > Q. Then
∑∞
k=0 2−k(1−Q/p) <∞, and so

J1 ≤ Cε

(∫
B(x,2ε)

gp dµ

)1/p

,

and letting k0 →∞, we obtain

Jp,εg(z) ≤ Cε

(∫
B(x,2ε)

gp dµ

)1/p

,

from which the desired inequality (i) follows.
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Case p < Q. We may clearly assume that
∫
B(x,2ε)

gp dµ > 0. Note that

J1 ≤ C ε 2
k0

(
Q
p −1

)(∫
B(x,2ε)

gp dµ

)1/p

.

If we choose k0 so that

ε2−k0MχB(x,2ε)g
p(z)1/p ≤ C ε 2

k0

(
Q
p −1

)(∫
B(x,2ε)

gp dµ

)1/p

,

(10.4.9)

then

Jp,εg(z) ≤ 2C ε 2
k0

(
Q
p −1

)(∫
B(x,2ε)

gp dµ

)1/p

.

Inequality (10.4.9) holds if and only if

2−k0Q/p ≤ C

MχB(x,2ε)gp(z)1/p

(∫
B(x,2ε)

gp dµ

)1/p

; (10.4.10)

it follows from
∫
B(x,2ε)

gp dµ > 0 that MχB(x,2ε)g
p(z) > 0. If the term

on the right hand side of (10.4.10) is not larger than 1, then we can

choose k0 such that

2−k0Q/p ≈ C

MχB(x,2ε)gp(z)1/p

(∫
B(x,2ε)

gp dµ

)1/p

,

from which we get

Jp,εg(z) ≤ C εMχB(x,2ε)g
p(z)

1
p−

1
Q

(∫
B(x,2ε)

gp dµ

)1/Q

. (10.4.11)

On the other hand, if

C

MχB(x,2ε)gp(z)1/p

(∫
B(x,2ε)

gp dµ

)1/p

> 1,

then we can choose k0 = 0, in which case

Jp,εg(z) ≤ C ε

(∫
B(x,2ε)

gp dµ

)1/p

. (10.4.12)

Each point in B(x, ε) satisfies at least one of (10.4.11), (10.4.12). Let
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A1 denote the collection of all points for which (10.4.11) holds, and A2

denote the collection of all remaining points. For t > 0, we have by the

Hardy–Littlewood maximal theorem 3.5.6,

µ({z ∈B(x, ε) ∩A1 : Jp,εg(z) > t})

≤ µ

{z ∈ B(x, ε) : MχB(x,2ε)g
p(z) >

tpQ/(Q−p)

C εpQ/(Q−p)
(∫

B(x,2ε)
gp dµ

)p/(Q−p)}


≤ C εpQ/(Q−p)

tpQ/(Q−p)

(∫
B(x,2ε)

gp dµ

)p/(Q−p) ∫
B(x,2ε)

gp dµ

≤ C εpQ/(Q−p)

tpQ/(Q−p)
µ(B(x, 2ε))

(∫
B(x,2ε)

gp dµ

)Q/(Q−p)
.

By (10.4.12),

µ({z ∈B(x, ε) ∩A2 : Jp,εg(z) > t})

≤ µ

{z ∈ B(x, ε) :

(∫
B(x,2ε)

gp dµ

)1/p

> C−1 t

ε

}
≤ C εp

tp

∫
B(x,2ε)

gp dµ ≤ C εp

tp
µ(B(x, 2ε))

∫
B(x,2ε)

gp dµ

≤ C εpQ/(Q−p)

tpQ/(Q−p)
µ(B(x, 2ε))

(∫
B(x,2ε)

gp dµ

)Q/(Q−p)
.

where, in deriving the last inequality, we used the fact that in order for

the set{
z ∈ B(x, ε) : MχB(x,2ε)g

p(z) >
tpQ/(Q−p)

C εpQ/(Q−p)
(∫

B(x,2ε)
gp dµ

)p/(Q−p)}

to be non-empty, we need t < 2Cε
(∫

B(x,2ε)
gp dµ

)1/p

and pQ/(Q−p) >
1. Combining the above two estimates, we have

µ({z ∈ B(x, ε) : Jp,εg(x) > t})

≤ 2C
(ε
t

)Qp/(Q−p)
µ(B(x, 2ε))

(∫
B(x,2ε)

gp dµ

)Q/(Q−p)
.

A careful tracking of the constant Cp in relation to the constant C1 in
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the proof of Theorem 3.5.6 yields(∫
B(x,ε)

Jp,εg(z)p dµ(z)

)1/p

≤ C µ(B(x, 2ε))
1
p−

1
p∗ ε µ(B(x, 2ε))1/p∗

(∫
B(x,2ε)

gp dµ

)Q/(p∗(Q−p))
,

from which the desired inequality (i) follows.

Case p = Q. The method in this case is similar to the previous case,

with a slight variation. In this case,

J1 ≤ C ε
k0∑
k=0

(∫
B(x,2ε)

gp dµ

)1/p

≤ C ε 2k0

(∫
B(x,2ε)

gp dµ

)1/p

.

Now we proceed as before choosing a suitable k0. If

C

(∫
B(x,2ε)

gp dµ

)1/p

≥MχB(x,2ε)g
p(z)1/p

then choose k0 = 0, and if

C

(∫
B(x,2ε)

gp dµ

)1/p

< MχB(x,2ε)g
p(z)1/p,

then choose k0 so that 2−2k0 ≈ C
(∫

B(x,2ε)
gp dµ

)1/p

/MχB(x,2ε)g
p(z)1/p,

and then proceeding as in the case p < Q, we again obtain inequality (i).

Inequality (ii) follows from inequality (i) via a covering argument.

Korevaar–Schoen spaces on domains. We now give an alternate

definition of the Korevaar–Schoen–Sobolev space KS1,p(X : V ). In case

X is proper, the two definitions coincide. The new definition which we

give is more appropriate if we wish to consider such spaces defined on

domains Ω ⊂ X. In this way, we will eventually relate our definition to

the original Sobolev spaces considered by Korevaar and Schoen.

For a map u : X → V from a metric measure space X = (X, d, µ) into

a Banach space V , we define epε (x;u), x ∈ X, ε > 0, p ≥ 1, as before,

and we set

Ẽp(u) := sup
ϕ

lim sup
ε→0

∫
X

ϕ(x)epε (x;u) dµ(x) , (10.4.13)
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where the supremum is taken over all continuous, compactly supported

functions u : X → [0, 1]. Then u is said to be in the (modified) Korevaar–

Schoen–Sobolev space K̃S
1,p

(X : V ) if Ẽp(u) is finite. It is clear that this

definition agrees with the prior one in the case when X is proper, i.e.,

closed balls in X are compact.

The revised definition extends naturally to domains Ω ⊂ X. For a

map u : Ω→ V we consider

Ẽp(u) := sup
ϕ

lim sup
ε→0

∫
Ω

ϕ(x)epε (x;u) dµ(x) , (10.4.14)

the supremum taken over all continuous, compactly supported functions

u : Ω→ [0, 1]. Observe that epε (x;u) is defined provided x lies in

Ωε := {z ∈ Ω : dist(z,X \ Ω) > ε},

and the integral in (10.4.14) makes sense when ε < dist(spt(ϕ), X \ Ω).

Theorems 10.4.5 and 10.4.3 remain true for the spaces P1,p(Ω : V ),

KS1,p(Ω : V ) and N1,p(Ω : V ) under appropriate hypotheses.

Remark 10.4.15 The original definition by Korevaar and Schoen,

based on (10.4.14), (with even more general metric space targets) was

in the setting of smoothly bounded domains in a Riemannian manifold

M , with compact completion Ω.

10.5 Summary

We summarize the results of this chapter in the following theorems.

A combination of Proposition 10.3.2 with Theorems 10.3.4, 10.1.1, and

10.4.5 gives the following theorem.

Theorem 10.5.1 Let µ be a doubling measure and assume that p > 1.

Then

M1,p ⊂ P1,p ⊂ KS1,p ⊂ N1,p = Ch1,p.

Combining Theorem 10.5.1, Corollary 10.4.6, (8.1.10), and Lemma 3.5.10

gives the following theorem.

Theorem 10.5.2 Let µ be a doubling measure and assume that X

satisfies the p-Poincaré inequality for some p > 1. Then

M1,p ⊂ P1,p = KS1,p = N1,p = Ch1,p ⊂
⋃
q<p

M1,q.
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Furthermore, the norms ||·||N1,p = ||·||Ch1,p and ||·||KS1,p are comparable.

From Theorem 10.5.2 and Corollary 10.2.9, we obtain the following.

Theorem 10.5.3 Let µ be a doubling measure, let p > 1 and assume

that X satisfies the q-Poincaré inequality for some 1 ≤ q < p. Then

M1,p = P1,p = KS1,p = N1,p = Ch1,p.

Furthermore, the norms || · ||M1,p , || · ||N1,p = || · ||Ch1,p and || · ||KS1,p are

all comparable.

In these theorems, all Sobolev spaces consist of V -valued functions on

a metric measure space X for a given Banach space V .

The assumption of a better Poincaré inequality in Theorem 10.5.3 is

not restrictive, at least if the metric space X is complete. We will discuss

this further in Chapter 12.

10.6 Notes to Chapter 10

The claim of Theorem 10.5.3 fails to hold for p = 1 even in the classical

Euclidean setting. In this setting, one still has

W 1,1 = N1,1 = KS1,1 = P 1,1

but M1,1 ( N1,1 and N1,1 ( Ch1,1. In fact, M1,1 consists of those

functions in L1 whose first order partial derivatives belong to the Hardy

space H1, and Ch1,1 coincides with the space of functions of bounded

variation. For these results see [164], [87], [169], and [81]. For results in

the metric setting see [87], [6], [13], [209].

In current literature there are further theories of Sobolev type spaces

of functions in the metric setting that we do not cover in this book.

An axiomatic approach to the theory of Sobolev spaces was considered

by Gol’dstein and Troyanov in [97], [98], and [96], where they identify

axioms that drive the theory of Sobolev spaces in the metric setting.

Observe that in metric spaces, such as the Sierpiński gasket, where

there are not enough non-constant rectifiable curves to support a Poincaré

inequality, the theory of Sobolev spaces as considered in this book may

not be suitable. In a subclass of such fractal metric spaces, including the

so-called post-critically finite fractals, an alternate notion of Sobolev

spaces (for p = 2) is based on the theory of Dirichlet forms developed by

Beurling and Deny [28], [72]. For further information see Section 14.3.



11

Gromov–Hausdorff convergence and
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In this chapter, we first review in detail the fundamental notion of

Gromov–Hausdorff convergence of metric spaces, including its measured

version. In particular, we state and prove Gromov’s compactness theo-

rem which roughly speaking states that each family of uniformly dou-

bling metric spaces is precompact with respect to the Gromov–Hausdorff

convergence. Then we study the persistence of doubling measures and

Poincaré inequalities under this convergence. Taken together, these re-

sults ensure that a central class of metric spaces considered in this book

(doubling metric measure spaces supporting a Poincaré inequality) is

complete when considered in the Gromov–Hausdorff distance.

11.1 The Gromov–Hausdorff distance

Let (Z, d) be a metric space. For ε > 0 and A ⊂ Z nonempty, the

ε-neighborhood of A is defined as the set

Nε(A) := {z ∈ Z : dist(z,A) < ε} =
⋃
a∈A

B(a, ε). (11.1.1)

The Hausdorff distance in Z between nonempty subsets A,B ⊂ Z is

dZH(A,B) := inf{ε > 0 : A ⊂ Nε(B) and B ⊂ Nε(A)}. (11.1.2)

It is clear that dZH(A,B) = dZH(B,A), and an elementary calculation

reveals that the triangle inequality is satisfied:

dZH(A,B) ≤ dZH(A,C) + dZH(C,B) .

Thus dZH behaves like a metric on the collection of all nonempty subsets

of Z, modulo two issues: it can take on the value ∞, and dZH(A,B) =

0 does not necessarily mean that A = B. For example, the distance

between any set A ⊂ Z and its closure A is zero. However, we have the

following result (whose proof is left to the reader).

Proposition 11.1.3 We have dZH(A,B) > 0 for every pair of distinct

closed subsets A and B in Z. In particular, dZH defines a metric on the

collection of all nonempty closed and bounded subsets of Z.

A set A ⊂ Z is called an ε-net, where ε > 0, if Nε(A) = Z; that is, if

every point in Z is within distance ε from some point in A. If A is an

ε-net in Z, then dZH(A,Z) ≤ ε. Extending the notion of ε-nets, we say

that A ⊂ Z is a 0-net if A is dense in Z.

We denote by KZ the collection of all nonempty closed and bounded
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subsets of Z. Recall that a metric space (Z, d) is said to be totally bounded

if it contains a finite ε-net for each ε > 0.

Proposition 11.1.4 (i). If Z is complete, then (KZ , dZH) is complete.

(ii). If Z is totally bounded, then (KZ , dZH) is totally bounded.

(iii). If Z is compact, then (KZ , dZH) is compact.

Proof To prove (i), let A1, A2, . . . be a Cauchy sequence in (KZ , dZH).

We may assume that

dZH(Ai, Ai+1) < 2−i (11.1.5)

for every i. Let

A =
⋂
i

⋃
j≥i

Aj .

Then A is closed and bounded, and we claim that dZH(Ai, A) → 0 as

i → ∞. To this end, fix ε > 0. Suppose that there are infinitely many

sets Ai1 , Ai2 , . . . that meet Z \ Nε(A); we assume that ik < ik+1 and

that 2−i1+1 < ε/10. Fix a point ai1 ∈ Ai1 \Nε(A). By (11.1.5),

dZH(Ai1 , Ai2) < 2−i1+1 ,

which yields a point ai2 ∈ Ai2 such that d(ai2 , ai1) < 2−i1+1 and

dist(ai2 , A) ≥ dist(ai1 , A)− 2−i1+1 ≥ 9ε/10 .

Suppose now that we have found points ai1 ∈ Ai1 , . . . , aik ∈ Aik such

that

dist(aik , A) ≥ (8 + 2−k+2)ε/10 .

Because

dZH(Aik , Aik+1
) < 2−ik+1 ,

there is a point aik+1
∈ Aik+1

such that d(aik , aik+1
) ≤ 2−ik+1 and hence

dist(aik+1
, A) ≥ (8 + 2−k+2)ε/10− 2−ik+1

≥ (8 + 2−k+2)ε/10− 2−k+1ε/10

= (8 + 2−(k+1)+2)ε/10 .

By construction, the sequence (aik) is a Cauchy sequence in Z. It fol-

lows from the preceding and from the completeness of Z that there is

a point a ∈ Z satisfying limk→∞ aik = a while dist(a,A) ≥ 8ε/10. This

contradicts the definition of A, and we conclude that Ai ⊂ Nε(A) for all

sufficiently large i. A similar reasoning shows that A ⊂ Nε(Ai) for all
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sufficiently large i. Indeed, suppose that there are infinitely many indices

i1 < i2 < . . . and points aik ∈ A \Nε(Aik). By the definition of A, there

also are points ajk ∈ B(aik , ε/10) ∩ Ajk for all k and for some sequence

j1 < j2 < . . . . Then

dZH(Ajk , Aik) ≥ dist(aik , Aik)− d(aik , ajk) ≥ ε− ε/10 .

Because the left hand side of the preceding inequality tends to zero as

k →∞, we have a contradiction as desired. This concludes the proof of

(i).

For part (ii), let ε > 0 and let S be a finite ε-net in Z. Then the set

of all subsets of S is a finite ε-net in KZ .

Part (iii) follows from parts (i) and (ii) and from the fact that a

complete metric space is compact if and only if it is totally bounded.

The proof of the proposition is complete.

The Hausdorff metric as introduced in the preceding discussion mea-

sures the distance between subsets of a fixed metric space. To measure

the distance between two abstract metric spaces, we consider isometric

realizations of the two spaces in a larger space and take the infimum of

the resulting Hausdorff distances. For simplicity, we will only consider

separable metric spaces, and employ the Fréchet embedding theorem 4.1

to this end.

The Gromov–Hausdorff distance between two separable metric spaces

X and Y is

dGH(X,Y ) := inf d∞H (i(X), j(Y )) , (11.1.6)

where d∞H := dl
∞

H is the Hausdorff distance in l∞ and the infimum is

taken over all isometric embeddings i : X → l∞ and j : Y → l∞. Recall

that the aforementioned Fréchet embedding theorem ensures that such

embeddings always exist.

Lemma 11.1.7 The distance function dGH satisfies the triangle in-

equality on the class of all separable metric spaces.

Proof Given three separable metric spaces X,Y, Z we are free to choose

isometric embeddings iX , iY , iZ of X,Y, Z respectively into l∞. Now the

fact that the Hausdorff metric d∞H on the subsets of l∞ validates the

triangle inequality implies that dGH also satisfies the triangle inequality,

upon taking the infimum over all embeddings iX , iY , iZ .

We do not call dGH a metric because it might well be that dGH(X,Y ) =

∞ for some separable metric spaces X, Y .
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We write

Xi
GH→ X (11.1.8)

if X,X1, X2, . . . are metric spaces such that limi→∞ dGH(Xi, X) = 0.

We also say that the sequence (Xi) Gromov–Hausdorff converges to X

in this case.

Given two metric spaces X,Y, a simpler formulation of the Gromov–

Hausdorff distance is given in terms of metrics on the disjoint union

X
∐
Y := X × {0} ∪ Y × {1}. The copy of X inside X

∐
Y , namely

X × {0}, is from now on also denoted by X, and similarly Y × {1} is

identified with Y .

Proposition 11.1.9 The value of dGH(X,Y ) is unchanged if we con-

sider either of the following two quantities:

(i). the infimum of the values dZH(ι(X), ι′(Y )) over all metric spaces (Z, dZ)

and isometric embeddings ι : X → Z and ι′ : Y → Z,

(ii). the infimum of the values dZ0

H (X,Y ) over all metrics on Z0 := X
∐
Y

that agree with the given metrics on X and Y .

Proof Denote by d1 the value of the infimum in (i) and by d2 the value

of the infimum in (ii). It is clear that d1 ≤ dGH(X,Y ). To complete the

proof we show first that dGH(X,Y ) ≤ d2 and then that d2 ≤ d1.

Let d be a metric on Z0 = X
∐
Y that agrees with the given metrics

on X and Y . Choose an isometric embedding κ : Z0 → l∞. Then

dGH(X,Y ) ≤ d∞H (κ(X), κ(Y )) = dZ0

H (X,Y ),

which proves the first inequality. Next, let (Z, dZ), ι : X → Z, and

ι′ : Y → Z be a triple as in (i) (observe that such a triple always exists,

for example, with Z = l∞). For each δ > 0 we can extend the metrics

dX on X and dY on Y to a metric dδ on Z0 = X
∐
Y by setting

dδ(x, y) := dZ(ι(x), ι′(y)) + δ

for x ∈ X and y ∈ Y . Relative to the metric dδ, we have

dZ0

H (X,Y ) ≤ dZH(ι(X), ι′(Y )) + δ.

Taking the infimum over all δ and all triples Z, ι, ι′ as above finishes the

proof.

For future purposes, it will be useful to reformulate the notion of

Gromov–Hausdorff distance in terms of approximate isometries. Let

(X, dX) and (Y, dY ) be two metric spaces, let A ⊂ X, and let δ, εX , εY
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be non-negative parameters. We say that a (possibly non-continuous)

map f : A → Y is a (δ, εX , εY )-approximate isometry if A is an εX -net

in X, f(A) is an εY -net in Y , and

|dY (f(x1), f(x2))− dX(x1, x2)| ≤ δ (11.1.10)

for all x1, x2 ∈ A. We say that X and Y are (δ, εX , εY )-approximately

isometric if there exists a map f : A → Y as above for some εX -net

A ⊂ X. If the condition holds for some triple of parameters δ, εX , εY ,

we say merely that X and Y are approximately isometric.

It is easy to see that the relation of approximate isometry is symmetric

in the sense that if X and Y are (δ, εX , εY )-approximately isometric,

then Y and X are (δ, εY , εX +δ)-approximately isometric. The following

proposition ensures that the relation is transitive as well. Consequently,

the relation of approximate isometry is an equivalence relation among

separable metric spaces.

Proposition 11.1.11 Let X and Y be separable metric spaces. If

dGH(X,Y ) < η for some η > 0, then X and Y are (2η, 0, 2η)-approx-

imately isometric. Conversely, if X and Y are (δ, εX , εY )-approximately

isometric, then

dGH(X,Y ) ≤ max{εX , εY }+ δ/2.

Proof Suppose first that dGH(X,Y ) < η. We may assume that X,Y ⊂
l∞ with d∞H (X,Y ) < η. For each a ∈ X, we may choose a point a′ ∈ Y
with ||a−a′||∞ < η. Define f : X → Y by setting a′ = f(a). Then f(X)

is a 2η-net in Y because for every y ∈ Y there is some xy ∈ X with

‖xy − y‖∞ < η, and so ‖y − f(xy)‖∞ < 2η. Moreover, for x1, x2 ∈ X,

dX(x1, x2)−2η = ||x1−x2||∞−2η < ||f(x1)−f(x2)||∞ < ||x1−x2||∞+2η

for x1, x2 ∈ X as desired.

For the converse, assume that f : A → Y satisfies (11.1.10) for some

δ > 0, where A is an εX -net in X and f(A) is an εY -net in Y . Define a

distance function d on Z0 = X
∐
Y extending the metrics on X and Y

by setting

d(x, y) = d(y, x) := inf
a∈A
{dX(x, a) + dY (f(a), y)}+

δ

2
(11.1.12)

for x ∈ X and y ∈ Y . Because of the additive term δ/2 in the definition of

d(x, y) above, it is clear that d(z, w) = 0 if and only if both z, w ∈ X with

z = w, or both z, w ∈ Y with z = w. It is easy to verify that d satisfies the

triangle inequality, and hence defines a metric on Z0. Another elementary
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calculation reveals that dZ0

H (X,Y ) ≤ max{εX , εY } + δ/2. Part (ii) of

Proposition 11.1.9 gives dGH(X,Y ) ≤ dZ0

H (X,Y ), which completes the

proof.

In (11.1.12), we could replace δ/2 by any positive number smaller than

δ/2 as well.

Proposition 11.1.11 allows us to further reformulate the notion of

Gromov-Hausdorff convergence in terms of ε-nets. The following propo-

sition is used in the proof of Gromov’s compactness theorem 11.2.

Proposition 11.1.13 Let X,X1, X2, . . . be compact metric spaces.

Then Xi
GH→ X if and only if for each ε > 0 there exist finite ε-nets

Si ⊂ Xi and S ⊂ X such that Si
GH→ S.

Proof Suppose first that the statement involving nets is true. Fix ε > 0.

Then dGH(S, Si) < ε/2 for all sufficiently large i. We also know that

dGH(S,X) and dGH(Si, Xi) are no more than ε. Thus by Lemma 11.1.7,

we see that dGH(X,Xi) < 3ε if i is sufficiently large. Since ε is arbitrary,

the proof of this half is complete.

Next, assume that Xi
GH→ X and let ε > 0. Fix 0 < δ ≤ ε/8; for

all sufficiently large i we have dGH(Xi, X) ≤ δ. Let S be a finite ε/2-

net in X, and choose a (2δ, 0, 2δ)-approximate isometry fi : X → Xi

guaranteed by Proposition 11.1.11. Writing Si := fi(S) and using the

restriction on δ, we find that Si is an ε-net in Xi. Clearly fi defines a

(2δ, 0, 0)-approximate isometry from S to Si, whence dGH(Si, S) ≤ δ by

Proposition 11.1.11. Since δ was arbitrary, this suffices to complete the

proof.

As a further consequence of Proposition 11.1.11, we deduce the fol-

lowing

Theorem 11.1.14 The Gromov–Hausdorff distance defines a metric

on the collection of all isometry classes of compact metric spaces.

By the isometry class of a metric space we mean the collection of all

metric spaces that are isometric with the space (cf. Section 4.1).

Proof Let X and Y be compact metric spaces with dGH(X,Y ) = 0.

We must show that X and Y are isometric. By Proposition 11.1.11,

for each i = 1, 2, . . . there exists a (1/i, 0, 1/i)-approximate isometry

fi : X → Y . Choose a countable dense subset S ⊂ X. By a Cantor

diagonal-type argument we may arrange, after passing to a subsequence
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(ik), that the limit f(x) := limk→∞ fik(x) exists for every x ∈ S. Since

fik satisfies the approximate isometry criterion

|dY (fik(x1), fik(x2))− dX(x1, x2)| < 1

ik

for x1, x2 ∈ S, it follows that f is an isometric embedding of S into Y .

Moreover, f(S) is dense in Y since fik(X) is a 1/ik-net in Y . Then f

may be extended to an isometry from X onto Y .

The triangle inequality follows from Lemma 11.1.7. Since X, Y are

compact metric spaces, dGH(X,Y ) is finite. The theorem follows.

Denote byMC the collection of all isometry classes of compact metric

spaces. Then we have the following fundamental fact.

Theorem 11.1.15 The metric space (MC , dGH) is complete, separa-

ble, and contractible.

For the separability claim in the theorem, we observe that the collec-

tion of all finite metric spaces is dense inMC . On the other hand, given

a metric space X with n points, the isometry classes of metrics on X are

described by a subclass of the class of symmetric n× n matrices, which

is a subset of the separable space Rn2

. Contractibility is established by

considering, for each X = (X, d) ∈ MC , the family of metric spaces

λX = (X,λd), 0 < λ ≤ 1. The hard part is to prove completeness. We

defer this proof to the next section, until after the proof of Gromov’s

compactness theorem 11.2.

11.2 Gromov’s compactness theorem

A family X of compact metric spaces is said to be uniformly compact

if there exist a constant D < ∞ and a function N : (0,∞) → (0,∞)

such that for each X ∈ X the following two conditions hold true: (i)

diam(X) ≤ D, and (ii) X contains, for every ε > 0, an ε-net of at most

N(ε) number of points.

Note that the family KZ of compact subsets of a fixed compact met-

ric space Z is uniformly compact. Proposition 11.1.4 asserts that this

family forms a compact metric space when endowed with the Hausdorff

metric dZH . The following theorem, which is fundamental to the theory of

Gromov–Hausdorff convergence, states an analogous result for abstract

families of uniformly compact metric spaces endowed with the Gromov–

Hausdorff distance.
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Gromov compactness theorem Every uniformly compact family of

metric spaces is precompact in the Gromov–Hausdorff distance. More

precisely, every sequence of metric spaces in a uniformly compact family

of compact metric spaces contains a subsequence that converges in the

Gromov–Hausdorff distance to a compact metric space.

The proof of Theorem 11.2 makes use of the following lemma, which

we leave as an exercise for the interested reader.

Lemma 11.2.1 Let (Xi) be a sequence of separable metric spaces and

let X = {x1, · · · , xm} be a finite metric space. Then the following are

equivalent:

(i). (Xi) converges in the Gromov–Hausdorff metric to X,

(ii). each Xi may be expressed as a union of m nonempty subsets Xi,1, . . . , Xi,m

such that

max
k

diam(Xi,k)→ 0

and that

max
k,l
|dist(Xi,k, Xi,l)− d(xk, xl)| → 0

as i→∞.

Proof of Theorem 11.2 Let X be a uniformly compact family with data

D and N , and let (X1, d1), (X2, d2), . . . be a sequence of spaces in X .

For each i, k ≥ 1, choose a 1
k -net Si,k in Xi of cardinality at most

N(1/k). By first choosing a subsequence if necessary, we may assume

that limi #
⋃
k Si,k =: N exists. Here #K denotes the cardinality of the

finite set K. If N is finite, then we let S = {1, . . . , N}, and if N = ∞
we set S = N. We need to equip S with a metric e. To do so we pro-

ceed as follows. Let Si :=
⋃
k Si,k. Since Si is countable, we have an

enumeration Si = {xi,1, xi,2, · · · } such that Si,1 = {xi,1, . . . , xi,m1},
Si,2 = {xi,m1+1, . . . , xi,m2

}, etc. By passing to a subsequence of the

sequence (Si) if necessary, we may assume that limi di(xi,1, xi,2) =: d1,2

exists. By passing to a further subsequence, we may assume also that

limi di(xi,1, xi,3) =: d1,3 exists and that limi di(xi,2, xi,3) =: d2,3 exists.

Proceeding inductively over S × S, and then using a Cantor diagonal-

ization process, we have a subsequence, also denoted (Si), such that for

n,m ∈ S, we have the existence of the limit

lim
i
di(xi,m, xi,n) =: dm,n.
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We set e(n,m) := dn,m. Note that

e(m,n) := lim
i→∞

di(xi,m, xi,n) . (11.2.2)

It is easy to see that e is non-negative and symmetric, but there might be

distinct n,m ∈ S for which e(n,m) = 0. A direct computation using the

triangle inequality for di tells us also that e satisfies a triangle inequality.

Hence the space S∞ = S/ ∼, with n ∼ m if and only if e(n,m) = 0, is

a metric space equipped with the metric e. Let X be the completion of

(S∞, e).

We claim that X is compact. For this, it suffices to prove that X is

totally bounded. For each k ≥ 1, the set Ski := Si,1 ∪ · · · ∪ Si,k ⊂ Si
is a 1

k -net in Xi and has cardinality Ni,k ≤ N(1) + · · · + N(1/k). Set

Nk = limiNi,k. We now check that Sk := {1, . . . , Nk} is a 1
k -net in

(S∞, e), which suffices.

Given m ∈ S, there is, for every i, a point xi,ni ∈ Ski for some ni =

{1, . . . , Nk} such that di(xi,m, xi,ni) ≤ 1
k . Because Nk is independent of

i and because the limit in (11.2.2) exists, we infer that e(m,n) ≤ 1
k for

some n = {1, . . . , Nk}. It follows that X is compact.

Finally, we claim that Xi
GH→ X. Since the spaces Ski and Sk are

all finite metric spaces and di(xi,m, xi,n) → e(m,n) for all relevant

xi,m, xi,n ∈ Ski and m,n ∈ Sk, Lemma 11.2.1 implies that Ski
GH→ Sk

for each k. Therefore, by Proposition 11.1.13, Xi
GH→ X. The proof is

complete.

We are now ready to prove Theorem 11.1.15.

Proof of Theorem 11.1.15 Separability and contractibility of the space

(MC , dGH) were already established right after the statement of the

theorem. As for completeness, it easily follows from the definitions that

each Cauchy sequence (Xi) in MC is uniformly compact. Indeed, given

ε > 0, there is a positive integer iε such that dGH(Xi, Xj) < ε/3 for

i, j ≥ iε. Let Aε be an ε/3-net in Xiε . The set Aε is a finite set because

Xiε is compact. For j ≥ iε, by the fact that dGH(Xiε , Xj) < ε/3, we

may find isometries of Xiε , Xj into l∞ such that the Hausdorff distance

between the embedded images of Xiε and Xj is smaller than ε/3. Thus,

for each a ∈ Aε we can find a point xa,j ∈ Xj such that the distance

between the embedded images of a and xa,j is smaller than ε/3. It now

follows from dGH(Xiε , Xj) < ε/3 that the set Aε,j = {xa,j : a ∈ Aε} is

an ε-net in Xj with cardinality at most Nε = #Aε. For each i < iε, the

compact space Xi contains an ε-net of cardinality Nε,i. Now the choice
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N(ε) := max{Nε,1, · · · , Nε,iε−1, Nε} satisfies the uniform compactness

condition for the sequence. By Theorem 11.2, each such sequence has a

Gromov–Hausdorff limit which is in turn compact. The isometry class

of the limit is unique by Theorem 11.1.14. This completes the proof.

11.3 Pointed Gromov–Hausdorff convergence

The definition for Gromov-Hausdorff convergence presented in the first

section of this chapter makes sense for arbitrary (separable) metric

spaces. However, it is unduly restrictive in the noncompact case. For

example, consider the sequence of circles Ci := {x ∈ R2 : |x− ie2| = i},
i = 1, 2, . . . , as subsets of R2. For fixed r > 0, the (closed) balls of radius

r centered at the origin 0 ∈ Ci look increasingly similar to the corre-

sponding ball in R, i.e., the interval [−r, r]. We would like to say that

Ci converges to R in the limit as i→∞. However, dGH(Ci,R) =∞ for

all i.

In what follows, we will only define Gromov-Hausdorff convergence

(and not an actual distance) for noncompact spaces. We consider pointed

spaces, i.e., the triple (X, d, a) of a metric space (X, d) together with a

point a ∈ X, or simply, pairs (X, a) with a ∈ X, and formulate the

definition in terms of a version of the approximate isometry criterion of

Proposition 11.1.11.

Definition 11.3.1 A sequence of pointed separable metric spaces

(X1, d1, a1), (X2, d2, a2), . . .

is said to pointed Gromov–Hausdorff converge to a pointed separable

metric space (X, d, a) if for each r > 0 and 0 < ε < r there exists i0 such

that for each i ≥ i0 there is a map fi = f εi : B(ai, r)→ X satisfying:

(i). fi(ai) = a;

(ii). |d(fi(x), fi(y))− di(x, y)| < ε for all x, y ∈ B(ai, r);

(iii). B(a, r − ε) ⊂ Nε(fi(B(ai, r))).

We denote this mode of convergence by (Xi, di, ai)
GH→ (X, d, a), or sim-

ply by (Xi, ai)
GH→ (X, a).

Note that conditions (i) and (ii) imply that

fi(B(ai, r)) ⊂ B(a, r + ε). (11.3.2)
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This and (iii) together give in turn that

B(a, r − ε) ⊂ Nε(fi(B(ai, r))) ⊂ B(a, r + 2ε) . (11.3.3)

It can be directly verified that if X is a length space (as in Sec-

tion 5.1)), then (ii) and (iii) mean, in our terminology, that fi : B(ai, r)→
B(a, r + 2ε) is an (ε, 0, 3ε)-approximate isometry, see (11.1.10).

Remark 11.3.4 The preceding definition for pointed Gromov–Haus-

dorff convergence would make perfect sense even without the require-

ment of separability. Similarly, the separability requirement could be

dropped from the definition of Gromov–Hausdorff distance, by replac-

ing it with either of the two conditions (i) or (ii) of Proposition 11.1.9.

To avoid unnecessary generalities, we retain our standing separability

assumption, essential for certain other aspects of this book. When deal-

ing with Gromov–Hausdorff convergence, we may not always mention

the assumption that the spaces in question are separable; it is tacitly

assumed.

What is more, in our main applications, we will be dealing with yet

more restrictive type of metric spaces, namely length spaces. For such

spaces, the pointed Gromov–Hausdorff convergence takes a yet simpler

form. See Proposition 11.3.12 and [49, Section 7.5].

We now show that the new notion of convergence coincides with the

previous notion for bounded spaces.

Proposition 11.3.5 Let X,X1, X2, . . . be bounded and separable met-

ric spaces.

(i). If supi diam(Xi) < ∞ and (Xi, di, ai)
GH→ (X, d, a) for some ai ∈ Xi

and a ∈ X, then Xi
GH→ X.

(ii). If Xi
GH→ X and a ∈ X, then there exist points ai ∈ Xi such that

(Xi, di, ai)
GH→ (X, d, a).

Proof To prove (i), set R := supi diam(Xi). Fix r > max{R,diam(X)}
and let 0 < ε < r − max{R,diam(X)}. By assumption, by Defini-

tion 11.3.1 (iii) and by the choice of ε and r (which guarantees that

X = B(a, r − ε)), we know that for all i ≥ iε there exists an (ε, 0, ε)-

approximate isometry fi from B(ai, r) = Xi to B(a, r − ε) = X. This

and Proposition 11.1.11 then give that dGH(X,Xi) ≤ 2ε for all i ≥ iε.

Thus Xi
GH→ X.

Next we turn to part (ii). Let r > ε > 0 be arbitrary. Choose i0 so

large that dGH(Xi, X) ≤ ε/8 for i ≥ i0. By Proposition 11.1.11, there
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exists an (ε/4, 0, ε/4)-approximate isometry gi : Xi → X. Choose points

ai ∈ Xi satisfying d(gi(ai), a) < ε/4 and define fi : Xi → X by

fi(x) =

{
gi(x), if x 6= ai,

a, if x = ai.

We claim that the restriction of fi to the ball B(ai, r) satisfies the con-

ditions in Definition 11.3.1. It suffices to verify condition (ii) of Defini-

tion 11.3.1 in the case y = ai, x 6= ai. In this case

|d(fi(x), fi(ai))− di(x, ai)| = |d(gi(x), a)− di(x, ai)|
≤ |d(gi(x), a)− d(gi(x), gi(ai))|

+ |d(gi(x), gi(ai))− di(x, ai)|
≤ d(a, gi(ai)) + ε/4 ≤ ε/4 + ε/4 = ε/2.

For condition (iii) of Definition 11.3.1, let x ∈ B(a, r − ε) and choose

y ∈ Xi with d(gi(y), x) < ε/4. Since

d(gi(y), gi(ai)) ≤ d(gi(y), x) + d(x, a) + d(a, gi(ai)) < r − ε/2 ,

we find that y ∈ B(ai, r). Because also d(x, fi(y)) ≤ d(x, gi(y)) +

d(gi(y), fi(y)) < ε, (iii) follows. The proposition is proved.

The requirement that X also be bounded is not a priori needed in

part (i) of the above proposition, since if the sequence (Xi) of metric

spaces is uniformly bounded (that is, supi diam(Xi) < ∞), then it au-

tomatically follows that X is also bounded whenever Xi
GH→ X in the

sense of Definition 11.3.1.

Remarks 11.3.6 (a) For the circles Ci as in the beginning of this

section, we have (Ci, 0)
GH→ (R, 0).

(b) Let Xi = {0, i}, ai = 0, and X = {0}, a = 0, where we use the

Euclidean metric in Xi and X. Then (Xi, ai) converges to (X, a) in the

sense of Definition 11.3.1, but dGH(Xi, X) → ∞. Thus the condition

supi diam(Xi) <∞ is needed in the previous proposition.

(c) Let Xi = {0, 1 + 1/i}, ai = 0, and X = {0, 1}, a = 0, where again

we use the Euclidean metric in Xi and X. Then (Xi) Gromov–Hausdorff

converges to X, but the closed balls B(ai, 1) ⊂ Xi do not Gromov–

Hausdorff converge to the closed ball B(0, 1) ⊂ X. Thus one should

not define pointed Hausdorff convergence by requiring that B(ai, r)

Gromov–Hausdorff converge to B(a, r) for each r > 0.

Recall that a metric space (X, d) is a length space if d(x, y) = infγ length(γ)
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for every pair of x, y ∈ X, where the infimum is taken over all rectifiable

curves γ joining x to y in X.

We require the following characterization of complete length spaces.

Lemma 11.3.7 A complete metric space (X, d) is a length space if

and only if to every pair of points x, y ∈ X and every ε > 0, there

corresponds z ∈ X so that

max{d(x, z), d(z, y)} ≤ 1

2
d(x, y) + ε . (11.3.8)

Points z as in the above lemma are called approximate midpoints

in [45, Section I.2, page 30].

Proof The necessity part of the assertion is immediate; given x, y ∈ X
and ε > 0, choose for z the midpoint of a curve from x to y with length

at most d(x, y) + ε/2.

To prove the sufficiency, fix x, y ∈ X. Without loss of generality we

may assume that d(x, y) = 1. Then fix ε > 0. We need to show that

there is a curve from x to y with length at most 1 + ε. To this end,

denote by Dn = {k2−n : k = 0, 1, . . . , 2n} the set of dyadic rationals

of level n = 0, 1, 2, . . . in the unit interval [0, 1]. We define inductively

maps fn : Dn → X as follows. We let f0(0) = x and f0(1) = y, and

observe that

d(f0(0), f0(1)) = 1 .

Suppose now that fn has been defined and it satisfies

d(fn(κ), fn(τ)) ≤ 2−n + 2−nε

n∑
k=0

2−k (11.3.9)

for every pair of consecutive points κ, τ ∈ Dn, i.e., we require that

(κ, τ)∩Dn = ∅. Next, let κ ∈ Dn+1. If κ ∈ Dn, so that fn(κ) is defined,

we let fn+1(κ) = fn(κ). Otherwise, κ is the mid point of an interval In
of length 2−n such that fn is defined at the end points κn and τn of In.

Choose a point zκ ∈ X such that

max{d(fn(κn), zκ), d(zκ, fn(τn))} ≤ 1

2
d(fn(κn), fn(τn)) + 2−2n−2ε .

and put fn+1(κ) = zκ. Then the induction hypothesis (11.3.9) gives that

(11.3.9) can be assumed to hold for every n. There is an obvious mapping

f : D → X, extending each fn, defined in the dense set D =
⋃
nDn ⊂

[0, 1]. It is easy to check by using (11.3.9) that f is (1 + 2ε)-Lipschitz;
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since X is complete, f extends to a (1+2ε)-Lipschitz map F : [0, 1]→ X.

Because F (0) = x and F (1) = y, the assertion follows from (5.1.2).

We record two additional facts about length spaces; the simple proofs

are left to the reader. For the first fact, recall the notation from (11.1.1).

Lemma 11.3.10 Let X be a length space. Then

Nr(Ns(A)) = Nr+s(A) (11.3.11)

whenever A ⊂ X and r, s > 0. Moreover, the closure B(q, r) of an open

ball coincides with the closed ball B(q, r) whenever q ∈ X and r > 0.

Proposition 11.3.12 Let (Xi, ai) be a sequence of pointed length

spaces. If (X, a) is a complete pointed Gromov–Hausdorff limit of (Xi, ai),

then X is a length space. Moreover, in this case we have both that

B(ai, r)
GH→ B(a, r) and that B(ai, r)

GH→ B(a, r) for every r > 0.

Proof The first statement follows easily from the definitions and from

Lemma 11.3.7. Fix r > 0 and 0 < ε < r, and functions fi as in the def-

inition of the pointed Gromov–Hausdorff convergence. From (11.3.3),

(11.3.2), and (11.3.11) we deduce that B(a, r) = Nε(B(a, r − ε)) ⊂
N2ε(fi(B(ai, r))) and that fi(B(ai, r)) ⊂ Nε(B(a, r)), which in turn

implies that dXH(fi(B(ai, r)), B(a, r)) ≤ 2ε, for all sufficiently large i.

On the other hand, the map fi : B(ai, r) → fi(B(ai, r)) is an (ε, 0, 0)-

approximate isometry, and we deduce from the preceding and Proposi-

tion 11.1.11 that dGH(B(ai, r), B(a, r)) ≤ 3ε for all sufficiently large i

depending only on ε. The conclusion B(ai, r)
GH→ B(a, r) follows.

Finally, the statement about closed balls follows from the correspond-

ing statement about open balls, from Lemma 11.1.7, and from the fact

that the Gromov–Hausdorff distance between a set and its closure is

zero. The proposition follows.

Remark 11.3.13 The example in Remark 11.3.6 (c) shows that the

claim of Proposition 11.3.12 may fail if one drops the length space as-

sumption.

Recall that a metric space is proper if each closed ball in it is compact.

Proper spaces are always separable. A sequence (X1, a1), (X2, a2), . . . of

pointed spaces is said to be eventually proper if for every r > 0 there is

ir such that the ball B(ai, r) ⊂ Xi is compact for every i ≥ ir.
For example, if (X, d) is a locally compact metric space and a ∈ X,

then the sequence (X, d, a), (X, 2d, a), (X, 3d, a), . . . is eventually proper.
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Proposition 11.3.14 Let (Xi, di, ai) be an eventually proper sequence

of pointed metric spaces. If (X, dX , a) is a complete pointed Gromov–

Hausdorff limit of the sequence (Xi, di, ai), then X is proper. If (X, dX , a)

and (Y, dY , q) are proper pointed Gromov–Hausdorff limits of (Xi, di, ai),

then there is an isometry f : X → Y with f(a) = q.

Proof Given that X is complete, to show that X is proper it suffices to

show that closed balls B(a, r) are totally bounded for each r > 0; that

is, for each ε > 0 the ball B(a, r) has a finite ε-net. We argue as follows.

Let (Xi, ai) be an eventually proper sequence of pointed metric spaces

that pointed Gromov–Hausdorff converges to (X, a). Then there exists

ir such that B(ai, r + 3ε) is compact, and hence also totally bounded,

whenever i > ir. We can choose a positive integer i > ir large enough so

that there is a map fi : B(ai, r+ 3ε)→ X satisfying Conditions (i)–(iii)

of Definition 11.3.1 for ε/10. In particular,

B(a, r) ⊂ B(a, r + 2ε) ⊂ Nε/10(fi(B(ai, r + 3ε))).

Let {z1, . . . , zk} be a finite ε/20-net of B(ai, r+3ε). By perturbing these

points slightly if necessary, we obtain a finite ε/10-net of B(ai, r + 3ε),

also denoted by {z1, . . . , zk}. We modify {fi(z1), . . . , fi(zk)} to obtain a

finite ε-net of B(a, r). To do so, note that whenever z ∈ B(a, r) there

is a point yz ∈ B(ai, r + 3ε) such that d(z, fi(yz)) < ε/10. We then

find zj from the ε/10-net such that di(yz, zj) < ε/10. It follows from

Condition (ii) that

|d(fi(yz), fi(zj))− di(yz, zj)| < ε/10,

and so we have d(fi(zj), z) < 3ε/10. Consequently, the 3ε/10-balls cen-

tered at the points fi(zj), j = 1, . . . , k, covers B(a, r). We replace fi(zj)

with a point in B(a, r) ∩ B(fi(zj), 3ε/10) if this set is nonempty and

fi(zj) is not in B(a, r). We discard fi(zj) if B(a, r) ∩ B(fi(zj), 3ε/10)

is empty. Thus we obtain a finite ε-net in B(a, r). This concludes the

verification that X is proper.

Let (X, dX , a) and (Y, dY , q) be two such pointed metric spaces. To

prove the second claim, we fix r > 0 and show that there is an isometry

between B(a, r) and B(q, r). To do so, we choose 0 < ε < r/10 and then

choose i large enough so that there are maps f
ε/2
i : B(ai, r+ε)→ B(a, r+

2ε) and F
ε/2
i : B(ai, r+ε)→ B(q, r+2ε) satisfying Conditions (i)–(iii) of

Definition 11.3.1. We construct a version of an inverse map gi : B(a, r)→
B(ai, r + ε) for f

ε/2
i as follows. Given z ∈ B(a, r) we choose a point

yz ∈ B(ai, r + ε) such that dX(z, f
ε/2
i (yz)) < ε/2 and set gi(z) = yz. It
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can be directly verified that for z, w ∈ B(a, r),

|dX(z, w)− di(gi(z), gi(w))| < 3ε.

Let Hi = f
ε/2
i ◦ gi : B(a, r)→ B(q, r + 2ε); then, for z, w ∈ B(a, r),

|dX(z, w)− dY (Hi(z), Hi(w))| < 4ε.

Furthermore, it can be verified that Nε(Hi(B(a, r))) contains B(q, r).

Now an Arzelà-Ascoli type argument, together with the fact that X and

Y are proper (proved above), yields an isometry between B(a, r) and

B(q, r).

Remark 11.3.15 Finite subsets of R can Gromov–Hausdorff converge

to Q ⊂ R, showing that the assumption X be complete in Proposition

11.3.14 cannot be dropped.

Next we present a version of the Gromov compactness theorem for

pointed proper spaces.

A family {(Xα, aα) : α ∈ A} of pointed metric spaces is said to be

pointed totally bounded if there is a function N : (0,∞)×(0,∞)→ (0,∞)

such that for each 0 < ε < R and α ∈ A, the closed ball B(aα, R) in Xα

contains an ε-net of cardinality at most N(ε, R).

We have the following pointed version of Theorem 11.2.

Theorem 11.3.16 Every eventually proper sequence in a pointed to-

tally bounded family of pointed metric spaces contains a subsequence that

pointed Gromov–Hausdorff converges to a proper pointed metric space.

The proof of Theorem 11.3.16 is a straightforward variation on that

of Theorem 11.2.

Proof We proceed as in the proof of Theorem 11.2, but with a mod-

ification to take into account the fact that we do not have a uniform

bound on the diameters of our metric spaces.

For each pair of positive integers k, i ∈ N we can choose a 1/k-net Si,k
in B(ai, k) with cardinality at most N(1/k, k) + 1 such that ai ∈ Si,k.

We can arrange that for each i, Si,1 ⊂ Si,2 ⊂ Si,3 ⊂ · · · . Set

Si =
⋃
k∈N

Si,k.

It is clear that Si is countable and dense in Xi. We enumerate points in
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Si as follows. Let

Si,1 = {xi,1 = ai, xi,2, · · · , xi,mi,1} with mi,1 ≤ N(1, 1) + 1,

Si,2 \ Si,1 = {xi,mi,1+1, · · · , xi,mi,2} with mi,2 ≤ N(1/2, 2) + 1,

Si,j+1 \ Si,j = {xi,mi,j+1, · · · , xi,mi,j+1} with mi,j+1 ≤ N(1/(j + 1), j + 1) + 1.

Then Si inherits this enumeration.

The case limi→∞#Si < ∞ having already been covered in Theorem

11.2, we may assume that limi→∞#Si = ∞. We follow the proof of

Theorem 11.2 by constructing a metric on S = N. To do so, we enumerate

S × S \∆ = {(n1,m1), (n2,m2), . . .}, with ∆ = {(z, z) : z ∈ S} so that

(n1,m1) = (1, 2), and we choose a subsequence (Xi1,j , di1,j , ai1,j ) such

that

lim
j→∞

di1,j (xi1,j ,1, xi1,j ,2) = d1,2

exists and for j ≥ 1 we have

|di1,j (xi1,j ,1, xi1,j ,2)− d1,2| < 2−j .

Inductively, we can choose subsequences (Xim,j , dim,j , pim,j ) for each pos-

itive integer m ≥ 2 such that

1. (Xim,j , dim,j , aim,j ) is a subsequence of (Xim−1,j
, dim−1,j

, aim−1,j
),

2. limj→∞ dim,j (xim,j ,αm , xim,j ,βm) = dαm,βm exists, where (αm, βm) ∈
S × S \∆ is the m-th term in the enumeration of this set,

3. |dim,j (xim,j ,αm , xim,j ,βm)− dαm,βm | < 2−j whenever j ≥ m.

Note that dαm,βm = dβm,αm . Now, as in the proof of Theorem 11.2, we

obtain a metric e on S∞ = S/ ∼, where for α, β ∈ S, we set α ∼ β if and

only if dα,β = 0, and e([i], [j]) = di,j = dj,i. Let X be the completion of

S∞ in this metric, and let a := [1].

It remains to show that the diagonal sequence (Xim,m , dim,m , aim,m),

henceforth denoted simply as (Xi, di, ai), converges to (X, e, a). That is,

for each positive real number ε and for every r > ε we want to show that

there is a positive integer i0 such that whenever i > i0 there is a mapping

fi : B(ai, r)→ X satisfying the three conditions of Definition 11.3.1.

To do so, we fix 0 < ε < r < ∞, and pick a positive integer k such

that 1/k < ε/10 and k > r. By the pointed total boundedness property,

we can find a 1/k-net Tk in B(a, r− ε/2) ⊂ S∞ such that the cardinality

of Tk is at most N(1/k, k) + 1 and p ∈ Tk. Let {[j1], · · · , [jm]} be this

set, with j1 = 1; we then have m ≤ N(1/k, k) + 1. By the choice of the
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subsequence of pointed metric spaces, we know that there is a positive

integer i1 so that whenever i ≥ i1 we have

|di(xi,jl , xi,jn)− e([jl], [jn])| < ε/100

for each pair of points [jl], [jn] in this set.

Note that for each positive integer i the cardinality of Si,k is at most

N(1/k, k) < ∞. So in considering di(x, y), x, y ∈ Si,k, we consider at

most 2N(1/k,k)+1 real numbers. Therefore we can find a positive real

number i0 ≥ i1 such that for each i ≥ i0, and j1, j2 ∈ {1, · · · ,mi},
mi ≤ N(1/k, k) + 1, we have

|di(xi,j1 , xi,j2)− e([j1], [j2])| < ε/10.

We define fi : B(ai, r)→ X as follows.

First, let f(ai) = [1] = a. For x ∈ B(ai, r) \ {ai}, we can find x ∈ Si,k
such that di(x, x) < ε/10. We choose one such x, and with the labeling

x = xi,j ∈ Si,k, set fi(x) = [j].

By construction, fi satisfies the first condition of Definition 10.3.1.

To show that it satisfies the second condition of this definition, let

x, y ∈ B(pi, r), and x, y be the correspondingly chosen points in Si,k
with fi(x) = [jx], fi(y) = [jy]. Then

|e(fi(x), fi(y))− di(x, y)| = |e([jx], [jy])− di(x, y)|
≤ |e([jx], [jy])− di(x, y)|+ |di(x, y)− di(x, y)|

≤ ε

10
+ di(x, x) + di(y, y) <

3ε

10
< ε,

that is, the second condition is satisfied.

Finally, to verify the third condition of Definition 10.3.1, note that by

the choice of i1 ≤ i0, Tk ⊂ fi(Si,k ∩ B(ai, r)), and so the choice of Tk
tells us that fi(Si,k∩B(ai, r)) forms a 1/k-net in B(a, r−ε/2) and hence

B(a, r − ε) ⊂ B(a, r − ε/2) ⊂ Nε(fi(B(ai, r))).

This completes the proof.

The doubling condition introduced in Section 4.1 gives rise to families

of metric spaces to which Theorem 11.3.16 can be applied. We next

consider a local variant of this condition.

A family {(Xα, aα) : α ∈ A} of pointed metric spaces is said to be

pointed boundedly doubling if there is a function M : (0,∞) → (0,∞)

such that for every index α ∈ A, the ball B(aα, r) is doubling with

constant M(r).
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Observe that every pointed boundedly doubling family is pointed to-

tally bounded.

The proof of the following Proposition 11.3.17 is left to the reader.

Proposition 11.3.17 Let (Xi, ai) be a sequence of pointed boundedly

doubling metric spaces. If (X, a) is a pointed Gromov–Hausdorff limit of

(Xi, ai), then X is boundedly doubling.

If (X, a) is a pointed boundedly doubling space, then it follows from

Lemma 4.1.12 that every ball B(a, r) ⊂ X contains an ε-net of cardi-

nality at most M(r)(r/ε)s, where s = logM(r)/ log 2. We thus have the

following corollary to Theorem 11.3.16 and Proposition 11.3.17.

Theorem 11.3.18 Every eventually proper sequence in a pointed bound-

edly doubling family of pointed metric spaces contains a subsequence that

pointed Gromov–Hausdorff converges to a pointed boundedly doubling

proper pointed metric space.

11.4 Pointed measured Gromov–Hausdorff
convergence

In this section, we discuss Gromov–Hausdorff convergence in the pres-

ence of measures.

Let (µi) be a sequence of Borel measures on a metric space Z such

that µi(B) < ∞ for every ball B ⊂ Z and for every i. Measures µi are

said to converge weakly to a Borel measure µ on Z if
∫
Z
ϕdµi →

∫
Z
ϕdµ

as i → ∞ for every boundedly supported continuous function ϕ on Z.

(A real-valued function on metric space is said be boundedly supported

if the function vanishes outside a ball.) We denote this convergence by

µi
∗
⇀ µ .

Strictly speaking, this convergence is via the operation of these measures

on the normed vector space Cb(Z) of all boundedly supported contin-

uous functions on Z, and hence should be termed weak* convergence,

but for ease of terminology we merely call this weak convergence. Al-

though it is more traditional to consider ϕ to be compactly supported

in the above definition, here we need to consider measures on l∞ as well,

in which case one does not have non-trivial compactly supported con-

tinuous functions. While the requirement of compact support for ϕ is

standard for proper metric spaces, in applications to Gromov–Hausdorff
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convergence it is more profitable to consider the more general class of

boundedly supported ϕ.

Remark 11.4.1 If a sequence of measures µi converges weakly to µ

and U is a bounded open set and K is a compact set, then

µ(U) ≤ lim inf
i→∞

µi(U) and µ(K) ≥ lim sup
i→∞

µi(K). (11.4.2)

The above claims are justified by the fact that if U is an open set, then

µ(U) = sup

{∫
Z

ϕdµ : ϕ ∈ Cb(Z), spt(ϕ) ⊂ U, and |ϕ| ≤ 1

}
,

together with the definition of weak convergence of measures given above.

We also have the following useful inequality: for a compact set K ⊂ Z,

a non-negative continuous function u, and a bounded set W with K ⊂W
and dist(K,Z \W ) > 0, we have∫

K

u dµ ≤ lim inf
i→∞

∫
W

u dµi. (11.4.3)

To see this, consider the function ϕ ∈ Cb(Z) defined as

ϕ(x) :=

(
1− dist(x,K)

dist(K,Z \W )

)
+

.

Then uϕ ∈ Cb(Z) and∫
K

u dµ ≤
∫
Z

uϕdµ = lim
i→∞

∫
Z

uϕdµi ≤ lim inf
i→∞

∫
W

u dµi.

In the above, given a real number t, we write t+ := max{t, 0}.

Recall the definition f#µ(A) = µ(f−1(A)) for push-forward measures

from Section 3.3.

Definition 11.4.4 Let (X1, d1, µ1), (X2, d2, µ2), . . . be a sequence of

compact metric measure spaces. We say that a compact metric measure

space (X, d, µ) is a measured Gromov–Hausdorff limit of (Xi, di, µi) if

there exist isometric embeddings ιi : Xi → l∞, ι : X → l∞, such

that d∞H (ιi(Xi), ι(X)) → 0 and that (ιi)#µi
∗
⇀ ι#µ as measures on l∞.

(Recall the weak convergence from above). We denote this convergence

by

(Xi, di, µi)
GH→ (X, d, µ) .

We define pointed measured Gromov–Hausdorff convergence for proper

length spaces spaces only; this is the setting required in this book.



11.4 Pointed measured Gromov–Hausdorff convergence 339

Definition 11.4.5 Let

(X1, d1, a1, µ1), (X2, d2, a2, µ2), . . .

be a sequence of proper pointed metric measure spaces, where each

metric space (Xi, di) is also a length space. We say that the sequence

(Xi, di, ai, µi) pointed measured Gromov–Hausdorff converges to a proper

pointed metric measure space (X, d, a, µ) if (Xi, di, ai)
GH→ (X, d, a) in the

sense of Definition 11.3.1 and if

(B(ai, r), di, µibB(ai, r))
GH→ (B(a, r), d, µbB(a, r)) (11.4.6)

in the sense of Definition 11.4.4 for every r > 0. We denote this conver-

gence by

(Xi, di, ai, µi)
GH→ (X, d, a, µ) .

Note that the assumption (Xi, di, ai)
GH→ (X, d, a) implies, by Propo-

sition 11.3.12, that B(ai, r)
GH→ B(a, r), so that requirement (11.4.6)

makes sense for the measures restricted to pertinent balls. Also note that

the limit space is necessarily a length space by the same proposition be-

cause we also require the length spaces (Xi, ai) to converge in the pointed

Gromov–Hausdorff sense to the proper, and hence complete, (X, a).

In view of Proposition 11.3.14, the limit ball in (11.4.6), up to isom-

etry, coincides with the corresponding pointed ball from the previous

paragraph.

Gromov’s compactness theorem for measured limits takes the follow-

ing form:

Theorem 11.4.7 Let (Xi, di, ai, µi) be a pointed totally bounded se-

quence of pointed proper length metric measure spaces satisfying

sup
i
µi(B(ai, r)) <∞ (11.4.8)

for each r > 0. Then (Xi, di, ai, µi) contains a subsequence that con-

verges in the pointed measured Gromov–Hausdorff sense to a pointed

proper length metric measure space (X, d, a, µ) such that µ(B(a, r)) ≤
supi µi(B(ai, r)) for all r > 0.

Proof For each i let ιi : Xi → l∞ be an isometric embedding as in

Definition 11.4.4. We have a corresponding sequence of push-forward

measures (ιi)#µi on l∞, and the goal is to obtain a limit measure µ

on l∞; the support of such a limit measure is be a viable candidate for



340 Gromov–Hausdorff convergence

the limit metric space. We will apply the weak version of the Banach–

Steinhaus theorem 2.3.3 to an appropriate Banach space. Observe that

each B(ai, r) is separable, and hence we can choose a set Si ⊂ l∞ which is

countable and dense in ιi(B(ai, r)). Then
⋃
i∈N Si is dense in the closure

of
⋃
i∈N ιi(B(ai, r)). Without loss of generality, we assume ιi(ai) = 0.

Let U be the collection of all continuous functions with support in

B(0, r) ⊂ l∞. Observe that, in the supremum norm, U is a non-separable

Banach space because l∞ is non-separable. However, in considering the

actions of (ιi)#µi on U , only the values of f ∈ U taken on at points

in the closure K of
⋃
i∈N ιi(B(ai, r)) matter. Thus the supremum norm

is not the correct norm to impose on U . Instead, given f ∈ U we set

‖f‖ := supz∈K |f(z)|. It is easily verified that ‖ · ‖ is a seminorm on U .

Using the equivalence relation ∼ on U given by f ∼ g if and only if

‖f − g‖ = 0, we obtain a complete separable Banach space V := U/ ∼.

The separability of V follows, by a short argument, from the separability

of K. We are now at liberty to apply Theorem 2.3.3 to the operators

Ti on V given by Ti(f) =
∫
l∞
f d(ιi)#µi, to obtain a limit map T for

a subsequence, and an application of the Riesz representation theorem

yields the weak limit measure on l∞.

A measure µ on a metric space X is called a local doubling measure if

for each r0 <∞ there exists a constant CD(r0) <∞ so that

µ(B(x, r)) ≤ CD(r0)µ(B(x, r/2))

for each x ∈ X and 0 < r ≤ r0. Recall that if CD can be chosen indepen-

dent of r0, then µ is a doubling measure. Every metric space which carries

a (locally) doubling measure is boundedly doubling in the sense of the

previous section. A family (Xα, dα, aα, µα) of pointed metric measure

spaces is said to be uniformly locally doubling in measure or uniformly

locally doubling if µα is a locally doubling measure on Xα for each α,

with the constant CD(r0) independent of α for each r0 > 0. Such a fam-

ily of pointed metric measure spaces is uniformly boundedly doubling in

the sense of the previous section provided it also satisfies (11.4.8).

Corollary 11.4.9 Let (Xi, di, ai, µi) be a family of pointed proper uni-

formly locally doubling length metric measure spaces satisfying (11.4.8).

Then (Xi, di, ai, µi) has a subsequence that pointed measured Gromov–

Hausdorff converges to a pointed proper length metric measure space.

Example 11.4.10 Fix κ ∈ R and V < ∞ and consider the collec-

tionM(κ, V ) consisting of all pointed Riemannian n-manifolds (Mn, a)
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(endowed with the Riemannian distance and volume) which have Ricci

curvature bounded below by κ and volume bounded above by V . Then

M(κ, V ) is uniformly locally doubling and hence precompact with re-

spect to pointed and measured Gromov–Hausdorff convergence by Corol-

lary 11.4.9. This is a consequence of the Bishop/Gromov volume com-

parison inequality, see for instance [49, Theorem 10.6.6].

11.5 Persistence of doubling measures under
Gromov–Hausdorff convergence

This section is devoted to the proof of the following theorem.

Theorem 11.5.1 Let (Xi, di, ai, µi) be a sequence of complete length

spaces which converges in the sense of pointed measured Gromov–Hausdorff

convergence to a complete space (X, d, a, µ). If each of the measures µi
is doubling with constant CD, then µ is also doubling with constant C2

D.

Proof Let (Xi, di, ai, µi)
GH→ (X, d, a, µ) as in the statement of the the-

orem. Since complete doubling spaces are proper, it follows from Propo-

sition 11.3.12 and Definition 11.4.4 that X is a length space and that

there exist isometric embeddings ιi : Xi → l∞ and ι : X → l∞ with

d∞H (ιi(B(ai, R)), ι(B(a,R))) → 0 for each R > 0 and (ιi)#µi converges

weakly to (ι)#µ (as measures on l∞).

For z ∈ l∞ and ρ > 0 we denote by B∞(z, ρ) the ball in l∞ with

center z and radius ρ.

Fix x ∈ X and r > 0 and set R = r + d(a, x). Choose xi ∈ B(ai, R)

so that δi := ||ιi(xi)− ι(x)||∞ → 0 as i→∞.

Since µ (resp. µi) is supported on X (resp. Xi) and (ιi)#µi converges

weakly to (ι)#µ, we deduce from (11.4.2) that

µ(B(x, r)) = (ι)#µ(B∞(ι(x), r)) ≤ lim inf
i→∞

(ιi)#µi(B∞(ι(x), r))

≤ lim inf
i→∞

(ιi)#µi(B∞(ιi(xi), r + δi)) = lim inf
i→∞

µi(B(xi, r + δi)).

Similarly, applying (11.4.2) to the compact set B∞(ι(x), r/3) we obtain

that

µ(B(x, r/2)) ≥ µ(B(x, r/3)) ≥ lim sup
i→∞

µi(B(xi, r/3− δi)) (11.5.2)

The proof is complete.
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The length space assumption in the previous theorem was used only

to guarantee the Hausdorff convergence in l∞ for our sequence of balls.

With a little more work, this assumption can be removed.

Moreover, we can improve the conclusion of the theorem to obtain the

same doubling constant CD for the limit space. Since this improvement

relies on tools which we will use in subsequent chapters, we provide the

details.

We first state a volume decay property for doubling measures in length

spaces.

Proposition 11.5.3 Let (X, d) be a length space and assume that µ is

a doubling measure on X with doubling constant CD. Then there exist

constants C <∞ and 0 < β ≤ 1 depending only on CD such that

µ(B(x, r) \B(x, (1− ε)r)) ≤ Cεβµ(B(x, r)) (11.5.4)

for every x ∈ X, r > 0, and 0 < ε ≤ 1.

Remark 11.5.5 Proposition 11.5.3 fails in the absence of the length

space assumption. Let X = R ∪ S1 = {z ∈ C : |z| = 1 or Im z = 0} with

the metric inherited from C = R2. Let µ = H1, the one-dimensional

Hausdorff measure on X. It is easy to see that (11.5.4) cannot hold for

any choice of constants C and β for balls centered at the origin.

Proof of Proposition 11.5.3 To simplify the notation, we introduce the

abbreviation A(x, s, t) := B(x, t) \ B(x, s) for the open annulus with

radii s < t centered at x ∈ X. First, we prove the estimate

µ(A(x, r − t, r)) ≤ C4
D µ(A(x, r − 3t, r − t)) (11.5.6)

for all x ∈ X, r > 0, and 0 < t < r/3.

For each y ∈ A(x, r−t, r) choose a curve γy, of length at most d(x, y)+

t, joining x to y. Let zy ∈ γy satisfy d(x, zy) = r − 2t. Then By :=

B(zy, t) is a subset of A(x, r−3t, r− t) and y ∈ 3By. By the 5B-covering

lemma 3.3, we may choose a countable collection of points y1, y2, . . .

from A(x, r − t, r) such that the balls 3Byj are pairwise disjoint and

that A(x, r − t, r) ⊂
⋃
j 15Byj . Then

µ(A(x, r−t, r)) ≤
∑
j

µ(15Byj ) ≤ C4
D

∑
j

µ(Byj ) ≤ C4
D µ(A(x, r−3t, r−t)) ,

as required.

We now turn to the proof of (11.5.4). Fix x ∈ X and r > 0. Choosing
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t = r/6 in (11.5.6), we find that

µ(A(x, 5
6r, r)) ≤ C

4
D µ(A(x, 1

2r,
5
6r)) ≤ C

4
D

(
µ(B(x, r))−µ(A(x, 5

6r, r))
)
,

and hence that

µ(A(x, 5
6r, r)) ≤

C4
D

C4
D + 1

µ(B(x, r)) . (11.5.7)

Choosing tm = 1/(2 · 3m) for m = 0, 1, 2, . . . and applying (11.5.6) gives

µ(A(x, (1− tm)r, r)) ≤ C4
D µ(A(x, (1− tm−1)r, (1− tm)r))

≤ C4
D

(
µ(A(x, (1− tm−1)r, r))− µ(A(x, (1− tm)r, r))

)
,

whence by (11.5.7) and by induction we arrive at

µ(A(x, (1− tm)r, r)) ≤
(

C4
D

C4
D + 1

)m
µ(B(x, r)) (11.5.8)

for every m = 1, 2, . . . . Now let 0 < ε ≤ 1. If ε ≤ 1
2 , choose a non-negative

integer m such that

1

2 · 3m+1
< ε ≤ 1

2 · 3m
. (11.5.9)

Using (11.5.8) and (11.5.9), we deduce the annular decay estimate (11.5.4)

with C = 6β and β = log(1 + C−4
D )/ log 3. On the other hand, if ε ≥ 1

2 ,

then 1 ≤ (2ε)β and so again (11.5.4) holds.

Using Proposition 11.5.3 we show that the constant C2
D in Theorem

11.5.1 can be improved to CD. We resume the proof of Theorem 11.5.1

following (11.5.2). From the annular decay property (Proposition 11.5.3),

it follows that µ(∂B(x, ρ)) = 0 for every ρ > 0. Consequently by Propo-

sition 11.5.3,

µ(B(x, r))

µ(B(x, r/2))
≤ lim sup

i→∞

µi(B(xi, r + δi))

µi(B(xi, r/2− δi))

≤ CD lim sup
i→∞

µi(B(xi, r + δi))

µi(B(xi, r − 2δi))
= CD.

This completes the proof.
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11.6 Persistence of Poincaré inequalities under
Gromov–Hausdorff convergence

We now come to the principal aim of this chapter, the persistence of

Poincaré inequalities under Gromov–Hausdorff convergence of uniformly

doubling metric measure spaces.

Theorem 11.6.1 Let (Xi, di, ai, µi) be a sequence of complete length

spaces which converges in the sense of pointed and measured Gromov–

Hausdorff convergence to a complete space (X, d, a, µ). Let 1 ≤ p < ∞,

CD, CP < ∞ and λ ≥ 1 be fixed. If each of the measures µi is doubling

with constant CD and each space (Xi, di, µi) satisfies the p-Poincaré

inequality with constants CP and λ, then (X, d, µ) also satisfies the p-

Poincaré inequality with constants C ′P and λ′ depending only on p, CP ,

λ and CD.

To prove Theorem 11.6.1 we embed our sequence of spaces into l∞.

The following proposition allows us to assume that the function-upper

gradient pair, a priori only defined in the limit space, is defined on all

of l∞ as a function-upper gradient pair. It is important here that both

the function and the upper gradient can be assumed to be Lipschitz; in

our setting this is guaranteed by Theorem 8.4.1.

Proposition 11.6.2 Let X be a length space which is a subset of a

geodesic metric space Z. Let u and ρ be bounded Lipschitz functions on

X such that infX ρ > 0 and ρ is an upper gradient of u. Fix δ > 0.

Then there exist Lipschitz functions u and ρ on Z which extend u and

ρ respectively. Moreover, ρ is bounded and (1 + δ)ρ is an upper gradient

of u (on Z).

Assuming momentarily the validity of Proposition 11.6.2, we give the

proof of Theorem 11.6.1.

Proof of Theorem 11.6.1 Let (Xi, di, ai, µi)
GH→ (X, d, a, µ) as in the

statement of the theorem. As in the proof of Theorem 11.5.1, there

exist isometric embeddings ιi : Xi → l∞ and ι : X → l∞ so that

d∞H (ιi(B(ai, R)), ι(B(a,R))) → 0 for each R > 0 and (ιi)#µi converges

weakly to (ι)#µ as measures on l∞.

Fix a ball B = B(x, r) in X. By Theorem 8.4.1, it suffices to verify the

Poincaré inequality for each pair consisting of a bounded Lipschitz func-

tion u together with its bounded Lipschitz continuous upper gradient ρ.

Fixing 0 < δ ≤ 1, the hypotheses of Proposition 11.6.2 are satisfied for
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the pair u and ρ+ δ/2. Thus there exist Lipschitz extensions u and ρ of

these functions to all of l∞ such that (1 + δ)ρ is an upper gradient of u.

As in the proof of Theorem 11.5.1, choose xi ∈ Xi so that ιi(xi)→ ι(x)

in l∞. For ease of notation, denote by B∞ = B∞(ι(x), r) and B∞i =

B∞(ιi(xi), r) the balls of radius r centered at points ι(x), ιi(xi) in l∞.

From the definition of Gromov–Hausdorff convergence, there is N so

that the inclusions 2B∞ ⊂ 4B∞i ⊂ 6B∞ and 2λB∞ ⊂ 4λB∞i ⊂ 6λB∞

hold for each n ≥ N . By the Poincaré inequality in Xi,∫
2B∞
|u− u4B∞i

| d((ιi)#µi) ≤ CP CD r

(∫
4λB∞i

(1 + δ)p ρp d((ιi)#µi)

)1/p

≤ CP C2
D r

(∫
6λB∞

(1 + δ)p ρp d((ιi)#µi)

)1/p

,

Since u is continuous and Xi is proper, the quantities (u4B∞i
) are uni-

formly bounded. By passing to a subsequence if necessary, we can ensure

that u4B∞i
→ α for some α ∈ R. From (11.4.3) and Theorem 11.5.1 we

have∫
B∞
|u− α| d((ι)#µ) ≤ 1

(ι)#µ(B∞)

∫
2B∞i

|u− α| d((ι)#µ)

≤ C lim inf
i

∫
2B∞i

|u− u4B∞i
| d((ιi)#µ)

≤ Cr lim sup
i

(∫
6λB

∞
(1 + δ)pρp d((ιi)#µ)

)1/p

≤ Cr
(∫

7λB∞
(1 + δ)pρp d((ι)#µ)

)1/p

.

Letting δ → 0 we obtain∫
B∞
|u− α| d((ι)#µ) ≤ Cr

(∫
7λB∞

ρp d((ι)#µ)

)1/p

.

Since µ is supported on X and
∫
B
|u − uB | dµ ≤ 2

∫
B
|u − α| dµ, the

inequality ∫
B

|u− uB | dµ ≤ Cr
(∫

7λB

ρp dµ

)1/p

follows. The proof is complete.

Proof of Proposition 11.6.2 Let u and ρ be bounded Lipschitz func-

tions on X as in the statement. Let L be a Lipschitz constant for ρ on
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X. Finally let δ > 0; since the conclusion is stronger for smaller values

of δ we may assume δ ≤ 1.

We construct the desired extensions u and ρ to Z ⊃ X in several

steps.

First, we extend ρ to a bounded Lipschitz function ρ1 on Z so that

|u(x)− u(y)| ≤ (1 + δ)

∫
γ

ρ1 ds (11.6.3)

for all x, y ∈ X and all rectifiable curves γ ⊂ Nε(X) ⊂ Z joining x to

y. Here ε > 0 is a suitably chosen small constant whose value will be

determined in the proof.

We define ρ1 by the McShane extension of ρ to Z, truncated so that

infX ρ ≤ ρ1(z) ≤ supX ρ for all z ∈ Z. Explicitly, set

ρ̂1(z) = inf
x∈X

ρ(x) + Ld(x, z)

and

ρ1(z) = max{inf
X
ρ,min{ρ̂1(z), sup

X
ρ}}.

Thus ρ1 is an L-Lipschitz function on Z with ρ1(x) = ρ(x) for x ∈ X.

For each r > 0 and z0 ∈ Z we record the estimate

supB(z0,r) ρ1

infB(z0,r) ρ1
≤ 1 +

2L

infX ρ
r (11.6.4)

which follows from the Lipschitz property of ρ1.

Set η = 1
6 min{1, (6L)−1 infX ρ}δ and ε = 1

2η
2. Let x, y ∈ X and let γ

be a rectifiable curve in Nε(X) joining x to y. We distinguish two cases.

Case (i) (length(γ) < η): Choose a curve β ⊂ X joining x to y with

length(β) < (1 + δ/3)d(x, y). Then β ⊂ B(x, 2η) whence∫
β

ρ ds =

∫
β

ρ1 ds ≤ sup
B(x,2η)

ρ1 · (1 + δ/3) length(γ) (11.6.5)

On the other hand γ ⊂ B(x, η) and hence∫
γ

ρ1 ds ≥ inf
B(x,η)

ρ1 · length(γ). (11.6.6)

Combining (11.6.5), (11.6.6) and (11.6.4) yields∫
β

ρ ds ≤
(

1 +
4Lη

infX ρ

)(
1 +

δ

3

)∫
γ

ρ1 ds ≤ (1 + δ)

∫
γ

ρ1 ds

from which (11.6.3) follows, since ρ is an upper gradient of u on X.



11.6 Persistence of Poincaré inequalities 347

Case (ii) (length(γ) ≥ η): We reduce to the previous case by a de-

composition argument. Write γ as the union of consecutively connected

subcurves γi, i = 1, . . . , N so that 1
2η ≤ length(γi) < η. For i = 1, . . . , N ,

let z1
i and z2

i be the endpoints of γi, ordered so that z2
i = z1

i+1. Since

γi ⊂ Nε(X) we may choose points x1
i , x

2
i ∈ X with x1

1 = x, x2
N = y,

x2
i = x1

i+1 and d(x1
i , z

1
i ) < ε. As in the previous case, choose curves

βi joining x1
i to x2

i with length(βi) ≤ (1 + δ/3)d(x1
i , x

2
i ). Let β be the

curve obtained as the union of the consecutively intersecting curves βi,

i = 1, . . . , N .

As before, it suffices to prove the estimate∫
β

ρ ds ≤ (1 + δ)

∫
γ

ρ1 ds,

and since
∫
β
ρ ds =

∑
i

∫
βi
ρ ds and

∫
γ
ρ ds =

∑
i

∫
γi
ρ ds, it suffices to

prove that ∫
βi

ρ ds ≤ (1 + δ)

∫
γi

ρ1 ds

for each i. To this end, we observe that

d(x1
i , x

2
i ) ≤ d(z1

i , z
2
i )+2ε ≤ length(γi)+η

2 ≤ (1+2η) length(γi) ≤ (1+δ/3)η.

Thus

βi ⊂ B(x1
i , (1 + δ/3)d(x1

i , x
2
1)) ⊂ B(xi, 2η)

and so∫
βi

ρ ds ≤ sup
B(x1

i ,2η)

ρ1 · (1 + δ/3)(1 + 2η) length(γi). (11.6.7)

Next, since γi ⊂ B(z1
i , η) ⊂ B(x1

i , 2η), we have∫
γi

ρ1 ds ≥ inf
B(x1

i ,2η)
ρ1 · length(γi). (11.6.8)

Combining (11.6.7), (11.6.8) and (11.6.4) yields∫
βi

ρ ds ≤
(

1 +
4Lη

infX ρ

)(
1 +

δ

3

)
(1 + 2η)

∫
γi

ρ1 ds ≤ (1 + δ)

∫
γi

ρ1 ds.

This completes the proof of (11.6.3).

Next, we extend ρ1 to a bounded Lipschitz function ρ on all of Z

so that (11.6.3) holds (with ρ1 replaced by ρ) for all x, y ∈ X and all

rectifiable curves in Z joining x to y.
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The construction uses Lipschitz partitions of unity. Since u is bounded,

it has finite oscillation oscX u := sup{|u(x)− u(y)| : x, y ∈ X}. Choose

a nonnegative Lipschitz function h on Z which vanishes on Nε/4(X) and

achieves its maximum 2 oscX u/ε on all of Z \Nε/2(X). For example, one

may take

h(z) =
2 oscX u

ε
·min

{
dist(z,Nε/4(X))

dist(Z \Nε/2(X), Nε/4(X))
, 1

}
.

Set ρ = ρ1 + h and let γ be a rectifiable curve in Z joining two points

x, y ∈ X. If γ ⊂ Nε(X) then (11.6.3) already holds, so assume that γ

meets Z \ Nε(X). Then the length of that portion of γ which lies in

Nε(X) \Nε/2(X) is at least ε/2 and so∫
γ

ρ ds ≥ 2 oscX u

ε
length(γ∩(Nε(X)\Nε/2(X))) ≥ oscX u ≥ |u(x)−u(y)|,

which proves the desired inequality.

Finally, we extend u to a Lipschitz function u on all of Z so that

(11.6.3) holds (with ρ1 replaced by ρ and u replaced by u) for all x, y ∈ Z
and all rectifiable curves Z joining x to y.

Define u : Z → R by

u(z) = inf

{
(1 + δ)

∫
γ

ρ ds+ u(x)

}
,

where the infimum is taken over all x ∈ X and all rectifiable curves

γ joining x to z. It is clear that u is an extension of u. Furthermore

−∞ < u(z) <∞ for each z because ρ is bounded on Z and u is bounded

on X. Hence the fact that (1+δ)ρ is an upper gradient for u on Z follows

from the definition, see for example the proof of Lemma 7.2.13. Finally,

u is Lipschitz since ρ is bounded and Z is geodesic.

The proof of Proposition 11.6.2 is complete.

Throughout this and the previous sections we have assumed that the

metric spaces Xi are complete. We now point out why the assumption

of completeness (which is equivalent to properness in the presence of the

doubling property) is not very restrictive.

By Lemma 8.2.3, if any of the spaces (Xi, di, µi) considered in this

section and the previous section is not complete, then we can com-

plete the space to obtain a sequence of spaces that converge to the

same Gromov–Hausdorff limit as the original sequence. Note that the

Gromov–Hausdorff distance between Xi and Xi is zero. Furthermore,

the requirement that Xi are length spaces is also not essential. Indeed,
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if (Xi, di, µi) is doubling, supports a p-Poincaré inequality and is com-

plete, then by Theorem 8.3.2 it is quasiconvex with the quasiconvexity

constant dependent solely on the doubling and Poincaré constants. Now

the corresponding inner metric d̂i as considered in Proposition 8.3.12 is

a length metric on Xi and is biLipschitz equivalent to the original metric

di. By Lemma 8.3.18, the space (Xi, d̂i, µi) is also doubling, complete,

and supports a p-Poincaré inequality, with constants dependent solely

on the original data related to (Xi, di, µi).

Combining Theorem 11.6.1 with Corollary 11.4.9, we obtain the fol-

lowing result. Note that the uniform doubling condition with constant

CD implies that the sequence of pointed metric measure spaces satisfies

the hypothesis (11.4.8) of Corollary 11.4.9.

Theorem 11.6.9 Let (Xi, di, ai, µi) be a sequence of pointed metric

measure spaces, each of which is is a length space. Let 1 ≤ p < ∞,

CD, CP < ∞ and λ ≥ 1 be fixed. If each of the measures µi is doubling

with constant CD and each space (Xi, di, µi) satisfies the p-Poincaré in-

equality with constants CP and λ, then a subsequence of (Xi, di, ai, µi)

pointed measured Gromov–Hausdorff converges to a pointed complete

metric measure space (X, d, a, µ) such that (X, d, µ) also satisfies the

p-Poincaré inequality with constants C ′P and λ′ depending only on p,

CP , λ and CD.

11.7 Notes to Chapter 11

The space KZ is called the (compacta) hyperspace of Z. For a compre-

hensive account of the modern theory of hyperspaces, see [215]. The

existence of invariant sets for iterated function systems (i.e., fractals)

relies on the completeness of the compacta hyperspace of Rn.

In discussing pointed metric spaces, the topology we considered was

not defined via a metric. This topology is indeed metrizable; see [131].

The notion of Gromov–Hausdorff topology on classes of manifolds

was first considered by Gromov [107]. Since then this notion has been

quite useful in the study of geometry; for example, Perelman used it to

prove the Poincaré conjecture [50], [225]. The paper [147] gives further

details on a result of Perelman that a pair of compact (same dimen-

sional) Alexandrov spaces are homeomorphic if the Gromov–Hausdorff

distance between them is sufficiently small. More on Gromov–Hausdorff

convergence can be found in the books [49] and [45].
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Given a complete doubling metric measure space (X, d, µ) support-

ing a p-Poincaré inequality, and a point x0 ∈ X, we can “zoom into”

X close to x0 by considering a sequence of pointed metric measure

spaces (Xn, x0, dn, µn), where Xn = X, dn(x, y) = nd(x, y) and µn =

µ(B(x0, 1/n))−1µ. It is quite straightforward to see that (Xn, dn, µn)

also is doubling and supports a p-Poincaré inequality, with the same

constants as for X. Pointed measured Gromov–Hausdorff limits of suit-

able subsequences of such a sequence also exist, and are doubling and

support a p-Poincaré inequality by the results of the previous section, see

Theorem 11.6.9. Such limit spaces are called tangent spaces to X at x0;

they have a wide variety of uses. In the present context, they were used

by Cheeger in [53] to study infinitesimal behavior of Lipschitz functions

on metric measure spaces. For further information see Section 13.6.

Theorem 11.5.1 is due to Cheeger [53, Theorem 9.1]. Proposition 11.5.3

was proved independently by Colding and Minicozzi [65] and Buck-

ley [47, Corollary 2.2].

A result weaker than Theorem 11.6.1 was proved by Cheeger in [53,

Theorem 9.6], to wit, that the limit space satisfies the q-Poincaré in-

equality for each q > p (with constants C ′P = C ′P (q) and λ′ = λ′(q)

which a priori may blow up as q → p). As stated, Theorem 11.6.1 was

proved (independently) by Cheeger, Koskela (both unpublished) and

Keith [150]. The proof given here is modeled on the proof from [150].

The proof of the density of Lipschitz functions in N1,p(X) (for p > 1)

given in [16] also shows that the minimal p-weak upper gradient of a

function f ∈ N1,p(X) can be approximated by a stronger notion of

local Lipschitz-constant function for some sequence of Lipschitz approx-

imations of f . In the verification of Poincaré inequalities, the use of

such a strong notion of local Lipschitz-constant function, called asymp-

totic Lipschitz function in [16], would enable us to replace the constants

C ′P and λ′ in Theorem 11.6.1 by CP and λ respectively. However, the

aforementioned approximation requires the technology of optimal mass

transportation. Since this technology is outside the scope of this book,

we omit this improved result from our exposition. See [16, Remark 8.3]

for further details.



12

Self-improvement of Poincaré inequalities
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The focus of this chapter is the Keith–Zhong theorem on self-improve-

ment of p-Poincaré inequalities for 1 < p < ∞. In [153], Keith and

Zhong proved that whenever X is a complete metric space equipped

with a doubling measure and supporting a p-Poincaré inequality for

some 1 < p <∞, then X also supports a q-Poincaré inequality for some

q ≥ 1 with q < p. Stated another way, for complete and doubling metric

measure spaces the Poincaré inequality is an open-ended condition, that

is, the collection of p for which X supports a p-Poincaré inequality is a

relatively open subset of [1,∞). This result has numerous applications

and corollaries; for a sample of these see Theorems 12.3.13 and 12.3.14.

Throughout this chapter our standing assumptions are that X = (X, d)

is a complete metric space, that µ is a doubling measure on X, and that

the metric measure space (X, d, µ) supports a p-Poincaré inequality for

some 1 < p <∞.

As discussed in Corollary 8.3.16 and Lemma 8.3.18 we may, and will,

also assume without loss of generality that X is a geodesic space. Finally,

in view of Theorem 9.1.15 (i) and Hölder’s inequality, we may assume

that the integrals on both sides of the Poincaré inequality are taken

over the same ball, i.e., that the parameter λ in (8.1.1) is equal to 1. We

occasionally repeat these assumptions for emphasis.

For a positive real number x, we write dxe for the smallest integer

greater than or equal to x.

12.1 Geometric properties of geodesic doubling
metric measure spaces

We begin with a few miscellaneous facts about metric measure spaces.

In many arguments in this chapter we will need to consider inclusions

between dilations of balls. Note that if B and B′ are balls in X with

B ⊂ B′ and λ > 0, it is not necessarily the case that λB ⊂ λB′. For

instance, consider X = [0,∞) equipped with the Euclidean metric and

let B = B(0, 2) = [0, 2) and B′ = B(1, 1 + ε) = [0, 2 + ε) for any ε > 0.

Then λB 6⊂ λB′ for any λ > 1/(1− ε), even though B ⊂ B′.
It is easy to see that if X is connected, then λB ⊂ (2λ+1)B′ whenever

B ⊂ B′ and λ > 1. In geodesic spaces we can obtain a slight improve-

ment.

Lemma 12.1.1 Let X be a geodesic space, let B ⊂ B′ be balls in X

and let λ > 1. Then λB ⊂ (2λ− 1)B′.
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Note that the conclusion of the lemma is asymptotically sharp as

λ→ 1.

Proof Let B = B(y, r) and B′ = B(x,R). Suppose that z ∈ B(y, λr).

Let γ be a geodesic joining y to z, and choose w ∈ γ so that d(w, y) =

(1/λ)d(z, y). Then w ∈ B(y, r) so w ∈ B(x,R). Moreover, d(z, w) =

(λ− 1)d(w, y). Using the triangle inequality we estimate

d(z, x) ≤ d(z, w) + d(w, x)

< (λ− 1)d(w, y) +R

≤ (λ− 1)(d(w, x) + d(x, y)) +R

< (λ− 1)(R+R) +R = (2λ− 1)R.

The proof is complete.

We next demonstrate that if X is a geodesic space and E ⊂ X

is a measurable set, then the relative measure density function r 7→
µ(B(x, r) ∩ E)/µ(B(x, r)) is continuous. The proof uses the geodesic

property via Proposition 11.5.3.

Lemma 12.1.2 Let E be a measurable set and let x ∈ X. Then the

function

r 7→ µ(B(x, r) ∩ E)

µ(B(x, r))

is continuous.

Proof Fix r > 0 and δ > 0, and consider r′ with r < r′ < r + δ. We

will show that∣∣∣∣µ(B(x, r) ∩ E)

µ(B(x, r))
− µ(B(x, r′) ∩ E

µ(B(x, r′))

∣∣∣∣ ≤ ωr(δ),
where ωr(δ) → 0 as δ → 0. An application of the triangle inequality

shows that the left hand side of the above inequality is less than or

equal to∣∣∣∣µ(B(x, r) ∩ E)− µ(B(x, r′) ∩ E)

µ(B(x, r′))

∣∣∣∣+

∣∣∣∣µ(B(x, r) ∩ E)

µ(B(x, r))
− µ(B(x, r) ∩ E)

µ(B(x, r′))

∣∣∣∣
≤ µ(A(x, r, r′) ∩ E)

µ(B(x, r′))
+
µ(A(x, r, r′))µ(B(x, r) ∩ E)

µ(B(x, r′))µ(B(x, r))

≤ 2
µ(A(x, r, r′))

µ(B(x, r′))
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where, as in the proof of Proposition 11.5.3, we write A(x, s, t) = B(x, t)\
B(x, s). Applying Proposition 11.5.3 with ε = 1− r/r′ yields∣∣∣∣µ(B(x, r) ∩ E)

µ(B(x, r))
− µ(B(x, r′) ∩ E)

µ(B(x, r′))

∣∣∣∣ ≤ 2C(1− r/r′)β < 2C

(
δ

r + δ

)β
where β ∈ (0, 1] and C depend only on the doubling constant Cµ.

A similar argument, with A(x, r, r′) replaced by A(x, r′, r) gives a

similar estimates when r − δ < r′ < r. The proof is complete.

We complete this section by giving estimates on the overlap of covering

of a ball by balls of equal radii.

We fix 0 < s < r < diam(X)/2, and x0 ∈ X. If z1, · · · , zN are points

in B(x0, r) that are maximally s-separated (and so, d(zi, zj) ≥ s if i 6=
j, and B(x0, r) ⊂

⋃N
j=1B(zj , 2s)), then from the pairwise disjointness

property of the balls B(zj , s/2) ⊂ B(x0, 2r) we obtain

N∑
j=1

µ(B(zj , s)) ≤ C2
µ µ(B(x0, r)).

Now from the above relative lower decay property of µ,

1

C

N∑
j=1

(s
r

)Q
≤ C2

µ,

that is,

N ≤ C
(r
s

)Q
=: N2 = N2(Cµ, r/s), (12.1.3)

with the constant C depending solely on the doubling constant Cµ.

Now fix α ≥ 1 and suppose that x ∈ B(xi, αs) for i ∈ I ⊂ {1, · · · , N}.
Then for these i we have that xi ∈ B(x, αs), and so a repetition of the

above argument with r = αs gives via (12.1.3) that

#I ≤ C
(αs
s

)Q
= CαQ =: N1 = N1(Cµ, α). (12.1.4)

12.2 Preliminary local arguments

The self-improvement of Poincaré inequalities follows from an applica-

tion of Cavalieri’s principle (3.5.5) once we obtain self-improvement of

certain estimates of level sets. In this section we first consider local ver-

sions of the level set estimates.
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Given a Lipschitz function u : X → R and τ > 0, we set

M#
τ u(x) := sup

x∈B⊂τB0

1

rad(B)

∫
B

|u− uB | dµ.

Here B0 is a fixed ball in X. The quantity M#
τ u denotes a type of

maximal function which measures the maximum local deviation (in L1)

of u from its average value on balls, divided by the radius of the ball,

computed over balls contained in τB0.

For λ > 0 we define the level set

Uλ := {x ∈ 128B0 : M#
128u(x) > λ}.

In what follows, we fix α > 3, to be chosen later.

Proposition 12.2.1 There is a sufficiently large positive integer k

such that whenever u : X → R is Lipschitz and λ < 1
rad(B0)

∫
B0
|u −

uB0
| dµ, we have

µ(B0) ≤ 2kp−αµ(U2kλ) + 8kp−αµ(U8kλ)

+ 8k(p+1) µ({x ∈ 2B0 : Lipu(x) > 8−kλ}).
(12.2.2)

The proof of Proposition 12.2.1 is the goal of this section, and is

accomplished via a series of lemmas.

By rescaling the metric and measure, we can assume without loss of

generality that µ(B0) = 1 = rad(B0). By replacing u with λ−1u, we

may assume that λ = 1. (Note that a choice of the integer k that works

for the value λ = 1 for the scaled function λ−1u will also work for the

original value of λ and the original function u.)

The above reductions understood, we observe that it suffices to prove,

for sufficiently large k and for all Lipschitz functions u : X → R such

that ∫
B0

|u− uB0
| dµ > 1, (12.2.3)

that

1 ≤ 2kp−αµ(U2k) + 8kp−αµ(U8k)

+ 8k(p+1) µ({x ∈ 2B0 : Lipu(x) > 8−k}) .
(12.2.4)

Suppose that k ≥ 10 is a positive integer such that (12.2.4) does not

hold for some u that satisfies (12.2.3). Then

µ(U2k) < 2α−kp, (12.2.5)

µ(U8k) < 8α−kp, (12.2.6)
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and

µ({x ∈ 2B0 : Lipu(x) > 8−k}) < 8−k(p+1). (12.2.7)

As emphasized above, we seek an upper bound on k that is indepen-

dent of u. Towards this end, we wish to keep careful track of constants, in

order to obtain an upper bound on the values of k for which (12.2.4) does

not hold. Throughout this chapter, Cµ will denote the doubling constant

of µ, CHL will denote the constant associated with the L1 − L1,∞ esti-

mate (3.5.7) in the Hardy-Littlewood maximal function theorem 3.5.6,

and CP will denote the constant in the p-Poincaré inequality (8.1.1).

Recall however that the constant CHL itself depends only on the dou-

bling constant Cµ. Later on we will encounter other natural constants

depending only on Cµ; to simplify the coming formulas we will indicate

these constants with individual notation.

For the remainder of this section, we assume that u is Lipschitz and

satisfies (12.2.3).

Lemma 12.2.8 There is a positive integer k∗ such that if k ≥ k∗
and (12.2.5) holds, then∫

2B0\U2k

|u− u2B0\U2k
| dµ ≥ 1

4(1 + 2C3
µ)
. (12.2.9)

Proof First note that if U2k is empty, then∫
2B0\U2k

|u−u2B0\U2k
| dµ =

∫
2B0

|u−u2B0
| dµ ≥ 1

2

∫
B0

|u−uB0
| dµ > 1

2

and (12.2.9) holds. Hence without loss of generality we assume that U2k

is non-empty. By subtracting a constant from u if necessary, we may

assume that u2B0\U2k
= 0 (note that the conditions (12.2.3), (12.2.5),

(12.2.6), and (12.2.7) are stable under subtraction of a constant).

If x ∈ U2k then there is some ball B ⊂ 128B0 with x ∈ B and

rad(B)−1
∫
B
|u − uB | dµ > 2k. It follows that B ⊂ U2k and hence U2k

is open. Hence, for x ∈ B0 ∩ U2k and sufficiently small r > 0, we have

B(x, r) ⊂ U2k , so

µ(B(x, r) ∩ U2k)

µ(B(x, r))
= 1 for x ∈ B0 ∩ U2k and r > 0 small. (12.2.10)

On the other hand, µ(B(x, 1/5) ∩ U2k) ≤ µ(U2k) < 2α−kp, and so

µ(B(x, 1/5) ∩ U2k)

µ(B(x, 1/5))
= µ(B(x, 1/5) ∩ U2k) · µ(B0)

µ(B(x, 1/5))
≤ 2α−kp C4

µ .
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(Recall our normalizing assumption µ(B0) = 1 = rad(B0).) Choose k0

large enough so that 2α−k0p C4
µ ≤ 1

5 , for example,

k0 :=

⌈
log(5 · 2α C4

µ)

p log 2

⌉
. (12.2.11)

Thus

µ(B(x, 1/5) ∩ U2k)

µ(B(x, 1/5))
≤ 1

5
for x ∈ B0 ∩ U2k , (12.2.12)

whenever k ≥ k0.

We proceed under the assumption that k ≥ k0. In view of (12.2.10),

(12.2.12) and Lemma 12.1.2, for each x ∈ B0 ∩ U2k there is some 0 <

rx < 1/5 such that

µ(B(x, rx) ∩ U2k)

µ(B(x, rx))
=

1

2
and

µ(B(x, rx) \ U2k)

µ(B(x, rx))
=

1

2
. (12.2.13)

The collection {B(x, rx) : x ∈ B0 ∩ U2k} covers B0 ∩ U2k ; an applica-

tion of the 5B-covering lemma 3.3 provides a countable pairwise disjoint

subcollection {Bi} such that {5Bi} covers B0 ∩ U2k . Observe that for

each i we have 5Bi ⊂ 2B0. Now,

1 <

∫
B0

|u− uB0
| dµ ≤ 2

∫
B0

|u| dµ,

and so by (12.2.13) we get

1

2
≤
∫
B0\U2k

|u| dµ+

∫
B0∩U2k

|u| dµ

≤
∫

2B0\U2k

|u| dµ+
∑
i

∫
5Bi

|u| dµ

≤
∫

2B0\U2k

|u| dµ+
∑
i

∫
5Bi

|u− uBi\U2k
| dµ+

∑
i

µ(5Bi)

∫
Bi\U2k

|u| dµ

≤
∫

2B0\U2k

|u| dµ+
∑
i

∫
5Bi

|u− uBi\U2k
| dµ+ 2C3

µ

∑
i

∫
Bi\U2k

|u| dµ

≤ (1 + 2C3
µ)

∫
2B0\U2k

|u| dµ+
∑
i

∫
5Bi

|u− uBi\U2k
| dµ.

Since 5Bi \U2k is non-empty for each i, and rad(Bi) ≤ 1/5, by (12.2.13)
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we have∫
5Bi

|u− uBi\U2k
| dµ ≤

∫
5Bi

|u− u5Bi | dµ+ |u5Bi − uBi\U2k
|

≤
∫

5Bi

|u− u5Bi | dµ+
µ(5Bi)

µ(Bi \ U2k)

∫
5Bi

|u− u5Bi | dµ

≤ (1 + 2C3
µ)

∫
5Bi

|u− u5Bi | dµ ≤ 5(1 + 2C3
µ) 2k rad(Bi)

≤ (1 + 2C3
µ) 2k.

Therefore, by the choice of the cover and by (12.2.13),

1

2
≤ (1 + 2C3

µ)

∫
2B0\U2k

|u| dµ+ (1 + 2C3
µ) 2k

∑
i

µ(5Bi)

≤ (1 + 2C3
µ)

∫
2B0\U2k

|u| dµ+ (1 + 2C3
µ) 2kC3

µ

∑
i

µ(Bi)

≤ (1 + 2C3
µ)

∫
2B0\U2k

|u| dµ+ (1 + 2C3
µ) 2k+1C3

µ

∑
i

µ(Bi ∩ U2k)

≤ (1 + 2C3
µ)

∫
2B0\U2k

|u| dµ+ (1 + 2C3
µ) 2k+1C3

µ µ(U2k).

Applying (12.2.5) yields

1

2
≤ (1 + 2C3

µ)

∫
2B0\U2k

|u| dµ+ (1 + 2C3
µ) 2k+1C3

µ 2α−kp

= (1 + 2C3
µ)

∫
2B0\U2k

|u| dµ+ (1 + 2C3
µ) 21+α C3

µ 2−k(p−1).

Recalling that p > 1, choose k1 large enough so that

21+α (1 + 2C3
µ)C3

µ 2−k1(p−1) ≤ 1
4 ,

for example,

k1 :=

⌈
log(23+α C3

µ (1 + 2C3
µ))

(p− 1) log 2

⌉
. (12.2.14)

If k ≥ k∗ := max{k0, k1}, then

1

4
≤ (1 + 2C3

µ)

∫
2B0\U2k

|u| dµ,

and so by the renormalization assumption that u2B0\U2k
= 0,∫

2B0\U2k

|u− u2B0\U2k
| dµ =

∫
2B0\U2k

|u| dµ ≥ 1

4(1 + 2C3
µ)
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as desired.

For future needs we apply a telescoping argument towards obtaining

a Lipschitz estimate. Fix y ∈ τB0, r > 0 and x ∈ B(y, r). We consider

the telescoping family of balls given by B′0 = B(y, r) and, for integers

i > 0, B′i := B(x, 21−ir). Since u is Lipschitz, x is a Lebesgue point of u

and so

|u(x)− uB(y,r)| ≤
∞∑
i=0

|uB′i − uB′i+1
|

≤ C2
µ

∞∑
i=1

∫
2B′i

|u− u2B′i
| dµ + |uB′0 − uB′1 |

≤ C2
µ

∞∑
i=1

∫
2B′i

|u− u2B′i
| dµ

+ C2
µ

[∫
2B′1

|u− u2B′1
| dµ+ |u2B′1

− uB′1 |

]

≤ C2
µ

∞∑
i=1

∫
2B′i

|u− u2B′i
| dµ

+ C2
µ [1 + Cµ]

∫
2B′1

|u− u2B′1
| dµ

≤ C2
µ(2 + Cµ)

∞∑
i=1

∫
2B′i

|u− u2B′i
| dµ

≤ C2
µ(2 + Cµ)M#

τ+3ru(x)

( ∞∑
i=1

22−ir

)
.

Hence

|u(x)− uB(y,r)| ≤ 4C2
µ (2 + Cµ) rM#

τ+3ru(x). (12.2.15)

Here we made use of the fact that rad(B0) = 1 and that if y ∈ τB0,

x ∈ B(y, r) and i ≥ 1, then

2B′i = B(x, 22−ir) ⊂ (τ + r + 22−ir)B0 ⊂ (τ + 3r)B0.

If x, y ∈ 2iB0 for some i, then we may apply (12.2.15) twice with

τ = 2i and r = 1.01d(x, y) ≤ 2i+2 to obtain

|u(x)− u(y)| ≤ |u(x)− uB(y,r)|+ |u(y)− uB(y,r)|

≤ 4C2
µ (2 + Cµ) r (M#

2i+3ru(x) +M#
2i+3ru(y))

≤ 8C2
µ(2 + Cµ) d(x, y) (M#

2i+3u(x) +M#
2i+3u(y)) .



360 Self-improvement of Poincaré inequalities

Consequently, if λ > 0 and x, y ∈ 16B0 \ Uλ, then we see from above,

with i = 4, that

|u(x)− u(y)| ≤ 16C2
µ (2 + Cµ)λ d(x, y), (12.2.16)

i.e., u|16B0\U8k
is 16C2

µ (2+Cµ) 8k-Lipschitz. We will apply the preceding

with λ = 8k.

We next extend u|16B0\U8k
as a Lipschitz function on all of 2B0, while

preserving good bounds on a suitable modified maximal function M#
τ

in the complement of U8k .

Lemma 12.2.17 There is an extension v of u|16B0\U8k
to 16B0 such

that

(i). the extension v is C1 8k-Lipschitz continuous on 2B0,

(ii). Lip v ≤ C1 8k on 8B0,

(iii). we have

M#
8 v ≤ 16C3

µM
#
128u on 2B0 \ U8k . (12.2.18)

Here the constant C1 depends solely on the doubling constant Cµ.

Proof The argument is similar to that which appeared in the proof

of Theorem 4.1.21. We use a Whitney type decomposition of U8k as in

Proposition 4.1.15. For x in the open set U8k we define

r(x) :=
1

8
dist(x,X \ U8k)

and we consider the collection G = {B(x, r(x)) : x ∈ U8k} which covers

U8k . An application of the Whitney decomposition proposition 4.1.15

provides a countable subcollection G0 = {Bi = B(xi, ri)} ⊂ G with

ri = r(xi), which continues to cover U8k , such that { 1
5Bi} is pairwise

disjoint and {2Bi} has bounded overlap. Let {ϕi} be a Lipschitz parti-

tion of unity as in Section 4.1, that is, 0 ≤ ϕi ≤ 1, ϕi is C0/ri-Lipschitz

continuous, ϕi is supported on 2Bi, and
∑
i ϕi ≡ 1 on U8k . Here C0 ≥ 1

depends solely on Cµ, and is independent of u, k and B0.

We define the extension v as follows:

v(x) =

{
u(x) if x ∈ X \ U8k ,∑
i uBi ϕi(x) if x ∈ U8k .

First, we establish conclusion (i), the Lipschitz continuity of v. The de-

sired estimate is clear for points x, y ∈ 16B0 \ U8k , since by (12.2.16),
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u is 16C2
µ (2 + Cµ) 8k-Lipschitz on 16B0 \ U8k . To establish the Lips-

chitz continuity in the remaining cases, we appeal to the fact that X is

geodesic and reduce the desired claim to the pointwise estimate

Lip v(x) ≤ C1 8k for x ∈ 8B0, (12.2.19)

and note that any two points x and y in 2B0 are joined by a geodesic

which is contained in 4B0; the desired Lipschitz estimate follows by

integrating Lip v along this geodesic and using (12.2.19). The value of

C1 will depend only on the doubling constant Cµ and will be given later

in the proof, see (12.2.20).

We turn to the proof of (12.2.19), which then also proves (ii) of the

lemma. First, assume that x ∈ 8B0 \ U8k , y ∈ 8B0 ∩ U8k , and d(x, y) <
11
10 dist(y,X \ U8k). By the definition of v, we have

v(y)− v(x) =
∑
i

(uBi − u(x)) ϕi(y).

Since dist(y,X \ U8k) ≤ d(x, y) < 11
10 dist(y,X \ U8k), we see that for

each i for which ϕi(y) 6= 0, we have

6ri ≤ d(x, y) ≤ 11ri and 4ri ≤ d(x, xi) ≤ 13ri .

Moreover, ri ≤ 1
6d(x, y) ≤ 1

6 diam(8B0) ≤ 8
3 .

Setting B̃i = B(xi, 14ri) and using (12.2.15) together with the fact

that x 6∈ U8k , we obtain

|uBi − u(x)| ≤ |u(x)− uB̃i |+ |uB̃i − uBi |

≤ 4C2
µ (2 + Cµ)(14ri)M

#
128u(x) + C6

µ

∫
B̃i

|u− uB̃i | dµ

≤ 16C2
µ (2 + Cµ)d(x, y)M#

128u(x) + C6
µ(14ri)M

#
128u(x)

≤ [16C2
µ(2 + Cµ) + 4C6

µ] d(x, y)M#
128u(x)

≤ [16C2
µ(2 + Cµ) + 4C6

µ] 8k d(x, y).

It follows that if d(x, y) < 11
10 dist(y,X \ U8k), then

|v(y)− v(x)| ≤
∑
i

|uBi − u(x)|ϕi(y)

≤
∑
i

[16C2
µ(2 + Cµ) + 4C6

µ] 8k d(x, y)ϕi(y)

= [16C2
µ(2 + Cµ) + 4C6

µ] 8k d(x, y).

For y ∈ 8B0 ∩ U8k for which d(x, y) ≥ 11
10 dist(y,X \ U8k), we can find
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x′ ∈ 8B0 \ U8k such that d(x′, y) < 11
10 dist(y,X \ U8k), and the above

argument gives

|v(y)− v(x′)| ≤ [16C2
µ(2 + Cµ) + 4C6

µ] 8k d(x′, y).

Note that d(x′, y) + d(x, x′) ≤ 3d(x, y). By (12.2.16) we also know that

|v(x)− v(x′)| ≤ [16C2
µ(2 + Cµ) + 4C6

µ] 8k d(x, x′).

Combining the above two inequalities and the previous argument, we

obtain

|v(x)− v(y)| ≤ 3[16C2
µ(2 + Cµ) + 4C6

µ] 8k d(x, y)

whenever y ∈ 8B0 ∩ U8k . Since (as observed above) the same estimate

holds if x, y ∈ 8B0 \ U8k we conclude that

|v(y)− v(x)| ≤ 3[16C2
µ(2 + Cµ) + 4C6

µ] 8k d(x, y)

whenever x ∈ 8B0 \ U8k . Consequently, we obtain

Lip v(x) ≤ 3[16C2
µ(2 + Cµ) + 4C6

µ] 8k for all x ∈ 16B0 \ U8k .

This proves (12.2.19) for x ∈ 8B0 \ U8k .

Now suppose x ∈ 8B0 ∩U8k . Pick j so that x ∈ Bj . For points y ∈ Bj
we have

|v(x)− v(y)| =
∣∣∣∣∑

i

(
uBi − uBj

)
(ϕi(x)− ϕi(y))

∣∣∣∣
≤
∑
i

|uBi − uBj | |ϕi(x)− ϕi(y)|.

The only terms which contribute to the sum are those corresponding to

the indices i for which x ∈ 2Bi or y ∈ 2Bi. For such i we have Bi ⊂ 6Bj ,

see (4.1.19). Note that 9Bj ⊂ 128B0 and 9Bj \U8k is nonempty. By the

doubling property of µ, for z ∈ 9Bj \ U8k we have

|uBi − uBj | ≤ |uBi − u9Bj |+ |uBj − u9Bj |

≤
(
µ(9Bj)

µ(Bi)
+
µ(9Bj)

µ(Bj)

)∫
9Bj

|u− u9Bj |

≤ 2C5
µ

∫
9Bj

|u− u9Bj |

≤ 18C5
µ rad(Bj)M

#
128u(z)

≤ 18C5
µ rad(Bj) 8k.
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Hence

|v(x)− v(y)| ≤ 18C5
µ rad(Bj) 8k

∑
i

|ϕi(x)− ϕi(y)|

≤ 18C5
µ rad(Bj) 8k

C0

rad(Bi)
d(x, y)C2,

where C2 ≥ 1 is a bound for the maximum number of balls Bi so that

2Bi ∩Bj 6= ∅. Such C2 depends solely on Cµ (see Proposition 4.1.15).

The construction of G0 ensures that rad(Bj) ≤ 2 rad(Bi) whenever

2Bi ∩Bj is non-empty. Hence

|v(x)− v(y)| ≤ 36C0 C2 C
5
µ 8k d(x, y).

Consequently,

Lip v(x) ≤ 36C0 C2 C
5
µ 8k for all x ∈ 8B0 ∩ U8k .

This proves (12.2.19) for x ∈ 16B0 ∩ U8k . Set

C1 := 3 max{16C2
µ(2 + Cµ) + 4C6

µ, 12C0 C2 C
5
µ} (12.2.20)

and observe that C1 depends only on Cµ. Combining the above esti-

mates, we have that

Lip v(x) ≤ C1 8k for all x ∈ 16B0.

As noted above, the geodesic property of X now ensures that u is C1 8k-

Lipschitz on 2B0. This completes the proof of the first part of the lemma.

Now we verify conclusion (iii), the estimate M#
8 v ≤ 16C3

µM
#
128u on

2B0 \U8k . Fix x ∈ 2B0 \U8k and let B ⊂ 8B0 be a ball such that x ∈ B
and

1

2
M#

8 v(x) ≤ 1

rad(B)

∫
B

|v − vB | dµ. (12.2.21)

If B does not intersect U8k , then v|B = u|B and the result is immediate;

so we assume that B ∩ U8k is non-empty.

If u4B 6= 0, we may replace u with u − u4B ; the extension of u −
u4B from the first part of the lemma will be v − u4B and the estimate

in (12.2.21) is unchanged. Hence without loss of generality we may, for

the remainder of this proof, assume that u4B = 0.

From (12.2.21) we immediately deduce that

M#
8 v(x) ≤ 4

rad(B)

∫
B

|v| dµ.
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Then

1

rad(4B)

∫
4B

|u− u4B | dµ =
1

4 rad(B)

∫
4B

|u| dµ

=
1

4µ(4B) rad(B)

(∫
4B\U

8k

|u| dµ+

∫
4B∩U

8k

|u| dµ

)

≥ 1

4µ(4B) rad(B)

∫
B\U

8k

|v| dµ+
∑

i:2Bi∩B 6=∅

∫
2Bi∩4B

|u|ϕi dµ

 ,

where we have used the facts that
∑
i ϕi(x) = 1 when x ∈ U8k and that

the support of ϕi is contained in 2Bi. Since rad(Bi) = 8−1 dist(xi, X \
U8k) (where xi is the center of Bi) and B \ U8k 6= ∅, it follows that

2Bi ⊂ 4B whenever 2Bi ∩B is non-empty. Hence

1

rad(4B)

∫
4B

|u− u4B | dµ

≥ 1

4µ(4B) rad(B)

∫
B\U

8k

|v| dµ+
∑

i:2Bi∩B 6=∅

∫
2Bi

|u|ϕi dµ

 .

On the other hand,

∫
B∩U

8k

|v| dµ =

∫
B∩U

8k

∣∣∣∣∑
i

uBiϕi

∣∣∣∣ dµ ≤ ∫
B∩U

8k

∑
i

|uBi |ϕi dµ

≤
∑

i:2Bi∩B 6=∅

∫
2Bi

|uBi |ϕi dµ

≤
∑

i:2Bi∩B 6=∅

∫
2Bi

|u|Biϕi dµ

≤
∑

i:2Bi∩B 6=∅

µ(2Bi) |u|Bi

≤ Cµ
∑

i:2Bi∩B 6=∅

∫
Bi

|u| dµ ≤ Cµ
c0

∑
i:2Bi∩B 6=∅

∫
2Bi

|u|ϕi dµ.

In the last line above, we used the fact that ϕi ≥ c0 on Bi, where c0
depends only on the bounded overlap of the balls Bi, and hence only on
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Cµ. It follows that

1

rad(4B)

∫
4B

|u− u4B | dµ

≥ c0
4Cµ µ(4B) rad(B)

(∫
B\U

8k

|v| dµ+

∫
B∩U

8k

|v| dµ

)
.

Since B ⊂ 8B0 we deduce from Lemma 12.1.1 that 4B ⊂ (7 · 8)B0 ⊂
128B0 and so

M#
128u(x) ≥ 1

rad(4B)

∫
4B

|u− u4B | dµ

≥ 1

4Cµ µ(4B) rad(B)

∫
B

|v| dµ ≥ 1

16C3
µ

M#
8 v(x).

This completes the proof of Lemma 12.2.17.

We continue to denote the extension of u from the previous lemma by

v. For s > 0 we define

Fs := {x ∈ 4B0 : M#
8 v(x) > s}.

Lemma 12.2.22 Assume that (12.2.6) and (12.2.7) hold and that k >

k∗, where k∗ = max{k0, k1} and k0 and k1 are given in (12.2.11) and

(12.2.14) respectively. Then, with C1 as in (12.2.20),

µ(Fs) ≤
2CHL (C1 CP )p8α

sp
(12.2.23)

and ∫
8B0\U8k

(Lip v)p dµ ≤ 2Cp1 8−k. (12.2.24)

Recall (as pointed out in the introduction of this chapter) that we are

assuming the Poincaré inequality (8.1.1) with λ = 1, i.e., the integrals

on both sides of the Poincaré inequality are taken over the same ball.

Proof By construction, v = u on 16B0 \ U8k , and so Lip v = Lipu µ-

almost everywhere on this set. On the other hand, by Lemma 12.2.17 (ii)

we know that Lip v is bounded above by C1 8k on 8B0, and hence
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by (12.2.7) and by the normalization µ(B0) = 1,∫
8B0\U8k

(Lip v)p dµ =

∫
8B0\U8k

(Lipu)p dµ

≤ Cp1 8kp µ({x ∈ 8B0 : Lipu(x) > 8−k}) + 8−kpµ(8B0)

≤ Cp1 8−k + C2
µ 8−kp

≤ 2Cp1 8−k

which proves the second estimate. To prove the first estimate, we use

(for the first time) the fact that X supports a p-Poincaré inequality. For

B ⊂ 8B0, we have

1

rad(B)

∫
B

|v − vB | dµ ≤ CP
(∫

B

(Lip v)p dµ

)1/p

.

Hence

M#
8 v(x) ≤ CP M∗(χ8B0

Lip vp)(x)1/p,

where M∗(χ8B0
h) denotes the non-centered Hardy–Littlewood maximal

function as in (3.5.12) of the zero-extension of h outside 8B0. By the

weak estimate (3.5.7) on the maximal function (which also holds for

non-centered maximal functions), we see that

µ(Fs) ≤ µ({x ∈ 4B0 : (s/CP )p ≤M∗(χ8B0
Lip v)p(x)})

≤ CHL CpP s
−p
∫

8B0

(Lip v)p dµ.

Now recall from Lemma 12.2.17(ii) that Lip v is bounded above by

C1 8k on 8B0. We combine the second part of this lemma (proved above)

with (12.2.6) to obtain∫
8B0

(Lip v)p dµ =

∫
8B0\U8k

(Lip v)p dµ+

∫
8B0∩U8k

(Lip v)p dµ

≤ 2Cp1 8−k + (C1 8k)pµ(U8k)

≤ 2Cp1 8−k + Cp1 8α

≤ 2Cp1 8α.

Combining this with the above, we obtain

µ(Fs) ≤
2CHL (C1 CP )p8α

sp
,

thus completing the proof of Lemma 12.2.22.
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By repeating the proof of inequality (12.2.16) (applied to the modified

function v rather than to u, with τ = 1, B = 2B0, and r = 2 and noting

that M#
7 v ≤M

#
8 v) we see that if x, y ∈ 2B0 \ Fs for some s > 0, then

|v(x)− v(y)| ≤ 16C2
µ (2 + Cµ) s d(x, y) . (12.2.25)

In Fs we have control over Lip v by C1 8k. This is not sufficient. We

therefore modify v on Fs via the McShane extension lemma 4.1 to obtain

a 16C2
µ (2 + Cµ) s-Lipschitz function vs that agrees with v on 2B0 \ Fs.

We consider the function

h :=
1

k

3k−1∑
j=2k

v2j .

We now suppose that k > k2, where

k2 :=

⌈
log(16C3

µ)

log 2

⌉
. (12.2.26)

If x ∈ F2j for some 2k ≤ j ≤ 3k− 1, then M#
8 v(x) > 2j . If additionally,

x 6∈ U8k , then by (12.2.18),

M#
128u(x) >

2j

16C3
µ

≥ 22k

16C3
µ

> 2k

and so x ∈ U2k . Since U8k ⊂ U2k we conclude that 2B0 \U2k ⊂ 2B0 \F2j

for each 2k ≤ j ≤ 3k − 1. Thus v2j (x) = v(x) for all x ∈ 2B0 \ U2k and

all j as above, and so h = v = u on 2B0 \ U2k . From Lemma 12.2.8, we

conclude that ∫
2B0\U2k

|h− h2B0\U2k
| dµ ≥ 1

4(1 + 2C3
µ)
.

Lemma 12.2.27 Suppose that (12.2.5), (12.2.6), and (12.2.7) hold,

and that k is a positive integer with k > max{k0, k1, k2}. Then∫
2B0

(Liph)p dµ ≥ 1

(16CP Cµ (1 + 2C3
µ))p

, (12.2.28)

and µ-almost everywhere on 2B0 we also have

Liph ≤ (Lipu)χ2B0\U8k
+

16C2
µ (2 + Cµ)

k

3k−1∑
j=2k

2j χU
8k
∪F2j

. (12.2.29)
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Proof From the discussion before the statement of the lemma,

1

4(1 + 2C3
µ)
≤
∫

2B0\U2k

|h− h2B0\U2k
| dµ ≤ 2

∫
2B0

|h− h2B0
| dµ.

An application of the p-Poincaré inequality and the fact that µ(B0) =

1 = rad(B0) now gives

1

8(1 + 2C3
µ)
≤ Cµ

∫
2B0

|h− h2B0
| dµ ≤ 2CPCµ

(∫
2B0

(Liph)p dµ

)1/p

≤ 2CPCµ

(∫
2B0

(Liph)p dµ

)1/p

,

from which the first claim of the lemma follows.

To prove the second claim, notice that as h = u on 2B0\U2k , the above

inequality holds on 2B0 \U2k . For 2k ≤ j ≤ 3k−1, Lip v2j (x) = Lip v(x)

for µ-almost every x ∈ 2B0 \ F2j , and v2j is 16C2
µ (2 + Cµ) 2j-Lipschitz

on 2B0. Hence

Lip v2j ≤ (Lipu)χ2B0\U8k
+ 16C2

µ (2 + Cµ) 2j χU
8k
∪F2j

.

Here we have used the fact that on 2B0\U8k , we have v = u. The second

claim of the lemma follows from the above.

Now we are ready to prove (12.2.2). We formulate the required bounds

on k in the following proposition. In addition to the previous lower

bounds k0, k1, k2, a further lower bound will be needed. We set

k3 :=
⌈[

81+αCHL [1024C1C
2
PC

3
µ(2 + Cµ)(1 + 2C3

µ)]p
]1/(p−1)

⌉
.

(12.2.30)

Proposition 12.2.31 Assume that k > max{k0, k1, k2, k3}, where

k0, k1, k2, k3 are given by (12.2.11), (12.2.14), (12.2.26), and (12.2.30),

and also that k satisfies

kp < 8k. (12.2.32)

Then at least one of the estimates (12.2.5), (12.2.6), (12.2.7) must fail,

and consequently (12.2.2) is necessarily true.

Proof Note that if 0 < s1 ≤ s2, then Fs2 ⊂ Fs1 . Hence for 2k ≤ j ≤
3k − 1, we see that F2j+1 ⊂ F2j . By Lemma 12.2.22,

µ(F2j ) ≤
2CHL (C1 CP )p 8α

2jp
.

Suppose that (12.2.5), (12.2.6) and (12.2.7) hold. Observe that k >



12.2 Preliminary local arguments 369

max{k0, k1, k2}. For 2k ≤ j ≤ 3k− 1, we know from the first line of this

proof that F2j = F23k−1 ∪ (F23k−2 \F23k−1)∪· · ·∪ (F2j \F2j+1). Therefore∫
2B0

1

k

3k−1∑
j=2k

2j χU
8k
∪F2j

p

dµ

=
1

kp

(
3k−1∑
i=2k

2i

)p
µ(2B0 ∩ (U8k ∪ F23k−1))

+

3k−2∑
j=2k

1

kp

(
j∑

i=2k

2i

)p
µ(2B0 ∩ (U8k ∪ (F2j \ F2j+1))) .

Summing the geometric series gives∫
2B0

1

k

3k−1∑
j=2k

2j χU
8k
∪F2j

p

dµ ≤ 1

kp
23kp (µ(U8k) + µ(F23k−1))

+

3k−2∑
j=2k

1

kp
2(j+1)p (µ(U8k) + µ(F2j ))

=

3k−1∑
j=2k

1

kp
2(j+1)p (µ(U8k) + µ(F2j )) .

We now use (12.2.6) and (12.2.23) to deduce that∫
2B0

1

k

3k−1∑
j=2k

2j χU
8k
∪F2j

p

dµ ≤ 2p

kp

3k−1∑
j=2k

2jp
(

8α−kp +
2CHL(C1CP )p8α

2jp

)

≤ 2p8α

(2p − 1)kp
+

2p+1CHL(C1CP )p8α

kp−1
≤ 2p+2CHL(C1CP )p8α k1−p .

Recall that v = u on 2B0 \ U8k . By (12.2.24), (12.2.29), and (12.2.32),∫
2B0

(Liph)p dµ =

∫
2B0\U8k

(Liph)p dµ+

∫
2B0∩U8k

(Liph)p dµ

≤ 2p
∫

2B0\U8k

(Lipu)p dµ

+ 2p (16C2
µ(2 + Cµ))p

∫
2B0

1

k

3k−1∑
j=2k

2j χU
8k
∪F2j

p

dµ

≤ 2p+1Cp1 8−k + (32C2
µ(2 + Cµ))p 2p+2CHL(C1CP )p8α k1−p

≤ 8CHL(64C1 CP C
2
µ(2 + Cµ))p 8α k1−p .
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Combining this estimate with (12.2.28) gives

kp−1 ≤ 81+αCHL [1024C1C
2
PC

3
µ(2 + Cµ)(1 + 2C3

µ)]p .

Since k > k3 we obtain a contradiction. We conclude that at least one

of the estimates (12.2.5), (12.2.6), (12.2.7) must fail. This completes the

proof of the proposition.

12.3 Self-improvement of the Poincaré inequality

In this section we prove the main result of this chapter, Theorem 12.3.9:

the self-improving character of p-Poincaré inequalities.

We again fix a ball B1 ⊂ X, and for t ≥ 1 and for x ∈ B1 we set

M∗τ u(x) := sup
x∈B

τB⊂B1

1

rad(B)

∫
B

|u− uB | dµ.

In contrast to the definition of M#
τ u, where the supremum was over all

balls containing x that are subsets of the τ -fold enlargement of the fixed

ball B0, here we take the supremum over all balls containing x, whose

τ -fold enlargements are subsets of the fixed ball B1. Note that if τ1 ≥ τ2,

then M∗τ1u(x) ≤M∗τ2u(x), whereas M#
τ1u(x) ≥M#

τ2u(x).

For λ > 0 let

U∗λ := {x ∈ B1 : M∗256u(x) > λ},

and

U∗∗λ := {x ∈ B1 : M∗2u(x) > λ}.

From the above discussion, U∗λ ⊂ U∗∗λ .

Lemma 12.3.1 For λ > 0 we have µ(U∗∗λ ) ≤ C13
µ µ(U∗λ/CA), where

CA := 11C5
µ 256log(Cµ). (12.3.2)

Proof For x ∈ U∗∗λ there is a ball Bx such that x ∈ Bx and 2Bx ⊂ B1,

with

1

rad(Bx)

∫
Bx

|u− uBx | dµ > λ.

The family {Bx : x ∈ U∗∗λ } covers U∗∗λ ; by the 5B-covering lemma 3.3,
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there is a countable subcollection {Bi}i with {2Bi}i pairwise disjoint

such that {10Bi}i covers U∗∗λ . It follows that

µ(U∗∗λ ) ≤
∑
i

µ(10Bi) ≤ C4
µ

∑
i

µ(Bi).

Fixing i, let Bi = B(xi, ri), and let Fi be the collection of all balls with

center in Bi and with radius ri/512. If there is a ball B′i ∈ Fi such that∫
2B′i

|u− u2B′i
| dµ > λ

256CA
ri,

where CA is as in (12.3.2), then (as 256B′i ⊂ B1) it will follow that

2B′i ⊂ 2Bi ∩ U∗λ/CA , and hence

µ(Bi) ≤ C9
µ µ(2B′i) ≤ C9

µ µ(2Bi ∩ U∗λ/CA). (12.3.3)

The desired estimate µ(U∗∗λ ) ≤ C13
µ µ(U∗λ/CA) will follow if the above

inequality holds for each i, since the balls 2Bi are pairwise disjoint.

Towards this end, let CA > 0 be as in (12.3.2), and suppose that there

is some index i such that∫
2B̂

|u− u2B̂ | dµ ≤
λ

512CA
ri (12.3.4)

for each ball B̂ = B(y, ri/512) with y ∈ B(xi, ri). We may assume

for the remainder of this proof that uB(xi,ri/256) = 0. Fix a point y ∈
B(xi, ri) \ B(xi, ri/512) and let B′i = B(y, ri/512). Let γ be a geodesic

connecting xi to y and note that the length of γ is d(xi, y) < ri. Because

d(xi, y) ≥ ri/512, we can find points z1, . . . , zn−1 on γ such that ri/700 ≤
d(zj , zj+1) ≤ ri/600 for j = 0, . . . , n− 1, where z0 = xi and zn = y. Let

wj be the midpoint between zj and zj+1 on γ. Set Bj = B(zj , ri/512).

Then B+
j := B(wj , ri/1200) ⊂ Bj∩Bj+1 and Bj∪Bj+1 ⊂ B(wj , ri/256),

and it follows that max{µ(Bj), µ(Bj+1)} ≤ C3
µ µ(B+

j ). Now,

|u2Bj − u2Bj+1 | ≤ |u2Bj − uB+
j
|+ |uB+

j
− u2Bj+1 |

≤
∫
B+
j

|u− u2Bj | dµ+

∫
B+
j

|u− u2Bj+1
| dµ

≤ C4
µ

(∫
2Bj

|u− u2Bj | dµ+

∫
2Bj+1

|u− u2Bj+1
| dµ

)

≤ 2C4
µ

λ

512CA
ri.
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Since uB(xi,ri/256) = 0, it follows that

|u2B′i
| ≤

n−1∑
j=0

|u2Bj − u2Bj+1
| ≤ 2nC4

µ

λ

512CA
ri.

Because n ≤ ri
ri/700 = 700, it follows that

|u2B′i
| ≤ 175

64
C4
µ

λ

CA
ri.

Combining this with the assumption (12.3.4), we see that∫
2B′i

|u| dµ ≤ λ

512CA
ri +

175

64
C4
µ

λ

CA
ri ≤

175

32
C4
µ

λ

CA
ri

when B′i = B(y, ri/512) and y ∈ B(xi, ri) \B(xi, ri/512). Since

uB(xi,ri/256) = 0,

the above inequality holds also for y ∈ B(xi, ri/512) by the assump-

tion (12.3.4).

By the doubling property of µ, we can cover B(xi, ri) by balls B̂k,

k = 1, . . . ,m, with m ≤ C4
µ 256log(Cµ), centered at points in B(xi, ri)

and having radii ri/256 (see (8.1.14) and (12.1.3)). We obtain

λri
2
≤ 1

2

∫
B(xi,ri)

|u− uB(xi,ri)| dµ ≤
∫
B(xi,ri)

|u| dµ

≤
∑
k

µ(B̂k)

µ(B(xi, ri))

∫
B̂k

|u| dµ

≤
∑
k

Cµ
175

32
C4
µ

λ

CA
ri

≤ 175

32
· 256log(Cµ) C5

µ

λ

CA
ri,

that is,

CA ≤
175

16
C5
µ 256log(Cµ).

This is a contradiction of the choice of CA from (12.3.2). Hence we have

that for each i some ball of radius ri/256 with center in Bi = B(xi, ri)

violates (12.3.4). This completes the proof.

We now prove a global analog of (12.2.2).
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Lemma 12.3.5 There is a positive integer k4 which depends solely on

Cµ and CP such that if k > k4 and kp < 8k, then for all λ > 0,

µ(U∗λ) ≤ 2kp−3µ(U∗2kλ) + 8kp−3µ(U∗8kλ)

+ 8(k+1)(p+1) C24
µ C

3(p+1)
A µ({x ∈ B1 : Lipu(x) > 8−kλ/C3

A}).
(12.3.6)

Here CA is given by (12.3.2).

Proof Let G denote the collection of all balls B for which 256B ⊂ B1

and
1

rad(B)

∫
B

|u− uB | dµ > λ.

Thus G covers U∗λ , and so by the 5B-covering lemma 3.3, we can ex-

tract a countable subcollection G0 = {Bi}i such that {256Bi}i is a

pairwise disjoint collection and {1280Bi}i covers U∗λ . We have µ(U∗λ) ≤
C11
µ

∑
i µ(Bi).

We set

k4 := max{k0, k1, k2, k3} −
⌈

log(CA)

log 2

⌉
, (12.3.7)

with k0, k1, k2, k3 given by (12.2.11), (12.2.14), (12.2.26) and (12.2.30).

Assume that k > k4 and kp < 8k, and let k̂ = k+dlog(CA)/ log 2e. Then

we are in a position to invoke Proposition 12.2.31 with B0 := Bi for

each i. Here we should keep in mind that the sets Uλ referred to in that

proposition are sets that depend on Bi as well; Uλ = Uλ(Bi) = {x ∈
128Bi : M#

128u(x) > λ}. By the choice of Bi, we know that 256Bi ⊂ B1,

and so Uλ = Uλ ∩ 128Bi ⊂ U∗∗λ . Hence by (12.2.2),

µ(Bi) ≤ 2k̂p−αµ(U∗∗
2k̂λ
∩ 128Bi) + 8k̂p−αµ(U∗∗

8k̂λ
∩ 128Bi)

+ 8k̂(p+1)µ({x ∈ 2Bi : Lipu(x) > 8−k̂λ}).

Summing over the indices i and noting that the family {128Bi}i is pair-

wise disjoint, we obtain

C−11
µ µ(U∗λ) ≤ 2k̂p−αµ(U∗∗

2k̂λ
) + 8k̂p−αµ(U∗∗

8k̂λ
)

+ 8k̂(p+1)µ({x ∈ B1 : Lipu(x) > 8−k̂λ}).

By Lemma 12.3.1,

C−24
µ µ(U∗λ) ≤ 2k̂p−αµ(U∗

2k̂λ/CA
) + 8k̂p−αµ(U∗

8k̂λ/CA
)

+ 8k̂(p+1)µ({x ∈ B1 : Lipu(x) > 8−k̂λ}).
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Since CA > 1, we see that

C−24
µ µ(U∗λ) ≤ 2k̂p−αµ(U∗

2k̂λ/CA
) + 8k̂p−αµ(U∗

8k̂λ/C3
A

)

+ 8k̂(p+1)µ({x ∈ B1 : Lipu(x) > 8−k̂λ}).

Recalling the relation of k and k̂, we see that

C−24
µ µ(U∗λ) ≤ 2(k+1)p−αCpAµ(U∗2kλ) + 8(k+1)p−αC3p

A µ(U∗8kλ)

+ 8(k+1)(p+1)C
3(p+1)
A µ({x ∈ B1 : Lipu(x) > 8−kλ/C3

A}).

Observe that CA and Cµ are independent of the choices of α and k.

Choose α > 3 such that 2p−α CpA C
24
µ < 2−3. For example, choose

α = p+ 4 +
log(CpAC

24
µ )

log 2
. (12.3.8)

Then we also have 8p−α C3p
A C22

µ < 8−3, and we obtain the desired result.

Now we are ready to prove the main result of this chapter, the Keith–

Zhong self-improvement theorem for Poincaré inequalities on complete

doubling metric measure spaces.

Theorem 12.3.9 Suppose that X is complete, µ is doubling, and that

X supports a p-Poincaré inequality for some 1 < p < ∞. Then there

exists q ≥ 1 with 1 ≤ q < p such that X supports a q-Poincaré inequality.

The improvement p − q in the exponent depends solely on the data Cµ,

CP , and p.

Proof Recall the simplifying assumption, adopted in this chapter, that

X is geodesic. Fix a Lipschitz function u on X, and a ball B ⊂ X.

In the preceding computations, we consider B1 = 256B. As in the

statement of Lemma 12.3.5, we assume that k is an integer satisfying

k > k4 and kp < 8k, where k4 is defined as in (12.3.7). We now choose

ε > 0 so that

8kε < 2,

that is, 0 < ε < 1/(3k). We now show that q = p − ε satisfies the

conclusion of the theorem.

Integrating (12.3.6) against λp−ε, we obtain∫ ∞
0

µ(U∗λ) d(λp−ε) ≤ 2kp−3

∫ ∞
0

µ(U∗2kλ) d(λp−ε) + 8kp−3

∫ ∞
0

µ(U∗8kλ) d(λp−ε)

+ 8(k+1)(p+1) C22
µ C

3(p+1)
A

∫ ∞
0

µ({x ∈ B1 : Lipu(x) > 8−kλ/C3
A}) d(λp−ε).
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Changing variables in each of the integrals on the right hand side, we

obtain∫ ∞
0

µ(U∗λ) d(λp−ε) ≤ 2kε−3

∫ ∞
0

µ(U∗λ) d(λp−ε) + 8kε−3

∫ ∞
0

µ(U∗λ) d(λp−ε)

+ 8k(2p+1−ε)+(p+1) C22
µ C

3(2p+1−ε)
A

∫ ∞
0

µ({x ∈ B1 : Lipu(x) > λ}) d(λp−ε).

By the choice of ε, we deduce that 2kε−3 < 1
4 and 8kε−3 < 1

4 , and so

1

2

∫ ∞
0

µ(U∗λ) d(λp−ε)

≤ 8k(2p+1−ε)+(p+1) C22
µ C

3(2p+1−ε)
A

∫ ∞
0

µ({x ∈ B1 : Lipu(x) > λ}) d(λp−ε),

whence we obtain from Cavalieri’s principle (3.5.5) that∫
B

(M∗256u)p−ε dµ ≤
∫
B1

(M∗256u)p−ε dµ

≤ 2 · 8k(2p+1−ε)+(p+1) C22
µ C

3(2p+1−ε)
A

∫
B1

(Lipu)p−ε dµ.

Observe that if x ∈ 1
256B1 = B, then

M∗256u(x) ≥ 1

rad(B)

∫
B

|u− uB | dµ,

Thus we obtain[
1

rad(B)

∫
B

|u− uB | dµ
]p−ε

µ(B) ≤ C
∫
B1

(Lipu)p−ε dµ,

that is, (recall that we set B1 = 256B at the beginning of the proof) if

B is a ball in X, then by the doubling property of µ, we get∫
B

|u− uB | dµ ≤ C rad(B)

(∫
256B

(Lipu)p−ε dµ

)1/(p−ε)

.

We have thus established a (p−ε)-Poincaré inequality for Lipschitz func-

tions u and and their pointwise Lipschitz-constant functions Lipu. A

final appeal to Theorem 8.4.2 completes the proof.

The self-improving property of the p-Poincaré inequality given above

in Theorem 12.3.9 required X to be complete (and hence also proper,

since the measure on X is doubling). The requirement of completeness

can be relaxed to local completeness.
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Proposition 12.3.10 Suppose that X is locally complete and µ is

doubling. If X supports a p-Poincaré inequality for some 1 < p < ∞,

then there is some q ≥ 1 with 1 ≤ q < p such that every function in

N1,p(X), together with any of its upper gradients, satisfies a q-Poincaré

inequality.

Proof Since X supports a p-Poincaré inequality, Theorem 8.2.1 implies

that Lipschitz functions are dense in N1,p(X). As in Lemma 8.2.3, we

set X̂ to be the completion of X, equipped with the zero-extension µ̂ of

µ to X̂ \X. By Lemma 8.2.3, we see that functions in N1,p(X) extend to

functions inN1,p(X̂), and that X̂, together with µ̂, supports a p-Poincaré

inequality. Now from Theorem 12.3.9 we know that X̂ supports a q-

Poincaré inequality for some 1 ≤ q < p. The desired conclusion follows

from the fact that X is an open subset of X̂ and µ̂(X̂ \X) = 0.

It is important to be careful in analyzing the self-improving properties

of the Poincaré inequality on noncomplete spaces. Proposition 12.3.10

does not imply that X supports a q-Poincaré inequality.

Remark 12.3.11 Fix n ≥ 2 and 1 < p ≤ n. Then there exists a

locally compact Ahlfors n-regular metric measure space which supports

a p-Poincaré inequality, but does not support a q-Poincaré inequality

for any 1 ≤ q < p. The space X can be chosen to be a subset of Rn,

equipped with the Euclidean metric and the Lebesgue measure. More

specifically, we choose a sufficiently large Cantor type set E ⊂ Rn−1

such that Rn \ (E × {0}) is the example space; with a correct choice

of E, every function in the N1,p-class of this metric space extends to

N1,p(Rn) but not every function in the N1,q-class extends to N1,q(Rn).

Since E has measure zero, self-improvement of the Poincaré inequality

fails for such functions. See [167] for details.

It is natural to ask whether in a complete doubling metric measure

space, a p-Poincaré inequality always improves to the best possible one,

namely a 1-Poincaré inequality. This is not the case. See Section 14.2.

Theorem 12.3.9 has numerous important consequences. Several re-

sults in the previous chapters relied on the validity of a better Poincaré

inequality; by Theorem 12.3.9 this hypothesis can be relaxed to the p-

Poincaré inequality for complete spaces. For the sake of completeness we

record results of this type.

For the following result, compare Lemma 9.2.6.

Lemma 12.3.12 Let X be complete and let µ be a doubling measure
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on X. Assume X supports a p-Poincaré inequality for some p > 1. For

u ∈ N1,p(X : V ) and λ > 0, Capp({Mu > λ}) ≤ Cλ−p||u||pN1,p(X:V ).

The refined estimates on the size of the set of Lebesgue points of an

N1,p-function (Theorem 9.2.8) admit a similar improvement.

Theorem 12.3.13 Let X be complete, let µ be a doubling measure on

X, and assume that X supports a p-Poincaré inequality for some p > 1.

Let u be a function in N1,p(X : V ). Then p-almost every point in X is

a Lebesgue point for u.

Finally, all of the standard notions of Sobolev space coincide in the

case p > 1, provided the underlying space is a complete doubling metric

measure space supporting a p-Poincaré inequality. Compare the follow-

ing theorem with Theorems 10.5.2 and 10.5.3.

Theorem 12.3.14 Let X be complete, let µ be a doubling measure on

X, and assume that X supports a p-Poincaré inequality for some p > 1.

Then

M1,p = P 1,p = KS1,p = N1,p = Ch1,p.

Moreover, the norms || · ||M1,p , || · ||N1,p = || · ||Ch1,p and || · ||KS1,p are all

comparable.

12.4 Notes to Chapter 12

The results on the self-improvement of Poincaré inequalities in this chap-

ter were established by Keith and Zhong [153]. Our exposition follows

their original reasoning but we have kept careful track of the constants

in order to obtain estimates for the size ε of the self-improvement.

Examples of complete, Ahlfors regular metric measure spaces that

support a p-Poincaré but not a q-Poincaré inequality for some 1 ≤ q < p

appear in [125], see also Section 14.2. These examples show that the

degree of self-improvement necessarily depends on the given data.

The counterexamples to the self-improvement referred to in Remark

12.3.11 are from [167]. These are based on a careful analysis of removable

sets of a certain type for Sobolev spaces. The setting is that of an n-

dimensional Euclidean space and only exponents 1 < p ≤ n are covered.

We do not know of any relevant examples in the super-critical case p > n.

For a study of Orlicz-Poincaré inequalities and their self-improvement,

we refer the reader to [270], [71], and [148].
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Euclidean Lipschitz functions are differentiable almost everywhere

with respect to the Lebesgue measure; this is a fundamental result by

Rademacher [226]. The focus of this chapter is to establish a Rademacher-

type differentiability result via a linear differential structure for Sobolev

spaces on doubling metric measure spaces supporting a p-Poincaré in-

equality. As a consequence we will show that N1,p(X) is reflexive if

p > 1.

The results of this chapter are due to Cheeger [53].

In this chapter we will assume that X is complete, the measure is

doubling, and that a p-Poincaré inequality holds true for some p > 1.

By Lemma 8.2.3, the assumption that X is complete is not overly re-

strictive. We assume completeness so that by Theorem 8.3.2 X is known

to be a quasiconvex space. Now a biLipschitz change in the metric on X

produces a complete metric measure space with doubling measure sup-

porting a p-Poincaré inequality and in addition X is a geodesic space.

It then follows that with this new metric, we have access to the annular

decay property described in Proposition 11.5.3.

13.1 Asymptotic generalized linearity

To construct a linear differential structure, we need coordinate func-

tions. A substitute for coordinate functions in the metric setting will

be constructed in Section 13.4, using the tool of asymptotic generalized

linearity developed in this section. To do so, we first need a notion of p-

harmonicity. In the Euclidean setting, the standard coordinate functions

are p-harmonic for each p > 1.

A function f ∈ N1,p
loc (Ω), for an open set Ω ⊂ X, is p-harmonic if∫

spt(u)

ρpf dµ ≤
∫

spt(u)

ρpf+u dµ

whenever u ∈ N1,p(X) has compact support in Ω. Here ρf refers to the

minimal p-weak upper gradient of f guaranteed by Theorem 6.3.20. In

the Euclidean setting, such minimizers are precisely those functions that

are p-harmonic. Using this concept as a model, we consider the following

asymptotic version of p-harmonicity.

Given an open set U ⊂ X, let N1,p
c (U) be the collection of all functions

u ∈ N1,p(X) with compact support contained in U .

Definition 13.1.1 A function f ∈ N1,p
loc(X) is asymptotically p-harmonic
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at a point x0 ∈ X if

lim
r→0

[∫
B(x0,r)

ρpf dµ− inf
u∈N1,p

c (B(x0,r))

∫
B(x0,r)

ρpf+u dµ

]
= 0.

Note that for each r > 0,∫
B(x0,r)

ρpf dµ ≥ inf
u∈N1,p

c (B(x0,r))

∫
B(x0,r)

ρpf+u dµ.

For the remainder of this chapter we will assume that p > 1.

Definition 13.1.2 We say that f is asymptotically generalized linear

at x0 ∈ X if f is asymptotically p-harmonic at x0 and

lim
r→0

∫
B(x0,r)

ρpf dµ = ρf (x0)p.

By the Lebesgue differentiation theorem 3.4, we know that µ-a.e. point

in X is a Lebesgue point of ρpf because ρf ∈ Lploc(X).

Theorem 13.1.3 Suppose that µ is doubling. Then every Lipschitz

function on X is asymptotically generalized linear at µ-a.e. point in X.

Proof Let f be an L-Lipschitz continuous function on X. Since the

analysis is local, we may assume without loss of generality that f has

compact support in X.

As pointed out above, µ-a.e. point in X is a Lebesgue point of ρpf ,

where ρf ≤ Lip f ∈ Lploc(X). Hence it suffices to show that f is asymp-

totically p-harmonic at µ-a.e. point in X. Suppose that this is not the

case. Then there is a set A ⊂ X with µ(A) > 0 such that at no point of

A is f asymptotically p-harmonic. So for each x0 ∈ A we have

lim
r→0

[∫
B(x0,r)

ρpf dµ− inf
u∈N1,p

c (B(x0,r))

∫
B(x0,r)

ρpf+u dµ

]
> 0.

Hence we can find ε > 0 and a set A0 ⊂ A with µ(A0) > 0 such that for

each x0 ∈ A there is a sequence of radii, ri(x0) ≤ 1/i satisfying∫
B(x0,ri(x0))

ρpf dµ− inf
u∈N1,p

c (B(x0,ri(x0)))

∫
B(x0,ri(x0))

ρpf+u dµ > ε,

and so for each i we can find ux0,i ∈ N1,p
c (B(x0, ri(x0))) such that∫

B(x0,ri(x0))

ρpf dµ ≥
∫
B(x0,ri(x0))

ρpf+ux0,i
dµ+ ε. (13.1.4)
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Since truncation does not increase the p-weak upper gradient (see Propo-

sition 6.3.23), we can without loss of generality assume that

max
B(x0,ri(x0))

[f + ux0,i] ≤ max
B(x0,ri(x0))

f

and that

min
B(x0,ri(x0))

[f + ux0,i] ≥ min
B(x0,ri(x0))

f.

This is done by replacing ux0,i with

max{min{f + ux0,i, max
B(x0,ri(x0))

f}, min
B(x0,ri(x0))

f} − f

if necessary. It follows from the L-Lipschitz continuity of f that

‖(f + ux0,i)− f‖L∞(B(x0,ri(x0))) ≤ 2Lri(x0). (13.1.5)

We fix k ∈ N. The balls B(x0, ri(x0)), x0 ∈ A0 and i ∈ N with i ≥ k,

form a fine cover of A0 (see Section 3.4 on Vitali measures), and because

µ is a doubling measure, we can appeal to the Vitali covering theorem 4.2

to obtain a pairwise disjoint countable subfamily, B(xj , rj), j ∈ N and

rj ≤ 1/k, such that

µ

A0 \
⋃
j∈N

B(xj , rj)

 = 0.

Corresponding to each j ∈ N, by the above discussion, we have a function

uj := uxj ,k in N1,p
c (B(xj , rj)) that satisfies (13.1.4). We now define

fk : X → R by setting

fk(x) =

{
f(x) + uj(x) if x ∈ B(xj , rj) for some j,

f(x) otherwise.

By inequality (13.1.5) we know that ‖fk − f‖L∞(X) ≤ 2L/k, and it

follows that fk → f in Lploc(X). Furthermore, by Lemma 6.3.14 and by

the pairwise disjointness property of the subfamily, the function

ρf χX\
⋃
j B(xj ,rj) +

∑
j

ρf+uj χB(xj ,rj)

is a p-weak upper gradient of fk. Note that by (13.1.4) and by the
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pairwise disjointness property of the subfamily,∫
X

ρpfk dµ =

∫
X\
⋃
j B(xj ,rj)

ρpf dµ+
∑
j

∫
B(xj ,rj)

ρpf+uj
dµ

≤
∫
X\
⋃
j B(xj ,rj)

ρpf dµ+
∑
j

[∫
B(xj ,rj)

ρpf dµ− ε µ(B(xj , rj))

]

≤
∫
X

ρpf dµ − ε µ(A0).

Because f has compact support, A0 is bounded and so µ(A0) < ∞. It

follows that (fk) is a bounded sequence in N1,p(X). Since p > 1, an

application of Theorem 7.3.8 together with Proposition 7.3.7 shows that∫
X
ρpf dµ ≤ lim infk

∫
X
ρpfk dµ; recall from (13.1.5) that fk → f in Lp(X).

It follows that∫
X

ρpf dµ ≤ lim inf
k

∫
X

ρpfk dµ ≤
∫
X

ρpf dµ − ε µ(A0),

which is not possible because εµ(A0) > 0. Therefore the basic premise

that f fails to be asymptotically p-harmonic on a positive measure subset

of X is false, and the theorem is proved.

The following proposition extends the above result. Given functions

f1, · · · , fk onX, we define ~f : X → Rk by setting ~f(x) = (f1(x), . . . , fk(x)).

Proposition 13.1.6 Suppose that µ is doubling. Let f1, . . . , fk be L-

Lipschitz functions. Let Z denote the collection of all x ∈ X such that

for each ~a = (a1, . . . , ak) in Rk, the function ~a · ~f =
∑k
i=1 aifi is asymp-

totically generalized linear at x. Then µ(X \ Z) = 0. Furthermore, for

all ~a,~b ∈ Rk,

|ρ~a·~f+u − ρ~b·~f+u| ≤ L
k∑
i=1

|ai − bi| (13.1.7)

whenever u ∈ N1,p(X).

Proof The inequality (13.1.7) is directly verified using (6.3.18), with

the inequality holding at Lebesgue points of the two functions.

For each ~a ∈ Rk let Z(~a) be the collection of points x ∈ X at which

the Lipschitz function ~a · ~f is asymptotically generalized linear. By The-

orem 13.1.3, µ(X \ Z(~a)) = 0. It follows that Z0 :=
⋂
~a∈Qk Z(~a) also

satisfies µ(X \ Z0) = 0. By replacing X \ Z0 with a Borel set of zero

measure containing X \ Z0, and then replacing Z0 with the comple-

ment of this zero-measure Borel set if necessary, we may assume that
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Z0 is Borel. Furthermore, for each x ∈ Z0 inequality (13.1.7) holds for

each ~a,~b ∈ Qk. It suffices to prove that Z0 ⊂ Z. Towards this end, for

~a ∈ Rk choose a sequence of points ~aj ∈ Qk such that limj ~a
j = ~a. Then

by (13.1.7), we know that ρ~aj ·~f → ρ~a·~f uniformly in Z0. Thus every

point of Z0, being a Lebesgue point of each ρ~aj ·~f , is also a Lebesgue

point of ρ~a·~f .

Let x0 ∈ Z0, and suppose that ~a · ~f is not asymptotically p-harmonic

at x0. Then there is a positive real number ε, a sequence of radii rm → 0,

and a corresponding choice of functions um ∈ N1,p
c (B(x0, rm)), such that∫

B(x0,rm)

ρp
~a·~f

dµ ≥ ε+

∫
B(x0,rm)

ρp
~a·~f+um

dµ.

We may choose k large enough so that∣∣∣∣∫
B(x0,rm)

ρp
~ak·~f

dµ−
∫
B(x0,rm)

ρp
~a·~f

dµ

∣∣∣∣ < ε

10

and that∣∣∣∣∫
B(x0,rm)

ρp
~ak·~f+um

dµ−
∫
B(x0,rm)

ρp
~a·~f+um

dµ

∣∣∣∣ < ε

10
.

Such choice of k is independent of m (by the uniform convergence in Z0

discussed above), and it follows that∫
B(x0,rm)

ρp
~ak·~f

dµ ≥ 4ε

5
+

∫
B(x0,rm)

ρp
~ak·~f+um

dµ.

Because this holds for each m, we see that x0 is not a point of asymptotic

p-harmonicity of ~ak · ~f , which violates the fact that x0 ∈ Z0. Thus x0

is a point of asymptotic p-harmonicity of ~a · ~f as well, from which the

claim of the proposition follows.

13.2 Caccioppoli type estimates

A fundamental property of p-harmonic functions is a Caccioppoli-type

estimate that allows one to locally control the integral of the gradient of

the function in terms of the integral of the function itself. In this section

we show that functions that are asymptotically generalized linear in the

sense of Definition 13.1.2 satisfy such an inequality at small scales at

points of asymptotic generalized linearity.

Given an open set U ⊂ X with X \ U non-empty, and a positive real

number η, we set Uη := {x ∈ U : dist(x,X \ U) > η}.
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Lemma 13.2.1 Let 0 ≤ δ < ν ≤ 1, η > 0, and f ∈ N1,p(U). Suppose

that f satisfies ∫
U\U2η

ρpf dµ ≤ δ
p

∫
U

ρpf dµ (13.2.2)

and that for each u ∈ N1,p
c (U),

νp
∫
U

ρpf dµ ≤
∫
U

ρpf+u dµ. (13.2.3)

Then ∫
U

ρpf dµ ≤
1

ηp(ν − δ)p

∫
Uη\U2η

|f |p dµ.

Proof We can choose a 1/η-Lipschitz function ϕ on X such that ϕ = 1

on U2η, ϕ = 0 on X \ Uη, and 0 ≤ ϕ ≤ 1 on X. By Proposition 6.3.28,

1

η
|f |χUη\U2η

+ (1− ϕ)ρf

is a p-weak upper gradient of (1−ϕ)f . Because ϕf ∈ N1,p
c (U), it follows

from (13.2.3) and (13.2.2) that

ν

(∫
U

ρpf dµ

)1/p

≤
(∫

U

ρp(1−ϕ)f dµ

)1/p

≤

(∫
Uη\U2η

1

ηp
|f |p dµ

)1/p

+

(∫
U

(1− ϕ)pρpf dµ

)1/p

≤ 1

η

(∫
Uη\U2η

|f |p dµ

)1/p

+

(∫
U\U2η

ρpf dµ

)1/p

≤ 1

η

(∫
Uη\U2η

|f |p dµ

)1/p

+ δ

(∫
U

ρpf dµ

)1/p

.

Thus

(ν − δ)
(∫

U

ρpf dµ

)1/p

≤ 1

η

(∫
Uη\U2η

|f |p dµ

)1/p

,

from which the lemma follows.

Theorem 13.2.4 Suppose that µ is doubling and that X is a length

space. Then there exist 0 < τ < 1 and C ≥ 1, both depending only on the

doubling constant Cµ of the measure µ, such that whenever f ∈ N1,p
loc(X)
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is asymptotically generalized linear at x0 ∈ X with ρf (x0) > 0, there

exists a positive real number r0 such that(∫
B(x0,r)

ρpf dµ

)1/p

≤ C

r

(∫
B(x0,(1+τ)r/2)\B(x0,τr)

|f |p dµ

)1/p

for 0 < r < r0.

Proof The conclusion of the theorem follows from Lemma 13.2.1 if we

can show that f satisfies the hypotheses of the lemma with U = B(x0, r),

for some choice of 0 ≤ δ < ν ≤ 1, η = (1− τ)r/2 independently of f , x0,

r.

Since x0 is a Lebesgue point of ρpf and ρf (x0) > 0, there is a positive

real number r1 ≤ 1 such that whenever 0 < r < r1,

0 < ρf (x0)p ≤ 2p
∫
B(x0,r)

ρpf dµ. (13.2.5)

By the asymptotic p-harmonicity of f at x0, we know the existence of

r2 > 0 such that whenever 0 < r < min{r2, r1} and u ∈ N1,p
c (B(x0, r)),

0 <
ρf (x0)p

2p
≤
∫
B(x0,r)

ρpf dµ ≤ 2p
∫
B(x0,r)

ρpf+u dµ,

and so f satisfies (13.2.3) for U = B(x0, r) with ν = 1/2, whenever

0 < r < min{r1, r2} ≤ 1.

Again because x0 is a Lebesgue point of ρpf and ρf (x0) > 0, it follows

that for each δ ∈ (0, 1/8) there is a positive real number r3 < 1 such

that whenever 0 < ρ < r < r3,∫
B(x0,r)

ρpf dµ−
∫
B(x0,ρ)

ρpf dµ < δpρf (x0)p,

and hence, denoting τ := ρ/r, B = B(x0, r) and τB = B(x0, τr), we see

that

1

µ(B)

∫
B\τB

ρpf dµ−
[

1

µ(τB)
− 1

µ(B)

] ∫
τB

ρpf dµ < δpρf (x0)p.

By the hypothesis of this theorem, X is a length space and µ is doubling.

It follows from Proposition 11.5.3 that

1

µ(B)

∫
B\τB

ρpf dµ ≤ δ
pρf (x0)p +

Cµ(1− τ)β

µ(B)

∫
B

ρpf dµ.
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Thus for 0 < r < min{r1, r2, r3} we obtain∫
B\τB

ρpf dµ <
[
2pδp + Cµ(1− τ)β

] ∫
B

ρpf dµ.

Let δ = 1/(31/p8) and choose τ close to 1 so that Cµ(1 − τ)β < δp.

We choose r0 = min{r1, r2, r3} ≤ 1, with r3 corresponding to the above

choice of δ as well as x0. Then by above,∫
B\τB

ρpf dµ < 3pδp
∫
B

ρpf dµ.

Thus (13.2.2) is satisfied with η = (1− τ)r/2 and 3δ playing the role of

δ there. Now an application of Lemma 13.2.1 completes the proof.

13.3 Minimal weak upper gradients of distance
functions are nontrivial

In this section we show that for each x0 ∈ X the minimal p-weak upper

gradient of the Lipschitz function x 7→ d(x, x0) is positive on a large set.

Given a set A ⊂ X and a point x0 ∈ X, we say that x0 is a point of

density of A if

lim inf
r→0

µ(B(x0, r) ∩A)

µ(B(x0, r))
= 1.

Note that necessarily µ(A) > 0 if A has a point of density.

Lemma 13.3.1 Suppose that µ is doubling and supports a p-Poincaré

inequality. Let x0 ∈ X, and consider the function f given by f(x) =

d(x0, x). If x0 is a point of density of a set A ⊂ X, then there is a set

A1 ⊂ A with µ(A1) > 0 such that ρf > 0 on A1. Furthermore, we can

choose A1 so that x0 is also a point of density of A1.

Proof Suppose that ρf = 0 almost everywhere in A. For each 0 < ε < 1,

we can find r0 > 0 such that whenever 0 < r < r0,

1− εp ≤ µ(B(x0, r) ∩A)

µ(B(x0, r))
≤ 1.

We will show that there is some ε0 > 0 such that when ε < ε0 we will

have a contradiction with the fact that ρf = 0 almost everywhere on A.

An application of the p-Poincaré inequality to the balls B(x0, r) with
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0 < r < r0/λ, together with the fact that ρf ≤ 1, gives

∫
B(x0,r)

|f − fB(x0,r)| dµ ≤ C r

(∫
B(x0,λr)

ρpf dµ

)1/p

≤ C r
(
µ(B(x0, λr) \A)

µ(B(x0, λr))

)1/p

≤ C r ε.

Hence ∫
B(x0,r)

|f − fB(x0,r)| dµ ≤ C r ε. (13.3.2)

On the other hand, if fB(x0,r) ≥ r/4, then

Cr ε ≥
∫
B(x0,r)

|f − fB(x0,r)| dµ

≥ 1

µ(B(x0, r))

∫
B(x0,r/8)

[fB(x0,r) − d(x, x0)] dµ(x)

≥ µ(B(x0, r/8))

µ(B(x0, r))

[r
4
− r

8

]
≥ r

8C3
µ

,

and so in this case ε ≥ 1/(8C C3
µ) > 0. If fB(x0,r) < r/4, then

Cr ε ≥ 1

µ(B(x0, r))

∫
B(x0,r)\B(x0,r/2)

[d(x, x0)− fB(x0,r)] dµ(x)

≥ µ(B(x0, r) \B(x0, r/2))

µ(B(x0, r))

[r
2
− r

4

]
≥ r

C
,

where we used (8.1.16).

In both cases we have ε ≥ ε0 > 0 (where ε0 depends on the doubling

constant Cµ). As mentioned above, this leads to a contradiction. Thus

it is not possible to have ρf = 0 almost everywhere in A.

The above argument shows that given any measurable A2 ⊂ A that

contains x0 as a point of density, ρf cannot vanish on A2. Thus, if we set

A′1 to be the collection of all x ∈ A that are Lebesgue points of ρf with

ρf (x) > 0, then x0 is a point of density of A′1. Setting A1 = A′1 ∪ {x0}
completes the proof of the lemma.
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13.4 The differential structure

Henceforth in this chapter we will assume that µ is doubling and that

X is a geodesic space supporting a p-Poincaré inequality.

Let 0 < r < diam(X)/2, 0 < η < r/2, and 0 < s < η. Given x0 ∈ X
and an open set U ⊂ B(x0, r), we can find points x1, · · · , xN in B(x0, r),

as in Section 12.1, such that the collection {B(xi, s)}i covers Uη with

d(xi, xj) ≥ s/2 if i 6= j and B(xi, s) ⊂ B(x0, r). Correspondingly, for a

function f ∈ Lp(B(x0, r)) let

φs,r(f) :=

(
µ(B(x1, s))

1/p

∫
B(x1,s)

f dµ, · · · , µ(B(xN , s))
1/p

∫
B(xN ,s)

f dµ

)
.

(13.4.1)

Then φs,r : Lp(B(x0, r)) → RN , where N ≤ N2 = N2(Cµ, r/s) is as

in (12.1.3). Equip RN with the `p-norm: |(a1, · · · , aN )| :=
(∑N

j=1 |aj |p
)1/p

.

Proposition 13.4.2 Let f ∈ N1,p
loc(X). Suppose that η,K are positive

real numbers and U ⊂ B(x0, r) is an open set such that

ηp
∫
U

ρpf dµ ≤ K
p

∫
Uη

|f |p dµ. (13.4.3)

Let 0 < s < βη, where β = min{1, [4CKN1/p
1 ]−1} with C the constant

from Remark 9.1.19. Then∫
Uη

|f |p dµ ≤ 2p+1|φs,r(f)|p.

Consequently, if F is a vector space of functions in N1,p
loc(X) that sat-

isfy (13.4.3), then the vector space dimension of F is at most N2.

Proof Since the balls B(xi, s) cover Uη,

∫
Uη

|f |p dµ ≤
N∑
i=1

∫
B(xi,s)

|f |p dµ

≤ 2p
N∑
i=1

∫
B(xi,s)

|f − fB(xi,s)|
p dµ+ 2p

N∑
i=1

|fB(xi,s)|
pµ(B(xi, s)).

By Remark 9.1.19 together with Hölder’s inequality, followed by the
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bounded overlap property from (12.1.4) (with α = 1), we now have∫
Uη

|f |p dµ ≤ 2pCpsp
N∑
i=1

∫
B(xi,s)

ρpf dµ+ 2p
N∑
i=1

|fB(xi,s)|
pµ(B(xi, s))

≤ [2Cs]pN1

∫
U

ρpf + 2p
N∑
i=1

|fB(xi,s)|
pµ(B(xi, s))

≤ [2Cs]pN1

∫
U

ρpf + 2p|φs,r(f)|p.

An application of (13.4.3) now yields∫
Uη

|f |p dµ ≤ [2KCs]p

ηp
N1

∫
Uη

|f |p dµ+ 2p|φs,r(f)|p

≤ 2−p
∫
Uη

|f |p dµ+ 2p|φs,r(f)|p

≤ 1

2

∫
Uη

|f |p dµ+ 2p|φs,r(f)|p.

Thus we obtain the first part of the claim.

Towards the second part of the claim, note that φs,r : F → RN is a

linear map. By the above discussion, this map is injective. It follows that

the vector space dimension of F cannot be larger than the dimension of

RN , which is N ≤ N2. This completes the proof of the proposition.

Theorem 13.4.4 There is a countable collection of measurable sets

{Uα}α, with µ(Uα) > 0, satisfying µ(X \
⋃
α Uα) = 0, and for each Uα

a collection of 1-Lipschitz functions fα1 , . . . , f
α
N(α) on X, where N(α) ≤

N2, such that

(i). each fαj , j = 1, . . . , N(α), is asymptotically generalized linear at each

point of Uα,

(ii). for each ~a ∈ RN(α) \ {~0} and each x0 ∈ Uα we have ρ~a· ~fα(x0) > 0,

(iii). whenever u : X → R is an L-Lipschitz function, there is a set Vα(u) ⊂
Uα, with µ(Uα \ Vα(u)) = 0, and Borel functions bαj (u) : Vα(u)→ R,

j = 1, . . . , N(α), such that for x0 ∈ Vα(u), we have ρ~a·~fα−u(x0) = 0

if and only if

~a = ~bα(u)(x0) = (bα1 (u)(x0), · · · , bαN(α)(u)(x0)).

Observe that Condition (ii) in the above theorem guarantees that the

collection fα1 , . . . , f
α
N(α) is linearly independent.



390 Cheeger’s differentiation theory

Proof By first decomposing X into a countable number of measurable

sets, each of positive and finite measure, we note that it suffices to show

that given a measurable set A of positive measure there is a measurable

set U ⊂ A satisfying the above conditions. Hence we fix such a set A.

Then by Lemma 13.3.1 we know that there is at least one Lipschitz

function f and a measurable set A1 ⊂ A with µ(A1) > 0 such that

ρf > 0 on A1. By throwing away a set of measure zero if necessary, by

Theorem 13.1.3, we can also assume that f is asymptotically generalized

linear at each point in A1.

Let F be a maximal collection of Lipschitz functions on X such that

each f ∈ F is asymptotically generalized linear at each point x0 ∈ A1

with ρf (x0) > 0 and so that whenever ~a = (a1, · · · , ak) ∈ Rk \ {~0}, we

have for each choice of distinct f1, . . . , fk ∈ F ,

ρ∑k
j=1 ajfj

(x0) > 0. (13.4.5)

We know from the previous paragraph that F is non-empty.

By Proposition 13.1.6 we know that the vector space F constructed

using the functions in F as a basis consists of Lipschitz functions, each

of which is asymptotically generalized linear at each point in A2 ⊂ A1

for some measurable set A2, independent of the choice of function, such

that µ(A1 \ A2) = 0. By the above constraint on F , we know that for

each non-zero function h ∈ F we have ρh > 0 on A2 ⊂ A1. Therefore, by

Theorem 13.2.4, we know that each function in F satisfies the Cacciop-

poli type inequality (13.4.3). Now an application of Proposition 13.4.2

yields that F has vector space dimension at most N ≤ N2 with N2 given

as in (12.1.3) with s = τr/4. Recall that N2 depends solely on Cµ and

τ/4, which in turn, via Proposition 11.5.3, depends solely on Cµ. Thus

the basis F consists of at most N Lipschitz functions f1, . . . , fN .

It now only remains to verify the last condition on A2 for the above

choice of f1, . . . , fN . To do so, we consider a Lipschitz function u : X →
R, and let V (u) denote the collection of all x0 ∈ A2 for which ~a · ~f − u

is asymptotically generalized linear at x0 whenever ~a ∈ QN . By Theo-

rem 13.1.3 again, we know that µ(A2 \V (u)) = 0, and a repetition of the

proof of Proposition 13.1.6 (with the aid of (13.1.7)) demonstrates that

~a · ~f − u is asymptotically generalized linear at x0 whenever ~a ∈ RN .

Suppose that there is a set of positive measure, W (u), with W (u) ⊂
V (u) such that at each point x0 ∈ W (u) we have that ρ~a·~f−u(x0) > 0

for each choice of ~a ∈ RN . Then F ∪ {u} would be a larger collection

that satisfies the requirements of F given in the second paragraph of
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this proof, with W (u) replacing A1. In this case, we can add u to the

collection F and replace A1 with W (u).

The above procedure can be repeated at most N2 − #F number of

times. After that, we can no longer find a Lipschitz function u that

satisfies the supposition given in the previous paragraph. Thus now we

have a collection F and a measurable setA2 of positive measure such that

whenever u is a Lipschitz function on X, for µ-almost each x0 ∈ V (u)

there is a choice of ~a ∈ RN such that ρ~a·~f −u(x0) = 0. Let ~b(x0) be

this choice of ~a; by replacing V (u) with this full measure subset, we can

assume that such ~b = ~b(x0) exists for each x0 ∈ V (u).

To complete the proof, suppose that ~a ∈ RN is such that ρ~a·~f −u(x0) =

0. By (6.3.18),

ρ[~a−~b]·~f (x0) = ρ~a·~f−~b·~f (x0) ≤ ρ~a·~f −u(x0) + ρ~b·~f −u(x0) = 0,

because x0 is a Lebesgue point for each of the three functions above.

Whence we have a violation of (13.4.5) unless ~a = ~b(x0). This completes

the proof of the theorem.

The function ~bα(u) : Vα(u)→ RN(α) is called a derivative of u, and is

denoted Dαu. If the sets Uα are pairwise disjoint, then we can write

D(u) =
∑
α

DαuχUα . (13.4.6)

The above proof shows that we can always arrange for the sets Uα to be

pairwise disjoint. It is easily verified that

D(u+ v) = D(u) +D(v) and D(βu) = βD(u) (13.4.7)

whenever u and v are Lipschitz functions on X and β ∈ R. We will see

in the next section that the operator D also satisfies a Leibniz rule; see

Remark 13.5.6 (i). Note that the above discussion is local, and so the

differential structure naturally extends to locally Lipschitz functions on

X as well as for functions that are locally Lipschitz continuous on an

open subset of X.

13.5 Comparisons between ρu and Lipu, Taylor’s
theorem, and reflexivity of N1,p(X)

A function u on an open subset of Rn is differentiable at a point x0 in

this open set if and only if a first-order Taylor approximation holds at
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that point:

lim
y→x0

|u(y)− u(x0)−∇u(x0) · (y − x0)|
‖y − x0‖

= 0.

In this section we demonstrate that for Lipschitz functions on X a sim-

ilar result holds. Using this Taylor approximation result, we will show

the equality of ρu and Lipu and prove the reflexivity of N1,p(X). The

proof of the Taylor approximation uses a comparison of the minimal

p-weak upper gradient ρu of a Lipschitz function u on X to its point-

wise Lipschitz-constant functions Lipu and lipu as defined in (6.2.4)

and (6.2.3).

In addition to the doubling property of µ and the p-Poincaré inequal-

ity, recall that in this chapter we have the mild assumption that X is a

geodesic space (after a biLipschitz change of the metric). The key result

of this section is the following theorem relating lipu and Lipu to ρu.

Theorem 13.5.1 If u is a Lipschitz function on X, then for µ-almost

every x ∈ X we have

lipu(x) = ρu(x) = Lipu(x).

To prove this theorem, we need some auxiliary results first. We know

from Lemma 6.2.6 that if u is Lipschitz, then ρu ≤ lipu.

Proposition 13.5.2 There is a constant C > 0 such that if u is a

Lipschitz function on X and x0 ∈ X is a Lebesgue point of ρpu, then

Lipu(x0) ≤ C ρu(x0). In particular, lipu ≤ Lipu ≤ Cρu ≤ C lipu at

µ-almost every point in X.

Proof Let x0 ∈ X be such that

lim
r→0

∫
B(x0,r)

|ρu − ρu(x0)|p dµ = 0.

Note that µ-almost every point in X is such a point; see for example

Theorem 3.4. Let R > 0 and x, y ∈ B(x0, R/4). Because u is continuous

and hence every point of X is a Lebesgue point of u, we obtain once

again by a telescoping argument together with an application of the

p-Poincaré inequality with λ = 1 (see Theorem 9.1.15) that

|u(x)− u(y)| ≤ C d(x, y) [Mpρu(x) +Mpρu(y)] ,

where

Mpρu(w) := sup
0<r<2 dist(w,X\B(x0,R))

(∫
B(w,r)

ρpu dµ

)1/p

.
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By Minkowski’s inequality Mpu + Mpv ≥ Mp(u + v) whenever u, v ∈
Lp(X). Then with v1 the constant function v1(w) = ρu(x0) and v2 the

function v2(w) = ρu(w)− ρu(x0), we see that

Mpρu = Mp(v1 + v2) ≤ ρu(x0) +Mp(ρu − ρu(x0)).

Consequently,

|u(x)− u(y)| ≤ C d(x, y) [2ρu(x0) +Mp(ρu − ρu(x0))(x)

+Mp(ρu − ρu(x0))(y)].
(13.5.3)

By the choice of x0, we know that limr→0 τr = 0 for

τr :=

∫
B(x0,r)

|ρu − ρu(x0)|p dµ.

We now use a Calderón–Zygmund type decomposition to controlMp[ρu−
ρu(x0)].

For K > 0 let EK be the set of all points x ∈ B(x0, R) for which there

is a positive real number r < dist(x,X \B(x0, R)) such that∫
B(x,r)

|ρu − ρu(x0)|p dµ > K τR.

We can find a cover of EK by balls B(x, r), x ∈ EK and 0 < r <

dist(x,X \B(x0, R)), such that∫
B(x,r)

|ρu − ρu(x0)|p dµ > K τR.

By applying the 5B-covering lemma 3.3, we extract a countable pairwise

disjoint subcollection {B(xi, ri)}i such that EK ⊂
⋃
iB(xi, 5ri). Using

the doubling property of µ, we obtain

µ(EK) ≤ C
∑
i

µ(B(xi, ri)) ≤
C

KτR

∑
i

∫
B(xi,ri)

|ρu − ρu(x0)|p dµ

≤ C

KτR

∫
B(x0,R)

|ρu − ρu(x0)|p dµ

=
C

K
µ(B(x0, R)).

Fix 0 < ε < 1. If x ∈ B(x0, R)\EK , then
∫
B(x,r)

|ρu−ρu(x0)|p dµ ≤ KτR
for every 0 < r < dist(x,X \ B(x0, R)), that is, Mp[ρu − ρu(x0)](x)p ≤
KτR. If x ∈ EK and 0 < r < R, then by Lemma 8.1.13 (see the
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discussion in Section 13.3), we know that µ(B(x, εr))/µ(B(x0, R)) ≥
(εr/R)Q/C. Thus when

K = 2C0

(
R

εr

)Q
,

we know that µ(B(x, εr)) > µ(EK), and so there is a point in B(x, εr) \
EK . So in either case, whenever x ∈ B(x0, R/2) and 0 < r < dist(x,X \
B(x0, R)), there is a point in B(x, εr) \ EK .

Let z ∈ B(x0, R/2) such that d(x0, z) = R/4; such a point exists

becauseX is a geodesic space. So letting r = R/4 in the above discussion,

we see that when K = C1/ε
Q, we can find x ∈ B(x0, εR/4) \ EK and

y ∈ B(z, εR/4) \ EK , and obtain from (13.5.3) and by the Lipschitz

continuity of u that

|u(x0)− u(z)| ≤ |u(x0)− u(x)|+ |u(x)− u(y)|+ |u(y)− u(z)|

≤ 2L ε
R

4
+ |u(x)− u(y)|

≤ 2L ε
R

4
+ C d(x, y)

[
2ρu(x0) + 2(KτR)1/p

]
≤ 2L ε d(x0, z) + C (2ε+ 1) d(x0, z)

[
2ρu(x0) + 2(τR/ε

Q)1/p
]
,

where we used the triangle inequality in the last line. Thus whenever

z ∈ X satisfies d(x0, z) = R/4,

|u(x0)− u(z)|
d(x0, z)

≤ 2Lε+ C
[
2ρu(x0) + 2(KτR)1/p

]
.

Because limR→0 τR = 0, we have

Lipu(x0) = lim sup
R→0

sup
d(z,x0)=R/4

|u(x0)− u(z)|
d(x0, z)

≤ 2Lε+ 2Cρu(x0).

Letting ε→ 0 completes the proof.

An immediate corollary of Proposition 13.5.2 is the following result.

Corollary 13.5.4 If u ∈ N1,p(X) and (ui) is a sequence of Lipschitz

functions such that ui → u in N1,p(X), then ‖Lip(ui − uj)‖Lp(X) →
0 as i, j → ∞. Furthermore, if u is also Lipschitz continuous, then

Lip(u− ui)→ 0 in Lp(X) and Lipui → Lipu in Lp(X).

The following corollary is obtained by combining Proposition 13.5.2

with Theorem 13.4.4 and Proposition 13.1.6.
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Corollary 13.5.5 Given a Lipschitz function u on X, for µ-almost

every x0 ∈ X, when x0 ∈ Uα, we have

lim
y→x0

∣∣∣∣u(y)− u(x0)−~bα(u)(x0) ·
[
~fα(y)− ~fα(x0)

] ∣∣∣∣
d(x0, y)

= 0.

Remarks 13.5.6 (i) As a consequence of the above corollary, ~bα(u) :

Uα → RN(α) is measurable, with |~bα(u)| ≤ L when u is L-Lipschitz. Fur-

thermore, a Leibniz type result holds: if u, v are two Lipschitz functions

on X, then D(uv) = vD(u) +uD(v). Also, if φ : R→ R is a C1-function

that is also Lipschitz, then D(φ ◦ u) = φ′ ◦ u D(u). In general, the re-

quirement of φ being C1 cannot be removed, since if all we know is that

φ is Lipschitz (and hence by the classical Rademacher theorem we know

that φ is differentiable only almost everywhere in R), φ′ may not exist

anywhere on u(Uα), and so the above chain rule may not make sense.

(ii) Note that for each α,

ρ~a·~fα − ρ~a·~fα−u ≤ ρu ≤ ρ~a·~fα−u + ρ~a·~fα ,

and so for x0 ∈ Vα(f), by choosing ~a = ~bα(u)(x0), we see that

ρ~bα(u)(x0)·~f (x0) = ρu(x0).

The above identity, loosely interpreted, states that the minimal weak

upper gradient of the first order Taylor approximation function x 7→
u(x0)+~bα(u)(x0) · [~f(x)− ~f(x0)] coincides with the minimal weak upper

gradient of u.

Theorem 13.5.7 Let µ be doubling and X a geodesic space supporting

a p-Poincaré inequality. Then N1,p(X) is reflexive provided p > 1.

Proof The map ‖ · ‖ : RN(α) → [0,∞) given by ‖~a‖ := ρ~a·~fα(x0) for

any fixed x0 ∈ Uα forms a norm by (6.3.18) and the fact that whenever

~a 6= ~0 we have ρ~a·~fα(x0) > 0. Now an application of Theorem 2.4.25

tells us that there is an inner product 〈·, ·〉x0 on RN(α) such that with

|~a|x0
=
√
〈~a,~a〉x0

, we have |~a|x0
≤ ‖~a‖ ≤

√
N(α)|~a|x0

. When u is a

Lipschitz function on X, Vα(u) 3 x0 7→ ‖~bα(u)(x0)‖ is measurable (see

Remark 13.5.6 (i) above), and by the proof of Theorem 2.4.25 we can

ensure that for the chosen inner product 〈·, ·〉x0
for x0 ∈ Uα, the map

x0 7→ |~bα(u)(x0)|x0 is measurable for each Lipschitz function u on X,

and that by Remark 13.5.6 (ii) above,

|~bα(u)(x0)|x0
≈ ρu(x0)
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with the comparison constant
√
N(α). Hence we can talk about inte-

grability of this map, and the integral of the p-th power of this map is

comparable to
∫
Uα
ρpu dµ; that is, N1,p(X) has an equivalent norm that

is uniformly convex when 1 < p <∞. It follows that N1,p(X) is reflexive

as a Banach space.

The following useful result gives a way to extend the operator D, given

in (13.4.7), from Lipschitz functions to N1,p(X).

Proposition 13.5.8 Suppose that µ is doubling and X is a geodesic

space supporting a p-Poincaré inequality for some p > 1. Then there is

a positive integer N and a bounded linear differential operator

D : N1,p(X)→ Lp(X : RN )

such that D(uv) = uD(v) + v D(u) whenever u, v ∈ N1,p(X) are Lip-

schitz functions, |D(u)(x0)|x0
≤ gu(x0) ≤

√
N |D(u)(x0)|x0

for almost

every x0 ∈ X, and D(u) coincides—for Lipschitz functions u—with the

operator defined in (13.4.7).

Proof We choose N = supαN(α) ≤ N2. For each α and Lipschitz

function u on X, we have that D(u) ∈ Lp(Xα, R
N(α)). By embedding

RN(α) into RN , we may as well assume that D(u)(x) ∈ RN for almost

every x ∈ X.

For Lipschitz functions u ∈ N1,p(X) we have a candidate D(u) from

(13.4.6). In light of Remarks 13.5.6, it suffices to show that the operator

D extends uniquely from the sub-class of Lipschitz functions to N1,p(X).

To this end, let u ∈ N1,p(X). Then by Theorem 8.2.1 we have a se-

quence (uk) of Lipschitz functions converging in N1,p(X) to u. It follows

that ρuk−u → 0 as k → ∞ and that ρuk−ul → 0 as k, l → ∞. The

argument in the proof of Theorem 13.5.7 then shows that∫
X

|D(uk − ul)(x)|px dµ→ 0 as k, l→∞.

It follows from the Banach space property of Lp(X : RN ) that (D(uk))

has a limit in Lp(X : RN ); we denote this limit ~v.

If (vk) is another sequence of Lipschitz functions converging inN1,p(X)

to u, then the sequence (wk) given by w2k−1 = uk and w2k = vk is also

a sequence of Lipschitz functions, converging in N1,p(X) to u. Thus the

limit of (D(vk)) coincides with ~v almost everywhere in X. Therefore the

limit function ~v is unique.

Since ρuk−u → 0, by an application of (6.3.18) we have that for almost
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every x ∈ X,

|~v(x)|x = lim
k
|D(uk)(x)|x ≤ lim sup

k
ρuk(x)

= lim sup
k

(ρuk(x)− ρuk−u(x)) ≤ ρu(x)

≤ lim sup
k

(ρuk(x) + ρu−uk(x)) = lim sup
k

ρuk(x)

≤
√
N |D(uk)(x)|x =

√
N |~v(x)|x.

Repeating the argument that led to the uniqueness of ~v shows that

whenever (uk) is a sequence of functions from N1,p(X) (not necessarily

Lipschitz) converging in N1,p(X) to u, then ~vuk → ~vu in Lp(X : RN ),

where ~vuk , ~vu denote the limit vector-valued functions obtained from the

above Lipschitz approximation argument for uk and u respectively. Set

D(u) = ~v. The above series of inequalities shows that D is a bounded

operator on N1,p(X). Linearity and the Leibniz properties follow from

Remarks 13.5.6. This completes the proof of the proposition.

Another auxiliary result we need is the following approximation lemma.

We postpone its proof until after the proof of Theorem 13.5.1.

Lemma 13.5.9 Let u : X → R be a Lipschitz function and g be

a lower semicontinuous countably valued upper gradient of u such that

g ≥ η > 0 for some positive η. Then there is a sequence of Lipschitz

functions uk : X → R with continuous upper gradients ρk ∈ Lploc(X)

such that uk → u in Lploc(X) and lim supk ρk ≤ g almost everywhere

in X.

Proof of Theorem 13.5.1 By the proof of the Vitali-Carathéodory the-

orem 4.2, we can approximate the minimal p-weak upper gradient ρu
of u from above by a monotone decreasing sequence (hk) of countably

valued lower semicontinuous functions, each of which is bounded away

from zero and is an upper gradient of u. If we can show that Lipu ≤ hk
almost everywhere in X for each k, then we have that Lipu ≤ ρu almost

everywhere, from which the conclusion of the theorem follows. Thus it

suffices to show that Lipu ≤ g for any countably valued lower semicon-

tinuous upper gradient g of f for which there is a positive real number

η with g ≥ η.

By Lemma 13.5.9, we can find a sequence (uk) of Lipschitz functions,

with a corresponding sequence (ρk) of continuous upper gradients, such

that uk → u in Lploc(X) and lim supk ρk ≤ g. Then (uk) is a bounded
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sequence in N1,p
loc (X), and so by the reflexivity property from Theo-

rem 13.5.7, we can extract a convex combination sequence (hk) of (uk)

that converges in N1,p
loc(X) to u. Convex combinations (g′k) of (ρk) corre-

sponding to the convex combination of (uk) are upper gradients thereof,

and lim supk g
′
k ≤ g almost everywhere. Thus we may assume that the se-

quence given from Lemma 13.5.9 in addition satisfies uk → u in N1,p
loc(X).

By Corollary 13.5.4, we know that Lip(uk −u)→ 0 in Lploc(X) and that

Lipuk → Lipu in Lploc(X). Passing to a subsequence if necessary, we

can also assume that these two convergences also take place pointwise

almost everywhere in X.

Fix a positive integer k. Then because X is a geodesic space and gk
is an upper gradient of uk, whenever x ∈ X we have for y ∈ X,

|uk(x)− uk(y)|
d(x, y)

≤ 1

d(x, y)

∫
γ

gk ds,

where γ is any geodesic connecting x to y. Now because gk is continuous,

we obtain that

Lipuk(x) ≤ gk(x).

Combining this with the discussion in the previous paragraph, we see

that for almost every x ∈ X,

Lipu(x) = lim
k

Lipuk(x) ≤ lim sup
k

gk(x) ≤ g(x),

from which the desired conclusion stated in the first paragraph of this

proof follows. This completes the proof of the theorem.

Proof of Lemma 13.5.9 Because u is a Lipschitz function, we can as-

sume that g is bounded above. Since g is a countably valued lower semi-

continuous function and g ≥ η, there is a countable collection of positive

real numbers {aj}j∈I⊂N and open sets Uj , j ∈ I, such that

g = η +
∑
j∈I

ajχUj .

For each j ∈ I we can exhaust Uj from inside by compact sets; that is, we

have a sequence of compact sets {Kj,k}k with Kj,k ⊂ Kj,k+1 ⊂ Uj and

Uj =
⋃
k∈NKj,k. We correspondingly have a sequence of non-negative

Lipschitz functions ψj,k supported on Uj with ψj,k = 1 on Kj,k and

0 ≤ ψj,k ≤ 1 on X. Let

gk := η +
∑

j∈I, j≤k

ajψj,k.
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Then it is easily seen that (gk) monotonically increases to g, and so

lim supk gk ≤ g.

Next we build functions uk whose upper gradients are gk such that

uk → u in Lploc(X). We first fix x0 ∈ X and R > 0, and let B = B(x0, R).

For ε > 0 let Gε be a maximal ε-net contained in 2B; that is, if x, y ∈ Gε
with x 6= y then d(x, y) ≥ ε and 2B ⊂

⋃
x∈Gε B(x, 2ε). Then by (12.1.3)

the number of elements in Gε is bounded by a constant that depends

only on R/ε and the doubling constant Cµ. Furthermore, we can ensure

that Gε ⊂ Gν if ν ≤ ε. For each z ∈ Gε we know that the function uz,ε
given by

uz,ε(x) = inf
γ

∫
γ

g ds

is Lipschitz continuous with upper gradient g, and for each k the function

uz,ε,k given by

uz,ε,k(x) = inf
γ

∫
γ

gk ds

is also Lipschitz continuous with upper gradient gk. Here the infimum is

taken over rectifiable curves γ connecting x to the fixed point z ∈ Gε.
Using these functions, in analog with the McShane extension lemma 4.1

we construct the functions uε,k and uε,∞ by

uε,k(x) = inf
z∈Gε

[u(z) + uz,ε,k(x)] ,

uε,∞(x) = inf
z∈Gε

[u(z) + uz,ε(x)] .

Because g is an upper gradient of u, it follows that uε,∞ = u on Gε. So

for each x ∈ 2B, by the fact that g is an upper gradient of uε,∞ and Gε is

an ε-net of 2B, we have for L = 1 + supX g that |uε,∞(x)−u(x)| ≤ 2Lε.

Note that gk is an upper gradient of uε,k on X. To see this, note that

whenever x, y ∈ X, for each ν > 0 we can find z ∈ Gε and a path

γy,ν connecting z to y such that uε,k(y) ≥ u(x) +
∫
γy,ν

gk ds − ν. Then

whenever γ is a rectifiable curve connecting x to y, the concatenated

path γ + γy,ν connects x to z, and so

uε,k(x)− uε,k(y) ≤ u(z) +

∫
γ+γy,ν

gk ds− u(z)−
∫
γy,ν

gk ds+ ν.

Taking the limit as ν → 0, we obtain uε,k(x) − uε,k(y) ≤
∫
γ
gk ds. Re-

versing the roles of x and y in the above argument completes the proof

that gk is an upper gradient of uε,k. It remains to control uε,k in terms

of uε,∞; to do so, we need to look at uz,ε,k for z ∈ Gε. First observe that
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for each z ∈ Gε the functions uz,ε,k monotonically increase with respect

to k, and converge to uz,ε,∞. This is seen by an argument similar to

the one found in the proof of Theorem 8.4.2, in the part following the

inequality (8.4.11). Keeping in mind that Gε is a finite set and hence

the infima in the definitions of uε,k, uε,∞ are actually minima, we obtain

also that uε,k monotonically increases to uε,∞ as k →∞ on Gε after we

pass to a subsequence if necessary. However, this is not sufficient for us:

we need boundedness in Lp(B) (then we conclude by an application of

Theorem 7.3.8 together with the uniform convexity of Lp(B)).

Note that, by construction, uε,k(z) ≤ u(z) for each z ∈ Gε. For x ∈ 2B

there is a point z ∈ Gε such that d(z, x) ≤ ε. Thus

|uε,k(x)| ≤ |uε,k(x)− uε,k(z)|+ |uε,k(z)− u(z)|+ |u(z)|
≤ Lε+ 3|u(z)| ≤ 4L ε+ 3|u(x)|.

This gives the desired Lp-bounds on uε,k in terms of
∫

2B
|u|p dµ, which

now completes the proof upon taking convex combinations of the se-

quence (u2−j ,k) and corresponding functions (gk). Observe that as j →
∞, the sets G2−j become dense in B. For each j we know that u2−j ,k

converges pointwise in G2−j as k →∞. Note that the limit (after taking

convex combinations with respect to k of course), for each j, is also L-

Lipschitz on B. A further convex combination over j produces a further

subsequence that converges in
⋃
j G2−j to u, and the limit function is

again L-Lipschitz on B. Now the density implies that the limit function

must be u. This completes the proof of Lemma 13.5.9.

13.6 Notes to Chapter 13

The content of the present chapter covers only a small fraction of Cheeger’s

paper [53]. In later sections of [53], Cheeger couples his differentiation

theorem to the notion of Gromov–Hausdorff tangent cones (see Sec-

tion 11.7). There the persistence of the doubling condition and Poincaré

inequality under such convergence is used to prove that the induced tan-

gent functions on such cones, stemming from Lipschitz functions on the

original space, necessarily satisfy a property which he terms generalized

linearity. This property asserts that the minimal weak upper gradient of

the tangent function is constant. In the context of a Riemannian mani-

fold, such a property reduces to the classical linearity of the (a.e. defined)

differential of a Lipschitz function. An exposition on this perspective of

the differentiation theorem can also be found in [163].
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Keith’s thesis, published in [151], [150] and [152], made additional

contributions to the Cheeger differentiation machinery. In [152], Keith

shows that the coordinate functions in the differentiation theorem 13.4.4

can always be selected to be distance functions to points. The work

of Keith [151], Gong [102], [99], [101], [100], Bates and Speight [24],

and others have contributed significantly to weakening the hypotheses

of Theorem 13.4.4. A related approach to differentiation of Lipschitz

functions on metric measure spaces was proposed by Weaver [282].

The differentiability of real-valued Lipschitz functions on a space X

can occasionally be used to rule out the existence of biLipschitz embed-

dings of X into nice spaces. An early version of this principle appeared

in [53], where it is shown that certain doubling spaces with Poincaré in-

equality (specifically, nonabelian Carnot groups, the spaces of Bourdon

and Pajot, and the spaces of Laakso—see Chapter 14 for a more exten-

sive list of examples of spaces supporting a Poincaré inequality) admit

no biLipschitz embedding into any finite dimensional Euclidean space.

The interplay between differentiability and (non)embeddability has

turned out to be a rich and intricate storyline. Substantial subsequent

work in this direction has been done by Cheeger, Kleiner, Naor and

others, see for example [54], [55], [56], [59], [60], [57], [58], [185]. Such

nonembedding results have turned out to be of significant interest in

algorithmic computer science. We refer the reader to the article [216] by

Naor for an illustrative survey of these matters.

While the notion of minimal weak upper gradients is intrinsic to the

metric measure space, its use in the associated study of potential theory

is occasionally made difficult by the fact that such weak upper gradients

are not linear in nature and hence might not be associated with a differ-

ential equation. The Cheeger differential structure on the other hand is

not completely intrinsic to the metric space, and more than one possible

differential structure can be obtained from the construction. However, as

discussed above, the use of Cheeger differential structures in the study

of potential theory can some times overcome the difficulties encountered

in the use of minimal weak upper gradients.

The topic of identifying metric measure spaces where the inner prod-

uct norm, induced by a Cheeger differential structure, agrees with the

minimal weak upper gradient is currently under active development: see

for example [170], [173]. For a sample of results related to the potential

theory of Cheeger differential structure see [171], [140], [67], [172], [159],

[36], [35], [195]. Readers who wish to learn more may wish to consult

the monograph [31].
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In this final chapter we briefly discuss the theory of quasiconformal

mappings, the initial motivation for our study of Sobolev spaces in the

metric setting. We also describe a variety of examples of spaces support-

ing a Poincaré inequality. Our aim is to demonstrate the diversity of con-

texts in which the theory developed in this book finds its application.

We also review several geometric criteria, due to Semmes and Keith,

sufficient for the validity of the Poincaré inequality. We conclude this

chapter by indicating several applications and extensions of the theory

of Sobolev spaces on and between metric spaces, especially spaces sup-

porting a Poincaré inequality, as well as current directions of research.

The wealth of subjects to which this theory is pertinent indicates its

central role within contemporary analysis and geometry.

14.1 Quasiconformal and quasisymmetric mappings

The principal original motivation in [123], [124], and [125] for the study

of upper gradients and spaces supporting a Poincaré inequality was the

theory of quasiconformal and quasisymmetric mappings between metric

spaces. Various characterizations of quasiconformality hold in the Eu-

clidean setting, some of which have a natural extension to the metric

setting. Some properties such as absolute continuity in measure (Lusin’s

condition N as it is known in the literature) require the use of Sobolev

classes in the definition of quasiconformality as well as Sobolev embed-

ding theorems. The simplest characterizations of quasiconformality in

the Euclidean setting (for instance, the notion of quasisymmetry) require

only metric concepts, and indeed, the study of quasi-isometric mappings

between Gromov hyperbolic spaces is closely tied to the metric theory

of quasisymmetric mappings between their boundaries at infinity. How-

ever, a complete understanding of quasiconformal mappings between

metric spaces requires a comparison of these various competing notions,

including analytic definitions, in the metric setting.

Definition 14.1.1 A homeomorphism f : X → Y , when X = (X, dX)

and Y = (Y, dY ) are metric spaces, is said to be η-quasisymmetric for

some homeomorphism η : [0,∞)→ [0,∞) if

dY (f(x), f(y))

dY (f(x), f(z))
≤ η

(
dX(x, y)

dX(x, z)

)
whenever x, y, z ∈ X are three distinct points. A homeomorphism f :
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X → Y between metric spaces is a local η-quasisymmetry if each point

in X has a neighborhood in which f is η-quasisymmetric.

Definition 14.1.2 A homeomorphism f : X → Y between metric

spaces is an H-quasiconformal mapping (or metrically H-quasiconformal

mapping) for some H ≥ 1 if

lim sup
r→0+

supy∈B(x,r) dY (f(y), f(z))

infz∈X\B(x,r) dY (f(x), f(z))
≤ H

for each x ∈ X.

Definition 14.1.3 A homeomorphism f : X → Y between locally

Ahlfors Q-regular metric measure spaces X = (X, dX , µX) and Y =

(Y, dY , µY ) is an (analytically) K-quasiconformal mapping for someK ≥
1 if f ∈ N1,Q

loc (X : Y ) and

Lip f(x)Q ≤ K Jf (x)

for µX -almost every x ∈ X. Here Jf is the Radon–Nikodym derivative

(Jacobian) of the pull-back measure under f , given by

Jf (x) = lim sup
r→0+

µY (f(B(x, r)))

µX(B(x, r))
.

Definition 14.1.4 A homeomorphism f : X → Y between locally

AhlforsQ-regular metric measure spaces is a (geometric) C-quasiconformal

mapping for some C ≥ 1 if

C−1 ModQ(f ◦ Γ) ≤ ModQ(Γ) ≤ C ModQ(f ◦ Γ)

whenever Γ is a family of curves in X. Here f ◦ Γ denotes the family of

curves in Y obtained as images of curves from Γ under f .

Metrically quasiconformal mappings were simply called quasiconfor-

mal mappings in [125].

In the Euclidean setting (n ≥ 2) the notions of local quasisymmetry,

metric quasiconformality, analytic quasiconformality and geometric qua-

siconformality coincide; see for example Väisälä [273]. The equivalence

of definitions of quasiconformality/quasisymmetry in more general met-

ric settings was a primary impetus for the development of the theory of

analysis on metric spaces presented in this monograph. Quasiconformal

maps of Carnot groups and other sub-Riemannian manifolds featured

prominently in Mostow’s celebrated rigidity theorem for lattices in rank

one symmetric spaces. See Section 14.2 for more information. For his
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purposes, Mostow required the equivalence of metric and analytic no-

tions of quasiconformality. Technical complications in the proof of the

absolute continuity of metrically quasiconformal mappings along curves

led various authors (including the authors of [123]) to pursue other ap-

proaches to the foundations of quasiconformal mapping theory in metric

spaces.

In [123] a direct proof, avoiding analytic machinery, was provided

for the equivalence of metric quasiconformality and (local) quasisymme-

try for mappings between Carnot groups. The technology developed for

this proof inspired the authors of [123] to introduce the class of metric

measure spaces supporting a Poincaré inequality. In the subsequent pa-

per [125], the methods from [123] were extended to show that metrically

quasiconformal mappings from an Ahlfors Q-regular metric measure

space (X, dX , µX) supporting a Q-Poincaré inequality onto a linearly

locally connected Ahlfors Q-regular metric measure space (Y, dY , µY ),

Q > 1, are necessarily locally quasisymmetric. Simultaneously, it was

shown in [271] that quasisymmetric maps between (locally compact)

Ahlfors Q-regular metric measure spaces, Q > 1, are necessarily geo-

metrically quasiconformal. It should be noted that, on Ahlfors Q-regular

metric measure spaces, Q > 1, the validity of the Q-Poincaré inequality

is quantitatively equivalent to the so-called Loewner condition which as-

serts the existence of a positive decreasing function ϕ : (0,∞)→ (0,∞)

so that

ModQ Γ(E,F ) ≥ ϕ(t)

for all disjoint, nondegenerate continua E and F so that dist(E,F ) ≤
tmin{diamE,diamF}, where Γ(E,F ) denotes the family of all curves

connecting E to F in X. The quasi-invariance of the Q-modulus in

Q-regular spaces (Definition 14.1.4) suggests that such a reformulation

of the Poincaré inequality in terms of quantitative control on the Q-

modulus of curve families may be productive. For a finer analysis of

the relationship between Poincaré inequalities and lower bounds on the

p-moduli of curve families, see Section 14.2.

Under the a priori stronger assumption that the source space X sup-

port a p-Poincaré inequality for some p < Q, additional properties of

quasisymmetric mappings were established in [125], namely, the abso-

lute continuity along curves and absolute continuity in measure (Lusin’s

condition N). Moreover, a version of the celebrated higher integrability

theorem of Gehring was also obtained. We remind the reader that, if X

is assumed to be complete, then the results of Keith and Zhong [153]
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(see Chapter 12) indicate that any metric measure space X satisfying

the assumptions of the previous paragraph must indeed support such a

stronger Poincaré inequality.

The paper [129] employed the emerging theory of Banach space valued

Sobolev spaces to show that if X is locally compact, Ahlfors Q-regular

and supports a Q-Poincaré inequality (but not necessarily a stronger

Poincaré inequality), then quasisymmetric mappings f : X → Y onto

metric spaces Y with locally finite Hausdorff Q-measure lie in the local

Sobolev class N1,Q
loc (X : Y ). Combined with earlier results, this implies

that for maps between locally compact Ahlfors Q-regular metric mea-

sure spaces supporting a Q-Poincaré inequality, the notions of local qua-

sisymmetry, metric quasiconformality, analytic quasiconformality, and

geometric quasiconformality coincide, and such maps satisfy the Lusin

condition N.

Taking advantage of the theory already developed in this book, we

briefly sketch the proof of the Sobolev regularity of quasisymmetric maps

as in the first sentence of the previous paragraph. We embed the target Y

isometrically into a Banach space V (see, e.g., the Kuratowski embedding

theorem 4.1 or the Fréchet embedding theorem 4.1). Similarly as in Sec-

tion 9.2 and Theorem 10.3.4, we consider locally Lipschitz discrete con-

volution approximations fr : X → V given by fr(x) :=
∑
i ϕr,i(x) f(xi)

associated to a cover {B(xi, r)} of X with
∑
i χB(xi,6λr) ≤ C with corre-

sponding Lipschitz partition of unity (ϕr,i). Analogously to the proof of

Theorems 10.3.4 or 10.4.3, one first establishes that fr is locally Lipschitz

and hence lies in N1,Q
loc for small r, and fr → f uniformly on bounded

sets. (The proofs of these results are slightly different than those in pre-

vious chapters, as here one extensively uses the quasisymmetry of the

original map f .) Next, introduce the Borel function

ρr(x) :=
∑
i

diam f(B(xi, r))

r
χB(xi,r)(x) .

It follows again from quasisymmetry that Lip fr ≤ Cρr and hence Cρr
is an upper gradient of fr. Finally, one shows that the functions ρr lie in

LQloc uniformly; the membership of f in N1,Q
loc then follows from Theorem

7.3.9. The Sobolev regularity of f being understood, the analytic formu-

lation of quasiconformality follows easily from the metric assumption

and the Lebesgue–Radon–Nikodym theorem.

In [168, Theorem 2.3] Koskela and MacManus proved that spaces sup-

porting a stronger Poincaré inequality (e.g., a p-Poincaré inequality for

some 1 ≤ p < Q) are invariant under quasisymmetric maps. More pre-
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cisely, they showed that if X is Ahlfors Q-regular, Q > 1, and supports

a p-Poincaré inequality for some p < Q, and if f : X → Y is a quasisym-

metric mapping onto another Ahlfors Q-regular space Y , then Y also

supports a q-Poincaré inequality for some q < Q (q may depend on all

of the given data, including the quasisymmetry function η, on Q and on

p). The borderline case p = Q (in which case q = Q also) follows from

the main result of [271], noting again the standard caveat concerning

the results of Keith–Zhong and their implication for the non-existence

of complete Ahlfors Q-regular spaces supporting a Q-Poincaré inequality

but no stronger p-Poincaré inequality for any p < Q. The paper [168]

also establishes, under suitable hypotheses, that quasisymmetric map-

pings between Ahlfors Q-regular spaces preserve the Haj lasz–Sobolev

space M1,Q(X : Y ).

A recent paper by Williams [284] shows that analytic quasiconformal-

ity of index Q (which need not be associated with an Ahlfors regularity

exponent for the underlying measures) is equivalent to geometric quasi-

conformality with the same index Q. Thus it seems that consideration of

curves and upper gradients is the correct setting to study quasiconfor-

mal mappings between metric measure spaces. It also follows from the

results of [284] that if the metric measure spaces are “uniformly locally”

Ahlfors Q-regular, then quasiconformal mappings preserve the Dirichlet

class D1,Q, that is, if f : X → Y is quasiconformal and f−1 is also quasi-

conformal, then the composition morphism f# : D1,Q(Y ) → D1,Q(X),

f#(u) = u ◦ f , is bounded. Furthermore, if X contains a compact set K

such that the family of curves which start in K and escape every com-

pact set has positive Q-modulus, then Y has the same property. Stated

in other language, either both X and Y are Q-hyperbolic, or both are

Q-parabolic. In particular, there is no quasiconformal mapping between

the Euclidean space Rn and the hyperbolic n-space, nor does there exist

a quasiconformal mapping between Rn and an open ball in Rn.

The preceding discussion indicates that the preservation of Poincaré

inequalities is associated with quasisymmetry, whereas the preserva-

tion of the Dirichlet class D1,Q is more closely associated with (an-

alytic/geometric) quasiconformality. In the absence of Q-Poincaré in-

equality, it is not true that the inverse of an analytically quasiconfor-

mal mapping is analytically quasiconformal, as the example in [284,

Remark 4.2] shows.

For further information on quasiconformal maps we recommend [120]

and the references given above.
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14.2 Spaces supporting a Poincaré inequality

Euclidean space and Riemannian manifolds. For each n ≥ 1, the

Euclidean space Rn (with Lebesgue measure) supports the 1-Poincaré

inequality. This result is classical and admits a variety of proofs. We al-

ready gave one such proof, relying on a polar coordinate integration and

boundedness results for operators defined in terms of Riesz potentials,

in Remark 7.1.4. See also the further discussion surrounding (8.1.2). It

is also possible to obtain the relevant estimates for Riesz potentials by

starting from the fundamental solution of the Laplacian.

The underlying ideas in the preceding approach naturally translate to

an abstract metric context. We discuss this observation in more detail

in Section 14.2.

An alternate version of the Sobolev–Poincaré inequality (9.1.16), on

the Euclidean space Rn for 1 ≤ p < n, asserts the existence of a constant

C(n, p) such that the inequality

(∫
Rn
|u|p

∗
)1/p∗

≤ C(n, p)

(∫
Rn
|∇u|p

)1/p

(14.2.1)

holds for all smooth compactly supported functions u. The inequality

(14.2.1) is sometimes known as the Gagliardo–Nirenberg–Sobolev inequal-

ity. When p = 1, (14.2.1) is closely related to the isoperimetric inequality

via the study of level sets [37], [81], [202], [198]. The truncation method

that allows one to pass from weak type estimates to strong type esti-

mates is due to the work of Maz’ya [198]; see the proof of Lemma 8.1.31.

The Poincaré inequality transfers easily from Euclidean space to com-

pact Riemannian manifolds by working in charts. The situation for non-

compact manifolds is significantly more complex; the validity or non-

validity of such inequalities is dependent on the large-scale geometry of

the manifolds and, in particular, on the behavior of various curvatures.

For complete, noncompact manifolds with nonnegative Ricci curvature,

the doubling property for the volume measure follows from the vol-

ume comparison inequality of Bishop and Gromov [49, Theorem 10.6.6],

while the (2-)Poincaré inequality was first established by Buser [51].

A detailed discussion of Sobolev–Poincaré inequalities on noncompact

Riemannian manifolds can be found in the book by Hebey [118]. Ana-

lytic and stochastic properties of Poincaré inequalities have been treated

in [240].



14.2 Spaces supporting a Poincaré inequality 409

Weighted Euclidean spaces. Yet another large class of doubling met-

ric measure spaces supporting a p-Poincaré inequality is the collection

of Euclidean spaces, equipped with the standard Euclidean metric but

with a weighted measure; cf. the discussion at the end of Section 6.4

of this book. The weights ω for which the weighted Euclidean space

is doubling and satisfies a p-Poincaré inequality are called p-admissible

weights. Such weighted Euclidean spaces were considered extensively in

the monograph [128]. (Note that the definition of p-admissibility given

in the first edition of [128] contained extraneous conditions that were

shown in the second edition of [128] to be redundant. In particular, the

doubling condition and the validity of the weighted p-Poincaré inequal-

ity are the only requirements imposed in order for a weight ω to be

p-admissible). It was shown by Fabes, Kenig and Serapioni [82] (see also

Chapter 15 of [128]) that the Jacobian Jf of a quasiconformal self-map

f of Euclidean space has the property that the weight ω = J
1−p/n
f is

p-admissible for each 1 < p < n.

Another large class of p-admissible weights are those in the Mucken-

houpt Ap-class.

Definition 14.2.2 A weight ω is said to be in the Ap-class if

sup
B

(∫
B

ω dmn

) (∫
B

ω−1/(p−1) dmn

)p−1

<∞,

where the above supremum is over all balls B ⊂ Rn.

For 1 < p < ∞, the Muckenhoupt Ap-weights were shown by Muck-

enhoupt in [213, Theorem 9] to be the only weights on Rn under which

the classical Hardy–Littlewood maximal function operators are bounded

on Lp(Rn, ω dmn). By a result of Fabes, Kenig and Serapioni [82], Ap-
weights are p-admissible. The classA∞ :=

⋃
1<p<∞Ap therefore consists

of weights in Rn that generate doubling spaces supporting a p-Poincaré

inequality for some 1 < p <∞. In studying the question of which weights

are comparable to the Jacobians of quasiconformal mappings, David and

Semmes [68] introduced the so-called strongA∞-weights, that is, weights

ω on Rn for which the associated measure µω := ω dmn is doubling and

there is a metric dω and a constant C such that

C−1d(x, y) ≤ µω(Bx,y)1/n =

(∫
Bx,y

ωdmn

)1/n

≤ C d(x, y)

whenever x, y ∈ Rn are distinct. Here Bx,y is the ball centered at (x +

y)/2 with radius |x− y|/2.
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It was shown in [68] that Euclidean spaces equipped with a strongA∞-

weight support a weighted 1-Poincaré inequality, where the norm of the

weak derivative |∇u| of a Sobolev function u, is replaced with ω−1/n|∇u|.
Note that while this term acts as the “metric dω” version of the weak

derivative of u, this is a far cry from the Poincaré inequality considered

in this book, for we need the inequality for all upper gradients, some

of which could in principle be smaller than ω−1/n|∇u|. However, it was

shown in [161, Proposition 6.10] that the modified space (Rn, dω, µω)

does indeed support a 1-Poincaré inequality as considered in this book.

(It is easy to see that the identity map from Rn to (Rn, dω) is qua-

sisymmetric and that the metric measure space (Rn, dω, µω) is Ahlfors

n-regular, hence the validity of a q-Poincaré inequality on (Rn, dω, µω)

for some 1 ≤ q < n follows from the result of Koskela and MacManus

discussed in Section 14.1. The fact that one can take q = 1, however,

requires a finer analysis and reflects geometric properties of the source

Euclidean space.)

Thus strong A∞-weights, together with their associated metric and

measure, provide a further class of examples of doubling metric measure

spaces supporting a Poincaré inequality.

Topological manifolds and geometric decomposition spaces. The

Poincaré inequality holds for some non-Riemannian metrics on topolog-

ical manifolds as well. In [244], Semmes provides a large class of topo-

logical manifolds equipped with (potentially nonsmooth) metrics and

measures, supporting Poincaré inequalities. In order to state his result

precisely, we recall that a metric space (X, d) is said to be linearly locally

contractible if there exists a constant C ≥ 1 so that every ball B(x, r)

can be contracted to a point inside the concentric ball B(x,Cr).

Theorem 14.2.3 (Semmes) Let (X, d) be a metric space that is a

topological n-manifold which is Ahlfors n-regular when equipped with the

Hausdorff n-measure Hn. Assume also that X is linearly locally con-

tractible. Then (X, d,Hn) supports the 1-Poincaré inequality.

The condition that X be a topological n-manifold can be relaxed. It

suffices to assume that suitable relative (singular) homology groups of

X agree with those of Rn, i.e., that X is a homology n-manifold.

Theorem 14.2.3 extends the context of this book well beyond the

Riemannian setting. It follows from a theorem of Sullivan that every

topological n-manifold (n 6= 4) can be metrized as a Lipschitz manifold

(i.e., the coordinate chart maps are locally biLipschitz). Such manifolds,
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if compact, verify the hypotheses of Theorem 14.2.3 and consequently

support the Poincaré inequality. The situation is rather complicated and

subtle for 4-manifolds; we refer to [122, §11.4] for a more detailed dis-

cussion of that case.

We next describe an interesting application of the preceding result to

metrized decomposition spaces.

Let F = {F} be a collection of closed subsets partitioning a topolog-

ical space X. The decomposition space X/F is the collection of equiv-

alence classes [x], where two points x and y in X are equivalent if and

only if there exists F ∈ F so that {x, y} ⊂ F . Equip X/F with the

quotient topology. It is a classical problem of geometric topology to un-

derstand the topology of such decomposition spaces. For instance, if X

is a topological manifold, one may ask for conditions on F which guar-

antee that X/F is also a manifold. Even when X/F is not a manifold, it

is sometimes the case that the product space (X/F)×Rm is a manifold

for some integer m ≥ 1; in the latter case we say that X/F is a mani-

fold factor of X×Rm. Classical examples were considered by Whitehead

and Bing; in these examples X = R3 and the collection F consists of

a single topologically wild compact set (typically a wild knot or link,

or a Cantor-type set) together with all of the remaining points of X as

singleton equivalence classes.

Semmes [245], [246] answered some open questions on the (non-)existence

of biLipschitz parameterizations of metric spaces by Euclidean spaces in

dimensions at least three by constructing explicit self-similar metrics on

suitable decomposition spaces R3/F , or the product spaces (R3/F)×Rm,

so that the resulting space is linearly locally contractible, Ahlfors n-

regular and a topological n-manifold (where n = 3 + m). According to

Theorem 14.2.3, these spaces support Poincaré inequalities. For addi-

tional examples, see [127] and [222].

Poincaré inequalities and well-distributed curve pencils. We de-

scribe a very flexible and intuitive approach to the derivation of Poincaré

inequalities, which has been strongly advocated by Stephen Semmes.

Roughly speaking, the Poincaré inequality is a consequence of the exis-

tence of well-behaved curve families (“pencils of curves”) joining arbi-

trary pairs of points of the space. The relevant geometric axiom (14.2.5)

is closely related to the representation formulas used in Chapters 7 and

8 for the proof of the Poincaré inequality in the Euclidean setting.

Definition 14.2.4 A metric measure space (X, d, µ) supports well-
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distributed curve pencils if there exists a constant C > 0 and, for each

pair of points x, y ∈ X there exists a family Γ = Γx,y of rectifiable

curves in X equipped with a probability measure dσ = dσx,y, so that

each γ ∈ Γx,y is a C-quasiconvex curve joining x to y, and for each Borel

set A ⊂ X, the map γ 7→ length(γ ∩A) is σ-measurable and satisfies∫
Γ

length(γ ∩A) dσ(γ)

≤ C
∫
CBx,y∩A

(
d(x, z)

µ(B(x, d(x, z)))
+

d(y, z)

µ(B(y, d(y, z)))

)
dµ(z).

(14.2.5)

Here, for τ > 0, τBx,y := B(x, τd(x, y)) ∪B(y, τd(x, y)).

By standard methods (approximating with simple functions) one eas-

ily sees that (14.2.5) is equivalent to the inequality∫
Γ

∫
γ

g ds dσ(γ)

≤ C
∫
CBx,y

g(z)

(
d(x, z)

µ(B(x, d(x, z)))
+

d(y, z)

µ(B(y, d(y, z)))

)
dµ(z).

(14.2.6)

for Borel functions g : CBx,y → R.

It is relatively easy to show that doubling metric measure spaces sup-

porting well-distributed curve pencils admit a 1-Poincaré inequality. In-

deed, for a fixed pair of points x, y in a ball B(x0, r), one can integrate

the defining inequality for the upper gradient condition over the curve

family Γx,y with respect to σx,y. Applying (14.2.6) and Fubini’s theorem

and using the doubling property of the measure, the weak 1-Poincaré in-

equality follows without much effort.

Well-distributed curve pencils are easy to construct in Euclidean spaces.

Given a pair of points x, y ∈ Rn, n ≥ 2, consider the family Γx,y con-

sisting of piecewise linear curves each composed of two line segments

joining x and y to a common point on the hyperplane bisecting the

segment [x, y]. In order to maintain a uniform quasiconvexity constant

we restrict to curves which lie in a set of the form CBx,y. The desired

probability measure σx,y on Γx,y is the normalized spherical measure

parameterizing such piecewise linear curves in terms of their initial di-

rection (in Sn−1) from (say) x. It is straightforward to check that such

curve pencils satisfy the Semmes condition (14.2.5).

The existence of well-distributed curve families suffices to deduce
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the 1-Poincaré inequality, but does not distinguish spaces supporting

p-Poincaré inequalities for other p (but not the 1-Poincaré inequality).

Typically the probability measure σx,y is related to the (average) perime-

ter measure of balls centered at x and balls centered at y, as indicated

by the estimates of such perimeters given in [13].

Alexandrov spaces. For a real number κ, a geodesic metric space

(X, d) lies in the Cartan–Alexandrov–Toponogov class CAT(κ) if suf-

ficiently small geodesic triangles in X are thinner than comparison tri-

angles in the simply connected two-dimensional Riemannian model sur-

face Mκ of curvature κ. More specifically, X is a CAT (κ) space if every

point x0 ∈ X has a neighborhood U for which the following condition

is satisfied: whenever x, y, z ∈ U are distinct and α, β, γ are arc length

parameterized geodesics connecting x to y, x to z and y to z in U , respec-

tively, then denoting by α0, β0, γ0 arc length parameterized geodesics in

Mκ connecting three points x0, y0, z0 with equal corresponding distances,

we have d(α(s), β(t)) ≤ d(α0(s), β0(t)) for all relevant choices of s and

t, and similarly for the pairs α, γ and β, γ. The model surface Mκ is a

Euclidean sphere S2(r) with suitably chosen radius r = r(κ) if κ > 0, or

the Euclidean plane R2 if κ = 0, or the hyperbolic plane H2
R equipped

with a suitable dilation r ·g0, r = r(κ), of the standard hyperbolic metric

g0 if κ < 0.

Spaces in the class CAT(κ) are also known as metric spaces with cur-

vature at most κ, similarly, one defines metric spaces with curvature at

least κ by reversing the inequality in the previous definition. The term

Alexandrov space is sometimes used as a catchall for spaces satisfying a

curvature bound (upper or lower, for some choice of κ).

The theory of Alexandrov spaces is vast and we can do no more here

than refer the reader to the excellent references [45], [49], [225] and the

forthcoming book [5]. There are numerous examples of spaces satisfying

such curvature bounds, and the rather flexible hypotheses are preserved

under various gluing, product, subspace and limiting constructions. This

abstract metric notion corresponds precisely to the classical Riemannian

notion of sectional curvature bounds: a Riemannian manifold has cur-

vature at most (resp. at least) κ in the above sense if and only if all

sectional curvatures are bounded above (resp. below) by κ.

Let X = (X, d) be a complete geodesic space with curvature at least

κ (for some κ ∈ R) and finite Hausdorff dimension. Then the Haus-

dorff dimension of X is an integer n, the Hausdorff n-measure Hn is

locally doubling, and the metric measure space (X, d,Hn) supports a
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local 1-Poincaré inequality. If κ ≥ 0 the conclusions hold without the

local modifier. See, for instance, [176] and the recent developments in

[94], as well as other references therein. It follows that the theory devel-

oped in this book applies in the setting of spaces with Alexandrov lower

curvature bounds.

Sphericalization and flattening. The Euclidean plane R2 and the

2-sphere S2 are both Ahlfors 2-regular spaces supporting a 1-Poincaré in-

equality, with R2 complete and unbounded and S2 compact and bounded.

Stereographic projection is a conformal mapping identifying R2 with the

punctured sphere S2 \ {p}, p ∈ S2. It is natural to ask whether an oper-

ation similar to stereographic projection identifies complete, unbounded

doubling metric measure spaces supporting a Poincaré inequality with

corresponding bounded metric measure spaces supporting a Poincaré

inequality.

The group of conformal maps acting on the (Riemann) sphere S2 iden-

tifies with the group of Möbius transformations. In higher dimensions

and in connection with the theory of quasiconformal maps, one is natu-

rally led to the study of quasimöbius maps, characterized by quantitative

control on the distortion of cross ratios of quadruples of points. Stere-

ographic projection is a conformal map between the punctured sphere

S2 \ {p} and the plane R2 that is also a Möbius map, and thus satisfies

the following definition with η(t) = t.

Definition 14.2.7 A homeomorphism f : X → Y between two metric

spaces (X, dX), (Y, dY ) is ϑ-quasimöbius for some homeomorphism ϑ :

[0,∞)→ [0,∞), if

dY (f(x), f(y)) dY (f(z), f(w))

dY (f(x), f(z)) dY (f(y), f(w))
≤ ϑ

(
dX(x, y) dX(z, w)

dX(x, z) dX(y, w)

)
whenever x, y, z, w ∈ X are four distinct points.

Deformations of metric spaces, using procedures called sphericaliza-

tion and flattening, were introduced by Balogh and Buckley in [20]

and further studied in [48] and [133]. Given a point a ∈ X, define

the sphericalization density ρS,a(x, y) on the one point compactification

Xa := X ∪ {∞} to be

d(x, y)

[1 + d(x, a)][1 + d(y, a)]
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if x, y ∈ X, to be

1

1 + d(x, a)

if x ∈ X and y =∞, and to be equal to zero if x = y =∞. Next, define

the flattening density

ρF,a(x, y) =
d(x, y)

d(x, a) d(y, a)

on the punctured space Xa := X \ {a}. There are metrics dS,a on Xa

and dF,a on Xa such that dS,a ≈ ρS,a and dF,a ≈ ρF,a with compari-

son constant 4; see [20]. It can be easily seen that the sphericalization

(Xa, dS,a) is a bounded metric space, while (Xa, dF,a) is unbounded if a

is not an isolated point of X.

It was shown in [48] that the natural identification between X and

(Xa)∞ is biLipschitz, and that the natural embeddings of X into Xa and

of Xa into X are quasimöbius. Furthermore, if X is quasiconvex, then so

are Xa and Xa, while if X is annularly quasiconvex, then so are Xa and

Xa, [48]. Here, recall from Chapter 8 that a metric space (X, d) is annu-

larly quasiconvex if there is a constant A ≥ 1 such that whenever x ∈ X
and 0 < r < diam(X)/2, each pair of points y, z ∈ B(x, r) \ B(x, r/2)

can be connected by a rectifiable curve, of length at most Ad(y, x), in

the annulus B(x,Ar) \B(x, r/A). A result of Korte (see Theorem 9.4.1)

ensures that complete Ahlfors Q-regular metric measure spaces support-

ing a p-Poincaré inequality for some 1 ≤ p < Q are necessarily annularly

quasiconvex. Thus, from the perspective adopted in this book, the as-

sumptions of quasiconvexity and annular quasiconvexity are natural for

X, and hence also for Xa and Xa. However, the identifications between

X and Xa or Xa are only known to be quasimöbius, not quasiconfor-

mal. Thus the issue of whether Xa or Xa are equipped with a doubling

measure supporting a Poincaré inequality if X does is not obvious from

the result of [168].

However, with suitable assumptions, sphericalizations and flattening

do preserve the doubling and Poincaré inequality properties. Given a

measure µ on X, we can consider an induced measure µa on Xa and an

induced measure µa on Xa as follows: when A ⊂ Xa and F ⊂ Xa are

Borel sets,

µa(A) :=

∫
A\{∞}

1

µ(B(a, 1 + d(z, a)))2
dµ(z)
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and

µa(F ) :=

∫
F

1

µ(B(a, d(z, a)))2
dµ(z).

In [186] it is shown that if X is quasiconvex and annularly quasicon-

vex, and µ is a doubling measure on X such that the metric mea-

sure space (X, d, µ) supports a p-Poincaré inequality, then (Xa, dS,a, µa)

and (Xa, dF,a, µ
a) are doubling metric measure spaces supporting a p-

Poincaré inequality. In conclusion, the sphericalization and flattening

procedures yield further examples of doubling metric measure spaces

supporting Poincaré inequalities.

Sub-Riemannian spaces. Moving still further from the Riemannian

setting, we next discuss the validity of Poincaré inequalities on Carnot

groups and more general sub-Riemannian spaces.

Mostow’s hyperbolic rigidity theorem asserts the isometric equivalence

of homeomorphic closed, negatively curved manifolds of finite volume

and dimension at least three. As mentioned above, the equivalence of

definitions of quasiconformality, as discussed in Section 14.1, features in

the proof of the Mostow rigidity theorem via analysis on the boundaries

of the universal covers of the original manifolds.

The boundary of the usual real hyperbolic space can be identified with

the standard Euclidean sphere. The validity of Poincaré inequalities and

the fundamental properties of quasiconformal maps thereon has already

been discussed in Sections 14.1 and 14.2. In the case of complex hyper-

bolic space, the boundary at infinity corresponds to a sub-Riemannian

manifold locally modeled on the Heisenberg group. Let us recall the

definitions.

Definition 14.2.8 The (first) Heisenberg group H is the nilpotent Lie

group whose underlying space is the Euclidean space R3 equipped with

the group law

(x, y, t) ∗ (x′, y′, t′) = (x+ x′, y + y′, t+ t′ + 2(xy′ − x′y))

and the left invariant Heisenberg metric dH(p, q) = ||p−1 ∗ q||H , where

||(x, y, t)||H =
(
(x2 + y2)2 + t2

)1/4
.

It is an instructive exercise to verify that dH is a metric. Observe

that the topology induced by dH coincides with the Euclidean topology.

Next, equip H with the Lebesgue measure µ of R3 (which is also a Haar

measure for H).
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Proposition 14.2.9 (H, dH , µ) is a locally compact, quasiconvex, Ahlfors

4-regular metric measure space satisfying the 1-Poincaré inequality.

Local compactness is a consequence of the topological equivalence of

the Heisenberg and Euclidean metrics. The anisotropic dilations (δr)r>0

defined by δr(x, y, t) = (rx, ry, r2t) act as group automorphisms and also

as similarities of the Heisenberg metric. The Jacobian determinant of δr
is equal to r4. Denoting by BH(p, r) the open ball in the metric dH with

center p and radius r > 0, it follows that µ(BH(p, r)) = cr4 for all p and

r, where c = µ(BH(o, 1)) and o = (0, 0, 0) denotes the neutral element.

Hence (Hn, dH) is Ahlfors 4-regular. Since biLipschitz maps preserve

Hausdorff dimension, the metric dH is not biLipschitz equivalent to the

Euclidean metric, nor to any Riemannian metric on R3. Instead, dH
is biLipschitz equivalent to a geodesic sub-Riemannian metric, the so-

called Carnot–Carathéodory metric dcc. The latter metric is defined by

infimizing the length of horizontal curves connecting two given points,

where horizontality of a piecewise smooth curve γ : [a, b] → H means

that γ′(s) ∈ Hγ(s)H for almost all s. Here the fiber of the horizontal

subbundle HH of the tangent bundle TH at a point p is defined to be

HpH = span{X(p), Y (p)}, X =
∂

∂x
+ 2y

∂

∂t
, Y =

∂

∂y
− 2x

∂

∂t
,

and is equipped with a smoothly varying family of inner products with

respect to which the left invariant vector fields X,Y are an orthonormal

frame. Since dcc is a geodesic metric, dH is quasiconvex.

The validity of the Poincaré inequality on the metric measure space

(H, dH , µ) can be seen by various methods. The Riesz potential/represen-

tation formula approach previously discussed is applicable. Another more

geometric approach is described below in Section 14.2. An elegant proof,

which is due to Varopoulos [274] and can also be found in [114, Proposi-

tion 11.17], uses only the group structure, the homogeneous metric struc-

ture, the translation invariance of the Haar measure and the geodesic

property.

More generally, a Carnot group is a connected and simply connected

Lie group G whose Lie algebra g admits a stratified vector space de-

composition g = v1 ⊕ · · · ⊕ vι such that [v1, vj ] = vj+1 for all 1 ≤
j < ι and [v1, vι] = 0. Identifying the Lie algebra g with the space

of left invariant vector fields and fixing a basis X1, . . . , Xm for v1, one

again introduces the horizontal bundle HG whose fiber at p ∈ G is

HpG = span{X1(p), . . . , Xm(p)}. The Carnot-Carathéodory metric dcc
is defined as before. It is a geodesic metric, and the metric measure space
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(G, dcc, µ) (where µ denotes Haar measure) is again Ahlfors Q-regular

with Q =
∑ι
j=1 j dim vj and supports the 1-Poincaré inequality. The

Loewner property of Carnot groups was proved directly by Reimann

[230] in the Heisenberg group H, and later in [119] in the setting of

general Carnot groups.

By a result of Mitchell [210], Carnot groups occur as the Gromov–

Hausdorff tangent spaces of (equiregular) sub-Riemannian manifolds. A

typical example of such a manifold is the sub-Riemannian unit sphere

S3 ⊂ R4. At each point p ∈ S3, there is a unique direction ±W (p) in TpS3

such that JW (p) 6∈ TpS3. Here J denotes the standard complex struc-

ture in R4 arising from the canonical identification with C2. The hori-

zontal bundle HS3 is defined to be the orthocomplement of the vector

field W . Since S3 is parallelizable, we may select two other nonvanishing

vector fields U and V so that the pair {U, V } is a global orthonormal

frame for the horizontal bundle. As in the Heisenberg case, any two

points of S3 can be joined by a horizontal curve, and there is an induced

Carnot-Carathéodory metric dcc. A version of stereographic projection

identifies the Heisenberg group H with the punctured sphere S3 \ {p},
both equipped with the Carnot-Carathéodory metric. (In fact, up to

biLipschitz equivalence of the relevant metrics, this identification cor-

responds to the sphericalization/flattening procedure described above.)

The metric measure space (S3, dcc,H4
cc) is Ahlfors 4-regular and supports

the 1-Poincaré inequality. Its Gromov–Hausdorff tangent spaces coincide

with the Heisenberg group H equipped with its Carnot–Carathéodory

metric dcc.

In Mostow’s rigidity theorem, the induced maps on the boundary

of complex hyperbolic space are quasiconformal maps of (S3, dcc). The

equivalence of definitions of quasiconformality, which in turn relies on the

first-order analytic structure coming from the Poincaré inequality, plays

an essential role in his analysis. As discussed in Section 14.1, the modern

theory of analysis in metric spaces, as presented in this book, arose from

attempts to clarify the foundations of quasiconformal mapping theory

in Carnot groups. This setting remains an important testing ground for

the techniques and methodology of abstract metric space analysis.

The Sobolev space N1,p(G, dcc) is identified with the so-called hor-

izontal Sobolev space W 1,p
H (G), defined similarly to the Euclidean case

as the space of Lp functions f whose distributional derivatives Xjf ,

j = 1, . . . ,m, are also in Lp. The usual caveat regarding the choice of

representative remains in force, cf. Theorem 7.4.5. Moreover, as shown

in [114, Proposition 11.6 and Theorem 11.7], the minimal p-weak upper
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gradient of a Lipschitz function u : G → R is independent of p and

coincides µ-almost everywhere with the norm of the horizontal gradient

∇Hu = (X1u, . . . ,Xmu).

The Rademacher theorem for Lipschitz maps on Carnot groups was

known prior to Cheeger’s work. Pansu [224] showed that Lipschitz maps

between Carnot groups are almost everywhere differentiable, for a suit-

able notion of differentiability adapted to the setting and nowadays

known as Pansu differentiability. In the case of maps u : G→ R, such dif-

ferentiability reduces to differentiability along horizontal directions (e.g.,

existence of the horizontal first-order derivatives Xju, j = 1, . . . ,m), and

the coordinate functions associated to the first layer variables may serve

as Cheeger coordinate functions. (In H, this means that the two func-

tions x : H → R and y : H → R given by (x, y, t) 7→ x and (x, y, t) 7→ y

are a suitable choice of Cheeger coordinates.)

For additional information on sub-Riemannian geometry and analysis

can be found for example in [106], [211] and [52].

Non-manifold examples. It was already recognized early in the the-

ory of analysis in metric spaces that the Poincaré inequality is a robust

criterion which survives under various gluing or amalgamation proce-

dures. Via such procedures it is easy to construct examples of spaces

with nonmanifold points supporting Poincaré inequalities. In [125, Sec-

tion 6.14], metric conditions were given on a triple (X,Y,A) of spaces,

where X and Y are assumed to be locally compact and Ahlfors Q-regular

for a common exponent Q > 1 and the space A is assumed a priori to

admit isometric embeddings ιX : A ↪→ X and ιY : A ↪→ Y , so that

the metric gluing space X
∐
A Y supports suitable Poincaré inequali-

ties. Here X
∐
A Y is the decomposition space obtained from the usual

disjoint union X
∐
Y by identifying two-element subsets {ιX(a), ιY (a)},

a ∈ A, and is equipped with the L1 metric d(x, y) = inf{dX(x, ιX(a)) +

dY (ιY (a), y) : a ∈ A}. For instance, the metric gluing space R4
∐

R H,

where ιX : R → R4 and ιY : R → H are isometric embeddings, is

an Ahlfors 4-regular space supporting a p-Poincaré inequality for each

p > 3, and each point of ιX(R) = ιY (R) is not a manifold point.

The paper [117] provides examples of compact geodesic Ahlfors regu-

lar metric measure spaces supporting a 1-Poincaré inequality for which

every point is a nonmanifold point. These examples have integral di-

mension n (in fact, the Ahlfors regularity dimension agrees with the

topological dimension) and have the further property that at almost ev-
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ery point there exists a unique Gromov–Hausdorff tangent space which

coincides with the Euclidean space Rn.

The first examples of metric measure spaces supporting Poincaré in-

equalities with nonintegral Hausdorff dimension were provided by Bour-

don and Pajot [43]. The local geometry of these spaces is topologi-

cally complex, modeled on a classical self-similar fractal (the Menger

sponge). The Bourdon–Pajot examples are compact geodesic metric

spaces arising as boundaries at infinity of suitable hyperbolic buildings.

They are Ahlfors Q-regular for a suitable real number Q > 1 and sup-

port the 1-Poincaré inequality. The range of allowed dimensions for the

Bourdon–Pajot examples comprises a countable dense subset of the in-

terval (1,+∞). Later, Laakso [177] exhibited similar examples for every

real number Q > 1; his examples are iterated decomposition spaces

obtained by successive identifications of “wormhole” points in different

fibers I×{p} and I×{q}, p, q ∈ K, in the product space I×K, where K

is a suitable self-similar Cantor set. In view of the discussion in Chapter

13, both the Bourdon–Pajot and Laakso examples admit measurable dif-

ferentiable structures as in Theorem 13.4.4. In both classes of examples,

the dimension N(α) of the Cheeger tangent space is everywhere equal

to one, although the Hausdorff dimension is strictly greater than one.

The paper [192] establishes the validity of Poincaré inequalities for

fat Sierpiński carpets Sa. (The nomenclature was suggested by Jun

Kigami.) These spaces are compact Ahlfors 2-regular subsets of the

plane, equipped with the Euclidean metric and Lebesgue measure, which

have no interior and contain no manifold points. More precisely, let

a = (a1, a2, a3, . . .), where each aj is the reciprocal of an odd inte-

ger greater than or equal to three. Define Sa =
⋃∞
m=0 Sa,m, where

Sa,0 = [0, 1] × [0, 1] and for each m ≥ 1, Sa,m is obtained from Sa,m−1

by removing from each constituent square Q its concentric square Q′

with relative size am and subdividing Q \ Q′ into a−2
m − 1 essentially

disjoint squares of the same size as Q′. If the relative scaling sequence

a is in `2, the resulting compact set Sa has positive Lebesgue measure

(but empty interior) and indeed is Ahlfors 2-regular when equipped with

the Euclidean metric dE and Lebesgue measure µ. In [192] the following

results are established:

(i) (Sa, dE , µ) supports a 1-Poincaré inequality if and only if a ∈ `1,

(ii) (Sa, dE , µ) supports a p-Poincaré inequality for some p < ∞ if and

only if a ∈ `2.

A typical example is the sequence a = ( 1
3 ,

1
5 ,

1
7 , . . .), which is contained in
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Figure 14.1 The standard Sierpiński carpet S(1/3,1/3,1/3,...)

Figure 14.2 The fat Sierpiński carpet S(1/3,1/5,1/7,...)

`2 \ `1. According to the above result, the corresponding fat Sierpiński

carpet Sa supports a p-Poincaré inequality for each p > 1 but does

not support a 1-Poincaré inequality. (Compare Keith and Zhong’s The-

orem 12.3.9.) See Figures 14.1 and 14.2 for illustrations of the stan-

dard Sierpiński carpet S(1/3,1/3,1/3,...) as well as the fat Sierpiński carpet

S(1/3,1/5,1/7,...).

Poincaré inequalities and Loewner-type conditions. Stephen Keith

[150] introduced a Loewner-type condition for a suitable weighted p-

modulus, which turns out in rather great generality to be equivalent to

the validity of the p-Poincaré inequality. To state his definition precisely

we define a family of weighted measures dνCx,y on a metric measure space

(X, d, µ) as in (14.2.5):

dνCx,y(z) =

(
d(x, z)

µ(B(x, d(x, z)))
+

d(y, z)

µ(B(y, d(y, z)))

)
χCBx,y dµ(z).

Proposition 14.2.10 (Keith) Let (X, d, µ) be a complete doubling
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metric measure space and let p ∈ [1,∞). Then X supports a p-Poincaré

inequality if and only if there exists a constant C > 0 so that for all

x, y ∈ X we have

Modp(Γx,y, ν
C
x,y) ≥ C−1d(x, y)1−p. (14.2.11)

Here Γx,y denotes the family of all rectifiable curves joining x to y, while

Modp(·, ν) denotes the p-modulus considered in the metric measure space

(X, d, ν).

Note that the existence of well-distributed curve pencils immediately

implies the validity of (14.2.11). We give the proof for p = 1; the proof

for p > 1 is similar. Let (Γx,y, σx,y) be as in Definition 14.2.4 and let g

be admissible for Γx,y. Then

C

∫
X

g dνCx,y ≥
∫

Γx,y

∫
γ

g ds dσ ≥ 1.

Taking the infimum over all such g completes the proof.

Poincaré inequalities on the Bourdon–Pajot and Laakso spaces have

been established by verifying the existence of well-distributed curve fam-

ilies. In the case of the Bourdon–Pajot examples, (Γx,y, σx,y) arise nat-

urally from the construction of the associated hyperbolic space and its

boundary. In the case of the Laakso examples, such curve families are

constructed by hand.

The derivation of Poincaré inequalities on the fat Sierpiński carpets

in [192] takes advantage of the characterization of such inequalities in

Proposition 14.2.10. Here, as in the Laakso examples, the desired curve

families are constructed in a manner adapted to the natural structure

of the underlying fractals.

It is more challenging to prove the Poincaré inequality on the Heisen-

berg group or more general Carnot groups by constructing Semmes curve

pencils. On the Heisenberg group, such pencils were constructed by Ko-

rte, Lahti and Shanmugalingam [166]. Further examples of metric mea-

sure spaces supporting such curve pencils are discussed in [166]. Note

that the construction of such pencils on the Heisenberg group in [166]

relies on some involved numerical calculations. The existence of such

curve pencils on more complicated sub-Riemannian spaces remains a

challenging open problem.

The ∞-Poincaré inequality. Semmes curve pencils are not necessary

for a space to satisfy a p-Poincaré inequality. However, a larger family of
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curves is needed than is guaranteed by quasiconvexity of the space. To

this end, in this section we discuss the notion of ∞-Poincaré inequality

and its relation to the existence of thick quasiconvex curve families.

Letting p → ∞ in the p-Poincaré inequality (8.1.1) we obtain the

following ∞-Poincaré inequality.

Definition 14.2.12 We say that (X, d, µ) supports an ∞-Poincaré

inequality if there are positive constants C, λ such that whenever B is a

ball in X and g is an upper gradient of a function u on X,∫
B

|u− uB | dµ ≤ C diam(B) ‖g‖L∞(λB).

By Hölder’s inequality, it is clear that a space supporting a p-Poincaré

inequality for any finite p will necessarily support an ∞-Poincaré in-

equality. The converse assertion is false, even for complete doubling

spaces; see the discussion at the end of this section.

In Ahlfors Q-regular spaces, for p > Q, we can reformulate Keith’s

condition with the usual (unweighted) modulus, take the pth root, and

let p → ∞. This suggests the heuristic that the ∞-Poincaré inequality

should be characterized by quantitative lower bounds for the∞-modulus

of curve families joining pairs of points x, y. However, such heuristic is

not completely correct. In [79] it is shown that a complete doubling

metric measure space supports an ∞-Poincaré inequality if and only if

there is a constant C > 0 such that Mod∞(ΓCx,y,E,F ) is positive (without

any estimates of the lower bound) whenever x, y are distinct points and

E ⊂ B(x, d(x, y)/C) and F ⊂ B(y, d(x, y)/C) with E and F both of

positive measure. The latter property is called thick quasiconvexity, and

the constant C is referred to as the thick quasiconvexity constant. Here

ΓCx,y,E,F denotes the family of all C-quasiconvex curves connecting E to

F . This geometric characterization was recently improved in [78], where

it is shown that a complete doubling metric measure space X supports

an ∞-Poincaré inequality if and only if there is a constant C > 0 such

that

Mod∞(ΓCx,y) > 0

whenever x and y are distinct points in X and ΓCx,y is the family of all

C-quasiconvex curves in X with end points x and y. Thus, unlike the

case of p-Poincaré inequalities for finite p, the quantitative control in the

∞-Poincaré inequality resides in the choice of the thick quasiconvexity

constant, not in the lower bound for the ∞-modulus. Thick quasicon-

vexity is, in principle, easier to verify for a given metric measure space,
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and hence the ∞-Poincaré inequality provides a handy way of detecting

metric measure spaces that do not support any p-Poincaré inequalities.

Examples of such spaces include the standard Sierpiński carpet.

This is not the only difference between p-Poincaré inequalities for fi-

nite p and the ∞-Poincaré inequality. There exist complete doubling

metric measure spaces supporting an ∞-Poincaré inequality but no p-

Poincaré inequality for any finite p. One such example, given in [80],

is the Sierpiński strip, obtained by pasting together in an infinite strip

a sequence of finite stages in the usual construction of the standard

Sierpiński carpet. This example also shows that the∞-Poincaré inequal-

ity does not persist under pointed measured Gromov–Hausdorff limits.

Thus the∞-Poincaré inequality fails to have the self-improving and sta-

bility properties studied in Chapter 12 and Chapter 11 for the p-Poincaré

inequality for finite p.

14.3 Applications and further research directions

Quasisymmetric uniformization. Let X be a metric space. The qua-

sisymmetric uniformization problem for X asks for a list of metric con-

ditions necessary and sufficient for another metric space Y , assumed a

priori to be homeomorphic to X, to be quasisymmetrically homeomor-

phic to X. Motivated by Cannon’s conjecture on the structure of finitely

generated Gromov hyperbolic groups with 2-sphere boundary at infin-

ity, Bonk and Kleiner used analysis on metric measure spaces supporting

Poincaré inequalities to address quasisymmetric uniformization for the

sphere S2. Notably, they show in [40] that if Y is a metric space homeo-

morphic to S2 which is assumed to be Q-regular for some Q ≥ 2 and also

to satisfy the Q-Poincaré inequality, then in fact Y is quasisymmetrically

equivalent to S2, Q = 2 and Y satisfies the 1-Poincaré inequality. (The

final conclusion follows from Semmes’ Theorem 14.2.3 upon noting that

the linear local contractibility follows in this setting from the Poincaré

inequality.)

The Ahlfors regular conformal dimension of a metric space (X, d) is

the infimum of all exponents Q > 0 so that X is quasisymmetrically

equivalent to an Ahlfors Q-regular metric space. Combining the above

result with those in [41] yields the following strong conclusion in the

direction of Cannon’s conjecture.

Theorem 14.3.1 (Bonk–Kleiner) Let Y be the Gromov boundary of



14.3 Applications and further research directions 425

a Gromov hyperbolic group equipped with a visual metric. Assume that

Y is homeomorphic to S2 and that Y is minimal for the Ahlfors regular

conformal dimension. Then Y is quasisymmetrically equivalent to S2.

Gromov [107], [105] introduced the metric criterion which nowadays

goes by the name of Gromov hyperbolicity. A geodesic metric space

(X, dX) is said to be Gromov δ-hyperbolic for some δ > 0 if whenever

x, y, z is a distinct triple of points in X, and γ1, γ2, γ3 are geodesics con-

necting x to y, y to z, and z to x respectively, then each point in γ3

is within a distance δ of the union γ1 ∪ γ2. A group is Gromov hyper-

bolic if it is finitely generated and its Cayley graph, equipped with the

path metric, is a Gromov hyperbolic space. There are numerous excel-

lent resources for the theory of hyperbolic groups and their boundaries,

including [146], [45] and [91]. Definitions for the terms in the theorem

can be found there.

Analogous results for the 3-sphere S3 are false. The sub-Riemannian

sphere (S3, dcc) provides an example of a 4-regular space satisfying the

1-Poincaré inequality which is minimal for Ahlfors regular conformal

dimension and arises as the Gromov boundary of the complex hyperbolic

plane, and which is not quasisymmetrically equivalent to the standard

S3.

Quasisymmetric uniformization is of interest for other model spaces. A

variant of Cannon’s conjecture (the so-called Kapovich–Kleiner conjec-

ture) concerns Gromov hyperbolic groups with Sierpiński carpet bound-

aries and leads to the study of the quasisymmetric uniformization prob-

lem for the Sierpiński carpet. Bourdon and Kleiner [42] introduced the

combinatorial Loewner property and investigated its relationship to the

classical Loewner property of the modulus of curve families and to the

validity of Poincaré inequalities. They show that the standard Sierpiński

carpet X = S(1/3,1/3,1/3,...) satisfies the combinatorial Loewner property;

whether X is quasisymmetrically equivalent to any space supporting

the classical Loewner property, or to any space supporting a Poincaré

inequality remains a well-known open problem.

For further reading in this direction, we refer the reader to the excel-

lent survey articles by Bonk [39] and by Kleiner [162] in the Proceedings

of the 2006 International Congress of Mathematicians.

Analysis on fractals and the harmonic Sierpiński gasket. Frac-

tals such as the Sierpiński gasket (Figure 14.3) and the Sierpiński carpet

(Figure 14.1) contain an insufficient number of non-constant rectifiable
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curves to support a Poincaré inequality. Indeed, for each p ≥ 1 the p-

modulus of the collection of all non-constant rectifiable curves in such

sets is equal to zero. Thus the theory of Sobolev spaces via upper gradi-

ents is not viable in this setting. In a certain class of fractals and in the

case p = 2, an alternate theory of Sobolev spaces has been developed

using the formalism of Dirichlet forms (see Beurling and Deny [28]). This

approach has been described in detail in [155] in the special case of so-

called post-critically finite fractals, the canonical example of which is the

Sierpiński gasket. Further literature on this rapidly developing topic in-

cludes [259], [258], [260], [261], [156], [262], [263], [130], [66], [155], [154],

[22], [174], [85], [116]; see also the references therein. The Dirichlet form

on such fractals is constructed as a limit of discrete energy forms on fi-

nite graph approximations. An excellent reference source for the theory

of Dirichlet forms is the book by Fukushima, Oshima, and Takeda [90].

In general, Dirichlet forms on fractals are not strongly local. (A Dirich-

let form E is strongly local if whenever a function f in the domain of

E is constant on a Borel set A, then the Dirichlet energy density of

f , in the sense of Beurling and Deny, vanishes on A.) This is in stark

contrast with the theory of Sobolev functions considered in this book,

where the energy density is given by the minimal p-weak upper gradi-

ent; such energy densities are always strongly local (see Lemma 6.3.8).

The Dirichlet forms usually considered on post-critically finite fractals

are strongly local. If the Dirichlet form on a doubling metric measure

space is strongly local and supports a Poincaré type inequality (with

the Dirichlet energy density playing the role of the upper gradients in

the inequality), then the corresponding Sobolev-type space, called the

Figure 14.3 The standard Sierpiński gasket
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Dirichlet domain, coincides with the Sobolev type space N1,2(X), cf.

[172] or [250]. For example, on the Sierpiński gasket there is a measure

and a geodesic metric, induced by the aforementioned Dirichlet form,

such that the modified metric measure space (known as the harmonic

Sierpiński gasket) supports a 2-Poincaré inequality in the sense of Defi-

nition 8.1. Moreover, the resulting space admits an embedding into the

plane so that the geodesic metric in question corresponds to the induced

path metric on the image. See [145] and [144] for further details, and see

Figure 14.4 for an image of the harmonic gasket.

Nonlinear potential theory on metric measure spaces. The study

of harmonic functions in Euclidean domains led to the development of

potential theory associated with the Laplacian operator, and later on to

axiomatic potential theory. Good surveys of this theory can be found

in the books [202], [44], [3], and [17]. The regularity theory for nonlin-

ear subelliptic operators (see, for instance, [178], [92] and [93]) paved

the way for an analogous theory of potentials for the p-Laplacian op-

erator and its variants. For a sample of the latter topic, we recom-

mend [280], [281], and [128]. One is naturally led to extend nonlinear

potential theory and the study of p-harmonic functions to the setting

of metric measure spaces equipped with a doubling measure and sup-

porting a Poincaré inequality. Early works in this direction include [158]

and [249]. An informative survey of recent developments in this area

can be found in [31], but this theory remains under active investiga-

tion. The metric measure space perspective unexpectedly led to quite

a few new results even in the Euclidean theory. For instance, resolu-

Figure 14.4 The harmonic gasket
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tivity of p-quasicontinuous Sobolev functions in relation to the Perron

method for the Dirichlet problem, see [33] and [31, Section 10.4], and

the self-improving property of Poincaré inequalities as in [153] (see also

Chapter 12) were established first in the metric setting. The former was

new even in the classical Euclidean setting, while the latter was new in

the weighted Euclidean setting.

Synthetic Ricci curvature bounds in metric measure spaces.

One of the most exciting recent developments in analysis in metric

spaces has been the emerging theory of synthetic Ricci curvature lower

bounds [188], [189], [266], [265], [278], [264]. These investigations have

identified remarkable connections to the study of optimal mass transport

and measure contraction under gradient flows. The CD(κ,N) condition

(for curvature lower bound κ and dimension upper bound N) has been

utilized by Ambrosio, Gigli, and Savaré. For instance, they have related

the CD(κ,∞) notion to probability measures on paths and to a Bakry–

Émery curvature condition BE(κ,∞) associated with a bilinear energy

form associated with the Sobolev space N1,2 (which, in this context, is

called the Dirichlet domain, while the associated bilinear form is called

the Dirichlet form). This is a rapidly growing field which we cannot at-

tempt to survey in any detail. A small but representative sample of the

literature includes [15], [14], [9], [10], and [241]. For related papers on

Bakry–Émery curvature condition, see also [171], [140], and [141].

In the process of developing the theory of such abstract curvature con-

ditions, Ambrosio, Colombo, Di Marino, Gigli and Savaré demonstrated

that if X is a complete metric measure space equipped with a doubling

measure, then Lipschitz functions are dense in N1,p(X) and N1,p(X)

is reflexive for all p with 1 < p < ∞, even if X does not support a

p-Poincaré inequality. See [16] and [12] for these remarkable results. A

recent paper of Ambrosio, Di Marino, and Savaré [11] explains connec-

tions between the p-modulus of path families, a foundational notion to

the approach of Sobolev spaces considered in this book, and probability

measures on paths.

The CD(κ,N) notion as formulated in the preceding references is

not well-adapted to the sub-Riemannian setting of Carnot groups. An

alternate notion of Bakry-Ledoux-type curvature bounds has been ex-

tensively developed by Baudoin and Garofalo [25] in the setting of the

Heisenberg group and other sub-Riemannian spaces.
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spaces and in the space of probability measures. Second edn. Lectures in
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Publishing Co.

[22] Barlow, M. T., Bass, R. F., Kumagai, T., and Teplyaev, A. 2010. Unique-
ness of Brownian motion on Sierpiński carpets. J. Eur. Math. Soc.,
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Norm. Sup. (4), 15, 213–230.

[52] Capogna, L., Danielli, D., Pauls, S. D., and Tyson, J. T. 2007. An intro-
duction to the Heisenberg group and the sub-Riemannian isoperimetric
problem. Progress in Mathematics, vol. 259. Basel: Birkhäuser Verlag.
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[122] Heinonen, J. 2007. Nonsmooth calculus. Bull. Amer. Math. Soc. (N.S.),
44(2), 163–232.

[123] Heinonen, J., and Koskela, P. 1995. Definitions of quasiconformality.
Invent. Math., 120, 61–79.

[124] Heinonen, J., and Koskela, P. 1996. From local to global in quasiconfor-
mal structures. Proc. Nat. Acad. Sci. U.S.A., 93, 554–556.

[125] Heinonen, J., and Koskela, P. 1998. Quasiconformal maps in metric
spaces with controlled geometry. Acta Math., 181, 1–61.

[126] Heinonen, J., and Koskela, P. 1999. A note on Lipschitz functions, upper
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spaces. Math. Z., 245(2), 255–292.
[151] Keith, S. 2004a. A differentiable structure for metric measure spaces.

Adv. Math., 183(2), 271–315.
[152] Keith, S. 2004b. Measurable differentiable structures and the Poincaré
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µ ∨ ν, 91
µY , 56

N1,p
c (U), 378

N1,p
loc (X : V ), 186

N1,p
loc (X : Y ), 189

N1,p(X), 185
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t+, 337
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Ap weight, 408

absolute continuity, 123, 154

of the integral, 24

on a curve, 156, 163

on lines, 154

absolutely continuous curve, 123

absolutely summable series, 13

accessible cardinal, 41

admissible density, 133, 138, 139

admissible function, 192

admissible weights, 408

Ahlfors regular, 290

Alexandrov space, 412

almost every curve, 135

analysis in metric spaces, 2

analytic quasiconformality, 403

analytic set, 282, 295

annular quasiconvexity, 244, 290, 295,

414

approximate isometry, 322

approximate midpoint, 330

approximately isometric spaces, 322

arc length parametrization, 129, 163

Arzelà–Ascoli theorem, 130, 196, 247,

253, 287, 333

Assouad embedding theorem, 124

asymptotic p-harmonicity, 379

asymptotic generalized linearity, 379,

388

Baire category theorem, 15

ball, 63

Banach space, 12

reflexivity of, 16, 26

uniform convexity of, 29

Banach–Alaoglu theorem, 29, 37

Banach–Steinhaus theorem, 18, 339

biLipschitz equivalence, 103

biLipschitz equivalent metrics, 248

biLipschitz map, 103

Bishop/Gromov volume comparison

inequality, 340, 407

Bochner integrable function, 45, 51, 76

Bochner integral, 45, 50, 51

Borel function, 59

Borel measure, 54

Borel partition, 54, 57, 60

Borel regular measure, 39, 54

Borel representative, 61

Borel set, 54

bounded operator, 15

bounded variation, 116, 125

boundedly supported function, 336

Bourdon–Pajot space, 419, 421

Caccioppoli estimate, 382, 389

Cannon’s conjecture, 423

Cantor diagonalization argument, 19

capacity, 157, 192

Carathéodory criterion, 54, 87

Carathéodory’s construction, 116, 118

Carnot group, 421

Cartan–Alexandrov–Toponogov class,
412

CAT(κ) space, 412

Cauchy in measure, 23

Cauchy–Schwarz inequality, 36

Cavalieri’s principle, 96, 98, 222

characteristic function, 13

Chebyshev’s inequality, 225, 226, 228

Cheeger’s differentiation theorem, 5, 35,

298

Cheeger–Sobolev space, 297

Clarkson’s inequalities, 37, 147
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closed ball, 63

closed graph theorem, 51

closure of a ball, 63

compact curve, 116, 127

compact support, 74

compactly supported function, 74

complete measure, 39

complete metric space, 65

complete norm, 12

completion, 61

of a metric space, 66

of a normed space, 13

composition morphism, 406

constant curve, 127

convergence

p-quasiuniform, 239

weak∗, 24

in norm, 13

weak, 20, 22

convex combination, 138

convex hull, 21, 35, 48

convolution, 151

countably additive, 53
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covering lemma
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341

covering theorem, 76

curvature

Ricci, 407

curve, 127

length of, 127

decomposition space, 410

density

of continuous compactly supported
functions in Lp(X : V ), 75

of Lipschitz functions in Lp(X : V ),
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of simple functions in Lp, 13

of smooth functions in W 1,p, 151

density function, 69

derivative

of measures, 86

descriptive set theory, 295

diameter, 63, 115

Dirac measure, 136

Dirichlet class, 175

Dirichlet space, 150, 175

characterizations of, 181

local, 153

truncation property of, 179

discrete convolution, 272

double dual, 16

doubling constant, 80

doubling measure, 4, 80, 101

biLipschitz invariance of, 248

doubling metric measure space, 80

doubling metric space, 106

dual space, 15

of Lp(X : V ), 50

Eberlein–Šmulian theorem, 203

Egoroff’s theorem, 23, 24, 41, 42, 62

ellipsoid of maximal volume, 35

embedding, 61, 103

isometric, 61

ε-neighborhood of A, 318

ε-net, 318

ε-separated set, 106

essentially bounded function, 11

essentially separably valued function, 40

Euclidean norm, 9

exceptional curve family, 135

exceptional set, 136

extended measure, 57, 66

extended real-valued function, 59

extremal distance, 146

extremal length, 146

family of metric spaces

pointed boundedly doubling, 335

pointed totally bounded, 333

uniformly compact, 324

uniformly locally doubling in

measure, 339

fat Sierpiński carpet, 419, 421

Fatou’s lemma, 23

fine covering, 77

flattening, 413

fractal

post-critically finite, 316, 425

Fréchet embedding theorem, 105, 124,

320

Fritz John Ellipsoid Theorem, 35, 37

Fuglede’s lemma, 136, 138, 155, 166,

169, 172, 203

function

absolutely continuous, 123

locally Lipschitz, 206

lower semicontinuous, 112

oscillation of, 347

simple, 13

symmetric, 152
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with bounded support, 188

function-upper gradient pair, 159, 289

Gagliardo–Nirenberg–Sobolev

inequality, 407

generalized cylinder, 145

geodesic curve, 247

geodesic metric, 247

geodesic space, 247, 258, 263, 271

geometric quasiconformality, 403

gluing space, 418

Gromov compactness theorem, 325

for pointed measured metric spaces,

338

for pointed proper spaces, 333

Gromov hyperbolic space, 424

Gromov–Hausdorff convergence, 6, 318,
321, 423

persistence of Poincaré inequalities

under, 343

persistence of doubling measures

under, 340

reformulation in terms of convergence

of ε-nets, 323

Gromov–Hausdorff distance, 318, 320

Gromov–Hausdorff tangent space, 419

Hahn–Banach theorem, 16, 17, 19, 20,
22, 27, 28, 31, 33, 37, 43, 51, 120,

182, 233

Haj lasz gradient, 298, 300, 302

Haj lasz–Sobolev space, 298, 302

density of Lipschitz functions in, 301

Hardy–Littlewood maximal function, 6,

39, 95

Hardy–Littlewood maximal theorem,

96, 99, 101, 277, 286, 313

Hausdorff dimension, 115

Hausdorff distance, 318

Hausdorff maximality principle, 64, 67

Hausdorff measure, 54, 68, 115, 128

Hausdorff premeasure, 115

Heisenberg group, 415, 418, 421

Hilbert space, 14, 30

homology manifold, 409

hyperbolic plane, 412

∞-norm, 10

∞-Poincaré inequality, 422

inner product, 13

inner product space, 14, 37

integrable

on balls, 215

integrable function, 45

integrable simple function, 45

integral, 45

isometric embedding, 61, 103

isometric spaces, 103

isometry, 103

isometry class of a metric space, 323

isoperimetric inequality

relative, 407

Jacobian, 403

k-chain, 245

Kapovich–Kleiner conjecture, 424

Keith–Zhong theorem, 4, 218, 376

Kirszbraun extension theorem, 104

Korevaar–Schoen p-energy, 306

Korevaar–Schoen–Sobolev space, 306

Kuratowski embedding theorem, 105,
124, 189

Lp space, 10, 30

continuity of translation operators on,

75

density of continuous functions in, 74

density of Lipschitz functions in, 114

lp space, 10

Laakso space, 419, 421

λ-class, 284

Laplacian, 407

lattice, 166

Lebesgue decomposition, 87

Lebesgue differentiation theorem, 39,

81, 86, 88, 90, 94, 164, 226, 256,

274, 277, 299, 379

Lebesgue measure, 12, 61, 80

Lebesgue point, 256

Lebesgue representative, 61

Lebesgue–Radon–Nikodym theorem, 86,

93, 121

length

of a curve, 117, 127

of a curve in a set, 133

length area principle, 4

length function, 128

length metric, 247

length space, 247, 328, 329

limit

weak, 20

Lindelöf property, 64, 67

line integral, 131

linear functional

bounded, 15
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linear local contractibility, 409, 423

linear operator, 15

Lipschitz constant, 103

Lipschitz-constant function

pointwise lower, 160, 391

pointwise upper, 160, 244, 249, 304,
391

Lipschitz curve, 127

Lipschitz extension lemma, 104

Lipschitz extension property, 111, 124

Lipschitz extension theorem, 110, 239

Lipschitz map, 103

Lipschitz partition of unity, 109, 110

Lipschitz retraction, 179

local Dirichlet space, 153

local Sobolev space, 153, 186

locally Bochner integrable function, 49

locally compact metric space, 73

locally complete metric space, 65, 72

locally doubling measure, 339

locally finite measure, 54, 65

locally integrable function, 49

locally Lipschitz function, 103, 206

locally rectifiable curve, 127

Loewner condition, 404

lower semicontinuous function, 112, 160

main equivalence class, 210

main equivalence class property, 210

majorizing curve family, 134

maximal function, 95

noncentered, 99

restricted, 96, 220

restricted and noncentered, 99

sharp, 353

maximal operator, 95, 256

Mazur’s lemma, 17, 21, 22, 32, 137, 147,

202

McShane–Whitney extension lemma,

104, 124, 252, 366, 398

mean value, 48, 216

measurable function, 39, 53

measurable set, 39, 53

measure, 39, 52

absolutely continuous part of, 87

extension of, 57

locally doubling, 339

locally finite, 65

nontrivial, 53

restriction of, 56

singular part of, 87

supremum of, 91

measure of a set, 52

measured Gromov–Hausdorff
convergence, 318, 336

measured Gromov–Hausdorff limit, 337

MECp property, 210, 213, 234, 256, 282,
295

Menger sponge, 419

metric completion, 61, 66, 72

metric differential, 118, 163, 171

metric gluing space, 418

metric measure space, 52, 65

supporting a p-Poincaré inequality, 3

metric quasiconformality, 403

metric space, 12

complete, 66

doubling, 106

locally compact, 73

locally complete, 66, 72

proper, 107

separable, 12

Meyers–Serrin theorem, 151

minimal p-weak upper gradient, 168

minimal upper gradient, 168

Minkowski functional, 17, 22

modulus, 127, 133

admissible functions for, 133

subadditivity of, 134

Morrey embedding theorem, 272, 279,

281

Mostow rigidity theorem, 403, 415

µ-measurable function, 53

µ-measurable set, 53

µ-representative, 61

Muckenhoupt weight, 408

n-modulus

conformal invariance of, 143

Newtonian space, 3, 212

noncentered maximal function, 99

nonconstant curve, 127

nonrectifiable curve, 127

nontrivial measure, 53

norm, 9

complete, 12

equivalence between, 34

lower semicontinuity of, 20, 138

of a linear operator, 15

normalizing constant, 115

normed space

completion of, 13

one-point space, 80

open ball, 63
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open mapping theorem, 15, 30, 37

operator, 15

operator norm, 15

oscillation of a function, 347

outer measure, 52

p-admissible function, 192

p-almost every curve, 135

p-almost every point, 277

p-capacity, 192, 256

countable subadditivity of, 193, 197

monotonicity of, 192, 205

null set for, 192, 194

subadditivity of, 278

p-exceptional set, 136, 172, 173

p-harmonic, 6, 378, 426

p-integrable function, 11, 48

p-norm, 10

p-quasiuniform convergence, 239

p-weak upper gradient, 158

existence of minimal, 169

p-admissible weights, 408

parallelogram law, 14, 30, 37

partition of unity, 109

Lipschitz, 110, 272, 347, 359

pencil of curves, 411

Pettis integrable function, 50, 51

Pettis measurability theorem, 40, 41,
44, 62, 176, 233

π − λ-theorem, 284

Poincaré gradient, 302

Poincaré inequality, 2, 178, 215, 256, 318

biLipschitz invariance of, 248

data of, 216

for V -valued functions, 232

implies connectivity, 219

implies quasiconvexity, 244

Poincaré–Sobolev space, 302

point of density, 385

pointed boundedly doubling, 335

pointed Gromov–Hausdorff convergence,

327

pointed measured Gromov–Hausdorff

convergence, 337

pointed space, 327

pointed totally bounded, 333

polar coordinates, 139, 142, 143, 176,

216

post-critically finite fractal, 425

principle of uniform boundedness, 18,
21, 25, 29, 37

proper space, 107, 331

push-forward measure, 60, 337

quasiconformality

analytic, 403

geometric, 403

metric, 403

quasicontinuous function, 207

quasicontinuous representative, 157

quasiconvex curve, 234

quasiconvex metric, 244

quasiconvex space, 271

quasiconvexity constant, 244

quasimöbius map, 413

quasisymmetric uniformization problem,

423

quasisymmetry, 402

quasiuniform convergence, 198

Rademacher differentiation theorem, 5,

394

Radon measure, 39, 70

Radon–Nikodym derivative, 86, 118

rectifiable curve, 117, 127, 130

reflexive, 16, 26, 30, 32, 37, 138, 394

relative lower volume decay, 223, 224,

262

representative, 61

restricted maximal function, 96, 220

restricted measure, 56, 66

restricted noncentered maximal
function, 99

retraction

Lipschitz, 179

Ricci curvature, 340, 407

Riemann–Lebesgue lemma, 20

Riesz potential, 177, 309, 407

Riesz representation theorem, 15, 16,

339

scalarly measurable, 40

Schur’s lemma, 25

semi-inner product, 14

seminorm, 9, 10, 14, 17

Semmes curve pencils, 411, 421

separable metric space, 12, 65

separated set, 67, 106

sequence of metric spaces

eventually proper, 331

sharp maximal function, 353

Sierpiński carpet, 423

fat, 419, 421

Sierpiński gasket, 316

Sierpiński strip, 423
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σ-algebra, 39, 52, 53

σ-finite measure, 39, 42, 54, 65

signed measure, 117

simple function, 13, 39, 45

snowflake space, 124, 187

Sobolev–Poincaré inequality, 256, 407

Sobolev space, 2, 3, 150, 184, 297

density of boundedly supported and
bounded functions in, 188

density of Lipschitz functions in, 239

is Banach, 200

local, 153

metric-space valued, 189

nontriviality of, 187

of V -valued functions on X, 185

reflexivity of, 394

weak lower semicontinuity of the

norm in, 202

weighted, 209, 212

spaces of homogeneous type, 101

spherical shell

modulus of, 142, 143

sphericalization, 413

stereographic projection, 413, 417

strong A∞ weight, 408

subcurve, 127

sublinear map, 16

sublinear operator, 95

sup norm, 11

support of a measure, 67

suprema of measures, 91

telescoping argument, 254, 358

thick quasiconvexity, 422

Tonelli’s theorem, 96, 177, 217

total variation, 117, 127

totally bounded space, 72, 319

triangle inequality, 9, 12

truncation, 180, 235

Ulam number, 41, 68

uniformly compact, 324

uniformly convex, 29, 32, 37

upper gradient, 2, 158, 302

p-weak, 158

gluing lemma for, 165

lattice property for, 169

minimal, 168

product rule for, 171

upper gradient inequality, 159

upper semicontinuous function, 84, 112

variation, 116

Vitali–Carathéodory theorem, 113, 125,

146, 197, 250, 286, 396

Vitali covering theorem, 77, 380
Vitali measure, 77, 80

Vitali metric measure space, 77

weak convergence, 20, 22

of measures, 336

weak derivative, 150
weak gradient, 150

weak Lp space, 96
weak limit, 20

weak partial derivative, 149

weak∗ convergence, 24
weak∗ limit, 25

weakly integrable, 51

weakly measurable, 40, 43, 51
weight

admissible, 408

strong A∞, 408
weighted metric measure space, 69

weighted Sobolev space, 209, 212

Whitney decomposition, 108, 359

Zorn’s lemma, 64, 76


