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Abstract. We characterize quasiconformal mappings as those
homeomorphisms between two metric measure spaces of locally
bounded geometry that preserve a class of quasiminimizers. We
also consider quasiconformal mappings and densities in metric spaces
and give a characterization of quasiconformal mappings in terms
of the uniform density property introduced by Gehring and Kelly.

1. Introduction

Let 1 < p <∞ and let Ω ⊂ Rn be a nonempty open set. A function
u ∈ W 1,p

loc (Ω) is a Q-quasiminimizer, Q ≥ 1, related to the index p in Ω
if ∫

φ 6=0

|∇u|p dx ≤ Q

∫
φ 6=0

|∇(u+ φ)|p dx (1.1)

for all φ ∈ W 1,p
0 (Ω). Quasiminimizers were introduced by Giaquinta–

Giusti [10, 11], and, for instance, solutions to the equation

divA(x,∇u) = 0

are known to be quasiminimizers. The mapping A belongs to the set
Ap, and for 1 < p < ∞, this set is the collection of all mappings
satisfying the Carathéodory conditions and the standard structural as-
sumption, see, e.g., Heinonen–Kilpeläinen–Martio [17, p. 56].

Let A and A∗ belong to Ap. Following Heinonen et al. [16], we
say that a continuous mapping f : Ω → Rn is an (A∗,A)-harmonic
morphism if u◦f is A∗-harmonic in f−1(Ω′) whenever u is A-harmonic
in Ω′. Further, f is an Ap-harmonic morphism if f is an (A∗,A)-
harmonic morphism for some A∗ and A.

It is a well-known fact that in the plane any continuous mapping
which is a harmonic morphism for the Laplace equation, i.e. an (A,A)-
harmonic morphism with A(x, h) = h, is necessarily conformal, see
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Gehring–Haahti [8]. In potential theory, the first paper to study har-
monic morphisms systematically is the article by Constantinescu and
Cornea [5]. In higher dimensions and for general p the problem of de-
termining harmonic morphisms is more challenging. It is known that
in the Sobolev borderline case p = n quasiregular mappings provide
examples of Ap-harmonic morphisms. This was shown by Granlund
et al. in [12]. On the other hand, the main result by Heinonen et al.
in [16, Theorem 4.1] shows that every sense-preserving An-harmonic
morphism is a quasiregular mapping. In particular, every homeomor-
phic An-harmonic morphism is quasiconformal, i.e. a homeomorphic
quasiregular mapping. In [16] the authors also studied some basic prop-
erties of such morphisms and examined the case 1 < p < n. However,
very little is known in the case when p > n.

In this paper we consider an analytic characterization (Theorem 4.1)
and a geometric characterization (Theorem 6.10) of quasiconformal
mappings.

In the first part of the paper (Theorem 4.1) we consider transfor-
mations which preserve a class of quasiminimizers. Holopainen and
Shanmugalingam [19] have shown that quasiconformal mappings be-
tween metric measure spaces that satisfy certain bounds on their mass
and geometry (these metric spaces are said to be of locally q-bounded
geometry; see Definition 2.6) preserve quasiminimizers. These spaces
are discussed in more detail in Section 2 and 3. Heinonen and Koskela
[15] developed the foundations of the theory of quasiconformal maps
in such metric spaces. In this paper we show that if a homeomorphism
between two metric measure spaces of locally q-bounded geometry pre-
serves the class of quasiminimizers associated with the natural dimen-
sion p = q of the space, then, under some additional assumptions on
this homeomorphism, it is quasiconformal. That is, every homeomor-
phic quasiharmonic morphism is a quasiconformal mapping. We also
establish a few properties of quasiharmonic morphisms in general. It
seems that our results are new even in the Euclidean setting.

The above-mentioned characterization of quasiconformal mappings
is purely analytical in nature. In the second part of this note (The-
orem 6.10) we consider a purely geometric characterization of quasi-
conformal mappings by studying metric quasiconformal mappings and
densities along the lines of Gehring and Kelly [9]. We generalize a
result of [9] which states that points of density are preserved under
quasiconformal mappings, and we show that if a homeomorphism is
absolutely continuous on q-modulus almost every curve then quasi-
conformality and the uniform density property are indeed equivalent.
In the Euclidean setting, the uniform density property for the inverse
function implies absolute continuity on almost every line parallel to the
coordinate axes. This together with a suitable integrability property
is enough to guarantee that a function is in the correct Sobolev class.
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Thus in the Euclidean setting the a priori assumption of absolute conti-
nuity on q-modulus almost every curve is not needed. The proof in [9]
uses projections along coordinate axes and exploits the linear struc-
ture of the ambient space, and so the proof of [9] cannot be directly
extended to general metric spaces. We instead show that the uniform
density property for the inverse is enough to imply that the homeomor-
phism is absolutely continuous on 1-modulus almost every curve. This
is a strictly weaker property than absolute continuity on q-modulus al-
most every curve. Nevertheless, if the space supports a (1, 1)-Poincaré
inequality, then absolute continuity on 1-modulus almost every curve
together with some integrability conditions to be specified in Section 6
is enough to show that the homeomorphism is in the correct Sobolev
space, and thus we may replace the extra assumption of absolute con-
tinuity with the condition that the metric measure space supports the
strongest possible Poincaré inequality – the (1, 1)-Poincaré inequality.
Observe that Euclidean spaces automatically support such a Poincaré
inequality.

This paper is organized as follows. In Section 2 we introduce metric
measure spaces of locally q-bounded geometry and provide a definition
of quasiminimizers. In Section 3 we discuss definitions of quasiconfor-
mal mappings in metric spaces and recall a few well-known facts. In
Sections 4 and 5 we study connections between quasiconformal map-
pings and quasiminimizers. Finally, in Section 6 we study quasicon-
formal mappings in connection with the uniform density property of
Gehring–Kelly [9].

Acknowledgements. The authors wish to thank Juha Kinnunen
for useful discussions and for pointing out some references. Part of the
research was done while the third author visited the Helsinki University
of Technology; she thanks that institution for its kind hospitality. The
third author’s research is partly supported by the Taft Foundation of
the University of Cincinnati.

2. Metric spaces

The theory of quasiminimizers fits naturally into the study of analysis
in metric spaces.

We follow Heinonen and Koskela [15] in introducing upper gradients
as follows.

Definition 2.1. Let (X, dX) and (Y, dY ) be metric spaces. A nonnega-
tive Borel function g on X is an upper gradient of a function f : X → Y
if for all curves γ : [0, lγ]→ X,

dY (f(γ(0)), f(γ(lγ))) ≤
∫
γ

g ds. (2.2)
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If g is a nonnegative measurable function on X and if (2.2) holds for
p-almost every curve, 1 ≤ p <∞, then g is a p-weak upper gradient of
f .

By saying that (2.2) holds for p-almost every curve we mean that this
inequality fails only for a curve family Γ with p-modulus Modp Γ equal
to zero; recall that the p-modulus of a curve family Γ is the number

Modp Γ = inf

∫
X

ρp dµ,

the infimum being taken over all Borel functions ρ : X → [0,∞] that
are admissible for Γ, that is,

∫
γ
ρ ds ≥ 1 for each rectifiable γ ∈ Γ. For

basic properties of the q-modulus we refer the interested reader to [15].

The notion of p-weak upper gradients was introduced in Koskela–
MacManus [24], where it was also shown that if g ∈ Lp(X) is a p-weak
upper gradient of f , then one can find a sequence {gj}∞j=1 of upper
gradients of f such that gj → g in Lp(X). If f has an upper gradient
in Lp(X), then it has a minimal p-weak upper gradient gf ∈ Lp(X) in
the sense that for every p-weak upper gradient g ∈ Lp(X) of f , gf ≤ g
a.e., see Shanmugalingam [27, Corollary 3.7].

We consider the following version of Sobolev spaces on the metric
space X due to Shanmugalingam in [26].

Definition 2.3. Whenever u ∈ Lp(X), let

‖u‖N1,p(X) =

(∫
X

|u|p dµ+ inf
g

∫
X

gp dµ

)1/p

,

where the infimum is taken over all upper gradients of u. The Newto-
nian space on X is the quotient space

N1,p(X) = {u : ‖u‖N1,p(X) <∞}/∼,

where u ∼ v if and only if ‖u− v‖N1,p(X) = 0.

The space N1,p(X) is a Banach space and a lattice [26]. Section 3 in
Heinonen et al. [18] gives the definition of, and has a detailed discussion
on, the Sobolev space N1,p(X, Y ), where Y is a metric measure space.

Definition 2.4. Let 1 ≤ p < ∞. We say that X supports a local
(weak) (1, p)-Poincaré inequality if there exist constants C > 0 and
λ ≥ 1 such that each point x ∈ X has a neighborhood U such that
for all balls B with λB ⊂ U , all integrable functions f on λB and all
upper gradients g of f ,∫

B

|f − fB| dµ ≤ C(diamB)

(∫
λB

gp dµ

)1/p

, (2.5)

where fB :=
∫
B
f dµ :=

∫
B
f dµ/µ(B).
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In the definition of (1, p)-Poincaré inequality we can equivalently
assume that g is a p-weak upper gradient – see the comments above.

In this paper a metric space (X, d) is assumed to be complete and
equipped with a locally Ahlfors q-regular measure µ, i.e. there exists a
constant C ≥ 1 so that each point x0 ∈ X has a neighborhood U such
that for all x ∈ U and r > 0 with B(x, r) ⊂ U ,

1

C
rq ≤ µ(B(x, r)) ≤ Crq.

Here B(x, r) = {y ∈ X : d(x, y) < r} with a fixed constant q > 0.
Moreover we require the measure to support a local (1, q)-Poincaré
inequality. In what follows, q will always refer to this mass bound
exponent.

Definition 2.6. A metric measure space X is said to be of locally
q-bounded geometry, with q ≥ 1, if X is a separable, path-connected,
locally compact metric space equipped with a locally Ahlfors q-regular
measure that admits a local (1, q)-Poincaré inequality.

Note that these assumptions imply uniform local linear connectivity
in a neighborhood of each point in X; see [15, Section 3].

Let Ω be a connected open set in X, and E and F two disjoint
non-empty compact sets in Ω. The q-capacity of the triple (E,F ; Ω) is
defined to be the (possibly infinite) number

Capq(E,F ; Ω) = inf

∫
Ω

gqu dµ,

where the infimum is taken over minimal q-weak upper gradients gu
of all functions u in Ω with the property that u|E = 1, u|F = 0, and
0 ≤ u ≤ 1.

Finally, we say that u is a q-potential of (E,F ; Ω) if it is q-harmonic
(see below) in Ω \ (E,F ) with boundary data u = 0 on E and u = 1
on F . If a q-potential exists it is unique and we have

Capq(E,F ; Ω) =

∫
Ω

gqu dµ.

Throughout the rest of the paper we will assume that X and Y are
two metric measure spaces of locally q-bounded geometry.

2.1. Quasiminimizers. In metric spaces the natural counterpart to
|∇u| is gu. Observe that in metric spaces we have no natural counter-
part to the vector∇u, only to the scalar |∇u| (see however Cheeger [4]).
In metric spaces we replace the Sobolev space W 1,q by the Newtonian
space N1,q. Given a non-empty open set Ω, a function u ∈ N1,q

loc (Ω) is
a Q-quasiminimizer, Q ≥ 1, in Ω if∫

φ 6=0

gqu dx ≤ Q

∫
φ 6=0

gqu+φ dµ (2.7)
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for all φ ∈ Lipc(Ω) = {f ∈ Lip(X) : supp(f) b Ω}.
Our definition of quasiminimizers is one of several equivalent possi-

bilities, see A. Björn [2].
By Giaquinta–Giusti [11], a Q-quasiminimizer in a Euclidean space

can be modified on a set of measure zero so that it becomes locally
Hölder continuous. See Kinnunen–Shanmugalingam [22] for the metric
space analog. A Harnack inequality holds true for Q-quasiminimizers,
see [22]; the Euclidean space analog is due to DiBenedetto and Trudinger
[7]. A continuous Q-quasiminimizer is said to be a Q-quasiharmonic
function, and a 1-quasiharmonic function is q-harmonic.

We will need the following removability result. Here Cq is the Sobolev
capacity, see Heinonen–Kilpeläinen–Martio [17] for a definition in Rn

and, for instance, [3] for a definition in the metric space case.

Theorem 2.8 (A. Björn [3]). Let E ⊂ Ω be a relatively closed set with
Cq(E) = 0. Assume that u is bounded and Q-quasiharmonic in Ω \ E.
Then u has a Q-quasiharmonic extension U to Ω given by

U(x) = ess liminf
Ω\E3y→x

u(y).

3. Definitions of quasiconformality

We define quasiconformality in the metric setting following Heinonen
and Koskela [14]. A homeomorphism f : X → Y between two metric
spaces X and Y is quasiconformal, or K-quasiconformal, K ≥ 1 if

K(f, x) = lim sup
r→0

supdX(x,y)=r dY (f(x), f(y))

infdX(x,y)=r dY (f(x), f(y))
≤ K <∞

for every x ∈ X. A homeomorphism f : X → Y is η-quasisymmetric if
there is a homeomorphism η : [0,∞)→ [0,∞) such that for each t > 0

dX(x, a) ≤ tdX(x, b) implies dY (f(x), f(a)) ≤ η(t)dY (f(x), f(b))

for each triple x, a, b of points in X. The question of which quasicon-
formal maps are quasisymmetric was studied in [15, Theorem 4.7 and
Theorem 4.9]. In the above definition, the limit superior can be relaxed
to a limit inferior and exceptional sets can be allowed. For more details
we refer the interested reader to Balogh et al. [1].

Theorem 3.1 (Heinonen et al. [15, 18]). Let f : X → Y be a homeo-
morphism. Then the following are equivalent:

1. f is K-quasiconformal,
2. f is locally η-quasisymmetric,
3. f ∈ N1,q

loc (X, Y ) and (Lf (x))q ≤ KJf (x) for a.e. x ∈ X,
4. there exists a constant C such that for every collection Γ of

paths in X,

1

C
Modq Γ ≤ Modq f(Γ) ≤ C Modq Γ.
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Moreover, if any of the above conditions holds for f , then f is absolutely
continuous in measure and absolutely continuous along q-modulus a.e.
curve in X, and the inverse f−1 is also quasiconformal.

In the above theorem

Lf (x) := lim sup
r→0

sup
dX(x,y)≤r

dY (f(x), f(y))

r

is the maximal stretching of f , and the volume derivative, or the gen-
eralized Jacobian, is defined as

Jf (x) := lim sup
r→0

µY (f(B(x, r))

µX(B(x, r))
.

By the Lebesgue–Radon–Nikodym theorem (see, e.g. Mattila [25]) the
lim sup in the definition of Jf can be replaced by lim for µX-a.e. x ∈
X, moreover, since f is absolutely continuous in measure, for every
measurable subset E of X∫

E

Jf dµX = µY (f(E)).

By absolute continuity of f in measure we mean that f satisfies
Lusin’s condition (N): if E ⊂ X satisfies µX(E) = 0, then µY (f(E)) =
0. Recall that f is said to be absolutely continuous on q-modulus a.e.
curve if the collection of rectifiable curves in X for which the following
condition does not hold has q-modulus zero: for every ε > 0 there
exists δ > 0 such that for every measurable subset A of X one has

H1(|γ| ∩ A) < δ implies H1(f(|γ| ∩ A)) < ε,

or equivalently, f ◦ γ satisfies Lusin’s condition (N) with respect to
the 1-dimensional Lebesgue measure. Here |γ| denotes the point set
γ([0, 1]) ⊂ X of a (rectifiable) curve γ : [0, 1]→ X.

Quasiconformal mappings between metric spaces of locally q-bounded
geometry preserve the Newtonian space N1,q.

Corollary 3.2 (Heinonen et al. [18]). Let f : X → Y be a quasicon-
formal mapping, and u ∈ N1,q

loc (Y ). Then u◦f ∈ N1,q
loc (X) and for every

relatively compact open set Ω ⊂ X,∫
Ω

gqu◦f dµX ≤ C

∫
f(Ω)

gqu dµY ,

where C ≥ 1 depends only on the constants of quasiconformality of f
and the data associated with X and Y .

Metric quasiconformal mappings also preserve the class of quasimin-
imizers.

Proposition 3.3 (Holopainen–Shanmugalingam [19]). Let f : X → Y
be a quasiconformal mapping. Then f preserves the class of quasimin-
imizers, associated with index q, on relatively compact domains.
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Observe that in the preceding proposition, if u is a Q-quasiminimizer,
then u ◦ f is a Q′-quasiminimizer, with Q′ depending solely on Q, the
quasiconformality constants of f , and the data associated with X and
Y .

4. Quasiconformal mappings and quasiminimizers

As stated in previous sections, we assume that the metric measure
spaces X and Y are of locally q-bounded geometry. The following
theorem gives an analytic characterization of quasiconformal mappings.

Theorem 4.1. Let f : X → Y be a homeomorphism. Then f is a
quasiconformal mapping if and only if f ∈ N1,q

loc (X, Y ) and one of the
following two conditions holds:

1. for all u ∈ N1,q
loc (Y ) and every relatively compact open set Ω ⊂ X∫

Ω

gqu◦f dµX ≤ C

∫
f(Ω)

gqu dµY ,

where C ≥ 1 depends only on the data associated with X and
Y .

2. for each Q ≥ 1 there exists 1 ≤ Q′ < ∞ such that whenever u
is a Q-quasiminimizer in a relatively compact domain Ω ⊂ Y ,
u ◦ f is a Q′-quasiminimizer in f−1(Ω).

Furthermore, if one of the above two conditions holds, then both con-
ditions hold.

Proof. The necessity of both conditions follows from Theorem 3.1,
Corollary 3.2, and Proposition 3.3.

To prove sufficiency of Condition (1), fix x0 ∈ X and choose r > 0
small enough so that B(x0, 10r) is compact and balls inside B(x0, 10r)
have the Ahlfors q-regularity and the (1, q)-Poincaré inequality prop-
erties and in addition X \B(x0, 10r) is non-empty. Let xm, xM be two
points in the compact set S(x0, r) := {x ∈ X : dX(x0, x) = r} be such
that

L(x0, r) := dY (f(x0), f(xM)) = max
x∈S(x0,r)

dY (f(x0), f(x)),

and

l(x0, r) := dY (f(x0), f(xm)) = min
x∈S(x0,r)

dY (f(x0), f(x)).

We need to show that for sufficiently small r the ratio of L(x0, r) and
l(x0, r) is bounded from above by a number that is independent of x0.

Choose r to be sufficiently small enough so that there exists a point
x3 ∈ X\B(x0, 2r) with f(x3) ∈ B(f(x0), 4L(x0, r))\B(f(x0), 2L(x0, r)).

By the fact that X and Y support a local Poincaré inequality we
know that they are locally quasi-convex; see for example Haj lasz–
Koskela [13, Proposition 4.5] or [23, Theorem 3.3]. Hence Y is bi-
Lipschitz equivalent to a local geodesic space, and so we can assume
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that Y is geodesic. Let α : [0, 1]→ Y be a geodesic curve joining f(x0)
to f(xm) and β : [0, 1] → Y to be a curve joining f(xM) to f(x3) in
B(f(x0), 4CL(x0, r))\B(f(x0), L(x0, r)/C), where C > 1 depends only
on the constant in the Poincaré inequality and on q. Such a curve β
exists by [23, Theorem 3.3]. Hence, we have that lα = l(x0, r) and lβ
is comparable to L(x0, r), where lα and lβ denote the length of α and
β, respectively.

If l(x0, r) ≥ L(x0, r)/(2C) we have L(x0, r)/l(x0, r) ≤ 2C, and so we
may assume that l(x0, r) < L(x0, r)/(2C); in which case β and α are
disjoint. Let Γ(α, β) denote all rectifiable paths joining α to β in Y

and let α̂ = f−1 ◦ α, β̂ = f−1 ◦ β be the corresponding paths in X. By
Kallunki–Shanmugalingam [20] we obtain

Modq(Γ(α, β)) = Capq(α, β;Y ).

Let u be a q-potential of the condenser (α, β) with respect to B :=
B(f(x0), 10CL(x0, r)) ⊂ Y . Then Condition (1) implies

Capq(α, β;B) =

∫
B

gqu dµY ≥ C

∫
f−1(B)

gqu◦f dµX .

If v is a q-potential of (α̂, β̂) in f−1(B), then

Capq(α̂, β̂; f−1(B)) =

∫
f−1(B)

gqv dµX ≤
∫
f−1(B)

gqu◦f dµX .

Thus it follows that

Capq(α̂, β̂; f−1(B)) ≤ C Capq(α, β;B)

which is by [20] and Heinonen–Koskela [15, Proposition 2.17] equivalent
to

Modq(Γ(α̂, β̂)) ≤ C Modq(Γ(α, β)). (4.2)

The radius r was chosen so that x3 ∈ X \B(x0, 2r), therefore, we have

that min{diam(|α̂|), diam(|β̂|)} ≥ r and dist(α̂, β̂) ≤ 2r. Under our
assumptions on X it is a Loewner space (see, e.g., [15]), thus there
exists a decreasing homeomorphism ψX : (0,∞)→ (0,∞) so that

Modq(Γ(α̂, β̂)) ≥ ψX

(
dist(α̂, β̂)

min{diam(|α̂|), diam(|β̂|)}

)
= ψX(2) > 0.

Plugging this into the modulus estimate (4.2), we have the following
lower bound for the modulus

Modq(Γ(α, β)) ≥ ψX(2)

C
> 0. (4.3)

Let use define

ρ(y) =
C̃χA

d(f(x0), y)
,

where A = B(f(x0), L(x0, r)/C) \ B(f(x0), l(x0, r)) and C̃ is to be
fixed. Let Bi = B(f(x0), 2−iL(x0, r)/C), i = 0, 1, . . . , k0, where k0
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is chosen so that 2−k0L(x0, r)/C ≤ l(x0, r) < 2−k0+1L(x0, r)/C. We
want to estimate the size of Γ(α, β) in terms of q-modulus using ρ.
We first show that ρ is an admissible function for computing the q-
modulus of Γ(α, β). To do so, take γ ∈ Γ(α, β). By our assumption
that l(x0, r) < L(x0, r)/(2C), every curve that connects α to β must
intersect both spheres S(x0, l(x0, r)) and S(x0, L(x0, r)/C). We obtain∫

γ

ρ ds =

k0∑
i=0

∫
γi

ρ ds ≥
k0∑
i=0

CC̃`(βi)

2−iL(x0, r)
≥ C̃k0/2 ≥

C̃

4
log2

L(x0, r)

l(x0, r)
,

where γi := γ|Bi\Bi+1
and βi is a subcurve of γ lying in Bi \ Bi+1 and

connecting ∂Bi to ∂Bi+1. It follows that ρ is admissible for Γ(α, β) if
we choose

C̃ ≈
(

log2

L(x0, r)

l(x0, r)

)−1

.

Hence we get

Modq(Γ(α, β)) ≤
∫
A

ρq dµ =

k0∑
i=0

∫
Bi\Bi+1

ρq dµ

≤
k0∑
i=0

CqC̃qµ(Bi)

(2−iL(x0, r))q

≤ C

(
log2

L(x0, r)

l(x0, r)

)−q
k0 ≤ C

(
log2

L(x0, r)

l(x0, r)

)1−q

,

where constant C does not depend on x0 or r. Hooking this up with
the modulus estimate (4.3) we obtain

log2

L(x0, r)

l(x0, r)
≤
(

C

ψX(2)

)1/(q−1)

. (4.4)

From (4.4) it follows that the distortion of f at arbitrary point x0 ∈ X
is

lim sup
r→0

supdX(x0,x)=r dY (f(x0), f(x))

infdX(x0,x)=r dY (f(x0), f(x))
≤ exp

(
C

ψX(2)

)1/(q−1)

<∞,

and hence, f is quasiconformal.
The proof of sufficiency of Condition (2) is analogous to above, with

minor modifications as follows: In this case, the proof can be modified
by pointing out that if u is the q-potential of the condenser (α, β) with
respect to the ball B, then u is a 1-quasiminimizer in B \(α∪β) and so

u◦f is a Q′-quasiminimizer in f−1(B)\ (α̂∪ β̂), and so the comparison
between the two q-capacities still holds. �
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5. Properties of quasiharmonic morphisms

In this section we do not assume that f : X → Y is a homeomor-
phism.

Proposition 5.1 (Radó property). Let f : X → Y be continuous and
non-constant such that the following two conditions hold:

1. f ∈ N1,q
loc (X, Y ),

2. for all u ∈ N1,q
loc (Y ) and relatively compact open set Ω ⊂ X,∫

Ω

gqu◦f dµX ≤ C

∫
f(Ω)

gqu dµY ,

where C ≥ 1 depends only on the data associated with X and
Y .

Then for every y ∈ Y , f−1{y} is of zero q-capacity, and so has empty
interior and is totally disconnected.

Proof. We may assume that y ∈ f(X). Since f is nonconstant there
exists z ∈ Y such that f(z) 6= f(y). Moreover, because {y} is of zero
q-capacity, χ{y} ∈ N1,q(Y ) with∫

Y

gqχ{y} dµY = 0.

Assumption 2 therefore implies that∫
Y

gqχ{y}◦f dµX = 0,

and that χ{y} ◦ f = χf−1(y) is q-q.e. constant in X by the facts that
X is connected and locally supports a (1, q)-Poincaré inequality (local
Poincaré inequality by itself implies that χ{y} ◦ f is locally constant).
Since f is continuous and Y \ {y} is open, f−1(Y \ {y}) is open and
also non-empty (recall that z ∈ f(X) \ {y}). Therefore, X \ f−1(y) =
f−1(f(X) \ {y}) is non-empty and open, thus

Capq(X \ f−1(y)) > 0.

Hence χ{y} ◦ f must be 0 q-q.e. in X, i.e. Capq(f
−1(y)) = 0. �

Theorem 5.2. Let f : X → Y be continuous and the following three
conditions hold:

1. f ∈ N1,q
loc (X, Y ),

2. for all u ∈ N1,q
loc (Y ) and relatively compact open set Ω ⊂ X∫

Ω

gqu◦f dµX ≤ C

∫
f(Ω)

gqu dµY ,

where C ≥ 1 depends only on the data associated with X and
Y ,
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3. for some Q ≥ 1 there exists 1 ≤ Q′ < ∞ such that whenever
u is a Q-quasiminimizer in relatively compact domain Ω0 ⊂ Y ,
u ◦ f is a Q′-quasiminimizer in f−1(Ω0).

Then f is an open mapping or constant.

The following proof closely follows the proof of Heinonen et al. [16,
Theorem 2.1].

Proof. We may assume that f is non-constant. Fix x0 ∈ X and assume,
on the contrary, that there is a point x0 ∈ X and a sequence of radii
ri → 0 such that f(B(x0, ri)) is not a neighborhood of x0. Since f is
non-constant there exists at least one point in f(X) \ {f(x0)}. Choose
a ball B = B(x0, r) such that f(x0) ∈ ∂f(B) and that f(X) \ f(B) is
not empty.

Since f(x0) ∈ ∂f(B), there exists a sequence {yi} of points from
Y \ f(B) such that limi→∞ yi = f(x0). For each i let Gi be a singu-
lar function in Y with singularity at yi; more precisely, let Gi be q-
harmonic and positive in Ω0 \ {yi} ⊂ Y , where Ω0 a relatively compact
subset such that Capq(Y \ Ω0) > 0 and f(B) ⊂ Ω0, Gi is 0 q-q.e. out-
side Ω0, and limx→yi

Gi(x) =∞; see Holopainen–Shanmugalingam [19]
for the existence of such functions.

By Proposition 5.1, f−1(f(x0)) is of zero q-capacity, thus has empty
interior. Hence there exists z0 ∈ B such that f(z0) 6= f(x0) and f(z0) ∈
f(B) ⊂ f(B) ⊂ Ω0. Since f(z0) 6= yi, we may assume that Gi(f(z0)) =
1 for each i.

From Harnack’s inequality (see Kinnunen–Shanmugalingam [22]) it
follows that for each relatively compact set K ⊂ Ω0 \ {f(x0)} there ex-
ists i0 such that the sequence Gi, i ≥ i0, is a uniformly bounded family
of q-harmonic functions, hence equicontinuous on K, and we may select
a subsequence, still denoted by Gi, which converges locally uniformly
to a q-harmonic function G∞ in Ω0 \{f(x0)}, see Shanmugalingam [28,
Theorem 1.2]. The limit functionG∞ is positive in Ω0\{f(x0)}, andG∞
is not constant as G∞(f(z0)) = 1 and G∞(z)→ 0 as Ω0 3 z → ∂Ω0 (see
the construction in [19]). Since sets of zero q-capacity are removable
for bounded q-harmonic functions by Theorem 2.8, G∞ is a singular
function in Y with singularity at f(x0) by the maximum principle.

Each Gi is a positive q-harmonic function in Ω0 \ {yi}, thus by con-
dition 3 the pull back ui = Gi ◦ f is a positive Q-quasiminimizer
in f−1(Ω0 \ {yi}) so, in particular, in B (recall that yi /∈ f(B) so
f−1(yi) /∈ B). Arguing as above, we extract a subsequence of ui which
converges locally uniformly to a positive Q′-quasiminimizer u∞ in B
with ui(z0) = 1. As a quasiminimizer in B, u∞ is Hölder continuous
and, in particular, finite valued in B. Moreover,

u∞(x0) = lim
i→∞

ui(x0) = lim
i→∞

Gi(f(x0)),
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but by Danielli et al. [6]

Gi(f(x0)) ≈ Capq(B(yi, dY (yi, f(x0))),Ω0)1/(1−q),

which indicates that u∞(x0) =∞. This is a contradiction. �

6. Quasiconformal mappings and densities

As before, in this section X and Y are metric measure spaces of
locally q-bounded geometry.

Let E ⊂ X be a measurable set. For x ∈ X, we call

D(E, x) = lim sup
r→0

µX(E ∩B(x, r))

µX(B(x, r))

the upper density of E at x and

D(E, x) = lim inf
r→0

µX(E ∩B(x, r))

µX(B(x, r))

the lower density of E at x. When D(E, x) = D(E, x), the common
value D(E, x) is called the density of E at x.

It is well-known by a result of Gehring and Kelly in [9] that if D,D′

are two domains in Rn, n ≥ 2, f : D → D′ is a quasiconformal mapping,
and E ⊂ D is measurable, then

D(f(E), f(x)) = 1 if and only if D(E, x) = 1

for all x ∈ D. That is, points of density are preserved under qua-
siconformal mappings. We show that this holds true also for metric
quasiconformal mappings.

Theorem 6.1. If f : X → Y is a K-quasiconformal mapping and if
E ⊂ X is measurable, then

D(f(E), f(x)) ≤ bD(E, x)a

and
D(f(E), f(x)) ≥ 1− b(1−D(E, x))a

for all x ∈ X. Here a and b are fixed positive constants.

We postpone the proof of Theorem 6.1 until after the proof of The-
orem 6.3.

6.1. Uniform density property. Suppose that f : X → Y is a
homeomorphism. For each x ∈ X and each ball B1 ⊂ X with center at
x let B2 denote the largest open ball in f(B1) with center at f(x). We
say that f has a uniform density property if there exists a continuous
function ϕ : [0,∞) → [0,∞) with ϕ(0) = 0 such that for each x ∈ X
and each sufficiently small B1 with center at x,

µY (f(E) ∩B2)

µY (B2)
≤ ϕ

(
µX(E ∩B1)

µX(B1)

)
(6.2)

for every measurable E ⊂ X.
13



It readily follows that a function f with a uniform density property
also satisfies Lusin’s condition (N), that is, f is absolutely continuous
in measure.

Theorem 6.3. If f : X → Y is a K-quasiconformal mapping, then
f has a uniform density property with ϕ(t) = bta for some positive
constants a and b.

Proof. Fix x ∈ X and choose B1 = B(x, r) ⊂ X. By Corollary 7.14 in
Heinonen–Koskela [15],∫

B1

JpfdµX ≤ C

(∫
B1

JfdµX

)p
= C

(
µY (f(B1))

µX(B1)

)p
(6.4)

for some p > 1. Let E be a measurable subset of X. By the absolute
continuity in measure of f , Hölder’s inequality, and (6.4), we have

µY (f(E) ∩B2) ≤
∫
E∩B1

JfdµX

≤
(∫

B1

JpfdµX

)1/p

µX(E ∩B1)(p−1)/p

≤ CµX(B1)1/pµY (f(B1))

µX(B1)
µX(E ∩B1)(p−1)/p.

Hence
µY (f(E) ∩B2)

µY (f(B1))
≤ C

(
µX(E ∩B1)

µX(B1)

)(p−1)/p

.

By the quasiconformality (and hence the quasisymmetry) of f and
Ahlfors regularity of the spaces,

µY (f(B1)) ≤ CµY (B2).

Hence f satisfies (6.2) with ϕ(t) = Ct(p−1)/p. �

Proof of Theorem 6.1. The first inequality follows from Theorem 6.3,
since as the radius of B1 converges to 0, so does the radius of B2. The
second inequality of the theorem follows from the relation

D(E, x) +D(X \ E, x) = 1

by applying the first inequality to X \ E. �

6.2. Characterization for quasiconformality. Given a continuous
map f : X → Y , the Jacobian of f is the function

Jf (x) = lim sup
r→0

µY (f(B(x, r)))

µX(B(x, r))
.

It follows from Mattila [25, p. 36, Theorem 2.12] applied to the pull-
back measure ν(E) = µY (f(E)), that for µX-a.e. x ∈ X,

Jf (x) <∞,
14



and that for each measurable set E ⊂ X∫
E

Jf (x) dµX ≤ µY (f(E)), (6.5)

with equality if f is absolutely continuous in measure. While the re-
sults of [25] are stated and proved in the Euclidean setting, the proofs
relevant to the above extend directly to metric measure spaces whose
measure µX is locally doubling (locally Ahlfors regular spaces satisfy
this condition).

We have the following characterization for quasiconformal mappings
in terms of the uniform density property. In Rn the result was proved
by Gehring and Kelly in [9, Theorem 3].

Theorem 6.6. A homeomorphism f : X → Y is quasiconformal if
and only if it is absolutely continuous on q-modulus a.e. curve and f−1

has a uniform density property.

Remark 6.7. Recall that f is quasiconformal if and only if f−1 is.
Hence, by this symmetry we could equivalently state the preceding
theorem: A homeomorphism f : X → Y is quasiconformal if and only
if f−1 is absolutely continuous on q-modulus a.e. curve and f has a
uniform density property. Moreover, Theorem 6.10 could be stated
as follows: Suppose that Y satisfies a local (1, 1)-Poincaré inequality.
Then a homeomorphism f : X → Y is quasiconformal if and only if f
has a uniform density property.

Proof. The necessity follows from Theorem 6.3 and the fact that if f
is quasiconformal then so is f−1. To prove sufficiency, we show that
if f is absolutely continuous on q-modulus a.e. curve and f−1 has a
uniform density property then f is quasiconformal.

Let x ∈ X and

K0(x) := lim sup
r→0

K0(x, r) := lim sup
r→0

µY (B′)

µY (f(B))
,

where B = B(x, r) and B′ denotes the smallest open ball with center
at f(x) containing f(B). Let B1 = B′, B2 = B and E = f(B). For
sufficiently small r the uniform density property for f−1 implies that

1 ≤ ϕ

(
µY (f(B))

µY (B′)

)
and hence that

µY (f(B))

µY (B′)
≥ σ := inf{s > 0 : ϕ(s) ≥ 1} > 0.

So

K0(x) ≤ K := 1/σ (6.8)
15



for each x ∈ X, where K is a positive constant which depends only on
ϕ. By first applying (6.8) and then the discussion preceding (6.5), we
obtain

lim
r→0

µY (B′)

µX(B)
≤ lim sup

r→0

µY (B′)

µY (f(B))

µY (f(B))

µX(B)

≤ K lim sup
r→0

µY (f(B))

µX(B)
= K Jf (x) <∞

for µX-a.e. x ∈ X. It follows from the Ahlfors regularity of X and Y
that

Lf (x)q ≤ C lim
r→0

µY (B′)

µX(B)
≤ CKJf (x) (6.9)

for µX-a.e. in X. Because f is absolutely continuous on q-modulus a.e.
curve in X, we may take Lf as a q-weak upper gradient for f , and Lf ∈
Lqloc(X) by inequality (6.5) and inequality (6.9). Because X supports

a local (1, q)-Poincaré inequality, it follows that f ∈ N1,q
loc (X, Y ) by [18,

Theorem 6.11]. Thus by (6.9) f is quasiconformal with constant CK.
�

6.3. Absolute continuity. In Euclidean spaces, the equivalence of
the uniform density property and quasiconformality can be shown with-
out the extra assumption of absolute continuity of f on q-modulus a.e.
curve. In Rn the ACL-property of f follows directly from the uniform
density property which, in turn, can be shown by an adaptation of
Väisälä [29, Theorem 31.2]. The proof of [29, Theorem 31.2] cannot be
modified to our setting mainly because the linear structure of Rn plays
an important role in the proof. If we, however, assume in addition that
X (or, by symmetry, Y ) satisfies a (1, 1)-Poincaré inequality we are
able to remove the extra assumption also in the metric setting. The
following is the main result of this section.

Theorem 6.10. Suppose that X satisfies a local (1, 1)-Poincaré in-
equality. Then a homeomorphism f : X → Y is quasiconformal if and
only if f−1 has a uniform density property.

The assumption of a stronger Poincaré inequality is necessary. By the
following lemma it is then enough to have absolute continuity only on
1-modulus a.e. curve in order to show that a function is in N1,q

loc (X, Y ).

Lemma 6.11. Suppose that X satisfies a local (1, 1)-Poincaré inequal-
ity. Let f ∈ N1,1

loc (X, Y ). Then if both f and its 1-weak upper gradient

are Lq-integrable, it follows that f ∈ N1,q
loc (X, Y ).

The proof of the preceding lemma is similar to that of Lemma 5.1
in Kinnunen et al. [21]. The crux of the proof is to use the discrete
convolution of f . In fact, [21, Lemma 5.1] is stated and proved for real-
valued functions, but the argument continues to work when the target
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is Y . It suffices to consider the case in which the target is the Banach
space `∞. Recall that any separable metric space can be isometrically
embedded into `∞. In this case, the discrete convolution can be carried
out. Furthermore, as in Heinonen et al. [18] we define

N1,q(X, Y ) = {f ∈ N1,q(X, `∞(Y )) : f(x) ∈ Y for q-q.e. x ∈ X},

and similarly for N1,q
loc (X, Y ). We leave the details of the proof to the

reader.
Note that the previous lemma does not hold in general without a

local (1, 1)-Poincaré inequality. For a counterexample, see Remark 5.2
in [21].

Theorem 6.10 follows from Theorem 6.6 and the following two lem-
mas.

Lemma 6.12. Let f : X → Y be a homeomorphism such that f−1

satisfies the uniform density property. Let γ be a rectifiable curve in X
such that

lim inf
r→0

µY (f(|γ|r))
rq−1

<∞, (6.13)

where |γ|r denotes the r-neighborhood of γ. Then f is absolutely con-
tinuous on γ.

Proof. Let Ω be some bounded set containing γ. Let F be a compact
subset of |γ| and denote

Fk = {x ∈ F : K(x, r) ≤ 2K for all 0 < r < 1/k},

where K is as in (6.8). Then F =
⋃∞
k=1 Fk and Fk ⊂ Fk+1 for all k ∈ N.

By the continuity of f , Fk is compact for every k.
Fix k and t > 0. Let 0 < r < 1/k be small enough so that F can be

covered by balls Bi = B(xi, r), i = 1, 2, . . . , p with rp < CH1(F ) for
some constant C that only depends on the doubling constant, and so
that for every x ∈ Bi,

d(f(x), f(xi)) <
t
2
.

We can do this because as f is continuous and F is compact, f is
uniformly continuous on F . Moreover, we can choose the balls Bi such
that xi ∈ F for every i and

p∑
i

χBi
< C,

with C depending only the doubling constant of µ. Let B̃i be the small-
est ball with center at f(xi) and containing f(Bi). Then by Ahlfors
regularity of Y and (6.8), we have for sufficiently small r > 0,

diam(B̃i)
q ≈ µY (B̃i) ≤ 2KµY (f(Bi)).
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Notice that, by the choice of r, the diameter of B̃i is not greater than
t. Therefore, by Hölder’s inequality, we can estimate the Hausdorff
content of f(Fk) as follows:

H1
t (f(Fk))

q ≤
( p∑
i=1

diam(B̃i)
)q
≤ pq−1

p∑
i=1

diam(B̃i)
q

≤ CKpq−1

p∑
i=1

µY (f(Bi))

≤ CK
H1(Fk)

q−1

rq−1
µY (f(|γ|r)).

We used the bounded overlap property of the balls Bi and the fact that
f is a homeomorphism in obtaining the last inequality above. Next, by
letting r → 0 so that (6.13) is satisfied, then letting t → 0 and using
(6.13), we obtain

H1(f(Fk)) < CH1(Fk)
(q−1)/q.

with C independent of k. Thus it follows that

H1(f(F )) < CH1(F )(q−1)/q.

Since the above inequality holds for all compact subsets F of γ, the
function f is absolutely continuous on γ. �

Lemma 6.14. Let Γ be the family of rectifiable curves such that

lim inf
r→0

µY (f(|γ|r))
rq−1

=∞. (6.15)

Then Mod1(Γ) = 0.

Proof. Let ΓM,ε be the family of rectifiable curves γ in Ω such that
`(γ) > ε and (6.15) is larger than M for all r < 2ε. Then, with the
constant C = 10q, the function

ρM,ε(x) =
C

M

µY (f(B(x, ε)))

εq

is lower semicontinuous and hence is a Borel measurable function, and
furthermore it is an admissible test function for the 1-modulus of ΓM,ε;
to see this, note that if γ ∈ ΓM,ε, then we can break γ into subcurves
γj, j = 1, . . . , n, such that the length of γj is between ε/10 and ε/8.
Then ∫

γ

ρM,ε ds =
n∑
j=1

∫
γj

ρM,ε ds.

For j = 1, . . . , n we fix xj ∈ γj. For each x ∈ γj, we have by the
monotonicity of measures and the fact that B(xj, ε/4) ⊂ B(x, ε),

ρM,ε(x) =
C

Mεq
µY (f(B(x, ε))) ≥ C

Mεq
µY (f(B(xj, ε/4))).
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Hence ∫
γj

ρM,ε ds ≥
C

Mεq
µY (f(B(xj, ε/4))) `(γj)

≥ C

10Mεq−1
µY (f(B(xj, ε/4))).

It follows that∫
γ

ρM,ε ds ≥
C

10Mεq−1

n∑
j=1

µY (f(B(xj, ε/4)))

≥ C

10Mεq−1
µY (f(

n⋃
j=1

B(xj, ε/4))).

If z ∈ X such that dist(z, γ) < ε/10, then there is some j ∈ {1, · · · , n}
and a point x ∈ γj such that d(z, x) < ε/10, in which case we have
d(xj, z) ≤ d(xj, x) + d(x, z) < (ε/8) + (ε/10) < ε/4, and so it follows
that |γ|ε/10 ⊂

⋃n
j=1 B(xj, ε/4). Therefore, by the choice of C in the

definition of ρM,ε,∫
γ

ρM,ε ds ≥
C

M

µY (f(|γ|ε/10))

εq−1
≥ C

10M

M

10q−1
= 1.

Thus we get the estimate

Mod1(ΓM,ε) ≤
∫

Ω

ρM,εdµX .

By the doubling property of µ we can cover Ω by countably many balls
{B(xi, ε)}i such that

∑
i χB(xi,2ε) ≤ C with the constant C independent

of ε. If x ∈ B(xi, ε), then B(x, ε) ⊂ B(xi, 2ε), and so by the bounded
overlap property above (and by extending ρM,ε by zero to outside of Ω)∫

Ω

ρM,εdµX ≤
∑
i

∫
B(xi,ε)

ρM,ε dµX

≤ C

Mεq

∑
i

µY (f(B(xi, 2ε)))µX(B(xi, ε))

≤ C

M

∑
i

µY (f(B(xi, 2ε)))

≤ C

M
µY (f(Ω2ε)),

where Ω2ε is the 2ε-neighborhood of Ω. Now by first letting ε→ 0 and
then M →∞, it follows that Mod1(Γ) = 0. �

Proof of Theorem 6.10. If f is absolutely continuous on a rectifiable
curve γ, then

dY (f(x), f(y)) ≤
∫
γ

Lf ds,
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where x and y are the endpoints of γ, and Lf is the maximal streching
of f defined in Section 3. By Lemma 6.12 and 6.14, the function f is
absolutely continuous on 1-modulus a.e. curve. This implies that Lf
is a 1-weak upper gradient of f . It follows from the proof of The-
orem 6.6 that Lf is locally Lq-integrable and therefore also locally

L1-integrable. Thus f ∈ N1,1
loc (X, Y ). By Lemma 6.11, this implies

that f ∈ N1,q
loc (X, Y ). The rest of the proof follows as in the proof of

Theorem 6.6. �
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