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Abstract

We develop a theory of bounded variation functions and Besov spaces in abstract Dirichlet spaces
which unifies several known examples and applies to new situations, including fractals.
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Introduction

Foreword

While the theory developed here is far from complete, it is the hope of the authors that the readers
would find this monograph to provide a reasonable material introducing the topic, with many open
questions. Most of the results here are new, but those that are not have been marked with references
to the original papers or textbooks where they appeared.

Bird’s eyeview

Before describing our results in details, due to the length of the paper, it may be useful to indicate
some of the main ideas. Let (X,µ, E ,F = dom(E)) be a symmetric Dirichlet space, that is, X is a
topological measure space equipped with the Radon measure µ, E a closed Markovian bilinear form
on L2(X,µ), and F the collection of all functions u ∈ L2(X) with E(u, u) finite. The book [FOT11]
contains a good introduction to the theory of Dirichlet forms. Let {Pt}t∈[0,∞) denote the Markovian
semigroup associated with (X,µ, E ,F). Let p ≥ 1 and α ≥ 0. For f ∈ Lp(X,µ), we define the Besov
type seminorm:

‖f‖p,α = sup
t>0

t−α
(∫

X

Pt(|f − f(y)|p)(y)dµ(y)

)1/p

,

and introduce the Besov space

Bp,α(X) = {f ∈ Lp(X,µ) : ‖f‖p,α < +∞}.
Note that if 0 < β < α, then Bp,α(X) ⊂ Bp,β(X). The critical parameter

α∗p(X) = inf{α > 0 : Bp,α(X) is trivial}
will be of special interest in our study. By trivial, we mean here that for α > α∗p(X), any function
f ∈ Bp,α(X) is constant. For instance, we will see that for strongly local forms with a nice intrinsic
metric in the sense of [Stu94], one typically has α∗p(X) = 1

2 , while for strongly local forms with no
intrinsic distance but with sub-Gaussian heat kernel estimates one typically has α∗p(X) > 1

2 when
1 ≤ p < 2 and α∗p(X) < 1

2 , when p > 2. When p = 2, one always has α∗2(X) = 1
2 .

While all the spaces Bp,α(X) are of interest and shall be discussed in the monograph, we shall
pay a special attention to the case p = 1. In particular, we will see that in many situations it may be
possible and natural to define a space of bounded variation functions on X as the space B1,α∗1(X)(X).
For instance, on complete Riemannian manifolds we have that α∗1(X) = 1

2 and B1,α∗1(X)(X) is the
usual space of bounded variation functions. On the Sierpinski gaskets α∗1(X) = dH

dW
, where dH is the

Hausdorff dimension of X and dW its walk dimension. Finding the exact value of α∗1(X) is an open
question for the Sierpinski carpets.

Under a weak curvature condition on the Dirichlet space (weak Bakry-Émery type estimate (0.2)),
a main observation of our work is that for functions in the space B1,α∗1(X)(X), one has the following
estimate valid for all t’s:

(0.1) ‖Ptf − f‖L1(X,µ) ≤ Ctα
∗
1(X) lim sup

s→0
s−α

∗
1(X)

∫
X

Ps(|f − f(y)|)(y)dµ(y).

vii
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Therefore, by using the approach of Michel Ledoux to heat flow in the study of isoperimetry [Led96],
one deduces that for f ∈ B1,α∗1(X)(X), the quantity lim sups→0 s

−α∗1(X)
∫
X
Ps(|f − f(y)|)(y)dµ(y) plays

the role of the total variation of f . For instance, in the case whereX is a complete Riemannian manifold,
one has

lim sup
s→0

s−1/2

∫
X

Ps(|f − f(y)|)(y)dµ(y) '
∫
X

|∇f |(y)dµ(y),

which coincides with the usual notion of variation. However, the quantity

lim sup
s→0

s−α
∗
1(X)

∫
X

Ps(|f − f(y)|)(y)dµ(y)

is well-defined and possible to estimate in a class of Dirichlet spaces well beyond Riemannian manifolds,
like for instance strongly local metric spaces satisfying a doubling condition and supporting a 2-Poincaré
inequality, fractal spaces, non-local Dirichlet spaces and even some infinite dimensional examples.

With (0.1) in hand, and adapting ideas from [BCLSC95], we are then able to deduce several
Sobolev and isoperimetric inequalities with sharp exponents holding in a very general framework.

We summarize some of the classes of spaces, studied in this paper, in the table below. The parameter
dH indicates the Hausdorff dimension of the space and dW its walk dimension. The parameter κ is the
Hölder regularity exponent of the heat semigroup in the assumed weak Bakry-Émery estimate:

|Ptf(x)− Ptf(y)| ≤ C d(x, y)κ

tκ/dW
‖f‖L∞(X,µ).(0.2)

Examples
Dirichlet space X α∗1(X) Characterization of B1,α∗1 (X)
1) Strongly local Dirichlet metric space
with doubling and 2-Poincaré

1
2 BV (X)

2) Local Dirichlet metric space with
sub-Gaussian heat kernel estimates

1− κ
dW

sup
r>0

∫∫
d(x,y)<r

|f(x)−f(y)|
rdH+dW−κ dµ(x) dµ(y) < +∞

3) a) Non-local Dirichlet metric space
with heat kernel estimates and dW ≤ 1

1
∫∫ |f(x)−f(y)|

d(x,y)dH+dW
dµ(x)dµ(y) < +∞

b) Non-local Dirichlet metric space
with heat kernel estimates and dW > 1

1
dW

sup
r>0

∫∫
d(x,y)<r

|f(x)−f(y)|
rdH+1 dµ(x) dµ(y) < +∞

Table 1. Summary of examples.

We point out that the case (2), in the above table, of a local Dirichlet metric space with sub-
Gaussian heat kernel estimates, we actually only prove that 1 − κ

dW
is an upper bound of the critical

exponent α∗1(X). We make the conjecture that α∗1(X) = 1− κ
dW

should hold in some generality, see the
discussion after Remark 5.51. The conjecture is proved in some concrete examples like the Sierpinski
gasket, although the question is open for the Sierpinski carpet.

Summary of results and structure of the monograph

The paper is divided into two parts. The first part develops the theory of Besov spaces and
related Sobolev embeddings in the general framework of abstract Dirichlet spaces. The second part
particularizes to four big classes of Dirichlet spaces: Local regular Dirichlet spaces with absolutely
continuous energy measures, doubling and 2-Poincaré (like Riemannian manifolds with non negative
Ricci curvature or more generally the RCD(0,+∞) metric measure spaces), Local regular Dirichlet
spaces with sub-Gaussian heat kernel estimates (like fractal spaces), Non-local regular Dirichlet spaces
(like Dirichlet forms associated with jump processes), and Local quasi-regular and infinite dimensional
Dirichlet spaces (like the Wiener space). We now further describe these constituent parts of the paper.
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Part 1.

Chapter 1. In Chapter 1, we lay the foundations of the paper. Let (X,µ, E ,F = dom(E)) be a
symmetric Dirichlet space. Let p ≥ 1 and α ≥ 0. For f ∈ Lp(X,µ), we define the Besov type seminorm:

‖f‖p,α = sup
t>0

t−α
(∫

X

Pt(|f − f(y)|p)(y)dµ(y)

)1/p

,

where Pt is the Markovian semigroup associated with E . We then introduce the space

Bp,α(X) = {f ∈ Lp(X,µ), ‖f‖p,α < +∞},
and prove that it is a Banach space, which is reflexive for p > 1. The value α = 1

2 plays a special
role throughout the paper since B2,1/2(X) is always equal to the domain F of the Dirichlet form. A
first class of examples is studied: We prove that if E arises from a smooth Hörmander’s type diffusion
operator on a manifold, then for every p ≥ 1, Bp,1/2(X) contains the space of smooth and compactly
supported functions with the continuous embedding(∫

X

Γ(f, f)(x)p/2dµ(x)

)1/p

≤ 2

(
Γ
(

1+p
2

)
√
π

)1/p

‖f‖p,1/2,

where Γ is the carré du champ operator of the Dirichlet form (E ,F) (however, Γ((1 + p)/2) is the
standard Gamma function). On the other hand, in Corollary 1.13, we will prove that if the Kusuoka
measure is singular with respect to µ, like in the Sierpinski gasket, thenBp,1/2(X) contains only constant
functions when p > 2. This dichotomy already shows that the properties of the spaces Bp,α(X) are
closely related to the energy measures Γ(f, g) being absolutely continuous or not. This dichotomy will
be investigated in great details in the second part of the monograph.

An important, very general, theorem proved in Chapter 1 is the following:

Theorem 0.1. Let 1 < p ≤ 2. There exists a constant Cp > 0 such that for every f ∈ Lp(X,µ)
and t ≥ 0

‖Ptf‖p,1/2 ≤
Cp
t1/2
‖f‖Lp(X,µ).

In particular, when 1 < p ≤ 2, Pt : Lp(X,µ)→ Bp,1/2(X) is bounded for t > 0.

The proof of the theorem will follow from some nice ideas originally due to Nick Dungey [Dun08]
and then developed in [CCH,CCFR17]. As a corollary, we obtain:

Proposition 0.2. Let 1 < p ≤ 2. Let L be the infinitesimal generator of E and Lp be the domain
of L in Lp(X,µ), (that is, Lp is the domain of the generator of the strongly continuous semigroup
Pt : Lp(X,µ)→ Lp(X,µ)) . Then

Lp ⊂ Bp,1/2(X)

and for every f ∈ Lp,
(0.3) ‖f‖2p,1/2 ≤ Cp‖Lf‖Lp(X,µ)‖f‖Lp(X,µ).

We note that due to Corollary 1.13, one cannot hope for an extension of Theorem 0.1 to the range
p > 2 in the general case.

We define then the Lp Besov critical exponent of (X,µ, E ,F) as

α∗p(X) = inf{α > 0,Bp,α(X) is trivial}.
Let us recall that the Dirichlet form E is said to be regular if F ∩ C0(X) is dense in F for the

domain norm and uniformly dense in C0(X) (see Chapter 1 in [FOT11]). The form E is said to be
irreducible if f ∈ F with E(f, f) = 0 implies that f is constant. We prove the following result:

Proposition 0.3. Assume that E is regular and irreducible. Then
(1) α∗2(X) = 1

2 ;



x INTRODUCTION

(2) p→ α∗p(X) is non increasing;
(3) For p ≥ 2, α∗p(X) ≤ 1

2 ;
(4) For 1 ≤ p ≤ 2, 1

2 ≤ α∗p(X) ≤ 1
p .

In particular (and this is of course not surprising), Bp,α(X) is always trivial if α > 1. Note from
Corollary 1.13 that if for every non-constant f ∈ F the energy measure νf is singular with respect to
µ, then α∗p(X) < 1

2 for p > 2. We recall that for f ∈ F , its energy measure νf is defined by

2E(fg, f)− E(f2, g) =

∫
X

2g dνf .

Chapter 2. Chapter 2 is devoted to the study of Sobolev embeddings associated to our Besov
spaces, in the presence of ultracontractive estimates for the semigroup. It will follow ideas from
[BCLSC95] (see also [SC02]) and the key lemma is the following simple, but powerful, observation
that functions in the Besov spaces satisfy a pseudo-Poincaré inequality:

Lemma 0.4. Let p ≥ 1 and α > 0. For every f ∈ Bp,α(X), and t ≥ 0,

‖Ptf − f‖Lp(X,µ) ≤ tα‖f‖p,α.

The importance of such pseudo-Poincaré inequalities in Sobolev embeddings was explicitly noted
in [SC02] and [Led03]. In particular, the technique used by M. Ledoux in [Led03] to obtain improved
Gagliardo-Nirenberg type inequalities may likely be adapted to our general framework. However, to be
concise, we restricted ourselves to the Sobolev embeddings in the presence of ultracontractive estimates.

A general result of the paper is the following weak-type Sobolev inequality:

Theorem 0.5. Assume that {Pt}t∈(0,∞) admits a heat kernel pt(x, y) satisfying, for some C > 0
and β > 0,

pt(x, y) ≤ Ct−β

for µ× µ-a.e. (x, y) ∈ X ×X for each t ∈
(
0,+∞

)
. Let 0 < α < β and 1 ≤ p < β

α . Then there exists a
constant Cp,α > 0 such that for every f ∈ Bp,α(X),

sup
s≥0

s µ ({x ∈ X, |f(x)| ≥ s}) 1
q ≤ Cp,α‖f‖p,α,

where q = pβ
β−pα .

One may consider the above to be a very weak version of the Mazya capacitary type inequality.
The case p = 1 is particularly interesting in the previous theorem and yields an isoperimetric type
inequality.

Theorem 0.6. Assume that {Pt}t∈(0,∞) admits a heat kernel pt(x, y) satisfying, for some C > 0
and β > 0,

pt(x, y) ≤ Ct−β

for µ× µ-a.e. (x, y) ∈ X ×X for each t ∈
(
0,+∞

)
. Let 0 < α < β. There exists a constant Ciso > 0,

such that for every subset E ⊂ X with 1E ∈ Bp,α(X)

µ(E)
β−α
β ≤ Ciso‖1E‖1,α.

We will see that these two theorems are interesting due to their level of generality, since we are
able to characterize Bp,α(X) in many situations and will therefore be able to prove Sobolev inequalities
with sharp exponents.
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Chapter 3. Chapter 3 studies the analogue of the Sobolev embeddings of the Besov spaces for
Dirichlet forms whose semigroups are not ultracontractive but satisfy supercontractive or hypercontrac-
tive type estimates.

In Section 3.1, we assume that E satisfies a Poincaré inequality. Under this assumption only, by
following ideas of M. Ledoux [Led94] we are then able to prove an analogue of Buser’s inequality, and
thus linear isoperimetry:

Theorem 0.7. Let α ∈ (0, 1]. We define the α-Cheeger’s constant of X by

hα = inf
‖1E‖1,α
µ(E)

,

where the infimum runs over all measurable sets E such that µ(E) ≤ 1
2 and 1E ∈ B1,α(X). Then,

hα ≥ (1− e−1)λα1 ,

where λ1 is the spectral gap of E.
In Section 3.2, we prove that if E satisfies a log-Sobolev inequality, then we can improve Buser’s

inequality, and prove that X supports a Gaussian isoperimetric inequality, that is,

Theorem 0.8. There exists a constant C > 0 such that for every set E ⊂ X with 1E ∈ B1,1/2(X),
one has:

µ(E)
√
− lnµ(E) ≤ C‖1E‖1,1/2,

where the constant C explicitly depends on the log-Sobolev constant of E.
The main class of examples to which the previous theorem apply are infinite-dimensional spaces

like the ones studied in Chapter 7.

Part 2.

Chapter 4. The Chapter 4 will be devoted to strongly local Dirichlet spaces with absolutely con-
tinuous energy measures Γ(u, u), also known as carré du champ, as extensively studied in the literature
(see for instance the foundational articles by K.T. Sturm [Stu94, Stu95, Stu96]). The important
assumption that is essential in this chapter is that the intrinsic distance associated to Γ(u, u) defines
the topology of X. Such Dirichlet spaces are called strictly local and are extensively studied in the
literature (see e.g. [BSC00,KZ12,KSZ14,LSV09,LSV11,KST04] and references therein).

This chapter has multiple objectives. A first objective is to develop the notion of bounded variation
function in this general framework. We achieve this task in Sections 4.1 and 4.2. Our basic definition
of bounded variation function in a strictly local Dirichlet space is the following:

Definition 0.9. We set u ∈ L1(X,µ) to be in BV (X) if there is a sequence of locally Lipschitz
functions uk ∈ L1(X,µ) such that uk → u in L1(X,µ) and

lim inf
k→∞

∫
X

|∇uk| dµ <∞,

where |∇u| is the square-root of the Radon-Nikodym derivative dΓ(u, u)/dµ. For u ∈ BV (X) and open
sets U ⊂ X, we set

‖Du‖(U) = inf
uk∈C(U),uk→u in L1(U)

lim inf
k→∞

∫
U

|∇uk| dµ,

and then for sets A ⊂ X we define

‖Du‖(A) = inf{‖Du‖(O) : A ⊂ O and O is open in X}.
We then have the following result whose proof is based on that of [Mir03].

Theorem 0.10. If X is complete and u ∈ BV (X), then ‖Du‖ is a Radon outer measure on X.
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A standard major tool in the study of bounded variation functions is the co-area formula. Such
formula is established in Lemma 4.9.

It should be emphasized that while the notion of BV function in some strictly local metric settings
has already been studied in the literature (see [MMS16] and the references therein), much of the
current theory on functions of bounded variation in the metric setting requires a 1-Poincaré inequality.
In this chapter we will not require the support of 1-Poincaré inequality, only the weaker 2-Poincaré
inequality, but in some of the analysis we will need an additional requirement called in this monograph
the weak Bakry-Émery curvature condition: namely that whenever u ∈ F ∩ L∞(X,µ),

(0.4) ‖|∇Ptu|‖2L∞(X) ≤
C

t
‖u‖2L∞(X).

The weak Bakry-Émery curvature condition is satisfied in the following examples:
• Complete Riemannian manifolds with non-negative Ricci curvature and more generally, the
RCD(0,+∞) spaces ( [CJKS17,Jia15]).

• Carnot groups (see [BB16])
• Complete sub-Riemannian manifolds with generalized non-negative Ricci curvature (see [BB12,
BK14])

• Metric graphs with finite number of edges (see [BK17])
Several statements equivalent to the weak Bakry-Émery curvature condition are given in Theorem 1.2
of the recent work [CJKS17]. There are some metric measure spaces equipped with a doubling mea-
sure supporting a 2-Poincaré inequality but without the above Bakry-Émery condition, see for ex-
ample [KRS03]. For instance, it should be noted, that in the setting of complete sub-Riemannian
manifolds with generalized non-negative Ricci curvature in the sense of [BG17], while the weak Bakry-
Émery curvature condition is known to be satisfied (see [BB12,BK14]), the 1-Poincaré inequality has
not been proven yet (though the 2-Poincaré is known, see [BBG14]).

A major result in Chapter 4, is then the following theorem that makes the connection with Part 1
of the monograph:

Theorem 0.11. Assume that the weak Bakry-Émery curvature condition (0.4) is satisfied. Then,
B1,1/2(X) = BV (X) with comparable seminorms. Moreover, there exist constants c, C > 0 such that
for every u ∈ BV (X)

c lim sup
s→0

s−1/2

∫
X

Ps(|u− u(y)|)(y)dµ(y) ≤ ‖Du‖(X) ≤ C lim inf
s→0

s−1/2

∫
X

Ps(|u− u(y)|)(y)dµ(y).

We note that by combining Theorems 0.11 and 0.13 we deduce for instance the following corollary:

Corollary 0.12. Assume that the weak Bakry-Émery curvature condition (0.4) is satisfied. If the
volume growth condition µ(B(x, r)) ≥ C1r

Q is satisfied, then there exists a constant C2 > 0 such that
for every f ∈ BV (X),

‖f‖Lq(X,µ) ≤ C2‖Df‖(X)

where q = Q
Q−1 .

A second objective in the chapter is to study all of the Besov spaces Bp,α(X), p ≥ 1. We will first
prove the following result that gives a metric characterization of our Besov spaces:

Theorem 0.13. For 1 ≤ p <∞ and 0 ≤ α <∞ we have

Bp,α/2(X) =

u ∈ Lp(X,µ) : sup
t>0

(∫
X

∫
B(x,t)

|u(y)− u(x)|p
tαpµ(B(x, t))

dµ(y) dµ(x)

)1/p

< +∞


with comparable seminorms.

We will then be interested in comparing the Besov seminorm ‖ · ‖p,1/2 to Sobolev seminorms and
our result is the following:
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Theorem 0.14.
• Let p > 1. There exists a constant C > 0 such that for every u ∈ Bp,1/2(X) ∩ F ,

‖|∇u|‖Lp(X,µ) ≤ C‖u‖p,1/2
• Assume furthermore that the strong Bakry-Émery estimate is satisfied: |∇Ptu| ≤ CPt|∇u|.
Then, for every p > 1, there exists a constant C > 0 such that for every u ∈ Lp(X,µ) ∩ F
with |∇u| ∈ Lp(X,µ),

‖u‖p,1/2 ≤ C‖|∇u|‖Lp(X,µ).

This theorem will allow us to prove an analogue of Theorem 0.1 for the range p > 2 and to study
the Lp Besov critical exponent

α∗p(X) = inf{α > 0 : Bp,α(X) is trivial}.
More precisely, we prove:

Theorem 0.15. Assume that the strong Bakry-Émery estimate is satisfied. Let p > 1. There exists
a constant Cp > 0 such that for every f ∈ Lp(X,µ) and t ≥ 0

‖Ptf‖p,1/2 ≤
Cp
t1/2
‖f‖Lp(X,µ).

As a consequence, for every p ≥ 1, α∗p(X) = 1
2 and Bp,1/2(X) is dense in Lp(X,µ).

Chapter 5. In Chapter 5 we apply our analysis to strongly local Dirichlet spaces which do not have
absolutely continuous energy measures Γ(u, u). Thus these spaces are not strictly local. The main class
of examples we are interested in are fractal spaces where typically Γ(u, u) and µ are mutually singular.
This fact was first observed by Kusuoka in [Kus89] (see also [BBST99,Hin16,Hin13a,Hin13b]).
The general framework of analysis and probability on fractals can be found in [Bar98,Gri03,Kig01,
Kig12,Str03b,Str06].

In a first general result, we recover results from [PP10] and obtain the following characterization
of the spaces Bp,α(X).

Theorem 0.16 ( [PP10]). Let (X,µ, E ,F) be a symmetric Dirichlet space and let d be a metric on
X compatible with the topology of X. We assume that (X, d) is Ahlfors dH-regular and that {Pt}t∈(0,∞)

admits a heat kernel pt(x, y) satisfying, for some c3, c4, c5, c6 ∈ (0,∞) and dW ∈ (1,∞),

c5t
−dH/dW exp

(
−c6

(d(x, y)dW

t

) 1
dW−1

)
≤ pt(x, y) ≤ c3t−dH/dW exp

(
−c4

(d(x, y)dW

t

) 1
dW−1

)
for µ× µ-a.e. (x, y) ∈ X ×X for each t ∈

(
0,+∞

)
. Let p ≥ 1 and α ≥ 0. We have

B
p, αdW (X) =

{
f ∈ Lp(X,µ) : sup

r>0

1

rα+dH/p

(∫∫
∆r

|f(x)− f(y)|p dµ(x) dµ(y)

)1/p

<∞
}

with comparable norms.

In the above and the sequel, for r > 0 the set ∆r denotes the collection of all (x, y) ∈ X ×X for
which d(x, y) < r.

We note that by combining Theorems 0.6 and 0.16 one immediately obtains:

Corollary 0.17. Let X be an Ahlfors dH-regular space that satisfies sub-Gaussian heat kernel
estimates as in Theorem 0.16. Then, one has the following weak type Besov space embedding. Let
0 < δ < dH . Let 1 ≤ p < dH

δ . There exists a constant Cp,δ > 0 such that for every f ∈ Bp,δ/dW (X),

sup
s≥0

sµ ({x ∈ X, |f(x)| ≥ s}) 1
q ≤ Cp,δ sup

r>0

1

rδ+dH/p

(∫∫
∆r

|f(x)− f(y)|p dµ(x) dµ(y)

)1/p
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where q = pdH
dH−pδ . Furthermore, for every 0 < δ < dH , there exists a constant Ciso,δ such that for every

measurable E ⊂ X, µ(E) < +∞,

µ(E)
dH−δ
dH ≤ Ciso,δ sup

r>0

1

rδ+dH
(µ⊗ µ) {(x, y) ∈ E × Ec : d(x, y) < r} .(0.5)

The number δ in the previous corollary plays the role of the upper codimension of the boundary of
E. In Section 5.3, we will construct several explicit examples of sets with fractal boundaries for which
δ 6= 1 and

sup
r>0

1

rδ+dH
(µ⊗ µ) {(x, y) ∈ E × Ec : d(x, y) < r} < +∞

We then discuss in detail existence of sets for which their indicator functions are in B1,α(X), and
the related question of the density of B1,α(X) in L1(X,µ). Related co-area type formulas are studied.

We will then introduce the analogue of the weak Bakry-Émery estimate 0.4 in this framework of
Dirichlet spaces with sub-Gaussian heat kernel estimates. We will see that a convenient analogue to
work with is the following:

|Ptf(x)− Ptf(y)| ≤ C d(x, y)κ

tκ/dW
‖f‖L∞(X,µ), f ∈ L∞(X,µ), t ≥ 0.(0.6)

The parameter κ is the Hölder regularity exponent. We will show that the weak Bakry-Émery condition
is satisfied with κ = 1− dH

dW
in many examples, like the infinite Sierpinski gaskets or infinite Sierpinski

carpets. An important consequence of the weak Bakry-Émery estimate is the continuity of the heat
semigroup in the Besov spaces with p > 2.

Theorem 0.18. Let X be an Ahlfors dH-regular space that satisfies sub-Gaussian heat kernel esti-
mates and BE(κ) with 0 < κ ≤ dW

2 . Then, for any p ≥ 2, there exists a constant C > 0 such that for
every t > 0 and f ∈ Lp(X,µ)

‖Ptf‖p,(1− 2
p ) κ

dW
+ 1
p
≤ C

t(
1− 2

p ) κ
dW

+ 1
p

‖f‖Lp(X,µ).

In particular, for t > 0, Pt : Lp(X,µ)→ B
p,(1− 2

p ) κ
dW

+ 1
p (X) is bounded.

The theorem provides the analogue of Theorem 0.1 to the range p > 2 and allows us to study the
Lp Besov critical exponents. As before, for p ≥ 1, if we denote

α∗p(X) = inf {α > 0 : Bp,α(X) is trivial} ,
we obtain then:

Theorem 0.19. Let X be an Ahlfors dH-regular space that satisfies sub-Gaussian heat kernel esti-
mates and BE(κ) with 0 < κ ≤ dW

2 . The following inequalities hold:

• For 1 ≤ p ≤ 2,
1

2
≤ α∗p(X) ≤

(
1− 2

p

)
κ

dW
+

1

p
.

• For p ≥ 2, (
1− 2

p

)
κ

dW
+

1

p
≤ α∗p(X) ≤ 1

2
.

In the end we discuss generalized Riesz transforms, sets of finite perimeter, and Sobolev and isoperi-
metric inequalities. Our main motivation is to connect these classical analysis notions with the heat
kernel estimates, which in the context of fractals are mostly studied in probability theory.
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Chapter 6. Many arguments appearing in the study of local Dirichlet spaces turn out to be easily
adaptable to obtain a non-local version of several results from Chapter 5. In this chapter we consider
non-local and regular Dirichlet spaces whose associated semigroup has a heat kernel satisfying the
estimates

(0.7) c5t
− dH
dW

(
1 + c6

d(x, y)

t1/dW

)−dH−dW
≤ pt(x, y) ≤ c3t−

dH
dW

(
1 + c4

d(x, y)

t1/dW

)−dH−dW
for some c3, . . . , c6 ∈ (0,∞) and 0 < dW ≤ dH + 1.

Following the same structure as Chapter 5 we start by discussing in Section 6.1 some metric proper-
ties of the spaceBp,α(X) in terms of other Besov type spaces appearing in the literature, see e.g. [Gri03].
In contrast to the local case, the characterization of the Besov space given below, c.f. Theorem 6.1, is
confined to α ∈ [0, 1/p). Some situations when α ≥ 1/p are analyzed in Proposition 6.2.

Theorem 0.20. Let the non-local Dirichlet space (X, d, µ, E ,F) have an associated heat kernel
satisfying (0.7). For any p ∈ [1,∞) and α ∈ [0, 1/p) we have

‖f‖p,α ' sup
r>0

1

rαdW+dH/p

(∫∫
∆r

|f(x)− f(y)|p dµ(x) dµ(y)

)1/p

.

Sections 6.2 and 6.3 provide coarea type estimates of the Besov norm, c.f. Theorem 6.4 as well as a
characterization of sets with finite perimeter in Theorem 6.8 that is analogous to their local counterparts
in Chapter 5. In this case the results require 0 < α ≤ min{dH/dW , 1} but also include situations where
dW < 1. The question about the critical exponent α∗1(X) for the space B1,α∗1(X)(X) is examined in
Section 6.4 under an extra assumption on the underlying space (X, d, µ), c.f. Assumption 6.14, where
we prove in Theorem 6.15 that

Theorem 0.21. Under Assumption 6.14, we have

α∗1(X) =

{
1 if dW ≤ 1,

1
dW

if dW > 1

and the space B1,α∗1(X)(X) is characterized as displayed in Table 1.

This chapter finishes with a discussion in Section 6.5 concerning a special type of Sobolev and
isoperimetric inequalities which we can treat in the non-local setting. Assuming that the heat semigroup
is transient and the Dirichlet form (E ,F) is regular, general arguments from Dirichlet form theory, see
e.g. [FOT11, Section 2.4] [CF12, Section 2.1] provide capacitary conditions that yield a Sobolev type
inequality of the form (∫

X

|f |2κdµ
)2κ

≤ C
√
E(f, f)

for some κ ≥ 1 and C > 0, c.f. Theorem 6.18. Moreover, combining the results from previous sections
in this chapter and with Sections 2.1-2.3 in Chapter 2, we obtain the corresponding weak Sobolev,
capacitary and isoperimetric inequalities.

Chapter 7. Finally, we also have some results in the setting of infinite dimensional Banach spaces.
Due to the technical difficulty of the task (see [FH01]), our goal in the chapter is not to develop
the general theory but rather to point out some research directions showing that our approach is also
suitable to handle infinite-dimensional spaces.

We prove in particular that if E is a set of finite perimeter in the Wiener space, or more generally
in a path space endowed with a Gibbs measure as in Kawabi [Kaw08] or Kawabi-Röckner [KR07],
then one must have 1E ∈ B1,1/2(X). More precisely, we establish the following result:

Theorem 0.22. Let X be one of the Dirichlet spaces studied in Sections 7.1 or 7.2. Let E be a
measurable set with finite measure. The following are equivalent:

(1) E has a finite perimeter;
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(2) The limit limt→0+

∫
X
‖DPt1E‖Hxdµ(x) exists.

Moreover, if E is a set satisfying one of the above conditions, then 1E ∈ B1,1/2(X) and

‖1E‖1,1/2 ≤ 2
√

2P (E,X) = 2
√

2 lim
t→0+

∫
X

‖DPt1E‖Hxdµ(x).

In these cases, the isoperimetric inequality from Theorem 0.6 does not apply, but we prove instead
a Poincaré and a Gaussian isoperimetric inequality. In particular we prove:

Theorem 0.23. Let (X, E ,F , µ) be the path space with Gibbs measure described in Section 7.2.
Assume that the interaction potential U is strictly convex in the sense that there exists a constant
a > 0 such that ∇2U ≥ a. Then X supports a Gaussian isoperimetric inequality, that is, there exists a
constant C > 0 such that for every set E ⊂ X with finite perimeter P (E,X), one has:

µ(E)
√
− lnµ(E) ≤ CP (E,X).
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CHAPTER 1

Besov spaces related to a Dirichlet space

1.1. Definitions

Let (X,µ, E ,F = dom(E)) be a symmetric Dirichlet space, that is, X is a topological measure
space equipped with the Radon measure µ, E a closed Markovian bilinear form on L2(X,µ), and F the
collection of all functions u ∈ L2(X,µ) with E(u, u) finite. The book [FOT11] is a standard reference
on the theory of Dirichlet forms. Let {Pt}t∈[0,∞) denote the Markovian semigroup associated with
(X,µ, E ,F). From classical theory (see for instance Theorems 1.4.1 and 1.4.2 in [Dav89]), the semigroup
Pt lets L1(X,µ) ∩ L∞(X,µ) invariant and may be extended to a positive, contraction semigroup on
Lp(X,µ), 1 ≤ p ≤ +∞, that we shall still denote by Pt. Moreover, for 1 ≤ p < +∞, Pt is strongly
continuous and for 1 < p < +∞, Pt is a bounded analytic semigroup on Lp(X,µ) with angle θp =
π
2

(
1−

∣∣∣ 2p − 1
∣∣∣). In this monograph, we always assume that Pt is conservative, i.e. Pt1 = 1.

Our basic definition of the Besov seminorm is the following:

Definition 1.1. Let p ≥ 1 and α ≥ 0. For f ∈ Lp(X,µ), we define the Besov seminorm:

‖f‖p,α = sup
t>0

t−α
(∫

X

Pt(|f − f(y)|p)(y)dµ(y)

)1/p

.

Observe that if Pt admits a heat kernel pt(x, y), then∫
X

Pt(|f − f(y)|p)(y)dµ(y) =

∫
X

∫
X

|f(x)− f(y)|ppt(x, y)dµ(x)dµ(y),

but the seminorm ‖ · ‖p,α is well defined even if Pt does not have a heat kernel.
Our goal in this paper is to study the Besov space

Bp,α(X) = {f ∈ Lp(X,µ) : ‖f‖p,α < +∞},(1.1)

and specially B1,α(X) and its connection to the notion of bounded variation function. The norm on
Bp,α(X) is defined as:

‖f‖Bp,α(X) = ‖f‖Lp(X,µ) + ‖f‖p,α.
Example 1.2. If X = Rn and E is the standard Dirichlet form on Rn, that is, for f, g ∈W 1,2(Rn)

we have
E(f, g) =

∫
Rn
〈∇f(x),∇g(x)〉dx, f, g ∈W 1,2(Rn),

then Bp,α(X) coincides with the Besov-Nikol’skii space B2α
p,∞(Rn) that consists of functions f ∈ Lp(Rn, dx)

such that
sup

h∈Rn,h6=0

‖f(·+ h)− f(·)‖p
h2α

< +∞.

We refer for instance to [AS61] and [Tai64] (Theorems 4 and 4*) for several equivalent descriptions
of those spaces. In particular, we observe therefore that B1,1/2(Rn) is the space of bounded variation
functions BV (Rn) and that B2,1/2(Rn) = W 1,2(Rn) is the domain of E. The observation B1,1/2(Rn) =
BV (Rn) will be generalized in the framework of metric spaces with a weak Bakry-Émery type non-
negative curvature condition and the observation B1,1/2(Rn) = F is a general fact, see Proposition
1.10

3
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1.2. A preliminary class of examples

Before discussing general properties of the spaces Bp,α(X), it may be instructive to quickly look at
a preliminary large class of examples in a smooth setting.

Proposition 1.3. Assume that X is a smooth manifold. Let L = V0 +
∑d
i=1 V

2
i be a Hörman-

der’s type operator on X, where the Vi’s are smooth vector fields. Let us assume that L is essentially
self-adjoint on C∞0 (X) in L2(X,µ) for some Radon measure µ on X. Consider the Dirichlet space
(X,µ, E ,F) obtained by closing the pre-Dirichlet form

E(f, g) =

∫
X

Γ(f, g)dµ(x), f, g ∈ C∞0 (X),

where Γ(f, g) is the carré du champ operator defined by Γ(f, g) = 1
2 (L(fg)− fLg − gLf). Assume that

the associated semigroup Pt is conservative. Then, for every p ≥ 1,

C∞0 (X) ⊂ Bp,1/2(X)

and one has for every f ∈ C∞0 (X), and open set A ⊂ X,

lim
t→0

t−1/2

(∫
A

Pt(|f − f(x)|p)(x)dµ(x)

)1/p

= 2

(
Γ
(

1+p
2

)
√
π

)1/p(∫
A

Γ(f, f)(x)p/2dµ(x)

)1/p

.

Remark 1.4. In the previous setting one has therefore for f ∈ C∞0 (X),(∫
X

Γ(f, f)(x)p/2dµ(x)

)1/p

≤ Cp‖f‖p,1/2.

If Pt satisfies moreover the Bakry-Émery estimate
√

Γ(Ptf) ≤ CPt
√

Γ(f), then we will see (Chapter
4, Section 4.5) that we have a converse inequality

‖f‖p,1/2 ≤ cp
(∫

X

Γ(f, f)(x)p/2dµ(x)

)1/p

,

for p = 1.

Remark 1.5. Proposition 1.3 indicates that at a high level of generality, one may expect the Besov
spaces Bp,1/2(X), 1 ≤ p < +∞ to be closely related to the various notions of Sobolev spaces that have
been defined on metric measure spaces (see for instance [Sha00]). While in this paper we shall only be
concerned with the study of all the Besov spaces Bp,α(X), the comparison between Sobolev spaces and
Besov spaces will be made in Chapter 4 in the framework of Dirichlet spaces with absolutely continuous
energy measures. In the framework of Chapter 5, it will be interesting to compare our results with the
recent preprint [HKM18] on Sobolev spaces and calculus of variations on fractals. Such a comparison
will be the subject of future study.

Example 1.6. If X = Rn and E is the standard Dirichlet form on Rn, it is natural to expect that
for every p ≥ 1, and every f ∈ Bp,1/2(X)

lim
t→0

t−1/2

(∫
Rn
Pt(|f − f(x)|p)(x)dx

)1/p

= 2

(
Γ
(

1+p
2

)
√
π

)1/p(∫
Rn
|∇f(x)|pdx

)1/p

.

The case p = 1 is proved in [MPPP07], but we did not find it in the literature for p > 1, p 6= 2.

Proof of Proposition 1.3. We use here a probabilistic argument. For x ∈ X, we denote by
(Bxt )t≥0 the L-Brownian motion on X started from x, that is the diffusion with generator L. It can be
constructed as the solution of a stochastic differential equation in Stratonovich form:

dBxt = V0(Bxt )dt+
√

2

d∑
i=1

Vi(B
x
t ) ◦ dβit
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where β is a d-dimensional Brownian motion. Let f ∈ C∞0 (X). The process

Mf
t = f(Bxt )− f(x)−

∫ t

0

Lf(Bxs )ds

is a square integrable martingale that can be written

Mf
t =
√

2

d∑
i=1

∫ t

0

(Vif)(Bxs )dβis.

We have then

Pt(|f − f(x)|p)(x) = E (|f(Bxt )− f(x)|p)

= E

(∣∣∣∣Mf
t +

∫ t

0

Lf(Bxs )ds

∣∣∣∣p
)
.

Observe now that 1√
t

∫ t
0
Lf(Bxs )ds almost surely converges to 0 when t→ 0. Therefore, 1√

t
Mf
t converges

in all Lp’s to the Gaussian random variable
√

2
∑d
i=1(Vif)(x)βi1. Since f has a compact support, one

deduces that

lim
t→0

t−1/2

(∫
A

Pt(|f − f(x)|p)(x)dµ(x)

)1/p

= Cp

(∫
A

Γ(f, f)(x)p/2dµ(x)

)1/p

,

with Cp =
√

2E(|N |p)1/p = 2

(
Γ( 1+p

2 )√
π

)1/p

, where N denotes a Gaussian random variable with mean 0

and variance 1. �

1.3. Basic properties of the Besov spaces

Proposition 1.7. For p ≥ 1 and α ≥ 0, Bp,α(X) is a Banach space.

Proof. Let fn be a Cauchy sequence in Bp,α(X). Let f be the Lp limit of fn. From Minkowski
inequality and conservativeness of Pt, one has∣∣∣∣∣

(∫
X

Pt(|fn − fn(y)|p)(y)dµ(y)

)1/p

−
(∫

X

Pt(|f − f(y)|p)(y)dµ(y)

)1/p
∣∣∣∣∣

≤
(∫

X

Pt(|(fn − f)− (fn(y)− f(y))|p)(y)dµ(y)

)1/p

≤
(∫

X

Pt(|fn − f |p)(y)dµ(y)

)1/p

+

(∫
X

Pt(|fn(y)− f(y)|p)(y)dµ(y)

)1/p

≤2‖f − fn‖Lp(X,µ).

Therefore

lim
n→+∞

(∫
X

Pt(|fn − fn(y)|p)(y)dµ(y)

)1/p

=

(∫
X

Pt(|f − f(y)|p)(y)dµ(y)

)1/p

,

from which we deduce that(∫
X

Pt(|f − f(y)|p)(y)dµ(y)

)1/p

≤ tα lim
n→+∞

‖fn‖p,α.

Therefore f ∈ Bp,α(X) and ‖f‖p,α ≤ limn→+∞ ‖fn‖p,α. Similarly,

‖f − fm‖p,α ≤ lim
n→+∞

‖fn − fm‖p,α
and taking the limit m→ +∞ finishes the proof. �

The following basic observation shall be useful in the sequel:
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Lemma 1.8. Let p ≥ 1, α ≥ 0.

Bp,α(X) =

{
f ∈ Lp(X,µ) : lim sup

t→0
t−α

(∫
X

Pt(|f − f(y)|p)(y)dµ(y)

)1/p

< +∞
}
.

In particular if β > α, Bp,β(X) ⊂ Bp,α(X). Moreover, for f ∈ Bp,α(X), one has for every t > 0,

‖f‖p,α ≤
2

tα
‖f‖Lp(X) + sup

s∈(0,t]

s−α
(∫

X

Ps(|f − f(y)|p)(y)dµ(y)

)1/p

.

Proof. Obviously, if f ∈ Bp,α(X), then

lim sup
t→0

t−α
(∫

X

Pt(|f − f(y)|p)(y)dµ(y)

)1/p

≤ ‖f‖p,α.

Conversely, if lim supt→0 t
−α (∫

X
Pt(|f − f(y)|p)(y)dµ(y)

)1/p
< +∞, then, for some ε > 0,

sup
t∈(0,ε]

t−α
(∫

X

Pt(|f − f(y)|p)(y)dµ(y)

)1/p

< +∞

For t > ε, since |f(x)− f(y)|p ≤ 2p−1(|f(x)|p + |f(y)|p) and the semigroup is conservative (and hence
Pt1(x) = 1 for all x ∈ X), one has then

t−α
(∫

X

Pt(|f − f(y)|p)(y)dµ(y)

)1/p

≤ 2ε−α‖f‖Lp(X).

�

Both the following lemma and Proposition 1.10 are well-known, but we do not know where in the
literature they appear in this form. In the standard source [FOT11] the corresponding results rely on
a topological assumption, see footnote on page of [FOT11]. The argument given below is similar to
that in Lemma 2.3.2.1 of [BH91].

Lemma 1.9. For t > 0, f ∈ L2(X,µ) and a bounded function g, writing 〈·, ·〉 for the L2(X,µ) inner
product

1

t

∫
X

g(y)Pt(|f − f(y)|2)(y) dµ(y) =
2

t
〈(I − Pt)f, fg〉 −

1

t
〈(I − Pt)f2, g〉.

Proof. Consider a simple function f =
∑n
j=1 aj1Aj where the Aj are pairwise disjoint and mea-

surable and compute (using pairwise disjointness and the symmetry of Pt on L2) that∫
X

g(y)Pt(|f − f(y)|2) dµ(y)

=
∑
j,k,l,m

∫ (
ajalPt

(
1Aj1Al

)
(y)− ajamPt

(
1Aj

)
(y)1Am(y)

− akal1Ak(y)Pt
(
1Al
)
(y) + akam1Ak(y)1Am(y)

)
g(y) dµ(y)

=
∑
j

a2
j

(
〈Pt1Aj , g〉+ 〈1Aj , g〉

)
− 2

∑
j,l

ajal〈Pt1Aj , g1Al〉

=
∑
j,l

ajal

(
2〈(I − Pt)1Aj , g1Al〉 − 〈(I − Pt)(1Aj1Al), g〉

)
= 2〈(I − Pt)f, fg〉 − 〈(I − Pt)f2, g〉.

The result then follows by density of simple functions in L2(X,µ) and Lp boundedness of Pt for t > 0
for p = 1, 2; for the former see [FOT11, page 33 ]. �
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Proposition 1.10. 2E(f) = ‖f‖22,1/2 and hence B2,1/2(X) = F .
Proof. Apply Lemma 1.9 with g ≡ 1. Since (I−Pt) is symmetric and (I−Pt)1 = 0 this simplifies

to

(1.2)
1

2t

∫
X

Pt(|f − f(x)|2) dµ(x) =
1

t
〈(I − Pt)f, f〉.

However it is standard (see [BH91] Proposition 1.2.3) that the right side of 1.2 is positive and decreasing
in t and has limit E(f) as t ↓ 0 if f ∈ F , from which this limit is the supremum and the result follows. �

Proposition 1.11. Assume that E has the property that E(f, f) = 0 implies f constant. Then, any
f ∈ Bp,α(X) with 1 ≤ p ≤ 2 and α > 1/p is constant.

Proof. Let f ∈ Bp,α(X) with 1 ≤ p ≤ 2. For n ≥ 0, one considers fn(x) = f(x) if |f(x)| ≤ n
and fn(x) = 0 otherwise. Since |fn(x) − fn(y)| ≤ |f(x) − f(y)| for every x, y ∈ X, it is clear that
fn ∈ Bp,α(X). One has then

Pt(|fn − fn(x)|2) = Pt(|fn − fn(x)|2−p|fn − fn(x)|p) ≤ 22−p‖fn‖2−p∞ Pt(|fn − fn(x)|p).
Therefore

1

2t

∫
X

Pt(|fn − fn(x)|2)dµ(x) ≤ 21−ptαp−1‖fn‖2−p∞ ‖fn‖pp,α.
This implies

lim
t→0

1

2t

∫
X

Pt(|fn − fn(x)|2)dµ(x) = 0.

Thus fn ∈ F and E(fn, fn) = 0. This implies that fn is constant for every n, thus f is constant.
�

Proposition 1.12. If E is regular and f ∈ Bp,1/2(X) for p > 2 then the energy measure νf (in the
sense of Beurling-Deny) is absolutely continuous with respect to µ.

Proof. Let p > 2, f ∈ Bp,1/2(X) and g ∈ Lp/(p−2)(X,µ) ∩ L∞(X,µ) ∩ F , g ≥ 0. From Hölder’s
inequality we have

1

t

∫
X

|g(y)|Pt(|f − f(y)|2) dµ(y) ≤ 1

t

∫
X

|g(y)|
(
Pt(|f − f(y)|p)

)2/p
dµ(y)

≤ 1

t

(∫
X

Pt(|f − f(y)|p) dµ(y)

)2/p

‖g‖p/(p−2)

≤ ‖f‖2p,1/2‖g‖p/(p−2)

Now use the result of Lemma 1.9 and take the limit as t ↓ 0 to obtain

‖f‖2p,1/2‖g‖p/(p−2) ≥ lim
t↓0

2

t
〈(I − Pt)f, fg〉 −

1

t
〈(I − Pt)f2, g〉 = 2E(fg, f)− E(f2, g) =

∫
X

2g dνf

where, as in the previous result, the limit is by Proposition 1.2.3 of [BH91]. The final equality is from
the definition of νf , Definition 4.1.2 of [BH91].

In particular, if E1 ⊂ E2 are of finite µ measure and 1E1
≤ g ≤ 1E2

then we obtain

νf (E1) ≤
∫
X

g dνf ≤
1√
2
‖f‖2p,1/2

(
µ(E2)

)(p−2)/p
.

Regularity of E then supplies sufficiently many functions g ∈ F to conclude that νf is absolutely
continuous with respect to µ, see [BH91,FOT11,CF12]. �

There are spaces on which the Kusuoka measure (and hence νf for any non-constant f ∈ F) is
singular to µ, see [Kus82,BBST99]. For such spaces Bp,1/2(X) is therefore trivial when p > 2.

Corollary 1.13. If the Kusuoka measure is singular to µ then Bp,1/2(X) contains only constant
functions when p > 2.
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1.4. Pseudo-Poincaré inequalities

The following pseudo-Poincaré inequalities will play an important role in many parts of this mono-
graph.

Lemma 1.14. Let p ≥ 1 and α > 0. For every f ∈ Bp,α(X), and t ≥ 0,

‖Ptf − f‖Lp(X,µ) ≤ tα‖f‖p,α.
Proof. From conservativeness of the semigroup and Hölder’s inequality, we have

‖Ptf − f‖Lp(X,µ) =

(∫
X

|Ptf(x)− f(x)|pdµ(x)

)1/p

=

(∫
X

|Pt(f − f(x))(x)|pdµ(x)

)1/p

≤
(∫

X

Pt(|f − f(x)|p)(x)dµ(y)

)1/p

.

�

Remark 1.15. Triebel [Tri78] (Section 1.13.6) introduced the interpolation spaces:

(Lp(X,µ), E)α,∞ =

{
u ∈ Lp(X,µ) : sup

t>0
t−α‖Ptu− u‖Lp(X,µ) < +∞

}
.

From the previous lemma, it is therefore clear that Bp,α(X) ⊂ (Lp(X,µ), E)α,∞. However, it may
not be true that Bp,α(X) = (Lp(X,µ), E)α,∞, even when X = Rn, see Remark 4.5 in [MPPP07]
and [Tai64] (Theorems 4 and 4*).

The following lemma will be useful:

Lemma 1.16. Let L the generator of E . Let p > 1 and α > 0. Then, there exists a constant C > 0
such that for every f ∈ Bp,α(X) and t ≥ 0,

‖LPtf‖Lp(X,µ) ≤ C
‖f‖p,α
t1−α

.

Proof. Since limt→+∞ ‖LPtf‖Lp(X,µ) = 0, we have

‖LPtf‖Lp(X,µ) =

∥∥∥∥∥
+∞∑
k=1

(LP2ktf − LP2k−1tf)

∥∥∥∥∥
Lp(X,µ)

≤
+∞∑
k=1

‖LP2ktf − LP2k−1tf‖Lp(X,µ)

≤
+∞∑
k=1

‖LP2k−1t(P2k−1tf − f)‖Lp(X,µ)

≤
+∞∑
k=1

1

2k−1t
‖P2k−1tf − f‖Lp(X,µ)

≤ C
+∞∑
k=1

(2k−1t)α

2k−1t
‖f‖p,α

≤ C ‖f‖p,α
t1−α

,

where we used in the proof the fact that since Pt is an analytic semigroup, we have for any g ∈ Lp(X,µ),
‖LPtg‖Lp(X,µ) ≤ C

t ‖g‖Lp(X,µ). �
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In a very general framework, one can resort to (Hille-Yosida) spectral theory to define the fractional
powers of a closed operator A on a Banach space via the following formula

(−A)sx =
sinπs

π

∫ ∞
0

λs−1(λI −A)−1(−A)x dλ,

for every x ∈ D(A). In fact, using Bochner’s subordination one can express the fractional powers of A
also in terms of the heat semi-group Pt = etA via the following formula, see (5) on p. 260 in [Yos95],

(1.3) (−A)sx = − s

Γ(1− s)

∫ ∞
0

t−s−1[Ptx− x] dt.

Let us denote by L the generator of E and, for 0 < s ≤ 1, by Lsp the domain of the operator (−L)s

in Lp(X,µ), 1 ≤ p < +∞. One has then the following proposition:

Proposition 1.17. Let α ∈ (0, 1], p ≥ 1 and 0 < s < α. Then

Bp,α(X) ⊂ Lsp,
and there exists a constant C = Cp,s,α such that for every Bp,α(X),

‖(−L)sf‖Lp(X,µ) ≤ C‖f‖1−
s
α

Lp(X,µ)‖f‖
s
α
p,α.

In particular, (−L)s : Bp,α(X)→ Lp(X,µ) is bounded.

Proof. Let f ∈ Bp,α(X). One shall prove that the integral
∫∞

0
t−s−1[Ptf − f ] dt is finite, and

therefore that f ∈ Lsp. For δ > 0, one has∥∥∥∥∫ ∞
0

t−s−1[Ptf − f ] dt

∥∥∥∥
Lp(X,µ)

≤
∫ ∞

0

t−s−1‖Ptf − f‖Lp(X,µ)dt

≤
∫ δ

0

t−s−1‖Ptf − f‖Lp(X,µ)dt+

∫ ∞
δ

t−s−1‖Ptf − f‖Lp(X,µ)dt

≤ ‖f‖p,α
∫ δ

0

t−s−1+αdt+ 2‖f‖Lp(X,µ)

∫ ∞
δ

t−s−1dt

≤ ‖f‖p,α
δα−s

α− s + 2‖f‖Lp(X,µ)
δ−s

s
.

The result follows then by optimizing δ. �

1.5. Reflexivity of the Besov spaces

For any p ≥ 1 and α > 0, recall the norm on Bp,α(X):

‖f‖Bp,α(X) = ‖f‖Lp(X,µ) + ‖f‖p,α,
where

‖f‖p,α = sup
t>0

t−α
(∫

X

Pt(|f − f(y)|p)(y)dµ(y)

)1/p

.

In the following proof, for convenience we use an equivalent norm, still denoted by ‖ · ‖Bp,α(X),
defined as follows

‖f‖Bp,α(X) =
(
‖f‖pLp(X,µ) + ‖f‖pp,α

) 1
p

.

Lemma 1.18 (Clarkson type inequalities). Let f, g ∈ Bp,α(X). Let 1 < p < ∞ and q be its
conjugate. If 2 ≤ p <∞, then

(1.4)
∥∥∥∥f + g

2

∥∥∥∥p
Bp,α(X)

+

∥∥∥∥f − g2

∥∥∥∥p
Bp,α(X)

≤ 1

2
‖f‖pBp,α(X) +

1

2
‖g‖pBp,α(X).
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If 1 < p ≤ 2, then

(1.5)
∥∥∥∥f + g

2

∥∥∥∥q
Bp,α(X)

+

∥∥∥∥f − g2

∥∥∥∥q
Bp,α(X)

≤
(

1

2
‖f‖pBp,α(X) +

1

2
‖g‖pBp,α(X)

)q−1

.

The proof is essentially the same as in the Lp case (see for instance [AF03, Theorem 2.38]), so we
omit it for concision. As a corollary, we immediately obtain

Corollary 1.19. For any p > 1 and α > 0, Bp,α(X) is a reflexive Banach space.

Proof. Since Bp,α(X) is a Banach space, from Milman-Pettis theorem it suffices to show that
Bp,α(X) is uniformly convex. That is, for every 0 < ε ≤ 2, there exists δ > 0 such that for any
f, g ∈ Bp,α(X) with ‖f‖Bp,α(X) = ‖g‖Bp,α(X) = 1 and ‖f − g‖Bp,α(X) ≥ ε, then∥∥∥∥f + g

2

∥∥∥∥
Bp,α(X)

≤ 1− δ.

This can be seem as follows.
If 2 ≤ p <∞, then (1.4) implies that∥∥∥∥f + g

2

∥∥∥∥p
Bp,α(X)

≤ 1− εp

2p
.

If 1 < p ≤ 2, then (1.5) implies that ∥∥∥∥f + g

2

∥∥∥∥q
Bp,α(X)

≤ 1− εq

2q
.

�

1.6. Interpolation inequalities

We have the following basic interpolation inequalities.

Proposition 1.20. Let θ ∈ [0, 1], 1 ≤ p, q < +∞ and α, β > 0. Let us assume 1
p = θ

q + 1−θ
r and

α = θβ + (1− θ)γ. Then, Bq,β(X) ∩Br,γ(X) ⊂ Bp,α(X) and for any f ∈ Bq,β(X) ∩Br,γ(X),

‖f‖p,α ≤ ‖f‖θq,β‖f‖1−θr,γ .

Proof. Let f ∈ Bq,β(X) ∩Br,γ(X). One has for every t > 0

t−α
(∫

X

Pt(|f − f(y)|p)(y)dµ(y)

)1/p

= t−θβ−(1−θ)γ
(∫

X

Pt(|f − f(y)|p)(y)dµ(y)

)1/p

.

Then, from Hölder’s inequality∫
X

Pt(|f − f(y)|p)(y)dµ(y) =

∫
X

Pt(|f − f(y)|pθ+p(1−θ))(y)dµ(y)

≤
(∫

X

Pt(|f − f(y)|q)(y)dµ(y)

) pθ
q
(∫

X

Pt(|f − f(y)|r)(y)dµ(y)

) p(1−θ)
r

.

One deduces

t−α
(∫

X

Pt(|f − f(y)|p)(y)dµ(y)

)1/p

≤t−θβ
(∫

X

Pt(|f − f(y)|q)(y)dµ(y)

) θ
q

t−(1−θ)γ
(∫

X

Pt(|f − f(y)|r)(y)dµ(y)

) 1−θ
r

.

Taking the supremum over t > 0 finishes the proof. �

As a special case of the previous result, note that since B2,1/2(X) = F we easily deduce:
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Corollary 1.21. Let 1 < p ≤ 2 and q be its conjugate ( 1
p + 1

q = 1). Let 0 < α < 1. Then, for any
f ∈ F ∩Bp,α(X) and g ∈ F ∩Bq,1−α(X), it holds that

|E(f, g)| ≤ ‖f‖p,α‖g‖q,1−α.

1.7. Continuity of the heat semigroup in the Besov spaces

Our goal in this section is to study the continuity properties of the semigroup Pt in the Besov spaces
with range 1 < p ≤ 2 and parameter α = 1

2 . As corollaries we will deduce several important properties
of the Besov spaces themselves. The main result is the following:

Theorem 1.22. Let 1 < p ≤ 2. There exists a constant Cp > 0 such that for every f ∈ Lp(X,µ)
and t ≥ 0

‖Ptf‖p,1/2 ≤
Cp
t1/2
‖f‖Lp(X,µ).

In particular Pt : Lp(X,µ)→ Bp,1/2(X) is bounded for t > 0.

A key intermediate result is the following inequality that will follow from nice ideas originally due
to Nick Dungey [Dun08] and then developed in [CCH,CCFR17].

Lemma 1.23. Let 1 < p ≤ 2. There exists a constant Cp > 0 such that for every non-negative
f ∈ Lp(X,µ) and t > 0(∫

X

Pt(|f − f(y)|p)(y)dµ(y)

)1/p

≤ Cp‖f‖1/2Lp(X,µ)‖Ptf − f‖
1/2
Lp(X,µ).

Proof. Let 1 < p ≤ 2 and t > 0 be fixed in the following proof. The constant C in the following
will denote a positive constant depending only on p that may change from line to line. For simplicity
of notation, we shall assume in this proof that Pt admits a measurable heat kernel pt(x, y), however the
argument can readily be extended if this is not the case, by using the heat kernel measure instead. For
α, β ≥ 0, set

γp(α, β) := pα(α− β)− α2−p(αp − βp)
and for a non-negative function f ∈ Lp(X,µ)

Γp(f)(x) := pf(x)

∫
X

pt(x, y)(f(x)− f(y))dµ(y)− f2−p(x)

∫
X

pt(x, y) (fp(x)− fp(y)) dµ(y)

=

∫
X

pt(x, y) γp(f(x), f(y))dµ(y).

Note that from Lemma 3.5 in [CCH], one has for any α, β ≥ 0

(p− 1)(α− β)2 ≤ γp(α, β) + γp(β, α) ≤ p(α− β)2

and that, similarly to [Dun08], page 122, one has Γp(f) ≥ 0. Then the same argument as in [CCH],
Lemma 3.6, gives∫
X

∫
X

pt(x, y) |f(x)− f(y)|pdµ(x)dµ(y) ≤ C
∫
X

∫
X

pt(x, y) (γp(f(x), f(y)) + γp(f(y), f(x)))
p/2

dµ(x)dµ(y)

≤ C
∫
X

∫
X

pt(x, y)
(
γp/2p (f(x), f(y)) + γp/2p (f(y), f(x))

)
dµ(x)dµ(y)

= C

∫
X

∫
X

pt(x, y) γp/2p (f(x), f(y)) dµ(x)dµ(y)

≤ C
∫
X

(∫
X

pt(x, y) γp(f(x), f(y))dµ(y)

)p/2
dµ(x)

= C

∫
X

Γp/2p (f)(x) dµ(x).
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We then follow the proof of Theorem 1 in [CCH] (see also Theorem 1.3 in [Dun08]). Let u(s, x) =
e−s∆tf(x) where ∆t = Id− Pt. Note that

Γp(u) = pu(u− Ptu)− u2−p(up − Pt(up))
= pu∆tu− u2−p∆t(u

p)

= −pu∂su− u2−p∆t(u
p)

= −u2−p (∂s + ∆t)u
p.

Set now

J(s, x) = − (∂s + ∆t)u
p(s, x),

so that

Γp(u) = u2−pJ.

Note that since u ≥ 0 and Γp(u) ≥ 0, one has J ≥ 0. One has then from Hölder’s inequality∫
X

Γp/2p (u)dµ =

∫
X

up(2−p)/2Jp/2dµ

≤
(∫

X

updµ

) 2−p
2
(∫

X

Jdµ

)p/2
.

On computes then∫
X

Jdµ = −
∫
X

∂s(u
p)dµ = −p

∫
X

up−1∂sudµ = p

∫
X

up−1∆tudµ.

Thus, we have from Hölder’s inequality∫
X

Jdµ ≤ p‖u‖p−1
Lp(X,µ)‖∆tu‖pLp(X,µ).

From the definition of ∆t one concludes therefore(∫
X

∫
X

pt(x, y) |u(s, x)− u(s, y)|pdµ(x)dµ(y)

)1/p

≤ C‖u(s, ·)‖1/2Lp(X,µ)‖Ptu(s, ·)− u(s, ·)‖1/2Lp(X,µ).

Letting s→ 0+ yields from Fatou lemma(∫
X

∫
X

pt(x, y) |f(x)− f(y)|pdµ(x)dµ(y)

)1/p

≤ C‖f‖1/2Lp(X,µ)‖Ptf − f‖
1/2
Lp(X,µ)

�

We are now ready for the proof of Theorem 1.22.

Proof. Let f ∈ Lp(X,µ). We can assume f ≥ 0. If not, it is enough to decompose f as f+ − f−
with f+ = max{f, 0} and f− = max{−f, 0}. Let s, t > 0, applying Lemma 1.23 to Psf , one obtains(∫

X

Pt(|Psf − Psf(y)|p)(y)dµ(y)

)1/p

≤ Cp‖Psf‖1/2Lp(X,µ)‖Pt+sf − Psf‖
1/2
Lp(X,µ).
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Note that ‖Psf‖Lp(X,µ) ≤ ‖f‖Lp(X,µ) and that

‖Pt+sf − Psf‖Lp(X,µ) =

∥∥∥∥∫ t

0

LPs+ufdu

∥∥∥∥
Lp(X,µ)

=

∥∥∥∥∫ t

0

PuLPsfdu

∥∥∥∥
Lp(X,µ)

≤
∫ t

0

‖PuLPsf‖Lp(X,µ) du

≤ t ‖LPsf‖Lp(X,µ)

≤ t

s
‖f‖Lp(X,µ) ,

where in the last step we used analyticity of the semigroup. One concludes(∫
X

Pt(|Psf − Psf(y)|p)(y)dµ(y)

)1/p

≤ Cp
(
t

s

)1/2

‖f‖Lp(X,µ).

Dividing both sides by
√
t and taking the supremum over t > 0 finishes the proof of Theorem 1.22. �

We now collect several corollaries of Theorem 1.22. The first one is the following:

Corollary 1.24. For 1 < p ≤ 2, Bp,1/2(X) is dense in Lp(X,µ).

Proof. Let 1 < p ≤ 2. Since for any f ∈ Lp(X,µ), Ptf ∈ Bp,1/2(X) and Ptf → f when t → 0
(see for instance [Dav89, Theorem 1.4.1]), one concludes that Bp,1/2(X) is dense in Lp(X,µ). �

We then have the following second corollary of Theorem 1.22.

Proposition 1.25. Assume that E is regular. Let 2 ≤ p < +∞. For every f ∈ Lp(X,µ), and
t ≥ 0,

‖Ptf − f‖Lp(X,µ) ≤ Cpt1/2 lim inf
s→0

s−1/2

(∫
X

Ps(|f − f(y)|p)(y)dµ(y)

)1/p

Proof. Let f ∈ Lp(X,µ) and g ∈ Lq(X,µ) ∩ F where q is the conjugate exponent of p. One has
for t ≥ 0, ∫

X

(Ptf − f)gdµ =

∫ t

0

E(Psf, g)ds.

The idea is now to bound E(g, Psf) by using an approximation of E . For τ ∈ (0,∞) we set

(1.6) Eτ (u, u) :=
1

τ
〈(I − Pτ )u, u〉.

We have then E(Psf, g) = limτ→0 Eτ (Psf, g). Note now that Eτ (Psf, g) = Eτ (f, Psg) and that from
Hölder inequality (applied as in the proof of Proposition 1.20)

2|Eτ (f, Psg)| ≤ τ−1/2

(∫
X

Pτ (|Psg − Psg(y)|q)(y)dµ(y)

)1/q

τ−1/2

(∫
X

Pτ (|f − f(y)|p)(y)dµ(y)

)1/p

≤ τ−1/2

(∫
X

Pτ (|f − f(y)|p)(y)dµ(y)

)1/p

‖Psg‖q,1/2

≤ Cpτ−1/2

(∫
X

Pτ (|f − f(y)|p)(y)dµ(y)

)1/p

s−1/2‖g‖Lq(X,µ).

One has therefore∣∣∣∣∫
X

(Ptf − f)gdµ

∣∣∣∣ ≤ Cpt1/2‖g‖Lq(X,µ) lim inf
s→0

s−1/2

(∫
X

Ps(|f − f(y)|p)(y)dµ(y)

)1/p

,

and we conclude by Lp − Lq duality. �
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Corollary 1.26. Assume that E is regular. Let 2 ≤ p < +∞ and α > 1/2. If f ∈ Bp,α(X) then
E(f, f) = 0.

Proof. Indeed, for f ∈ Bp,α(X) with α > 1/2 one has

lim inf
s→0

s−1/2

(∫
X

Ps(|f − f(y)|p)(y)dµ(y)

)1/p

= 0,

so that for every t ≥ 0, Ptf = f , and thus E(f, f) = 0. �

We finally point out the following other corollary of Theorem 1.22.

Proposition 1.27. Let 1 < p ≤ 2. Let L be the generator of E and Lp be the domain of L in
Lp(X,µ). Then

Lp ⊂ Bp,1/2(X)

and for every f ∈ Lp,
(1.7) ‖f‖2p,1/2 ≤ C‖Lf‖Lp(X,µ)‖f‖Lp(X,µ).

Proof. Write for λ > 0

Rλf = (L− λ)−1f =

∫ ∞
0

e−λtPtfdt.

Consequently

‖Rλf‖p,1/2 ≤
∫ ∞

0

e−λt‖Ptf‖p,1/2dt ≤
∫ ∞

0

e−λt
C

t1/2
‖f‖Lp(X,µ)dt ≤ Cλ−1/2‖f‖Lp(X,µ).

It follows that

‖f‖p,1/2 ≤ Cλ−1/2‖(L− λ)f‖p ≤ C(λ−1/2‖Lf‖Lp(X,µ) + λ1/2‖f‖Lp(X,µ)).

Taking λ = ‖Lf‖Lp(X,µ)‖f‖−1
Lp(X,µ), we then get the result.

�

1.8. Besov critical exponents

Let p ≥ 1. We define the Lp Besov critical exponent of X as

α∗p(X) = inf{α > 0 : Bp,α(X) is trivial}.
Bp,α(X) trivial means that any f ∈ Bp,α(X) is constant. We have then the following result:

Proposition 1.28. Assume that E is regular and irreducible, i.e. E has the property that E(f, f) = 0
implies f constant, then

(1) α∗2(X) = 1
2 ;

(2) p→ α∗p(X) is non increasing;
(3) For p ≥ 2, α∗p(X) ≤ 1

2 ;
(4) For 1 ≤ p ≤ 2, 1

2 ≤ α∗p(X) ≤ 1
p .

Proof.
(1) Since B2,1/2(X) = F , one has α∗2(X) ≥ 1

2 . Then, from Corollary 1.26, one has α∗2(X) ≤ 1
2 .

(2) For simplicity of notation, we assume in the proof that Pt has a measurable heat kernel pt(x, y),
but the proof easily extends to the general case. It suffices to show that α∗p(X) ≤ α∗q(X) if
q ≤ p. Indeed, first notice that for any a, b > 0 such that a 6= b, there holds

|ap − bp||aq − bq|−1 ≤ p

q
max{aq, bq} pq−1.

Equivalently,

|ap − bp|q ≤
(
p

q

)q
max{aq, bq}p−q|aq − bq|q.
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Next by Hölder’s inequality and Fubini’s theorem, we have∫
X

∫
X

pt(x, y)
∣∣|f(x)|p − |f(y)|p

∣∣q dµ(x) dµ(y)

≤
(
p

q

)q ∫
X

∫
X

pt(x, y)
(
|f(x)|p−q + |f(y)|p−q

)∣∣|f(x)|q − |f(y)|q
∣∣q dµ(x) dµ(y)

≤ 2

(
p

q

)q ∫
X

|f(x)|p−q
∫
X

pt(x, y)
∣∣|f(x)|q − |f(y)|q

∣∣q dµ(y) dµ(x)

≤ 2

(
p

q

)q ∫
X

|f(x)|p−q
(∫

X

pt(x, y)
∣∣|f(x)|q − |f(y)|q

∣∣p dµ(y)
)q/p

dµ(x)

≤ 2

(
p

q

)q
‖|f |q‖p−qp

(∫
X

∫
X

pt(x, y)
∣∣|f(x)|q − |f(y)|q

∣∣p dµ(x) dµ(y)
)q/p

≤ 2

(
p

q

)q
‖|f |q‖p−qp tαq‖|f |q‖qp,α,

which implies that

‖|f |p‖qq,α ≤ 2

(
p

q

)q
‖|f |q‖p−qp ‖|f |q‖qp,α.

Hence α∗p(X) ≤ α∗q(X).
(3) This is Corollary 1.26.
(4) This follows from Theorem 1.22 and Proposition 1.11.

�

Remark 1.29. In view of the duality given by Corollary 1.21, it is natural to conjecture that under
suitable conditions one may have

α∗p(X) + α∗q(X) = 1

if p and q are conjugate, i.e. satisfy 1
p + 1

q = 1.

Remark 1.30. We will see in Chapters 4 and 5 that for local Dirichlet forms the limit

α∞(X) = lim
p→+∞

αp(X)

is closely related to a Hölder regularity property in space of the heat semigroup. If the conjecture in
Remark 1.29 is true, then classical interpolation theory suggests that it is reasonable to expect that for
every p ≥ 1:

α∗p(X) =
1

p
+

(
1− 2

p

)
α∞(X).

Example 1.31. For strongly local Dirichlet forms with absolutely continuous energy measures, we
will see in Chapter 4 that one generically has α∗p(X) = 1

2 for every p ≥ 1.





CHAPTER 2

Sobolev and isoperimetric inequalities

In this chapter, we are interested in Sobolev type embeddings (the case p = 1 corresponds to
isoperimetric type results) for the Besov spaces defined in the previous chapter.

Let (X,µ, E ,F = dom(E)) be a symmetric Dirichlet space. Let {Pt}t∈[0,∞) denote the Markovian
semigroup associated with (X,µ, E ,F). Throughout the chapter, we shall assume that Pt admits a
measurable heat kernel pt(x, y).

Let p ≥ 1 and α ≥ 0. As before, we define the Besov type seminorm:

‖f‖p,α = sup
t>0

t−α
(∫

X

∫
X

|f(x)− f(y)|ppt(x, y)dµ(x)dµ(y)

)1/p

and define
Bp,α(X) = {f ∈ Lp(X,µ) : ‖f‖p,α < +∞}.

Throughout the chapter, we assume that {Pt}t∈(0,∞) is conservative and admits a heat kernel
pt(x, y) satisfying, for some C > 0 and β > 0,

(2.1) pt(x, y) ≤ Ct−β

for µ× µ-a.e. (x, y) ∈ X ×X, and for each t ∈
(
0,+∞

)
.

Our goal in this chapter is to prove global Sobolev embeddings with sharp exponents for the
space Bp,α(X) and one of the main results will be the following weak-type Sobolev inequality and the
corresponding isoperimetric inequality:

Theorem 2.1. Let 0 < α < β. Let 1 ≤ p < β
α . There exists a constant Cp,α > 0 such that for

every f ∈ Bp,α(X),
sup
s≥0

s µ ({x ∈ X : |f(x)| ≥ s}) 1
q ≤ Cp,α‖f‖p,α,

where q = pβ
β−pα . Therefore, there exists a constant Ciso > 0, such that for every subset set E ⊂ X with

1E ∈ B1,α(X)

µ(E)
β−α
β ≤ Ciso‖1E‖1,α.

2.1. Weak type Sobolev inequality

We follow and adapt to our setting a general approach to Sobolev inequalities developed in [BCLSC95]
(see also [SC02]). The pseudo-Poincaré inequality proved in Lemma 1.14 plays a fundamental role here.

Lemma 2.2. Let 1 ≤ p, q < +∞ and α > 0. There exists a constant Cp,q,α > 0 such that for every
f ∈ Bp,α(X) ∩ Lq(X,µ) and s ≥ 0,

sup
s≥0

s1+q αβ µ ({x ∈ X : |f(x)| > s}) 1
p ≤ Cp,q,α‖f‖p,α‖f‖

q αβ
Lq(X,µ).

Proof. We adapt an argument given in the proof of Theorem 9.1 in [BCLSC95]. Let f ∈ Bp,α(X)
and denote

F (s) = µ ({x ∈ X : |f(x)| > s})
We have then

F (s) ≤ µ ({x ∈ X : |f(x)− Ptf(x)| > s/2}) + µ ({x ∈ X : |Ptf(x)| > s/2}) .
17
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Now, from the heat kernel upper bound

pt(x, y) ≤ C

tβ
, t > 0,

one deduces, that for g ∈ L1(X,µ),

|Ptg(x)| ≤ C

tβ
‖g‖L1(X,µ).

Since Pt is a contraction in L∞(X,µ), by the Riesz-Thorin interpolation one gets that

|Ptf(x)| ≤ C1/q

tβ/q
‖f‖Lq(X,µ).

Therefore, for s = 2C
1/q

t
β
q

‖f‖Lq(X,µ), one has

µ ({x ∈ X : |Ptf(x)| > s/2}) = 0.

On the other hand, from Theorem 1.14,

µ ({x ∈ X : |f(x)− Ptf(x)| > s/2}) ≤ 2ps−ptpα‖f‖pp,α.
We conclude that

F (s)1/p ≤ C̃s−1−q αβ ‖f‖α,p‖f‖
αq
β

Lq(X,µ).

�

As a corollary, we are now ready to prove the weak Sobolev inequality.

Theorem 2.3. Let 0 < α < β. Let 1 ≤ p < β
α . There exists a constant Cp,α > 0 such that for

every f ∈ Bp,α(X),
sup
s≥0

s µ ({x ∈ X : |f(x)| ≥ s}) 1
q ≤ Cp,α‖f‖p,α,

where q = pβ
β−pα .

Proof. Let f ∈ Bp,α(X) be a non-negative function. For k ∈ Z, we denote

fk = (f − 2k)+ ∧ 2k.

Observe that fk ∈ Lp(X,µ) and ‖fk‖Lp(X,µ) ≤ ‖f‖Lp(X,µ). Moreover, for every x, y ∈ X, |fk(x) −
fk(y)| ≤ |f(x)− f(y)| and so ‖fk‖p,α ≤ ‖f‖p,α. We also note that fk ∈ L1(X,µ), with

‖fk‖L1(X,µ) =

∫
X

|fk|dµ ≤ 2kµ({x ∈ X : f(x) ≥ 2k}).

We now use Lemma 2.2 to deduce:

sup
s≥0

s1+α
β µ ({x ∈ X : fk(x) > s}) 1

p ≤ Cp,α‖fk‖p,α‖fk‖
α
β

L1(X,µ)

≤ Cp,α‖fk‖p,α
(
2kµ({x ∈ X : f(x) ≥ 2k})

)α
β .

In particular, by choosing s = 2k we obtain

2k(1+α
β )µ

(
{x ∈ X : f(x) ≥ 2k+1}

) 1
p ≤ Cp,α‖fk‖p,α

(
2kµ({x ∈ X : f(x) ≥ 2k})

)α
β .

Let
M(f) = sup

k∈Z
2kµ({x ∈ X : f(x) ≥ 2k})1/q

where q = pβ
β−pα . Using the fact that 1

q = 1
p − α

β and the previous inequality we obtain:

2kµ
(
{x ∈ X : f(x) ≥ 2k+1}

) 1
p ≤ 2−

kqα
β Cp,α‖f‖p,αM(f)

qα
β .

and
2kµ

(
{x ∈ X : f(x) ≥ 2k+1}

) 1
q ≤ C

p
q
p,α‖f‖p/qp,αM(f)

pα
β .
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Therefore
M(f)1− pαβ ≤ 2C

p
q
p,α‖f‖p/qp,α .

One concludes
M(f) ≤ 2q/pCp,α‖f‖p,α.

This easily yields:
sup
s≥0

sµ ({x ∈ X : f(x) ≥ s}) 1
q ≤ 21+q/pCp,α‖f‖p,α.

Let now f ∈ Bp,α(X), which is not necessarily non-negative. From the previous inequality applied to
|f |, we deduce

sup
s≥0

s µ ({x ∈ X : |f(x)| ≥ s}) 1
q ≤ 21+q/pCp,α‖|f |‖p,α ≤ 21+q/pCp,α‖f‖p,α.

�

2.2. Capacitary estimates

It is well-known that Sobolev inequalities are related to capacitary estimates. Let p ≥ 1 and
0 < α < β. For a measurable set A ⊂ X, we define its (α, p) capacity:

Capαp (A) = inf{‖f‖pα,p : f ∈ Bα,p(X),1A ≤ f ≤ 1}.
We have the following theorem:

Theorem 2.4. Let 0 < α < β. Let 1 ≤ p < β
α . There exists a constant Cp,α > 0 such that for

every measurable set A ⊂ X,
µ(A)1− pαβ ≤ Cp,αCapαp (A).

Proof. This is an immediate corollary of Proposition 2.3. �

2.3. Isoperimetric inequality

Let E ⊂ X be a measurable set with finite measure. We will say that E has a finite α-perimeter if
1E ∈ B1,α(X). In that case, we will denote

Pα(E) = ‖1E‖1,α.
Proposition 2.5. Let 0 < α < β. There exists a constant Ciso > 0, such that for every subset

E ⊂ X with finite α-perimeter
µ(E)

β−α
β ≤ CisoPα(E).

Proof. Observe that we have

||Pt1E − 1E ||L1(X,µ) = 2

(
µ(E)−

∫ (
Pt/21E

)2
dµ

)
.

Indeed,

‖Pt1E − 1E‖L1(X,µ) =

∫
E

(1− Pt1E)dµ+

∫
Ec
Pt(1E)dµ

=

∫
E

(1− Pt1E)dµ+

∫
E

(Pt1Ec)dµ

=2

(
µ(E)−

∫
E

Pt(1E)dµ

)
=2
(
µ(E)− ‖P t

2
(1E)‖2L2(X,µ)

)
,

where the last inequality is due to the fact that∫
E

Pt1Edµ =

∫ (
Pt/21E

)2
dµ.
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We now note that ∫
(Pt/21E)2dµ ≤

(∫
E

(∫
pt/2(x, y)2dµ(y)

) 1
2

dµ(x)

)2

=

(∫
E

pt(x, x)
1
2 dµ(x)

)2

≤ A

tβ
µ(E)2.

for some constant A > 0. Combining these equations yields

µ(E) ≤ Btα Pα(E) +
C

tβ
µ(E)2, t > 0,

for some positive constants B,C. Optimizing in t concludes the proof. �

In the limiting case α = β, the previous proof yields the following:

Corollary 2.6. There exists a constant Ciso > 0, such that for every subset E ⊂ X with finite
β-perimeter and µ(E) > 0,

Pβ(E) ≥ Ciso.

2.4. Strong Sobolev inequality

Definition 2.7. We say that the Dirichlet space satisfies the property (Pp,α) if there exists a
constant C > 0 such that for every f ∈ Bp,α(X),

‖f‖p,α ≤ C lim inf
t→0

t−α
(∫

X

∫
X

|f(x)− f(y)|ppt(x, y)dµ(x)dµ(y)

)1/p

Remark 2.8. In the Chapter 4 framework, property (Pp,α) is satisfied when p = 1, α = 1/2, see
Theorem 4.11.

Our main theorem is the following:

Theorem 2.9. Assume that the Dirichlet space satisfies the property (Pp,α) and that β satis-
fies (2.1). Let 0 < α < β. Let 1 ≤ p < β

α . There exists a constant Cp,α,β > 0 such that for
every f ∈ Bp,α(X),

‖f‖Lq(X,µ) ≤ Cp,α,β‖f‖p,α,
where q = pβ

β−pα .

Note that in the standard Euclidean setting of Rn the Sobolev embedding theorem holds as above
with β = n. To show that the weak type inequality implies the desired Sobolev inequality, we will need
another cutoff argument and the following lemma is needed.

Lemma 2.10. For f ∈ Bp,α(X), f ≥ 0, denote fk = (f − 2k)+ ∧ 2k, k ∈ Z. There exists a constant
C > 0 such that for every f ∈ Bp,α(X),(∑

k∈Z
‖fk‖pp,α

)1/p

≤ C‖f‖p,α.

Proof. By a similar type of argument, as in the the proof of Lemma 7.1 in [BCLSC95], one has
for some constant Cp > 0,∑

k∈Z

∫
X

∫
X

|fk(x)− fk(y)|ppt(x, y)dµ ≤ Cp
∫
X

∫
X

|f(x)− f(y)|ppt(x, y)dµ.

As a consequence of property (Pp,α),(∑
k∈Z
‖fk‖pp,α

)1/p

≤ C ′p‖f‖p,α.
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and the proof is complete. �

We can now conclude the proof of Theorem 2.9.

Proof of Theorem 2.9. Let f ∈ Bp,α(X). We can assume f ≥ 0. As before, denote fk =
(f − 2k)+ ∧ 2k, k ∈ Z. From Lemma 2.3 applied to fk, we see that

sup
s≥0

sµ ({x ∈ X : |fk(x)| ≥ s}) 1
q ≤ Cp,α‖fk‖p,α

In particular for s = 2k, we get

2kµ
(
{x ∈ X : f(x) ≥ 2k+1}

) 1
q ≤ Cp,α‖fk‖p,α.

Therefore, ∑
k∈Z

2kqµ
(
{x ∈ X : f(x) ≥ 2k+1}

)
≤ Cqp,α

∑
k∈Z
‖fk‖qp,α.

Since q ≥ p, one has
∑
k∈Z ‖fk‖qp,α ≤

(∑
k∈Z ‖fk‖pp,α

)q/p. Thus, from the previous lemma∑
k∈Z

2kqµ
(
{x ∈ X : f(x) ≥ 2k+1}

)
≤ Cqp,α‖fk‖qp,α.

Finally, we observe that∑
k∈Z

2kqµ
(
{x ∈ X : f(x) ≥ 2k+1}

)
≥ q

2q+1 − 2q

∑
k∈Z

∫ 2k+2

2k+1

sq−1µ ({x ∈ X : f(x) ≥ s}) ds

≥ 1

2q+1 − 2q
‖f‖qLq(X,µ).

The proof is thus complete. �





CHAPTER 3

Cheeger constant and Gaussian isoperimetry

While the previous chapter was devoted to Sobolev inequalities on Dirichlet spaces for which the
semigroup satisfies ultracontractive estimates, the present chapter is devoted to situations where the
Dirichlet form satisfies a Poincaré inequality or a log-Sobolev inequality. Let (X,µ, E ,F = dom(E))
be a symmetric Dirichlet space. Let {Pt}t∈[0,∞) denote the Markovian semigroup associated with
(X,µ, E ,F). As usual, we assume that Pt is conservative.

3.1. Buser’s type inequality for the Cheeger constant of a Dirichlet space

In the context of a smooth compact Riemannian manifold with Riemannian measure µ, Cheeger
[Che70] introduced the following isoperimetric constant

h = inf
µ(∂A)

µ(A)
,

where the infimum runs over all open subsets A with smooth boundary ∂A such that µ(A) ≤ 1
2 .

Cheeger’s constant can be used to bound from below the first non zero eigenvalue of the manifold.
Indeed, it is proved in [Che70] that

λ1 ≥
h2

4
.

Buser [Bus82] then proved that if the Riemannian Ricci curvature of the manifold is non-negative,
then we actually have

λ1 ≤ Ch2

where C is a universal constant depending only on the dimension. Buser’s inequality was reproved by
Ledoux [Led94] using heat semigroup techniques. Under proper assumptions, by using the tools we
introduced, Ledoux’ technique can essentially reproduced in our general framework of Dirichlet spaces.

We assume in this section that E satisfies a spectral gap inequality and normalize the measure µ in
such a way that µ(X) = 1. For α ∈ (0, 1], we define the α-Cheeger’s constant of X by

hα = inf
‖1E‖1,α
µ(E)

where the infimum runs over all measurable sets E such that µ(E) ≤ 1
2 and 1E ∈ B1,α(X). We denote

by λ1 the spectral gap of E .

Theorem 3.1. We have hα ≥ (1− e−1)λα1 .

23
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Proof. Let A be a set with Pα(A) := ‖1A‖1,α < +∞. As before, by symmetry and stochastic
completeness of the semigroup, we have

‖1A − Pt1A‖L1(X,µ) =

∫
A

(1− Pt1A)dµ+

∫
Ac
Pt(1A)dµ

=

∫
A

(1− Pt1A)dµ+

∫
A

(Pt1Ac)dµ

=2

(
µ(A)−

∫
A

Pt(1A)dµ

)
=2
(
µ(A)− ‖P t

2
(1A)‖2L2(X,µ)

)
.

By definition, we have
‖Pt1A − 1A‖L1(X,µ) ≤ tαPα(A).

We deduce that

µ(A) ≤ 1

2
tαPα(A) + ‖P t

2
(1A)‖2L2(X,µ).

Now, by the spectral theorem,

‖P t
2
(1A)‖2L2(X,µ) = µ(A)2 + ‖P t

2
(1A − µ(A))‖2L2(X,µ) ≤ µ(A)2 + e−λ1t‖1A − µ(A)‖2L2(X,µ)

This yields

µ(A) ≤ 1

2
tαPα(A) + µ(A)2 + e−λ1t‖1A − µ(A)‖2L2(X,µ).

Equivalently, one obtains
1

2
tαPα(A) ≥ µ(A)(1− µ(A))(1− e−λ1t).

Therefore,

hα ≥ sup
t>0

(
1− e−λ1t

tα

)
.

�

As already noted in [BK17], let us observe that it is known that the Cheeger lower bound on λ1

may be obtained under further assumptions on the Dirichlet space (X, d, E). Indeed, assume that E is
strictly local with a carré du champ Γ, that Lipschitz functions are in the domain of E and that

√
Γ(f)

is an upper gradient in the sense that for any Lipchitz function f ,√
Γ(f)(x) = lim sup

d(x,y)→0

|f(x)− f(y)|
d(x, y)

.

In that case, if A is a closed set of X, one defines its Minkowski exterior boundary measure by

µ+(A) = lim inf
ε→0

1

ε
(µ(Aε)− µ(A)) ,

where Aε = {x ∈ X, d(x,A) < ε}. We can then define a Cheeger’s constant of X by

h+ = inf
µ+(E)

µ(E)

where the infimum runs over all closed sets E such that µ(E) ≤ 1
2 . Then, according to Theorem 8.5.2

in [BGL14], one has

λ1 ≥
h2

+

4
.
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3.2. Log-Sobolev and Gaussian isoperimetric inequalities

We assume in this section that E satisfies a log-Sobolev inequality inequality and normalize the
measure µ in such a way that µ(X) = 1.

We define the Gaussian isoperimetric constant of X by

k = inf
‖1E‖1,1/2

µ(E)
√
− lnµ(E)

where the infimum runs over all sets E such that µ(E) ≤ 1
2 and 1E ∈ B1,1/2(X). We denote by ρ0 the

log-Sobolev constant of X, that is the best constant in the inequality

(3.1)
∫
f2 ln f2dµ−

∫
f2dµ ln

∫
f2dµ ≤ 1

ρ0
E(f, f).

Following an argument of M. Ledoux [Led94], one obtains:

Theorem 3.2.
ρ0 ≤ Cledouxk

2

where Cledoux is a numerical constant.

Proof. Let A be a measurable set such that P (A) := ‖1A‖1,1/2 < +∞. By the same computations
as before we have

µ(A) ≤ 1

2

√
tP (A) + ‖P t

2
(1A)‖2L2(X,µ).

Now we can use the hypercontractivity constant to bound ‖P t
2
(1A)‖22. Indeed, from Gross’ theorem it

is well known that the logarithmic Sobolev inequality∫
f2 ln f2dµ−

∫
f2dµ ln

∫
f2dµ ≤ 1

ρ0
E(f, f),

is equivalent to hypercontractivity property

‖Ptf‖Lq(X,µ) ≤ ‖f‖Lp(X,µ)

for all f in Lp(X,µ) whenever 1 < p < q <∞ and eρ0t ≥
√

q−1
p−1 .

Therefore, with p(t) = 1 + e−2ρ0t < 2, we get,
√
tP (A) ≥2

(
µ(A)− µ(A)

2
p(t)

)
≥ 2µ(A)

(
1− µ(A)

1−e2−ρ0t

1+e−2ρ0t

)
.

By using then the computation page 956 in [Led94], one deduces that if A is a set which has a finite
P (A) and such that 0 ≤ µ(A) ≤ 1

2 , then

P (A) ≥ C̃√ρ0µ(A)

(
ln

1

µ(A)

) 1
2

,

where C̃ is a numerical constant. �





Part 2

Specific settings





CHAPTER 4

Strictly local Dirichlet spaces with doubling measure and
2-Poincaré inequality

In this chapter we define the space BV (X) of functions of bounded variation when E is strcitly local
(see the exact assumptions in Section 4.1). We shall then prove that under a weak Bakry-Émery cur-
vature dimension condition, one actually has BV (X) = B1,1/2(X) with comparable seminorms. One of
the key tools used there is the co-area formula for BV functions; we establish this formula in Lemma 4.9
of the present chapter. We will also study in that framework the spaces Bp,α(X) introduced in Chap-
ter 1 and relate them to Besov spaces previously considered in the literature. Finally, applications to
Sobolev and isoperimetric inequalities are given.

4.1. Local Dirichlet spaces and standing assumptions

We will assume in this section that (X,µ) is a topological space equipped with a Radon measure
µ, and that there is a strongly local Markovian Dirichlet form E on X. As E is strongly local, it is
represented by a signed Radon measure Γ(u, v) for each u, v ∈ F such that whenever ϕ is a bounded
function in F and u, v ∈ F , we have

E(ϕu, v) + E(ϕv, u)− E(ϕ, uv) = 2

∫
X

ϕdΓ(u, v).

We then also have E(u, v) =
∫
X
dΓ(u, v), see for example [Stu94]. With respect to E we can define the

following intrinsic metric dE :

dE(x, y) = sup{u(x)− u(y) : u ∈ F ∩ C(X) and Γ(u, u) ≤ µ}.
Here by Γ(u, u) ≤ µ we mean that for each Borel set A ⊂ X we have Γ(u, u)(A) =

∫
A
dΓ(u, u) ≤ µ(A).

In general there is no reason why dE is a metric on X (for it could be infinite for a given pair of
points x, y or zero for some distinct pair of points), but suppose that dE is a metric on X such that
the topology generated by dE coincides with the topology on X and that balls with respect to dE
have compact closures in this topology. Then by [Stu94, Lemma 1, Lemma 1′], functions ϕ of the
form x 7→ dE(x, y) for each y ∈ X, and maps ϕ of the form x 7→ (r − dE(x, y))+ for each r > 0 and
y ∈ X are in Floc(X) with dΓ(ϕ,ϕ)/dµ ≤ 1. So we will also assume in this section that dE gives a
metric on X that is commensurate with the topology on X, and that with respect to this metric the
measure µ is doubling, that is, there is a constant C > 0 such that whenever x ∈ X and r > 0, we have
µ(B(x, 2r)) ≤ C µ(B(x, r)).

Lemma 4.1. Let f : X → R be locally Lipschitz continuous with respect to the metric dE . Then
f ∈ Floc(X) with Γ(f, f)� µ. If f is locally L-Lipschitz, then Γ(f, f) ≤ Lµ.

Proof. Let Q be a countable dense subset of X. Let U ⊂ X be a bounded open set and let
{qi}i∈I⊂N be an enumeration of Q∩U . Note that Q∩U is dense in U . For each i ∈ I let ψi(x) = dE(x, qi).
Then as explained above, ψi ∈ F(U) with Γ(ψi, ψi) ≤ µ. For j ∈ I set

fj(x) := inf{f(qi) + Lψi(x) : i ∈ I with i ≤ j},
where L ≥ 0 is the Lipschitz constant of f in U . The above functions are inspired by the proof of the
McShane extension theorem (see for example [Hei01]). By the lattice properties of Dirichlet form, it is

29
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seen that each fj ∈ F(U) with dΓ(fj , fj) ≤ L. Furthermore, fj are L-Lipschitz in U with fj(qi) = f(qi)
for i ∈ I with i ≤ j.

We can see that fj → f monotonically and hence (as f and fj are bounded in U because U is
bounded) fj → f in L2(U), with dΓ(f, f)/dµ ≤ L on U . �

Thus locally Lipschitz functions f with respect to dE satisfy
(1) f ∈ Floc(X),
(2) Γ(f, f) is absolutely continuous with respect to the underlying measure µ; we denote its

Radon-Nikodym derivative by |∇f |2, that is, |∇f | is the square-root of its Radon-Nikodym
derivative.

We say that (X,µ, E ,F) supports a 1-Poincaré inequality if there are constants C, λ > 0 such that
whenever B is a ball in X (with respect to the metric dE) and u ∈ F , we have

1

µ(B)

∫
B

|u− uB | dµ ≤ C rad(B)
1

µ(λB)

∫
λB

|∇u| dµ.

Of course, the 1-Poincaré inequality does not make sense if E does not satisfy the condition of strong
locality. We say that (X,µ, E ,F) supports 2-Poincaré inequality if there are constants C, λ > 0 such
that whenever B is a ball in X (with respect to the metric dE) and u ∈ F , we have

1

µ(B)

∫
B

|u− uB | dµ ≤ C rad(B)

(
1

µ(λB)

∫
λB

dΓ(u, u)

)1/2

.

The requirement that E supports a 1-Poincaré inequality is significantly a stronger requirement than
that of 2-Poincaré inequality. Much of the current theory on functions of bounded variation in the
metric setting require a 1-Poincaré inequality. In this chapter we will not require the support of 1-
Poincaré inequality, only the weaker 2-Poincaré inequality, but in some of the analysis we would need
an additional requirement called the weak Bakry-Émery curvature condition, see the discussion below.

Should the 2-Poincaré inequality be satisfied, a standard argument, due to Semmes, tells us that
locally Lipschitz continuous functions forms a dense subclass of F , where F is equipped with the norm

‖u‖F := ‖u‖L2(X) +
√
E(u, u),

see for example [HKST15, Chapter 8].

Standing assumptions for this chapter: For this chapter we will assume that E is a strongly local
Markovian Dirichlet form that induces a metric d = dE with respect to which µ is doubling and supports
a 2-Poincaré inequality. We will also assume that the class of locally Lipschitz continuous functions on
X forms a dense subclass of L1(X) and that X is complete with respect to dE . As a consequence of the
doubling property of µ it follows that closed and bounded subsets of X are compact.

The work of Saloff-Coste [SC92] tells us that the above standing assumptions are equivalent to the
property that there is an associated heat kernel function pt(x, y) on [0,∞)×X ×X for which there are
constants c1, c2, C > 0 such that whenever t > 0 and x, y ∈ X,

(4.1)
1

C

e−c1d(x,y)2/t√
µ(B(x,

√
t))µ(B(y,

√
t))
≤ pt(x, y) ≤ C e−c2d(x,y)2/t√

µ(B(x,
√
t))µ(B(y,

√
t))
.

The above inequality is called the Gaussian bounds for the heat kernel. Examples of spaces that sup-
port such a Dirichlet form include complete Riemannian manifolds with non-negative Ricci curvature,
Carnot groups and other complete sub-Riemannian manifolds, and doubling metric measure spaces that
support a 2-Poincaré inequality with respect to the upper gradient structure of Heinonen and Koskela
(see [HKST15]).
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In some parts of this chapter we need a condition that guarantees that the space is not negatively
curved with respect to the Dirichlet form. To do so, we will assume that the metric space (X, dE , µ)
satisfies a weak Bakry-Émery curvature condition, namely that whenever u ∈ F ∩ L∞(X),

(4.2) ‖|∇Ptu|‖2L∞(X) ≤
C

t
‖u‖2L∞(X).

Here Ptu denotes the heat extension of u via the heat semigroup associated with the Dirichlet form E ,
see [FOT11].

Example 4.2. The weak Bakry-Émery curvature condition is satisfied in the following examples:
• Complete Riemannian manifolds with non-negative Ricci curvature and more generally, the
RCD(0,+∞) spaces ( [Jia15]).

• Carnot groups (see [BB16])
• Complete sub-Riemannian manifolds with generalized non-negative Ricci curvature (see [BB12,
BK14])

• Metric graphs with finite number of edges (see [BK17])
Several statements equivalent to the weak Bakry-Émery curvature condition are given in Theorem 1.2
in [CJKS17]. There are some metric measure spaces equipped with a doubling measure supporting a
2-Poincaré inequality but without the above Bakry-Émery condition, see for example [KRS03]. For
instance, it should be noted, that in the setting of complete sub-Riemannian manifolds with generalized
non-negative Ricci curvature in the sense of [BG17], while the weak Bakry-Émery curvature condition
is known to be satisfied (see [BB12,BK14]), the 1-Poincaré inequality has not been proven yet (though
the 2-Poincaré is known, see [BBG14]).

4.2. Construction of BV class using the Dirichlet form

In this section we use the Dirichlet form and the associated family Γ(·, ·) of measures to construct
a BV class of functions on X. To do so, we only need µ to be a doubling measure on X for dE and
that the class of locally Lipschitz functions to be dense in L1(X). So in this section we do not need the
Poincaré inequality nor do we need the weak Bakry-Émery curvature condition.

We now set the core of the Dirichlet form, C(X), to be the class of all f ∈ Floc(X) such that
Γ(f, f) � µ. In this case, we can also set u ∈ L1(X) to be in BV (X) if there is a sequence of local
Lipschitz functions uk ∈ L1(X) such that uk → u in L1(X) and

lim inf
k→∞

∫
X

|∇uk| dµ <∞.

For u ∈ BV (X) and open sets U ⊂ X, we set

‖Du‖(U) = inf
uk∈C(U),uk→u in L1(U)

lim inf
k→∞

∫
U

|∇uk| dµ,

and then for sets A ⊂ X we define

‖Du‖(A) = inf{‖Du‖(O) : A ⊂ O and O is open in X}.
Lemma 4.3. If u, v ∈ BV (X) and η is a Lipschitz continuous function on X with 0 ≤ η ≤ 1 on X,

then ηu+ (1− η)v ∈ BV (X) with

‖D(ηu+ (1− η)v)‖(X) ≤ ‖Du‖(X) + ‖Dv‖(X) +

∫
X

|u− v| |∇η| dµ.

Proof. From Lemma 4.1 we already know that given such η, η ∈ Floc with |∇η| ∈ L∞(X).
We can choose sequences uk, vk ∈ F(X) such that uk → u and vk → v in L1(X) and

∫
X
|∇uk| dµ→

‖Du‖(X) and
∫
X
|∇vk| dµ → ‖Dv‖(X) as k → ∞. Now an application of the properties of Dirichlet
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form (see [Stu94, page 190] as well as the references therein) to the functions ηuk + (1− η)vk tells us
that

‖D(ηu+ (1− η)v)‖(X) ≤ lim inf
k→∞

∫
X

|∇[ηuk + (1− η)vk]| dµ

≤ lim inf
k→∞

(∫
X

η|∇uk| dµ+

∫
X

(1− η)|∇vk| dµ+

∫
X

|uk − vk| |∇η| dµ
)
.

Now using the facts that 0 ≤ η ≤ 1 and that uk − vk → u − v in L1(X) we obtain the required
inequality. �

We first list some elementary properties of ‖Du‖.
Lemma 4.4. Let U and V be two open subsets of X. Then
(1) ‖Du‖(∅) = 0;
(2) ‖Du‖(U) ≤ ‖Du‖(V ) if U ⊂ V ,
(3) ‖Du‖(⋃i Ui) =

∑
i ‖Du‖(Ui) if {Ui}i is a pairwise disjoint subfamily of open subsets of X.

Proof. We will only prove the third property here, as the other two are quite direct consequences
of the definition of ‖Du‖. Since any function f ∈ F(

⋃
i Ui) has restrictions ui = f |Ui ∈ F(Ui) with∫⋃

i Ui
|∇f | dµ =

∑
i

∫
Ui
|∇ui| dµ, it follows that

‖Du‖(
⋃
i

Ui) ≥
∑
i

‖Df‖(Ui).

In the above we also used the fact that as f gets closer to u in the L1(
⋃
i Ui) sense, ui gets closer to u

in the L1(Ui) sense.
To prove the reverse inequality, for ε > 0 we can choose locally Lipschitz continuous ui ∈ F(Ui) for

each i such that ∫
Ui

|u− ui| dµ < 2−i−2ε

and ∫
Ui

|∇ui| dµ < ‖Du‖(Ui) + 2−i−2ε.

Now the function fε =
∑
i ui1Ui is in F(

⋃
i Ui) because the Ui are pairwise disjoint open sets, and E is

local. Therefore ∫
⋃
i Ui

|u− fε| dµ ≤
∑
i

∫
Ui

|u− ui| dµ ≤
ε

2

and ∫
⋃
i Ui

|∇fε| dµ =
∑
i

∫
Ui

|∇ui| dµ ≤
ε

2
+
∑
i

‖Df‖(Ui).

From the first of the above two inequalities it follows that limε→0+ fε = u in L1(
⋃
i Ui), and therefore

‖Du‖(
⋃
i

Ui) ≤ lim inf
ε→0+

(
ε

2
+
∑
i

‖Du‖(Ui)
)

=
∑
i

‖Du‖(Ui).

�

We use the above definition of ‖Du‖ on open sets to consider the following Caratheodory construc-
tion.

Definition 4.5. For A ⊂ X, we set

‖Du‖∗(A) := inf{‖Du‖(O) : O is open subset of X,A ⊂ O}.
By the second property listed in the above lemma, we note that if A is an open subset of X, then

‖Du‖∗(A) = ‖Du‖(A). With this observation, we re-name ‖Du‖∗(A) as ‖Du‖(A) even when A is not
open.
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4.2.1. Radon measure property of BV energy. The following lemma is due to De Giorgi and
Letta [DGL77, Theorem 5.1], see also [AFP00, Theorem 1.53].

Lemma 4.6. If ν is a non-negative function on the class of all open subsets of X such that
(1) ν(∅) = 0,
(2) if U1 ⊂ U2 and they are both open sets, then ν(U1) ≤ ν(U2),
(3) ν(U1 ∪ U2) ≤ ν(U1) + ν(U2) for open sets U1, U2 in X,
(4) if U1 ∩ U2 is empty and U1, U2 are open, then ν(U1 ∪ U2) = ν(U1) + ν(U2),
(5) for open sets U

ν(U) = sup{ν(V ) : V is bounded and open in X with V ⊂ U}.
Then the Caratheodory extension of ν to all subsets of X gives a Borel regular outer measure on X.

The proof of the following theorem is based on that of [Mir03].

Theorem 4.7. If X is complete and f ∈ BV (X), then ‖Df‖ is a Radon outer measure on X.

Proof. For simplicity of notation we will assume that X is itself bounded. Thanks to the lemma
of De Giorgi and Letta (Lemma 4.6), it suffices to verify that ‖Du‖ satisfies the five conditions set forth
in Lemma 4.6. By Lemma 4.4, we know that ‖Du‖ satisfies Conditions 1, 2, and Condition 4. Thus it
suffices for us to verify Condition 3 and Condition 5. We will first show the validity of Condition 5, and
use it (or rather, it’s proof) to show that Condition 3 holds. We will do so for bounded open subsets of
X; a simple modification (by truncating Uδ by balls) would complete the proof for unbounded sets; we
leave this part of the extension as an exercise.
Proof of Condition 5: From the monotonicity condition 2, it suffices to prove that

‖Df‖(U) ≤ sup{‖Df‖(V ) : V is open in X,V is a compact subset of U}.
For δ > 0 we set

Uδ = {x ∈ U : dist(x,X \ U) > δ}.
For 0 < δ1 < δ2 < diam(U)/2, let V = Uδ1 and W = U \ Uδ2 . Then V and W are open subsets of U ,
and the closure of V is a compact subset of U . Note also that U = V ∪W and that ∂V ∩ ∂W is empty.
Thus we can find a Lipschitz function η on U that can be used as a “needle+thread" to stitch Sobolev
functions on V to Sobolev functions on W as follows to obtain a Sobolev function on U : 0 ≤ η ≤ 1 on
U , η = 1 on V \W = Uδ2 , η = 0 on W \ V = U \ Uδ1 , and

Lip η ≤ 2

δ2 − δ1
1V ∩W .

Now, for v ∈ F(V ) and w ∈ F(W ) we set u = ηv+(1−η)w. As we have the Leibniz rule (see [Stu94]),
we can see that u ∈ F(U) and

(4.3)
∫
U

|∇u| dµ ≤
∫
V

|∇v| dµ+

∫
W

|∇w| dµ+
2

δ2 − δ1

∫
V ∩W

|v − w| dµ.

Furthermore, whenever h ∈ L1(U), we can write h = ηh+ (1− η)h to see that

(4.4)
∫
U

|u− h| dµ ≤
∫
V

|v − h| dµ+

∫
W

|w − h| dµ.

Now, we take vk from F(V ) such that vk → f in L1(V ) and limk→∞
∫
V
|∇vk| dµ = ‖Df‖(V ), and take

wk ∈ F(W ) analogously. We then follow through by stitching together vk and wk into the function uk
as prescribed above. By (4.4) with h = f , we have that∫

U

|f − uk| dµ ≤
∫
V

|vk − f | dµ+

∫
W

|wk − f | dµ→ 0 as k →∞.

It follows from (4.3) and the fact
∫
V ∩W |vk − wk| dµ→ 0 as k →∞ that

‖Df‖(U) ≤ lim inf
k→∞

∫
U

|∇uk| dµ ≤ ‖Df‖(V ) + ‖Df‖(W ).
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Remembering again that the closure of V is a compact subset of U , we see that

‖Df‖(U) ≤ sup{‖Df‖(V ) : V is open in X,V is compact subset of U}+ ‖Df‖(U \ Uδ2).

So now it suffices to prove that

(4.5) lim
δ→0+

‖Df‖(U \ Uδ) = 0.

To prove this, we note first that the above limit exists as ‖Df‖(U \ Uδ) decreases as δ decreases. We
fix a strictly monotone decreasing sequence of real numbers δk with limk→∞ δk = 0, and for k ≥ 2 we
set Vk := Uδ2k+3

\ Uδ2k . Observe that the family {V2k}k is a pairwise disjoint family of open subsets of
X and that the family {V2k+1}k is also a pairwise disjoint family of open subsets of X.

By Lemma 4.4, we know that

∞ > ‖Df‖(U) ≥ ‖Df‖(
⋃
k≥1

V2k) =

∞∑
k=1

‖Df‖(V2k),

and

∞ > ‖Df‖(U) ≥ ‖Df‖(
⋃
k≥1

V2k+1) =

∞∑
k=1

‖Df‖(V2k+1).

It follows that for ε > 0 there is some positive integer kε ≥ 2 such that
∞∑

k=kε

‖Df‖(V2k) +

∞∑
k=kε

‖Df‖(V2k+1) < ε.

Now we stitch together approximations on V2k to approximations on V2k+1, and from there to V2k+2

and so on. For each k we choose a “stitching function" ηk as a Lipschitz function on
⋃k+1
j=kε

Vj such that
0 ≤ ηk ≤ 1, with ηk = 1 on Vk \ Vk−1, ηk = 0 on

⋃k−1
j=kε

Vj \ Vk, and |∇ηk| ≤ Ck1Vk∩Vk−1
.

Next, for each k we can find vk,j ∈ F(Vk) such that∫
Vk

|vk,j − f | dµ ≤
2−k−j

3(1 + Ck)

and ∫
Vk

|∇vk,j | dµ ≤ ‖Df‖(Vk) + 2−j−k.

We now inductively stitch the functions together. To do so, we first fix i ∈ N.
Starting with k = kε, we stitch uk,i to uk+1,i using ηk+1 = ηkε+1 to obtain wi,k ∈ F(Vkε ∪ Vkε+1)

so that we have ∫
Vkε∪Vkε+1

|wi,k − f | dµ ≤
2−i−kε

1 + Ckε+1

and ∫
Vkε∪Vkε+1

|∇wi,k| dµ ≤
kε+1∑
j=kε

‖Df‖(Vj) + 21−i−kε .

Suppose now that for some k ∈ N with k ≥ kε + 1 we have constructed wi,k ∈ F(
⋃k
j=kε

Vj) such that∫
⋃k
j=kε

Vj

|wi,k − f | dµ ≤
k∑

k=kε

2−i−j

1 + Cj

and ∫
⋃k
j=kε

Vj

|∇wi,k| dµ ≤
k∑

j=kε

[‖Df‖(Vj) + 21−i−j ].
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Then we stitch uk+1,i to wi,k using ηk+1 to obtain wi,k+1 satisfying inequalities analogous to the above
two. Note that wi,k+1 = wi,k−1 on Vk−1 for k ≥ kε + 2. Thus, in the limit, we obtain a function
wi = limk wi,k ∈ F(

⋃∞
k=kε

Vk) satisfying∫
⋃∞
j=kε

Vj

|wi − f | dµ ≤
k∑

k=kε

2−i−j

1 + Cj
< 21−i,

∫
⋃∞
j=kε

Vj

|∇wi| dµ ≤
∞∑
j=kε

‖Df‖(Vj) + 22−i < ε+ 22−i.

From the first of the above two inequalities, we see that wi → f in L1(
⋃∞
j=kε

Vj) as i→∞, and so from
the second of the above two inequalities we obtain

‖Df‖(
∞⋃
j=kε

Vj) = ‖Df‖(U \ Uδkε ) ≤ lim inf
i→∞

∫
⋃∞
j=kε

Vj

|∇wi| dµ ≤ ε.

This last inequality above tells us that the claim we set out to prove, namely

lim
δ→0+

‖Df‖(U \ Uδ) = 0.

this completes the proof of Condition 5.
Proof of Condition 3: By Condition 5 (which we have now proved above, so no circular argument
here!), for each ε > 0 we can find relatively compact open subsets U ′1 b U1 and U ′2 b U2 such that
‖Df‖(U1 ∪U2) ≤ ‖Df‖(U ′1 ∪U ′2) + ε. We then choose a Lipschitz “stitching function" η on X such that
0 ≤ η ≤ 1 on X, η = 1 on U ′1, η = 0 on X \ U1, and

|∇η| ≤ 1

CU1,U ′1

1U1\U ′1 .

For u1 ∈ F(U1) and u2 ∈ F(U2), we obtain the stitched function w = ηu1 + (1 − η)u2 and note that
w ∈ F(U ′1 ∪ U ′2). Observe that we cannot in general have w ∈ F(U1 ∪ U2) as w is not defined in
U1 \ (U ′1 ∪ U2) because 1− η is non-vanishing there and u2 is not defined there, for example. Then we
have ∫

U ′1∪U ′2
|∇w| dµ ≤

∫
U1

|∇u1| dµ+

∫
U2

|∇u2 dµ+
1

CU1,U ′1

∫
U1∩U2

|u1 − u2| dµ

and ∫
U ′1∪U ′2

|w − f | dµ ≤
∫
U1

|u1 − f | dµ+

∫
U2

|u2 − f | dµ.

As before, choosing u1k to be the optimal approximating sequence for f on U1 and u2,k correspondingly
for f on U2, we see from the first of the above two inequalities that the stitched sequence wk approximates
f on U ′1 ∪ U ′2. Therefore we obtain

‖Df‖(U1 ∪ U2) ≤ ε+ ‖Df‖(U ′1 ∪ U ′2) ≤ ε+ lim inf
k→∞

∫
U1∪U2

|∇wk| dµ ≤ ‖Df‖(U1) + ‖Df‖(U2) + ε.

Letting ε→ 0 now gives the desired Condition 3. �

4.2.2. Co-area formula.

Definition 4.8. We say that a measurable set E ⊂ X is of finite perimeter if 1E ∈ BVloc(X) with
‖D1E‖(X) <∞. We denote by P (E,A) := ‖D1E‖(A) the perimeter measure of E.

Lemma 4.9. The co-area formula holds true, that is, for Borel sets A ⊂ X and u ∈ L1
loc(X),

‖Du‖(A) =

∫
R
P ({u > s}, A) ds.
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Proof. We first prove the formula for open sets A.
Suppose first that u ∈ BVloc(X) with ‖Du‖(A) <∞. For s ∈ R we set Es := {x ∈ X : u(x) > s}.

Consider the function m : R→ R given by

m(t) = ‖Du‖(A ∩ Et).
Then m is a monotone decreasing function, and hence is differentiable almost everywhere. Let t ∈ R
such that m′(t) exists. Then

m′(t) = lim
h→0+

‖Du‖(A ∩ Et \ Et+h)

h
.

Note that the functions
ut,h :=

max{t,min{t+ h, u}} − t
h

converge in L1(X) to 1Et as h→ 0+. It follows that as A is open,

P (Et, A) ≤ lim inf
h→0+

‖Dut,h‖(A) = lim inf
h→0+

‖Du‖(A ∩ Et \ Et+h)

h
= m′(t).

Note also that by this lower semicontinuity of BV energy, t 7→ P (Et, A) is a lower semicontinuous
function, and hence is measurable; and as it is non-negative, we can talk about its integral, whether
that integral is finite or not. Therefore, by the fundamental theorem of calculus for monotone functions,∫

R
P (Et, A) dt ≤

∫
R
m′(t) dt ≤ lim

s,τ→∞
m(s)−m(−τ) = ‖Du‖(A).

The above in particular tells us that if u ∈ BVloc(X) then almost all of its superlevel sets Et have finite
perimeter. If u is not a BV function on A, then ‖Du‖(A) =∞, and hence we also have

(4.6)
∫
R
P (Et, A) dt ≤ ‖Du‖(A).

In particular, it also follows that
∫
R P (Et, A) dt <∞ if u ∈ BV (X).

We still continue to assume that A is open, and prove the reverse of the above inequality. If∫
R P (Et, A) dt =∞, then trivially

‖Du‖(A) ≤
∫
R
P (Et, A) dt.

So we may assume without loss of generality that
∫
R P (Et, A) dt is finite. Note also by the Markovian

property of Dirichlet forms, filtered down to the level of the measure |∇f |, we have that

‖Du‖(A) = lim
s,τ→∞

‖Dus,τ‖(A),

where us,τ = max{−τ,min{u, s}}. So without loss of generality we may assume that 0 ≤ u ≤ 1 for
some finite a, b ∈ R. For positive integers X we can divide [0, 1] into X equal sub-intervals [ti, ti+1],
i = 0, · · · , k with ti+1 − ti = 1/k. Then we can find ρk,i ∈ (ti, ti+1) such that

1

k
P (Eρk,i , A) ≤

∫ ti+1

ti

P (Es, A) ds.

We set

uX =

k∑
j=1

1

k
1Eρk,i .

Then as |uk − u| ≤ 1/k on X, we have that uk → u in L1(A) as k →∞, and so

(4.7) ‖Du‖(A) ≤ lim inf
k→∞

‖Duk‖(A) = lim inf
k→∞

k∑
j=1

1

k
P (Eρk,i , A) ≤

∫ 1

0

P (Es, A) ds.

Note now that by the proofs of inequalities (4.6) and (4.7), if A is an open set then u ∈ BV (A) if
and only if

∫
R P (Et, A) dt is finite.
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Finally, we remove the requirement that A be open. By the above comment, it suffices to prove this
for the case that u ∈ BV (X). In this case, the maps A 7→ ‖Du‖(A) and A 7→

∫
R P (Et, A) dt are both

Radon measures on X that agree on open subsets of X (that is, they are equal for open A). Hence it
follows that they agree on Borel subsets of X. This completes the proof of the coarea formula. �

4.3. B1,1/2(X) is equal to BV (X)

In this section we will assume that (X, dE , µ) is doubling, supports a 2-Poincaré inequality, and
satisfies a weak Bakry-Émery curvature condition (4.2). Under this condition, we will compare the BV
class, constructed in Section 4.2, with the Besov class B1,1/2(X) from (1.1). We will also assume that
for each u ∈ F the measure Γ(u, u) is absolutely continuous with respect to the underlying measure µ
on X; as in the previous section we will denote by |∇u|2 the Radon-Nikodym derivative of Γ(u, u) with
respect to µ.

In what follows, F1(X) denotes the collection of all u ∈ L1(X) ∩ Floc(X) for which |∇u| ∈ L1(X).
This means that for each ball B in X there is a compactly supported Lipschitz function ϕ with ϕ = 1
on B such that uϕ ∈ F ; in this case we can set |∇u| = |∇(uϕ)| in B, thanks to the strong locality
property of E .

Lemma 4.10. Suppose that (4.2) holds. For u ∈ F ∩ F1(X), we have that

‖Ptu− u‖L1(X) ≤ C
√
t

∫
X

|∇u| dµ.

Hence, if u ∈ BV (X), then

‖Ptu− u‖L1(X) ≤ C
√
t ‖Du‖(X).

Proof. To see the first part of the claim, we note that for each x ∈ X and s > 0, ∂
∂sPsu(x) exists,

and so by the fundamental theorem of calculus, for 0 < τ < t and x ∈ X,

Ptu(x)− Pτu(x) =

∫ t

τ

∂

∂s
Psu(x) ds.

Thus for each compactly supported function ϕ ∈ F ∩ L∞(X), by the facts that Ptu satisfies the heat
equation and that Ps commutes with the infinitesimal generator (Laplacian),∣∣∣∣ ∫

X

ϕ(x)[Ptu(x)− Pτu(x)] dµ(x)

∣∣∣∣ =

∣∣∣∣− ∫
X

∫ t

τ

ϕ(x)
∂

∂s
Psu(x) ds dµ(x)

∣∣∣∣
=

∣∣∣∣ ∫ t

τ

∫
X

dΓ(ϕ, Psu)(x) ds

∣∣∣∣
=

∣∣∣∣ ∫ t

τ

∫
X

dΓ(Psϕ, u)(x) ds

∣∣∣∣
≤
∫ t

τ

∫
X

|∇Psϕ| |∇u| dµ ds

≤ ‖|∇Psϕ|‖L∞(X)

∫ t

τ

∫
X

|∇u| ds dµ.

An application of (4.2) gives∣∣∣∣ ∫
X

ϕ(x)[Ptu(x)− Pτu(x)] dµ(x)

∣∣∣∣ ≤ C√
t
‖ϕ‖L∞(X)

∫
X

∫ t

τ

|∇u| ds dµ

= C
t− τ√

t
‖ϕ‖L∞(X)

∫
X

|∇u| dµ.
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As the above holds for all ϕ ∈ F ∩ L∞(X), and as compactly supported Lipschitz functions are dense
in L∞(X) (note that X is separable as closed and bounded subsets of X are compact because X is
complete and supports a doubling measure), we obtain

‖Ptu− Pτu‖L1(X) ≤ C
t− τ√

t

∫
X

|∇u| dµ.

Now by the fact that Pτu→ u as τ → 0+ in L2(X), and by the fact that {Pt}t>0 has an extension as
a contraction semigroup to L1(X) (see [FOT11, Section 1.5 of page 37, Section 4.7 of page 201]), we
have that

‖Ptu− u‖L1(X) ≤ C
√
t

∫
X

|∇u| dµ

as desired.
Finally, if u ∈ BV (X), then we can find a sequence uk ∈ F ∩W 1,1(X) such that uk → u in L1(X)

and limk

∫
X
|∇uk| dµ = ‖Du‖(X). As u ∈ L1(X) and for t > 0 we have that the heat kernel pt(x, y)

is bounded in X × X, it follows that Ptu ∈ L1(X) is well-defined with ‖Ptu‖L1(X) ≤ Ct‖u‖L1(X),
see [FOT11, Section 1.5]. Now,

‖Ptu− u‖L1(X) ≤ ‖Pt(u− uk)‖L1(X) + ‖Ptuk − uk‖L1(X) + ‖uk − u‖L1(X)

≤ Ct‖u− uk‖L1(X) + C
√
t

∫
X

|∇uk| dµ+ ‖u− uk‖L1(X)

→ C
√
t lim
k→∞

∫
X

|∇uk| dµ = C
√
t ‖Du‖(X) as k →∞.

�

Recall the definition of B1,1/2(X) from (1.1): f is in this class if

‖f‖B1,1/2(X) := ‖f‖L1(X) + sup
t>0

1√
t

∫
X

Pt(|f − f(x)|)(x) dµ(x) <∞.

Equivalently,

‖f‖B1,1/2(X) = ‖f‖L1(X) + sup
t>0

1√
t

∫
X

∫
X

pt(x, y)|f(y)− f(x)| dµ(y) dµ(x) <∞.

We now wish to prove the following theorem.

Theorem 4.11. Under the hypotheses of this section, B1,1/2(X) = BV (X) with comparable semi-
norms. Moreover, there exist constants c, C > 0 such that for every u ∈ BV (X)

c lim sup
s→0

s−1/2

∫
X

Ps(|u− u(y)|)(y)dµ(y) ≤ ‖Du‖(X) ≤ C lim inf
s→0

s−1/2

∫
X

Ps(|u− u(y)|)(y)dµ(y).

Note from the results of [MMS16, Theorem 4.1] that if the measure µ is doubling and supports a
1-Poincaré inequality, then a measurable set E ⊂ X is in the BV class if

lim inf
t→0+

1√
t

∫
E
√
t\E

Pt1E dµ <∞.

Here Eε =
⋃
x∈E B(x, ε). Note that∫

E
√
t\E

Pt1E dµ ≤
∫
X\E

Pt1E dµ =
1

2
‖Pt1E − 1E‖L1(X).

Thus if µ is doubling and supports a 1-Poincaré inequality, and in addition

sup
t>0

1√
t
‖Pt1E − 1E‖L1(X) <∞,

then E is of finite perimeter. Note that we do not assume the validity of 1-Poincaré inequality, but the
weaker version of (4.2).
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Proof. First we assume that u ∈ BV (X). Then we know that for almost every t ∈ R the set Et
is of finite perimeter, where

Et = {x ∈ X : u(x) > t},
and by the co-area formula for BV functions (see for example Lemma 4.9 or [Mir03]),

‖Du‖(X) =

∫
R
‖D1Et‖(X) dt.

For such t, by Lemma 4.10 we know that

sup
s>0

1√
s

∫
X

|Ps1Et(x)− 1Et(x)| dµ(x) ≤ C ‖D1Et‖(X).

Now, setting A = {(x, y) ∈ X ×X : u(x) < u(y)}, we have for s > 0,∫
X

∫
X

ps(x, y)|u(x)− u(y)| dµ(x)dµ(y)

= 2

∫∫
A

ps(x, y)|u(x)− u(y)| dµ(x)dµ(y)

= 2

∫∫
A

∫ u(y)

u(x)

ps(x, y) dt dµ(x)dµ(y)

= 2

∫
X

∫
X

∫
R
1[u(x),u(y))(t)1A(x, y) ps(x, y) dt dµ(x)dµ(y)

= 2

∫
R

∫
X

∫
X

1Et(y)[1− 1Et(x)] ps(x, y) dµ(x)dµ(y) dt

= 2

∫
R

∫
X

Ps1Et(x)[1− 1Et(x)] dµ(x) dt

= 2

∫
R

∫
X\Et

Ps1Et(x) dµ(x) dt.

Observe that∫
X

|Ps1Et(x)− 1Et(x)| dµ(x) ≥
∫
X\Et

|Ps1Et(x)− 1Et(x)| dµ(x) =

∫
X\Et

Ps1Et(x) dµ(x).

Therefore we obtain∫
X

∫
X

ps(x, y) |u(x)− u(y)| dµ(x)dµ(y) ≤ 2

∫
R
‖Ps1Et − 1Et‖L1(X) dt.

An application of Lemma 4.10 now gives∫
X

∫
X

ps(x, y) |u(x)− u(y)| dµ(x)dµ(y) ≤ C√s
∫
R
‖D1Et‖(X) dt,

whence with the help of the co-area formula we obtain

‖u‖1,1/2 ≤ C ‖Du‖(X),

that is, u ∈ B1,1/2(X). Thus BV (X) ⊂ B1,1/2(X) boundedly.

Now we show that B1,1/2(X) ⊂ BV (X); this inclusion holds even when E does not support a
Bakry-Émery curvature condition; only a 2-Poincaré inequality and the doubling condition on µ are
needed. Now suppose that u ∈ B1,1/2(X). Then there is some C ≥ 0 such that for each t > 0,∫

X

∫
X

pt(x, y)|u(y)− u(x)| dµ(y) dµ(x) ≤ C
√
t.
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By (4.1), we have a Gaussian lower bound for the heat kernel:

pt(x, y) ≥ e−cd(x,y)2/t

C
√
µ(B(x,

√
t))µ(B(y,

√
t))
.

Let C0 = ‖u‖B1,1/2(X) − ‖f‖L1(X). Therefore, setting ∆ε = {(x, y) ∈ X : d(x, y) < ε} for some ε > 0,
we get

C0

√
t ≥

∫
X

∫
X

e−cd(x,y)2/t

C
√
µ(B(x,

√
t))µ(B(y,

√
t))
|u(y)− u(x)| dµ(y) dµ(x)

≥ C−1

∫∫
∆ε

e−cd(x,y)2/t√
µ(B(x,

√
t))µ(B(y,

√
t))
|u(y)− u(x)| dµ(x)dµ(y)

≥ e−cε
2/t

C

∫∫
∆ε

|u(y)− u(x)|√
µ(B(x,

√
t))µ(B(y,

√
t))

dµ(x)dµ(y).

With the choice of ε =
√
t, we now get

C0 ε ≥
1

C

∫∫
∆ε

|u(y)− u(x)|√
µ(B(x, ε))µ(B(y, ε))

dµ(x)dµ(y).

It follows that

(4.8) lim inf
ε→0+

1

ε

∫∫
∆ε

|u(y)− u(x)|√
µ(B(x, ε))µ(B(y, ε))

dµ(x)dµ(y) ≤ C C0 <∞.

Now an argument as in the second half of the proof of [MMS16, Theorem 3.1] tells us that u ∈
BV (X). We point out here that although [MMS16, Theorem 3.1] assumes that X supports a 1-
Poincaré inequality, this part of the proof of [MMS16, Theorem 3.1] does not need this assumption;
the argument using discrete convolution there is valid also in our setting. We also then obtain that

‖Du‖(X) ≤ lim inf
ε→0+

1

ε

∫∫
∆ε

|u(y)− u(x)|√
µ(B(x, ε))µ(B(y, ε))

dµ(x)dµ(y) ≤ ‖u‖B1,1/2(X) − ‖f‖L1(X).

�

Remark 4.12. As a byproduct of this proof, we also obtain that there exists a constant C > 0 such
that for every u ∈ BV (X),

sup
ε>0

1

ε

∫∫
∆ε

|u(y)− u(x)|√
µ(B(x, ε))µ(B(y, ε))

dµ(x)dµ(y) ≤ C lim inf
ε→0+

1

ε

∫∫
∆ε

|u(y)− u(x)|√
µ(B(x, ε))µ(B(y, ε))

dµ(x)dµ(y)

because both sides are comparable to ‖Du(X)‖. This property of the metric space (X, d) can be viewed
as an interesting consequence of the weak Bakry-Émery estimate.

We say that X supports a 1-Poincaré inequality if there are constants C, λ > 0 such that whenever
B is a ball in X and u ∈W 1,1(X), we have∫

B

|u− uB | dµ ≤ C rad(B)

∫
λB

|∇u| dµ.

Given A ⊂ X we set

H(A) := lim
ε→0+

inf

{∑
i

µ(Bi)

rad(Bi)
: A ⊂

⋃
i

Bi, and ∀i, rad(Bi) < ε

}
.
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In the event that X supports a 1-Poincaré inequality, from the results of Ambrosio, Miranda and
Pallara, we know that P (E,X) ' H(∂mE) whenever E is of finite perimeter. Here ∂mE consists of
points x ∈ ∂E for which both

lim sup
r→0+

µ(B(x, r) ∩ E)

µ(B(x, r))
> 0

and

lim sup
r→0+

µ(B(x, r) \ E)

µ(B(x, r))
> 0.

In this current paper we do not assume the strong condition that X supports a 1-Poincaré inequality,
but we assume that X supports a 2-Poincaré inequality; in this case, we have the double Gaussian
bounds (4.1) for the heat kernel pt(x, y). Note that even without the assumption of 2-Poincaré inequality,
we know that if H(∂E) <∞, then E is of finite perimeter.

For r0 > 0 and 0 < α < 1 we set ∂r0α E to be the collection of all points x ∈ ∂E such that for all
0 < r ≤ r0,

µ(B(x, r) ∩ E)

µ(B(x, r))
> α,

µ(B(x, r) \ E)

µ(B(x, r))
> α.

Observe that ∂mE =
⋃

0<α<1

⋃
0<r0<1 ∂

r0
α (E). This union can be made a countable union by taking α

and r0 to be rational numbers.

Lemma 4.13. Suppose that µ is doubling and supports a 2-Poincaré inequality, and that E ⊂ X
with ‖1E‖B1,1/2(X) finite. Then for all r0 > 0 and 0 < α < 1,

H(∂r0α E) ≤ C

α
P (E,X).

Consequently, H|∂mE is a σ-finite measure.

Proof. Note that the proof of Theorem 4.11 also tells us that even without the Bakry-Émery
condition (4.2), we know that if 1E ∈ B1,1/2(X) then 1E ∈ BV (X). By the definition of B1,1/2(X), we
know that

sup
t>0

1√
t

∫
X

∫
X

pt(x, y)|1E(x)− 1E(y)| dµ(x) dµ(y) ≤ C P (E,X).

Fix t < (r0/3)2. We cover ∂r0α E by countably many balls Bi of radius
√
t such that the balls 5Bi have a

bounded overlap (the bound depending solely on the doubling constant of µ, see [Hei01] for example).
Then by the doubling property of µ and by the Gaussian lower bound for pt(x, y) (which follows from
the 2-Poincaré inequality together with the doubling property of µ),

C
√
t P (E,X) ≥

∑
i

∫
Bi∩E

∫
Bi\E

pt(x, y) dµ(x) dµ(y)

≥ C−1
∑
i

∫
Bi∩E

∫
Bi\E

e−C

µ(Bi)
dµ(x) dµ(y)

≥ C−1
∑
i

µ(Bi ∩ E)µ(Bi \ E)µ(Bi)

µ(Bi)2
.

In the above computations, C stands for various generic constants that depend only on the doubling
and Poincaré constants of the space, and the value of C could change at each occurrence. Note that at
least one of µ(Bi ∩ E)/µ(Bi) and µ(Bi \ E)/µ(Bi) is larger than 1/2. Now by the definition of ∂r0α E
we obtain

C P (E,X) ≥ α
∑
i

µ(Bi)√
t
.
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Since
√
t is the radius of each Bi, we get

C P (E,X) ≥ α lim sup
t→0+

∑
i

µ(Bi)√
t
≥ αH(∂r0α E).

If 0 < r1 < r0, then
∂r0α E ⊂ ∂r1α E ⊂ ∂mE.

Setting
∂αE :=

⋃
0<r0<1

∂r0α E =
⋃

(0,1)∩Q

∂r0α E,

we now see by the continuity of measure that if the sets ∂r0α E are Borel sets, then

H(∂αE) ≤ C

α
P (E,X).

To see that ∂r0α E is a Borel set we argue as follows. Recall that we assume µ to be Borel regular.
Therefore, given a µ-measurable set E and r > 0, the function

x 7→ µ(B(x, r) ∩ E)

is lower semicontinuous, the map

ϕE,r(x) :=
µ(B(x, r) ∩ E)

µ(B(x, r))

is a Borel function. Hence the function ΦE,r0 := infr∈Q∩(0,r0] ϕE,r is also a Borel function, and hence

∂r0α E = {x ∈ X : ΦE,r0(x) > α} ∩ {x ∈ X : ΦX\E,r0(x) > α}
is a Borel set. �

Should X support a 1-Poincaré inequality, then by the results of [AMP04], there is a number
γ ∈ (0, 1/2] such that H(∂mE \ ∂γE) = 0; this number γ depends solely on the doubling and the
1-Poincaré constants. Observe that the results of [AMP04] also tells us that if E is of finite perimeter,
then H(∂mE) ' P (E,X).

4.4. Metric characterization of Bp,α(X)

Now we turn our attention to the study of Besov spaces in the metric setting. In this section, we
follow the notions given in [GKS10]. For 0 ≤ α < ∞, 1 ≤ p < ∞ and p < q ≤ ∞, we set Bαp,q(X) to
be the collection of all functions u ∈ Lp(X,µ) for which

(4.9) ‖u‖Bαp,q(X) :=

∫ ∞
0

(∫
X

∫
B(x,t)

|u(y)− u(x)|p
tαpµ(B(x, t))

dµ(y) dµ(x)

)q/p
dt

t

1/q

is finite when q <∞, and

(4.10) ‖u‖Bαp,∞(X) := sup
t>0

(∫
X

∫
B(x,t)

|u(y)− u(x)|p
tαpµ(B(x, t))

dµ(y) dµ(x)

)1/p

is finite when q = ∞. In the setting considered in the next chapter, with µ an Ahlfors dH -regular
measure (that is, µ(B(x, r)) ' rdH for all x ∈ X and 0 < r < 2diam(X)) Bα

p (X) = Bαp,∞(X).

Proposition 4.14. Suppose that µ is doubling and supports a 2-Poincaré inequality. Then for
1 ≤ p <∞ and 0 ≤ α <∞ we have

Bp,α/2(X) = Bαp,∞(X),

with equivalent seminorms.
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Proof. Since µ is doubling and supports a 2-Poincaré inequality, we have the Gaussian double
bound for pt(x, y). Hence if u ∈ Bp,α(X), we then must have

‖u‖p
Bp,α/2(X)

≥ C−1 sup
t>0

∫
X

∫
X

|u(y)− u(x)|p
tαp/2

e−C d(x,y)2/t

µ(B(x,
√
t))

dµ(y) dµ(x)

≥ C−1 sup√
t>0

∫
X

∫
B(x,

√
t)

|u(y)− u(x)|p
tαp/2

e−C d(x,y)2/t

µ(B(x,
√
t))

dµ(y) dµ(x)

≥ C−1 sup√
t>0

∫
X

∫
B(x,

√
t)

|u(y)− u(x)|p√
t
αp
µ(B(x,

√
t))

dµ(y) dµ(x)

= C−1‖u‖pBαp,∞(X),

and from this it follows that Bp,α/2(X) embeds boundedly into Bαp,∞(X).
Now we focus on proving the converse embedding. Since X supports 2-Poincaré inequality, it is

connected. Therefore by the doubling property of µ (see [Hei01]), there are constants 0 < Q ≤ s <∞
and C ≥ 1 such that whenever 0 < r ≤ R, x ∈ X, and y ∈ B(x,R),

(4.11)
1

C

( r
R

)s
≤ µ(B(y, r))

µ(B(x,R))
≤ C

( r
R

)Q
.

Therefore,
1

tαp/2

∫
X

∫
X

|u(y)− u(x)|p pt(x, y) dµ(y) dµ(x)

≤ C

tαp/2

∫
X

∞∑
i=−∞

∫
B(x,2i

√
t)\B(x,2i−1

√
t)

|u(y)− u(x)|p e−C4i√
µ(B(

√
t))µ(B(y,

√
t))

dµ(y) dµ(x)

≤ C

tαp/2

∫
X

∞∑
i=−∞

∫
B(x,2i

√
t)

|u(y)− u(x)|p e−C4i

µ(B(x, 2i
√
t))

√
µ(B(x, 2i

√
t))

µ(B(x,
√
t))

√
µ(B(y, 2i

√
t))

µ(B(y,
√
t))

dµ(y) dµ(x)

≤ C

tαp/2

∞∑
i=−∞

e−C4i max{2is, 2iQ} (2i
√
t)αp

∫
X

∫
B(x,2i

√
t)

|u(y)− u(x)|p
(2i
√
t)αp µ(B(x, 2i

√
t))

dµ(y) dµ(x)

≤ C ‖u‖pBαp,∞(X)

∞∑
i=−∞

e−C4i 2iαp max{2is, 2iQ}.

Since
∞∑

i=−∞
e−C4i 2iαp max{2is, 2iQ} ≤

∑
i∈N

e−C4i 2i[αp+s] +

∞∑
i=0

2−i[αp+Q] <∞,

the desired bound follows. �

Remark 4.15. While the previous theorem gave us a way to control, from above, the H-measure
of ∂mE for a set E of finite perimeter, Proposition 4.14 give us a way to control, from below, the
co-dimension 1 Minkowski measure of ∂E. Given set A ⊂ X, the co-dimension 1-Minkowski measure
of A is given by

M−1(A) := lim inf
ε→0+

µ(Aε)

ε
,

where Aε =
⋃
x∈AB(x, ε). As µ is doubling, we see with the aid of Proposition 4.14 that if E ⊂ X is a

measurable set such that 1E ∈ B1,1/2(X), then

lim inf
t→0+

∫
X

∫
B(x,t)

|1E(x)− 1E(y)|
t1/2µ(B(x, t))

dµ(y) dµ(x) ≤M−1(∂E),

with the limit infimum on the left-hand side a finite number.
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Remark 4.16. Another application of Proposition 4.14 is the following. It is in general not true that
if ‖Du‖(X) = 0 then u is constant almost everywhere in X, even if X is connected. Should X support
a 1-Poincaré inequality, the fact that ‖Du‖(X) = 0 implies u is constant follows immediately. We can
use the above proposition to show that even if we do not have 1-Poincaré inequality, if X supports the
Bakry-Émery curvature condition (4.2), then we still have the constancy of u from ‖Du‖(X) = 0, for
then

sup
t>0

∫
X

∫
B(x,t)

|1E(x)− 1E(y)|
t1/2µ(B(x, t))

dµ(y) dµ(x) ' ‖Du‖(X).

To conclude this section, we point out the following result that shows that 1/2 is a critical index
for the spaces B1,α(X).

Proposition 4.17. Let f ∈ B1,α(X) with α > 1/2. Then, f is constant.

Proof. Let f ∈ B1,α(X) with α > 1/2. Since B1,α(X) ⊂ B1,1/2(X) = BV (X), we deduce that f
is a BV function. Now since f ∈ B1,α(X), one has for every t > 0,∫

X

∫
X

pt(x, y)|f(x)− f(y)|dµ(x)dµ(y) ≤ tα‖f‖1,α.

By using the heat kernel lower bound as before, it implies

lim inf
ε→0+

1

ε

∫∫
∆ε

|f(y)− f(x)|√
µ(B(x, ε))µ(B(y, ε))

dµ(x)dµ(y) = 0.

Therefore ‖Df(X)‖ = 0, so from the previous remark f is constant. �

4.5. Comparison between Sobolev and Besov seminorms

In this section, we compare the Besov and Sobolev seminorms for p > 1. The case p = 1 was studied
in detail in Section 4.3.

Throughout the section we will assume that (X, dE , µ) is doubling, supports a 2-Poincaré inequality.
As before, we will also assume that for each u ∈ F the measure Γ(u, u) is absolutely continuous with
respect to the underlying measure µ on X; as in the previous section we will denote by |∇u|2 the
Radon-Nikodym derivative of Γ(u, u) with respect to µ. We also assume that E is regular and strictly
local.

4.5.1. Lower bound for the Besov seminorm.

Theorem 4.18. Let p > 1. There exists a constant C > 0 such that for every u ∈ Bp,1/2(X) ∩ F ,

‖|∇u|‖Lp(X,µ) ≤ C‖u‖p,1/2

Proof. Let u ∈ Bp,1/2(X) ∩ F . Then as in the derivation of (4.8) we obtain that for each ε > 0,

1

εp

∫∫
∆ε

|u(x)− u(y)|p
µ(B(x, ε))

dµ(y) dµ(x) ≤ ‖u‖p,1/2 <∞.

Fix ε > 0 and cover X by family of balls Bεi = B(xεi , ε) such that 1
2B

ε
i are pairwise disjoint, and let ϕεi

be a C/ε-Lipschitz partition of unity subordinate to this cover: that is, 0 ≤ ϕεi ≤ 1 on X,
∑
i ϕ

ε
i = 1

on X, and ϕεi = 0 in X \Bεi . We then set

uε :=
∑
i

uBεi ϕ
ε
i .
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Then as each ϕεi is Lipschitz, we know that uε is locally Lipschitz and hence is in Floc(X). For x, y ∈ Bεj
we see that

|uε(x)− uε(y)| ≤
∑

i:2Bεi∩2Bεj 6=∅

|uBεi − uBεj ||ϕ
ε
i (x)− ϕεi (y)|

≤ C d(x, y)

ε

∑
i:2Bεi∩2Bεj 6=∅

(∫
Bεi

∫
B(x,2ε)

|u(y)− u(x)|p dµ(y) dµ(x)

)1/p

.

Therefore, by Lemma 4.1, we see that

|∇uε| ≤
C

ε

∑
i:2Bεi∩2Bεj 6=∅

(∫
Bεi

∫
B(x,2ε)

|u(y)− u(x)|p dµ(y) dµ(x)

)1/p

≤ C
(∫

2Bεj

∫
B(x,2ε)

|u(y)− u(x)|p
εp

dµ(y) dµ(x)

)1/p

,

and so by the bounded overlap property of the collection 2Bεj (which is a consequence of the doubling
property of µ), ∫

X

|∇uε|p dµ ≤
∑
j

∫
Bεj

|∇uε|p dµ

≤ C
∑
j

∫
2Bεj

∫
B(x,2ε)

|u(y)− u(x)|p
εp

dµ(y) dµ(x)

≤ C
∫
X

∫
B(x,2ε)

|u(y)− u(x)|p
εp

dµ(y) dµ(x)

≤ C 1

εp

∫
∆2ε

|u(x)− u(y)|p
µ(B(x, ε))

dµ(y) dµ(x) ≤ 2M.

In a similar manner, we can also show that∫
X

|uε(x)− u(x)|p dµ(x) ≤ Cεp
∫

∆2ε

|u(x)− u(y)|p
εp µ(B(x, ε))

dµ(y) dµ(x) ≤ CM εp,

that is, uε → u in Lp(X) as ε→ 0+. So we get that if u ∈ F , then
C ‖u‖p,1/2 ≥ ‖|∇u|‖Lp(X).

�

4.5.2. Upper bound for the Besov seminorm. We now turn to the proof of the upper bound
for the Besov seminorm in terms of the Sobolev seminorm. We will use an additional assumption: The
strong Bakry-Émery curvature condition. As before, Ptu will denote the heat extension of u via the heat
semigroup associated with the Dirichlet form E . We recall that from classical theory (see for instance
Theorems 1.4.1 and 1.4.2 in [Dav89]), the semigroup Pt lets L1(X,µ) ∩ L∞(X,µ) invariant and may
be extended to a positive, contraction semigroup on Lp(X,µ), 1 ≤ p ≤ +∞, that we still denote by
Pt. Moreover, from the same reference, for 1 ≤ p < +∞, Pt is strongly continuous (i.e. Ptu → u in
Lp(X,µ) when t→ 0). We will denote by L the generator of Pt.

Assumption: In this subsection, in addition to the assumptions stated at the beginning of Section
4.5, we will furthermore assume the strong Bakry-Émery curvature condition: There exists a constant
C > 0 such that for every u ∈ F and t ≥ 0 we have µ a.e.

(4.12) |∇Ptu| ≤ CPt|∇u|.
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We note that the strong Bakry-Émery curvature condition implies the weak one, see the proof
of Theorem 3.3 in [BK17]. Examples where the strong Bakry-Émery estimate is satisfied include:
Riemannian manifolds with non negative Ricci curvature and more generally RCD(0,+∞) spaces
(see [EKS15]), some metric graphs (see [BK17]), the Heisenberg group and more generally H-type
groups (see [BBBC08,Eld10])

A first important corollary of the strong Bakry-Émery estimate is the following Hamilton’s type
gradient estimate for the heat kernel. Such type of estimate is well-known on Riemannian manifolds
with non-negative Ricci curvature (see for instance [Kot07]), but is new in our general framework.

Theorem 4.19. There exists a constant C > 0 such that for every t > 0, x, y ∈ X,

|∇x ln pt(x, y)|2 ≤ C

t

(
1 +

d(x, y)2

t

)
Proof. The proof proceeds in two steps.
Step 1: We first collect a gradient bound for the heat kernel. We observe that (4.12) implies a

weaker L2 version as follows

|∇Ptu|2 ≤ CPt(|∇u|2),

and hence the pointwise heat kernel gradient bound (see [ACDH04, Lemma 3.3])

|∇xpt(x, y)| ≤ C√
t

e−cd(x,y)2/t√
µ(B(x,

√
t))µ(B(y,

√
t))
.

In particular, we note that |∇xpt(x, ·)| ∈ Lp(X,µ) for every p ≥ 1.

Step 2: In a second step, we prove a reverse log-Sobolev inequality for the heat kernel. Let τ, ε > 0
and x ∈ X be fixed in this Step 2.

We denote u = pτ (x, ·) + ε. One has, from the chain rule for stricly local forms [FOT11, Lemma
3.2.5],

Pt(u lnu)− Ptu lnPtu =

∫ t

0

∂s (Ps(Pt−su lnPt−su)) ds

=

∫ t

0

LPs(Pt−su lnPt−su)− Ps(LPt−su lnPt−su)− Ps(LPt−su)ds

=

∫ t

0

Ps(L(Pt−su lnPt−su))− Ps(LPt−su lnPt−su)− Ps(LPt−su)ds

=

∫ t

0

Ps [L(Pt−su lnPt−su))− LPt−su lnPt−su− LPt−su] ds

=

∫ t

0

Ps((Pt−su)|∇ lnPt−su|2)ds,

where the above computations may be justified by using the Gaussian heat kernel estimates for the
heat kernel and the Gaussian upper bound for the gradient of the heat kernel obtained in Step 1. In
particular, we point out that the commutation LPs(Pt−su lnPt−su) = Ps(L(Pt−su lnPt−su) is justified
by noting that Pt−su lnPt−su − ε ln ε is in the domain of L in L2(X,µ). Here, L is the infinitesimal
generator (the Laplacian operator) associated with E .
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Thus, from the strong Bakry-Émery estimate and the Cauchy-Schwarz inequality in the form of
Ps

(
f2

g

)
≥ (Psf)2

Psg
, we obtain

Pt(u lnu)− Ptu lnPtu =

∫ t

0

Ps

( |∇Pt−su|2
Pt−su

)
ds

≥
∫ t

0

(Ps|∇Pt−su|)2

Ps(Pt−su)
ds

≥ 1

C

1

Ptu

∫ t

0

|∇Ptu|2ds

≥ t

C

1

Ptu
|∇Ptu|2

Coming back to the definition of u, noting that Ptpτ (x, ·) = Pt+τ (x, ·) and applying the previous
inequality with t = τ one deduces

|∇y ln(p2t(x, y) + ε)|2 ≤ C

t
Pt

[
ln

(
Mt(x) + ε

p2t(x, ·) + ε

)]
(y)

where Mt(x) = supy∈X pt(x, y). Therefore, by letting ε → 0 and using the Gaussian heat kernels, one
concludes

|∇y ln p2t(x, y)|2 ≤ C

t

(
1 +

d(x, y)2

t

)
and thus

|∇y ln pt(x, y)|2 ≤ C

t

(
1 +

d(x, y)2

t

)
.

Finally, we note that the inequality

|∇x ln pt(x, y)|2 ≤ C

t

(
1 +

d(x, y)2

t

)
.

is obtained similarly be exchanging the roles of x and y in our proof. �

Corollary 4.20. Let p > 1. There exists a constant C > 0 such that for every u ∈ Lp(X,µ),

|∇Ptu| ≤
C√
t
Pt(|u|p)1/p.

Proof. Let p > 1, q the conjugate exponent and u ∈ Lp(X,µ). One has from Hölder’s inequality

|∇Ptu|(x) ≤
∫
X

|∇xpt(x, y)|u(y)dµ(y)

≤
(∫

X

|∇xpt(x, y)|q
pt(x, y)q/p

dµ(y)

)1/q

Pt(|u|p)1/p

≤
(∫

X

|∇x ln pt(x, y)|qpt(x, y)dµ(y)

)1/q

Pt(|u|p)1/p

The proof follows then from Theorem 4.19 and the Gaussian upper bound for the heat kernel. �

Note that, by integrating over X the previous proposition immediately yields:

Lemma 4.21. Let p > 1. There exists a constant C > 0 such that for every u ∈ Lp(X,µ)

‖|∇Ptu|‖2Lp(X,µ) ≤
C

t
‖u‖2Lp(X,µ).

We deduce then:
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Lemma 4.22. Let p > 1. There exists a constant C > 0 such that for every u ∈ Lp(X,µ) ∩ F with
|∇u| ∈ Lp(X,µ)

‖Ptu− u‖Lp(X,µ) ≤ C
√
t‖|∇u|‖Lp(X,µ)

Proof. With the previous lemma in hand, the proof is similar to the one in Lemma 4.10, with ϕ
in F ∩Lq(X,µ) where p−1 + q−1 = 1 As compactly supported Lipschitz functions form a dense subclass
of Lp(X,µ) and also belong to F from the discussion in Chapter 4, we recover the Lp-norm of Ptu− u
by taking the supremum over all such ϕ with

∫
X
|ϕ|q dµ <∞. �

Lemma 4.23. Let p > 1, then(∫
X

∫
X

|Ptu(x)− u(y)|ppt(x, y)dµ(x)dµ(y)

)1/p

≤ C
√
t‖|∇u|‖Lp(X).

Proof. Let u ∈ Lp(X) and t > 0 be fixed in the above argument. By an application of Fubini’s
theorem we have(∫

X

∫
X

|Ptu(x)− u(y)|ppt(x, y)dµ(x)dµ(y)

)1/p

=

(∫
X

Pt(|Ptu(x)− u|p)(x)dµ(x)

)1/p

.

The main idea now is to adapt the proof of [BBBC08, Theorem 6.2].
As above, let q be the conjugate of p. Let x ∈ X be fixed. Let g be a function in L∞(X,µ) such

that Pt(|g|q)(x) ≤ 1.
We first note that from the chain rule:

∂s [Ps((Pt−su)(Pt−sg))(x)]

=LPs((Pt−su)(Pt−sg))(x)− Ps((LPt−su)(Pt−sg))(x)− Ps((Pt−su)(LPt−sg))(x)

=Ps(L(Pt−su)(Pt−sg))(x)− Ps((LPt−su)(Pt−sg))(x)− Ps((Pt−su)(LPt−sg))(x)

=2Ps(Γ(Pt−su, Pt−sg))

Therefore, we have

Pt((u− Ptu(x))g)(x) = Pt(ug)(x)− Ptu(x)Ptg(x)

=

∫ t

0

∂s [Ps((Pt−su)(Pt−sg))(x)] ds

= 2

∫ t

0

Ps (Γ(Pt−su, Pt−sg)) (x)ds

≤ 2

∫ t

0

Ps (|∇Pt−su||∇Pt−sg|)) (x)ds

≤ 2

∫ t

0

Ps (|∇Pt−su|p)1/p
(x)Ps (|∇Pt−sg|q)1/q

(x)ds

Now from the strong BE estimate and Hölder’s inequality we have

Ps (|∇Pt−su|p)1/p
(x) ≤ CPs (Pt−s(|∇u|p))1/p

(x) = CPt(|∇u|p)1/p(x)

On the other hand
|∇Pt−sg|q ≤

C

(t− s)q/2Pt−s(|g|
q)

Thus,

Ps (|∇Pt−sg|q)1/q
(x) ≤ C

(t− s)1/2
Pt(|g|q)1/q(x) ≤ C

(t− s)1/2
.

One concludes
Pt((u− Ptu(x))g)(x) ≤ C

√
tPt(|∇u|p)1/p(x)
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Thus by Lp − Lq duality, one concludes

Pt(|u− Ptu(x)|p)(x)1/p ≤ C
√
tPt(|∇u|p)1/p(x)

and finishes the proof by integration over X. �

We are now finally in position to prove the main result of the section.

Theorem 4.24. Let p > 1. There exists a constant C > 0 such that for every u ∈ Lp(X,µ) ∩ F
with |∇u| ∈ Lp(X,µ),

‖u‖p,1/2 ≤ C‖|∇u|‖Lp(X)

Proof. One has(∫
X

∫
X

|u(x)− u(y)|ppt(x, y)dµ(x)dµ(y)

)1/p

≤
(∫

X

∫
X

|u(x)− Ptu(x)|ppt(x, y)dµ(x)dµ(y)

)1/p

+

(∫
X

∫
X

|Ptu(x)− u(y)|ppt(x, y)dµ(x)dµ(y)

)1/p

≤‖Ptu− u‖Lp(X) +

(∫
X

∫
X

|Ptu(x)− u(y)|ppt(x, y)dµ(x)dµ(y)

)1/p

One has from the previous lemma

‖Ptu− u‖Lp(X) ≤ C
√
t‖|∇u|‖Lp(X)

and the term
(∫
X

∫
X
|Ptu(x)− u(y)|ppt(x, y)dµ(x)dµ(y)

)1/p can be controlled by the above lemma. �

In view of Theorems 4.18 and 4.24, as well as [ACDH04, Theorem 1.4], we conclude this section
by the following result on the Riesz transform.

Corollary 4.25. Let p > 1. Then for any f ∈ Lp(X) ∩ F ,
‖f‖p,1/2 ' ‖

√
−Lf‖Lp(X).

Consequently,
Bp,1/2(X) = L1/2

p ,

where L1/2
p defined in Section 1.4 is the domain of the operator

√
−L in Lp(X,µ).

4.6. Critical exponents

In this section, our assumptions are the same as Subsection 4.5.2., that is, the standing assumptions
of this chapter as well as the strong Bakry-Émery curvature condition (4.12). We first notice that as a
consequence of Lemma 4.21 and Theorem 4.24,

Theorem 4.26. Let p > 1. There exists a constant C > 0 such that for every f ∈ Lp(X,µ) and
t > 0

‖Ptf‖p,1/2 ≤
C

t1/2
‖f‖Lp(X).

Remark 4.27. The bound

‖Ptf‖p,1/2 ≤
C

t1/2
‖f‖Lp(X), p > 1,

likely holds if one only assumes the weak Bakry-Émery estimate. This may be seen by adapting to
this setting the argument yielding Theorem 5.47 in Chapter 5. For concision, we will not expand this
remark.

Similarly as in Section 1.7, we have several corollaries of the above result.
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Corollary 4.28. Let p > 1. Let L be the infinitesimal generator of E and Lp be the generator of
L in Lp(X,µ). Then

Lp ⊂ Bp,1/2(X)

and for every f ∈ Lp,
(4.13) ‖f‖2p,1/2 ≤ Cp‖Lf‖Lp(X,µ)‖f‖Lp(X,µ).

Recall that L plays the role of Laplacian in the theory of Dirichlet forms, see [FOT11].

Corollary 4.29. For p > 1, Bp,1/2(X) is dense in Lp(X,µ).

Corollary 4.30. Let p > 1. For every f ∈ Lp(X,µ), and t > 0,

‖Ptf − f‖Lp(X,µ) ≤ Cpt1/2 lim inf
s→0

s−1/2

(∫
X

Ps(|f − f(y)|p)(y)dµ(y)

)1/p

Corollary 4.31. Let p > 1. If f ∈ Bp,α(X) with α > 1/2 then E(f, f) = 0.

In particular, with the notation of Section 1.8, one concludes:

Proposition 4.32. For every p ≥ 1, α∗p(X) = 1/2.

4.7. Sobolev and isoperimetric inequalities

Combining the conclusions of this chapter with the results in Chapter 2, we immediately obtain the
following results that encompass many of the known results found in the literature.

Corollary 4.33. Suppose that µ is doubling and supports a 2-Poincaré inequality. Assume more-
over that the volume growth condition µ(B(x, r)) ≥ C1r

Q, r ≥ 0, is satisfied for some Q > 0, Then,
one has the following weak type Besov space embedding. Let 0 < δ < Q. Let 1 ≤ p < Q

δ . There exists a
constant Cp,δ > 0 such that for every f ∈ Bp,δ/2(X),

sup
s≥0

sµ ({x ∈ X, |f(x)| ≥ s}) 1
q ≤ Cp,δ sup

r>0

1

rδ+Q/p

(∫∫
{(x,y)∈X×X|d(x,y)<r}

|f(x)−f(y)|p dµ(x) dµ(y)

)1/p

where q = pQ
Q−pδ . Furthermore, for every 0 < δ < Q, there exists a constant Ciso,δ such that for every

measurable E ⊂ X, µ(E) < +∞,

µ(E)
dH−δ
dH ≤ Ciso,δ sup

r>0

1

rδ+Q
(µ⊗ µ) {(x, y) ∈ E × Ec : d(x, y) ≤ r}

Proof. From the heat kernel upper bound, the volume growth condition µ(B(x, r)) ≥ C1r
Q, r ≥ 0,

implies the ultracontractive estimate

pt(x, y) ≤ C

tQ/2
.

We are therefore in the framework of Chapter 2. From Theorem 2.3, one deduces therefore the following.
Let 0 < δ < Q. Let 1 ≤ p < Q

δ . There exists a constant Cp,δ > 0 such that for every f ∈ Bp,δ/2(X),

sup
s≥0

s µ ({x ∈ X : |f(x)| ≥ s}) 1
q ≤ Cp,δ‖f‖p,δ/2

where q = pQ
Q−pδ . We conclude then with Theorem 4.14.

�

In the case where δ = 1/2 and the weak Bakry-Émery estimate is satisfied, then one gets a strong
Sobolev inequality.
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Theorem 4.34. Suppose that µ is doubling and supports a 2-Poincaré inequality and that the weak
Bakry-Émery estimate is satisfied. If the volume growth condition µ(B(x, r)) ≥ C1r

Q, r ≥ 0, is satisfied
for some Q > 0, then there exists a constant C2 > 0 such that for every f ∈ BV (X),

‖f‖Lq(X,µ) ≤ C2‖Df‖(X)

where q = Q
Q−1 . In particular, if E is a set with finite perimeter in X, then

µ(E)
Q−1
Q ≤ C2P (E,X).

Proof. We apply Theorem 2.9. Since ‖f‖1,1/2 ≤ C‖Df‖(X), it is enough to prove that (P1,1/2)
is satisfied. This follows from

sup
s>0

s−1/2

∫
X

Ps(|f − f(y)|)(y)dµ(y) ≤ C lim inf
s→0

s−1/2

∫
X

Ps(|f − f(y)|)(y)dµ(y),

which is a consequence from Theorem 4.11. �





CHAPTER 5

Strongly local Dirichlet metric spaces with sub-Gaussian heat
kernel estimates

We now turn to the study strongly local Dirichlet spaces which do not have Gaussian heat kernel
bounds (4.1). The main class of examples we are interested in are fractal spaces. We refer to [Bar98,
Gri03,Kig01,Kig12] for further details on the following framework/assumptions. We note that some
of the most basic facts of Chapter 4, such as Lemma 4.1, do not hold true in this chapter because energy
measures Γ(·, ·) are not µ-absolutely continuous. Therefore we can not use locally Lipschitz functions
for our analysis, and need to develop a different set of tools.

Let (X, d, µ) be a metric measure space. We assume that B(x, r) := {y ∈ X | d(x, y) < r} has
compact closure for any x ∈ X and any r ∈ (0,∞), and that µ is Ahlfors H-regular, i.e. there exist
c1, c2, dH ∈ (0,∞) such that c1rdH ≤ µ

(
B(x, r)

)
≤ c2rdH for any r ∈

(
0,+∞

)
. Furthermore, we assume

that on (X,µ) there is a measurable heat kernel pt(x, y) satisfying, for some c3, c4, c5, c6 ∈ (0,∞) and
dW ∈ [2,+∞),

(5.1) c5t
−dH/dW exp

(
−c6

(d(x, y)dW

t

) 1
dW−1

)
≤ pt(x, y) ≤ c3t−dH/dW exp

(
−c4

(d(x, y)dW

t

) 1
dW−1

)
for µ×µ-a.e. (x, y) ∈ X × X and each t ∈

(
0,+∞

)
. We refer to [PP10], assumptions (A1) to (A5),

page 201, for the definition of heat kernels on metric measure spaces. The corresponding Dirichlet
space will be denoted by (X,µ, E ,F) and the corresponding semigroup by {Pt, t ≥ 0}. We assume that
(X,µ, E ,F) is a strongly local regular symmetric Dirichlet space. The parameter dH is the Hausdorff
dimension and the parameter dW the so-called walk dimension. It is possible to prove that if the metric
space (X, d) satisfies a chain condition, then 2 ≤ dW ≤ dH + 1. When dW = 2, one speaks of Gaussian
estimates and when dW > 2, one speaks then of sub-Gaussian estimates.

In this framework, it is known that (X,µ, E ,F) is conservative. Let p ≥ 1 and α ≥ 0. As before,
we define the Besov seminorm

‖f‖p,α = sup
t>0

t−α
(∫

X

∫
X

|f(x)− f(y)|ppt(x, y)dµ(x)dµ(y)

)1/p

and define
Bp,α(X) = {f ∈ Lp(X,µ) : ‖f‖p,α < +∞}.

5.1. Metric characterization of Besov spaces

Our goal in this section is to compare the space Bp,α(X) to Besov type spaces previously considered
in a similar framework (see [Gri03]). In the following, for r > 0 we set

∆r := {(x, y) ∈ X ×X : d(x, y) < r}.

For α ∈ [0,∞) and p ∈ [1,∞), we introduce the following Besov seminorm: for f ∈ Lp(X,µ),

(5.2) Nα
p (f, r) :=

1

rα+dH/p

(∫∫
∆r

|f(x)− f(y)|p dµ(x) dµ(y)

)1/p

53



54 5. STRONGLY LOCAL DIRICHLET METRIC SPACES WITH SUB-GAUSSIAN HEAT KERNEL ESTIMATES

for r ∈ (0,∞), and

(5.3) Nα
p (f) := sup

r∈(0,1]

Nα
p (f, r).

We then define the Besov space Bα
p (X) by

(5.4) Bα
p (X) :=

{
f ∈ Lp(X,µ) : Nα

p (f) <∞
}
.

With the notation of the previous section, note that ‖f‖Bαp,∞(X) ' supr>0N
α
p (f, r). It is clear that

Bα2
p (X) ⊂ Bα1

p (X) for α1, α2 ∈ [0,∞) with α1 ≤ α2. Note also that

(5.5) Bα
p (X) =

{
f ∈ Lp(X,µ) : lim sup

r↓0
Nα
p (f, r) <∞

}
.

Indeed, if f ∈ Bα
p (X) then f ∈ Lp(X,µ) and lim supr↓0N

α
p (f, r) ≤ Nα

p (f) < ∞. Conversely, for any
f ∈ Lp(X) with lim supr↓0N

α
p (f, r) <∞, we have supr∈(0,ε]N

α
p (f, r) <∞ for some ε ∈ (0,∞), and for

any r ∈ (ε,∞) we see from |f(x)− f(y)|p ≤ 2p(|f(x)|p + |f(y)|p) and µ
(
B(x, r)

)
≤ c2rdH that

Nα
p (f, r)p =

1

rpα+dH

∫∫
{(x,y)∈X×X : d(x,y)<r}

|f(x)− f(y)|p dµ(x) dµ(y)

≤ 1

rpα+dH

∫∫
{(x,y)∈X×X : d(x,y)<r}

2p(|f(x)|p + |f(y)|p) dµ(x) dµ(y)

=
2p+1

rpα+dH

∫
X

|f(y)|pµ
(
B(y, r)

)
dµ(y)

≤ 2p+1

rpα+dH

∫
X

|f(y)|p · c2rdH dµ(y) =
2p+1c2
rpα

‖f‖pLp(X,µ) ≤
2p+1c2
εpα

‖f‖pLp(X,µ),

so that

sup
r∈(0,∞)

Nα
p (f, r) ≤ max

{
2(2c2)1/pε−α‖f‖Lp(µ), sup

r∈(0,ε]

Nα
p (f, r)

}
<∞.

Hence f ∈ Bα
p (X), proving (5.5). The above argument also shows that with the notation of the previous

section Bαp,∞(X) = Bα
p (X). The purpose of this section is to prove the following theorem.

Theorem 5.1. [PP10, Theorem 3.2] Let p ≥ 1 and α ≥ 0. We have Bα
p (X) = B

p, αdW (X) and
there exist constants cp,α, Cp,α > 0 such that for every f ∈ Bα

p (X) and r > 0,

cp,α sup
s∈(0,r]

Nα
p (f, s) ≤ ‖f‖p,α/dW ≤ Cp,α

(
sup
s∈(0,r]

Nα
p (f, s) +

1

rα
‖f‖Lp(X,µ)

)
.

In particular, ‖f‖p,α/dW ' sups∈(0,+∞)N
α
p (f, s).

Remark 5.2. The above theorem is essentially a rephrasing of [PP10, Theorem 3.2]. However,
the notion of Besov spaces given in [PP10] considers dyadic jumps in the parameter t; hence the proof
given there is slightly more complicated than ours. We also include the relatively short proof because it
shall repeatedly be used in the next sections.
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Proof. We first prove the lower bound. For s, t > 0 and α > 0,

∫
X

∫
X

|f(x)− f(y)|ppt(x, y)dµ(x)dµ(y)

≥
∫
X

∫
B(y,s)

|f(x)− f(y)|ppt(x, y)dµ(x)dµ(y)

≥c5t−dH/dW
∫
X

∫
B(y,s)

|f(x)− f(y)|p exp

(
−c6

(d(x, y)dW

t

) 1
dW−1

)
dµ(x)dµ(y)

≥c5t−dH/dW exp

(
−c6

(sdW
t

) 1
dW−1

)
sαp+dHNα

p (f, s)p.

Therefore we have

t
− αp
dW

∫
X

∫
X

|f(x)− f(y)|ppt(x, y)dµ(x)dµ(y) ≥ c5t−
αp
dW
− dHdW exp

(
−c6

(sdW
t

) 1
dW−1

)
sαp+dHNα

p (f, s)p.

We now choose s = t1/dW . This yields

t
− αp
dW

∫
X

∫
X

|f(x)− f(y)|ppt(x, y)dµ(x)dµ(y) ≥ c5 exp (−c6)Nα
p (f, t1/dW )p.

From the definition of the ‖ · ‖p,α/dW seminorm, one concludes

c5 exp (−c6)Nα
p (f, t1/dW )p ≤ ‖f‖pp,α/dW .

Since, it is true for every t > 0, the conclusion follows.
We now turn to the upper bound. Fixing r > 0, we set

A(t) :=

∫
X

∫
X\B(y,r)

pt(x, y)|f(x)− f(y)|p dµ(x) dµ(y),(5.6)

B(t) :=

∫
X

∫
B(y,r)

pt(x, y)|f(x)− f(y)|p dµ(x) dµ(y),(5.7)

so that
∫
X

∫
X
|f(x)−f(y)|ppt(x, y)dµ(x)dµ(y) = A(t)+B(t). By (5.1) and the inequality |f(x)−f(y)|p ≤

2p−1(|f(x)|p + |f(y)|p),
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A(t) ≤ c3
tdH/dW

∫
X

∫
X\B(y,r)

exp

(
−c4

(d(x, y)dW

t

) 1
dW−1

)
· 2p|f(y)|p dµ(x) dµ(y)

=
2pc3
tdH/dW

∞∑
k=1

∫
X

∫
B(y,2kr)\B(y,2k−1r)

exp

(
−c4

(d(x, y)dW

t

) 1
dW−1

)
|f(y)|p dµ(x) dµ(y)

≤ 2pc3
tdH/dW

∞∑
k=1

∫
X

µ
(
B(y, 2kr)

)
exp

(
−c4

(2(k−1)dW rdW

t

) 1
dW−1

)
|f(y)|p dµ(y)

≤ 2pc3
tdH/dW

∞∑
k=1

c2r
dH2kdH‖f‖pLp exp

(
−c4

(rdW
t

) 1
dW−1

(
2

dW
dW−1

)k−1
)

= ‖f‖pLp2pc2c3

∞∑
k=1

2dH
(rdW

t
2dW (k−1)

)dH/dW
exp

(
−2
− dW
dW−1 c4

(rdW
t

2dW k
) 1
dW−1

)

≤ ‖f‖pLp2p+dH c2c3

∞∑
k=1

∫ (rdW /t)(2dW )k

(rdW /t)(2dW )k−1

sdH/dW exp
(
−2
− dW
dW−1 c4s

1
dW−1

) 1

(dW log 2)s
ds

=
2p+dH c2c3
dW log 2

‖f‖pLp
∫ ∞
rdW /t

sdH/dW−1 exp
(
−2
− dW
dW−1 c4s

1
dW−1

)
ds

≤ c8 exp

(
−c9

(rdW
t

) 1
dW−1

)
‖f‖pLp(X,µ),(5.8)

where c9 := 2
−1− dW

dW−1 c4 and c8 := 2p+dH c2c3(dW log 2)−1
∫∞

0
sdH/dW−1 exp

(
−c9s

1
dW−1

)
ds.

On the other hand, for B(t), by (5.1) we have

B(t) ≤ c3
tdH/dW

∫
X

∫
B(y,r)

exp

(
−c4

(d(x, y)dW

t

) 1
dW−1

)
|f(x)− f(y)|p dµ(x) dµ(y)

≤ c3
tdH/dW

∞∑
k=1

∫
X

∫
B(y,21−kr)\B(y,2−kr)

exp

(
−c4

(d(x, y)dW

t

) 1
dW−1

)
|f(x)− f(y)|p dµ(x) dµ(y)

≤ c3
tdH/dW

∞∑
k=1

∫
X

∫
B(y,21−kr)

exp

(
−c4

(2−kdW rdW

t

) 1
dW−1

)
|f(x)− f(y)|p dµ(x) dµ(y)

≤ c3
∞∑
k=1

(21−kr)pα+dH

tdH/dW
exp

(
−2c9

(rdW
t

2dW (1−k)
) 1
dW−1

)
1

(21−kr)pα+dH

∫
X

∫
B(y,21−kr)

|f(x)− f(y)|p dµ(x) dµ(y)

≤ c32pα+dH t
pα
dW sup

s∈(0,r]

Nα
p (f, s)p

∞∑
k=1

(rdW
t

2−dW k
) dH+pα

dW exp

(
−2c9

(rdW
t

2−dW (k−1)
) 1
dW−1

)

≤ c7t
pα
dW sup

s∈(0,r]

Nα
p (f, s)p.

(5.9)

As a conclusion, one has

∫
X

∫
X

|f(x)− f(y)|ppt(x, y)dµ(x)dµ(y) ≤ c8 exp

(
−c9

(rdW
t

) 1
dW−1

)
‖f‖pLp + c7t

pα
dW sup

s∈(0,r]

Nα
p (f, s)p.

This yields

sup
t>0

t
− pα
dW

∫
X

∫
X

|f(x)− f(y)|ppt(x, y)dµ(x)dµ(y) ≤ c7 sup
s∈(0,r]

Nα
p (f, s)p +

c10

rpα
‖f‖pLp(X,µ).
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The proof is thus complete. �

5.2. Co-area type estimates

In the sequel, for any E ⊂ X we will denote by Er the r-neighborhood of E and define the distance
from x ∈ X to E by d(x,E) := infy∈E d(x, y). We will also refer to the standing assumptions for this
section, outlined at the beginning of the chapter.

Theorem 5.3. Let X be Ahlfors dH-regular with a heat kernel that satisfies the upper sub-Gaussian
estimate (5.1). For u ∈ L1(X,µ) and s ∈ R, let Es(u) := {x ∈ X,u(x) > s}. Assume that there is
0 < α ≤ dH

dW
and R > 0 such that

(5.10) h(u, s) = sup
r∈(0,R]

1

rαdW
µ
{
x ∈ Es(u) : d(x,X \ Es(u)) < r

}
is in L1(R, ds). Then, u ∈ B1,α(X) and there exist constants C1, C2 > 0 independent of u such that

(5.11) ‖u‖1,α ≤ C1R
−α‖u‖L1(X,µ) + C2

∫
R
h(u, s)ds.

Proof. As in the proof of Theorem 4.11 we have∫
X×X

pt(x, y) |u(x)− u(y)| dµ(x)dµ(y)

= 2

∫
R

∫
X

∫
X

1Es(u)c(x)1Es(u)(y)pt(x, y) dµ(x)dµ(y) ds

= 2

∫
R

∫
Es(u)

∫
X\Es(u)

pt(x, y) dµ(y) dµ(x) ds

Fix s and t and decompose the integral over Es(u) as follows: For j ≥ 1, let

Fj :=
{
x ∈ Es(u) : 2j−1t1/dW ≤ d(x,X \ Es(u)) < 2jt1/dW

}
and F0 :=

{
x ∈ Es(u) : d(x,X \ Es(u)) < t1/dW

}
. Evidently Es(u) = ∪∞0 Fj . In the following

computation we use the bound
∫
X\Es(u)

pt(x, y) dµ(y) ≤ 1 for x ∈ F0. For the remaining range of j and
x ∈ Fj we instead note that d(x, y) ≥ 2j−1t1/dW for any y ∈ X \Es(u) and integrate the sub-Gaussian
estimate 5.1 over this range of radii.∫

X×X
pt(x, y) |u(x)− u(y)| dµ(x)dµ(y)

≤ 2

∫
R

∞∑
j=0

∫
Fj

∫
X\Es(u)

pt(x, y) dµ(y) dµ(x) ds

≤ 2

∫
R

(
µ(F0) + c3t

−dH/dW
∞∑
j=1

∫
Fj

∫
X\Es(u)

exp

(
−c4

(d(x, y)dW

t

)1/(dW−1)
)
dµ(y) dµ(x)

)
ds

≤ 2

∫
R

(
µ(F0) + c3t

−dH/dW
∞∑
j=1

µ(Fj)

∫ ∞
2j−1t1/dW

exp

(
−c4

(rdW
t

)1/(dW−1)
)
µ(B(x, r))

dr

r

)
ds

≤ 2

∫
R

(
µ(F0) + c3

∞∑
j=1

µ(Fj)

∫ ∞
2(j−1)dW /(dW−1)

e−c4uu(dW−1)dH/dW
du

u

)
ds(5.12)
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Our hypotheses ensure that µ(Fj) ≤ (2jt1/dW )αdW h(u, s) provided 2jt1/dw < R; for notational
convenience we let the largest j satisfy this be j = J and thus obtain

J∑
j=1

µ(Fj)

∫ ∞
2(j−1)dW /(dW−1)

e−c4uu(dW−1)dH/dW
du

u

≤ tαh(u, s)

J∑
j=1

2jαdW
∫ ∞

2(j−1)dW /(dW−1)

e−c4uu(dW−1)dH/dW
du

u

≤ tαh(u, s)

∫ ∞
1

( ∞∑
j=1

2jαdW 1{u≥2(j−1)dW /(dW−1)}

)
e−c4uu(dW−1)dH/dW

du

u

≤ C̃1t
αh(u, s)

∫ ∞
1

e−c4uu(dW−1)(dH+αdW )/dW
du

u

≤ C̃2t
αh(u, s),

where we note that C̃2 = C̃2(c4, δ, dW , dH) is independent of R. For j ≥ J + 1 we instead use
that 2(J−1)dW /(dW−1) ≥ C̃3R

dW /(dW−1)t−1/(dW−1). Moreover, there is C̃4 = C̃4(c4, dW , dH) such that
RdW /(dW−1)t−1/(dW−1) ≥ C̃4 implies the bound∫ ∞

2(j−1)dW /(dW−1)

e−c4uu(dW−1)dH/dW
du

u
≤ C̃5R

dH t−dH/dW exp
(
−c4C̃4R

dW /(dW−1)t−1/(dW−1)
)
.

Using
∑
j≥J µ(Fj) ≤ µ(Es(u)) we conclude

∞∑
j=J

µ(Fj)

∫ ∞
2(j−1)dW /(dW−1)

e−c4uu(dW−1)dH/dW
du

u

≤ C̃5R
dH t−dH/dW exp

(
−c4C̃4R

dW /(dW−1)t−1/(dW−1)
)
µ(Es(u)).

Combining these with the estimate µ(F0) ≤ tαh(u, s) we obtain from (5.12) that if R
dW
dW−1 t

− 1
dW−1 ≥ C̃4,∫

X×X
pt(x, y) |u(x)− u(y)| dµ(x)dµ(y)

≤
∫
R
C̃2t

αh(u, s) + C̃5R
dH t−dH/dW exp

(
−c4CRdW /(dW−1)t−1/(dW−1)

)
µ(Es(u)) ds

≤ tα
∫
R
C̃2h(u, s) ds+ C̃5R

dH t−dH/dW exp
(
−c4CRdW /(dW−1)t−1/(dW−1)

)
‖u‖L1(X,µ)

Finally, recall from the proof of Theorem 5.1 that

‖u‖1,α ≤ 2T−α‖u‖L1(X,µ) + sup
t∈(0,T ]

t−α
∫
X×X

pt(x, y) |u(x)− u(y)| dµ(x)dµ(y).

Our estimate for the integral is valid for t ≤ T = C̃
−(dW−1)
4 RdW , hence there is C̃6 so that

‖u‖1,α ≤ C̃6R
−αdW ‖u‖1 + C̃2

∫
R
h(u, s) ds

+ sup
t≤T

C̃5R
dH t−(αdW+dH)/dW exp

(
−c4C̃4R

dW /(dW−1)t−1/(dW−1)
)
‖u‖L1(X,µ)

≤ C1R
−αdW ‖u‖L1(X,µ) + C2

∫
R
h(u, s) ds �

The latter result has several useful applications. Recall that a space is uniformly locally connected
if there is CLC > 0 such that any x and y cannot be disconnected in B(x,CLCd(x, y)). Note, for
example, that a geodesic space is uniformly locally connected.
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Corollary 5.4. Let X be a uniformly locally connected space with a heat kernel that satisfies the
upper sub-Gaussian estimate (5.1) and let u ∈ L1(X,µ). Let Es(u) be as in Theorem 5.3 and ∂Es(u)
be its topological boundary. Suppose there is 0 < α ≤ dH

dW
and R > 0 such that

H(u, s) = sup
r∈(0,R]

1

rαdW
µ
{
x ∈ Es(u) : d(x, ∂Es(u)) < r

}
is in L1(R, ds). Then, u ∈ B1,α(X) and there exist constants C1, C2 > 0 independent of u such that

(5.13) ‖u‖1,α ≤ C1R
−αdW ‖u‖L1(X,µ) + C2

∫
R
H(u, s)ds.

Proof. It suffices to show thatH(u, s) and h(u, s) are comparable. This follows from the inclusions{
x ∈ Es(u) : d(x, ∂Es(u)) < r

}
⊂
{
x ∈ Es(u) : d(x,X \ Es(u)) < 2r

}
⊂
{
x ∈ Es(u) : d(x, ∂Es(u)) < 2CLCr

}
,

where CLC is the local connectivity constant. The first inclusion is trivial. Let us now assume that
the second inclusion fails, so that there are x ∈ Es(u) and z ∈ X \ Es(u) with d(x, z) < 2r and yet
d(x, y) > 2CLCr for all y ∈ ∂Es(u). Clearly neither x nor z is in ∂Es(u), so they are in the interior
of Es(u) and the interior of X \ Es(u) respectively. These sets are disjoint and open, and they cover
B(x, 2CLCd(x, z)) because d(x, y) > 2CLCr for all y ∈ ∂Es(u) implies B(x, 2CLCd(x, z))∩ ∂Es(u) = ∅.
Thus, x and z are disconnected inB(x, 2CLCd(x, y)) in contradiction to uniform local connectedness. �

From the observation that ∂Es(1E) = ∂E if s ∈ [0, 1] and is empty otherwise we obtain a bound
that related to the inner Minkowski content of E, see Section 5.4.1.

Corollary 5.5. Let X be a uniformly locally connected space with a heat kernel that satisfies the
upper sub-Gaussian estimate (5.1). If E ⊂ X has finite measure and for some 0 < α ≤ dH

dW

sup
r∈(0,R]

1

rαdW
µ
{
x ∈ E : d(x, ∂E) < r

}
<∞,

then 1E ∈ B1,α(X) and

‖1E‖1,α ≤ C1R
−αdW µ(E) + C2 sup

r∈(0,R]

1

rαdW
µ
{
x ∈ E : d(x, ∂E) < r

}
.

Remark 5.6. One can drop the assumption on X of being uniformly locally connected by considering
an extended metric notion of the r-boundary of a set:

(5.14) ∂̃rE = (E ∩ Ecr) ∪ (Ec ∩ Er)
This is done in Theorems 5.3 and 6.4 when hR(u, s) is defined in (5.10) and (6.4). This is especially
natural in the context of nonlocal Dirichlet forms in Chapter 6, where spaces considered can be totally
disconnected.

The next corollary considers a situation that often applies to fractals.

Corollary 5.7. Let X be a uniformly locally connected space with a heat kernel that satisfies the
upper sub-Gaussian estimate (5.1) and let u ∈ L1(X,µ). Let Es(u) be as in Theorem 5.3 and ∂Es(u)
be its topological boundary. Assume that ∂Es(u) is finite and s 7→ |∂Es(u)| is in L1(R), where |∂Es(u)|
denotes the cardinality of ∂Es(u). Then, u ∈ B

1,
dH
dW (X) and there exists a constant C > 0 independent

of u such that

(5.15) ‖u‖1,dH/dW ≤ C
∫
R
|∂Es(u)|ds.

In particular, if E ⊂ X is a set of finite measure whose boundary is finite, then 1E ∈ B
1,
dH
dW (X) and

‖1E‖1,dH/dW ≤ C|∂E|.
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Proof. Writing ∂Es(u) = {z1, . . . , z|∂Es(u)|}, the Ahlfors regularity condition implies that, for any
r > 0,

µ((∂Es(u))r) ≤
|∂Es(u)|∑
i=1

µ(B(zi, r)) ≤ |∂Es(u)|c2rdH .

�

Remark 5.8. For the lower bound in this corollary one needs extra assumptions. One nice assump-
tion is to assume that u is a finite linear combination of indicator functions of open sets with finite
boundary. This is natural for the Sierpinski gasket and similar spaces. For the Sierpinski gasket type
fractals, the geometry of the fractal will force u to be totally discontinuous piecewise-constant function,
and so the lower bound follows from Theorem 5.18, Corollary 5.13 or Proposition 5.23 under the mild
extra assumption. This will be the subject of further work.

Remark 5.9. If Corollary 5.7 is applied to the Sierpinski gasket or a similar fractal, then the
function u has to be discontinuous. This is because only countably many triangles have finite boundary,
and any set which is not a finite union of triangles will have infinite boundary. However, on the Vicsek
set or a similar fractal, there are infinitely continuous functions for which level sets are finite. This is
because the Vicsek set is a topological tree. For instance, it is easy to see that the level sets of n-harmonic
on the Vicsek functions are finite. For some related general theory see [Kig95].

Proposition 5.10. Let X be Ahlfors dH-regular with a heat kernel that satisfies the sub-Gaussian
lower estimate (5.1). For u ∈ L1(X,µ) let us assume that the level sets Es(u) are uniformly porous at
uniformly small scale, i.e. there exists cu > 0 and R > 0 small such that for any 0 < r < R, s ∈ R and
y ∈ Es(u) with d(y,X \ Es(u)) < r, there exists zy ∈ ∂Es(u) such that

(5.16) B(zy, cur) ⊂ B(y, r) ∩ (X \ Es(u)).

Furthermore, define

(5.17) h̃(u, s) := lim inf
r→0+

1

rαdW
µ({y ∈ Es(u) : d(y,X \ Es(u)) < r}).

If h ∈ L1(R), then there exists Cu > 0 depending on the porosity constant cu such that

(5.18) ‖1E‖1,α ≥ Cu
∫
R
h̃(u, s) ds.

Proof. Applying in the proof of Theorem 5.1 the porosity condition (5.16), for any t > 0 and
0 < r < R we have

t−α
∫
R

∫
X

∫
X

pt(x, y)|1Es(u)(x)− 1Es(u)(y)|µ(dx)µ(dy) ds

= 2t−α
∫
R

∫
X

∫
X

pt(x, y)1Es(u)c(x)1Es(u)(y)µ(dx)µ(dy) ds

≥ 2c5t
−α− dH

dW exp
(
− c6

(rdW
t

) 1
dW−1

)∫
R

∫
{y∈Es(u) : d(y,X\Es(u))<r}

µ(B(y, r) ∩ (X \ Es(u)))µ(dy) ds

≥ 2c5t
−α− dH

dW exp
(
− c6

(rdW
t

) 1
dW−1

)∫
R

∫
{y∈Es(u) : d(y,X\Es(u))<r}

µ(B(zy, cur))µ(dy) ds

≥ 2c5t
−α− dH

dW exp
(
− c6

(rdW
t

) 1
dW−1

)
c2c

dH
u rdH+αdW

∫
R

1

rαdW
µ({y ∈ Es(u) : d(y,X \ Es(u)) < r}) ds.
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Thus, (with t = rdW ) for any 0 < r < diamdE it holds that

‖1E‖1,α = sup
t>0

t−α
∫
X

∫
X

pt(x, y)|1E(x)− 1E(y)|µ(dx)µ(dy)

≥ 2c5e
−c6c2c

dH
u

∫
R

1

rαdW
µ({y ∈ Es(u) : d(y,X \ Es(u)) < r}) ds

≥ Cu lim inf
r→0+

∫
R

1

rαdW
µ({y ∈ Es(u) : d(y,X \ Es(u)) < r}) ds

≥ Cu
∫
R

lim inf
r→0+

1

rαdW
µ({y ∈ Es(u) : d(y,X \ Es(u)) < r}) ds,

where last inequality is from Fatou’s lemma. �

The same argument as Corollary 5.5 gives Proposition 5.10 when X is uniformly locally constant
with

(5.19) h̃(u, s) = lim inf
r→0+

1

rαdW
µ({y ∈ Es(u) : d(y, ∂Es(u)) < r})

that we can call the (dH − αdW )-dimensional inner lower Minkowski content of ∂Es(u).

5.3. Sets E with 1E ∈ B1,α(X) and fractional content of boundaries

We continue working under the standing assumptions of this section which are outlined at the
beginning of the chapter. As before and in the sequel, for E ⊂ X, we will denote its r-neighborhood by
Er. In addition, for any r > 0 and E ⊂ X we will denote (∂E)−r := (∂E)r∩E and (∂E)+

r := (∂E)r∩Ec,
where ∂E is the topological boundary of E.

5.3.1. Several characterizations of the sets E with 1E ∈ B1,α(X). With the arguments used
in the proofs of the previous section in hand we can now provide different characterizations of sets of
finite α-perimeter.

Theorem 5.11. Under the assumptions of Theorem 5.1, for a bounded measurable set E ⊂ X and
α > 0 we consider the following properties:

(1) 1E ∈ B1,α(X);

(2) sup
r>0

1

rαdW+dH
(µ⊗ µ)

(
{(x, y) ∈ E × Ec : d(x, y) < r}

)
< +∞;

(3) lim sup
r→0+

1

rαdW+dH
(µ⊗ µ)

(
{(x, y) ∈ E × Ec : d(x, y) < r}

)
< +∞;

(4) lim sup
r→0+

1

rαdW
µ
(
{x ∈ E : d(x,Ec) < r}

)
< +∞;

(5) lim sup
r→0+

∫
{x∈E : d(x,Ec)<r}

∫
B(x,r)∩Ec

1

d(x, y)dH+αdW
dµ(y)dµ(x) < +∞;

(6)
∫
E

∫
Ec

1

d(x, y)dH+αdW
dµ(y)dµ(x) < +∞.

Then, the following relations hold:
(i) (1) ⇔ (2) ⇔ (3); moreover there exist constants c, C > 0 independent of E such that

c sup
r>0

1

rαdW+dH
(µ⊗ µ)

(
{(x, y) ∈ E × Ec : d(x, y) < r}

)
≤ ‖1E‖1,α ≤ C sup

r>0

1

rαdW+dH
(µ⊗ µ)

(
{(x, y) ∈ E × Ec : d(x, y) < r}

)
;

(ii) (4) ⇒ (5) ⇒ (1);
(iii) (6) ⇒ (1);
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(iv) If in addition E is porous, i.e. there exists cE > 0 such that for any 0 < r < diamdE and
y ∈ E with d(y,X \ E) < r, there exists zy ∈ ∂E such that

(5.20) B(zy, cEr) ⊂ B(y, r) ∩ (X \ E),

then (1) ⇒ (4);

The relations stated in this theorem follow from the proof of Theorem 5.1, Theorem 5.3 and Propo-
sition 5.10 applied to 1E along with some modifications of those arguments which are presented in the
next paragraph. Assuming uniformly locally connectedness on the space, which includes the case of
X being geodesic, we obtain as in Corollary 5.5 a characterization of sets with finite α-perimeter that
involves their inner Minkowski content.

Corollary 5.12. Let X be uniformly locally connected and satisfy the assumptions of Theorem 5.1.
Then, Theorem 5.11 holds with the inner neighborhood (∂E)−r in place of {x ∈ E : d(x,Ec) < r}. In
particular, if E is closed, the quantity

(5.21) lim sup
r→0+

1

rαdW
µ
(
{x ∈ E : d(x,Ec) < r}

)
becomes the inner Minkowski content of E.

In the case when a set E ⊂ X is porous and has a finite boundary, as for instance triangular cells
in the infinite Sierpinski gasket, see Figure 1, we obtain a simpler characterization.

Corollary 5.13. If (X, d) is uniformly locally connected, for any bounded measurable porous set
E ⊂ X whose topological boundary ∂E is finite there exist c, cE > 0 such that

(5.22) cE |∂E| ≤ ‖1E‖1,dH/dW ≤ c|∂E|,
where cE is the porosity constant of E.

Proof. The upper bound is Corollary 5.7. Assuming ∂E = {z1, . . . , z|∂E|} and using the fact that
there exists 0 < rE < diamdE such that for any 0 < r < rE , B(zi, r) are pairwise disjoint with

(∂E)r ⊇
|∂E|⋃
i=1

B(zi, r),

the lower bound follows analogously to Proposition 5.14. �

r/2

r/2 r/2

r

Figure 1. Marked red cells correspond to (∂E)−r , the green colored ones to (∂E)−r/2. In this
case, any ball B(y, r/2) with y ∈ (∂E)−r/2 contains at least a triangular cell (colored blue) of
side length r/4.



5.3. SETS E WITH 1E ∈ B1,α(X) AND FRACTIONAL CONTENT OF BOUNDARIES 63

Detailed statements and proofs for Theorem 5.11. For the sake of clarity, in the statements
in this paragraph the assumptions on the underlying space X are explicitly written.

Proposition 5.14. Let X be Ahlfors dH-regular with a heat kernel that satisfies the sub-Gaussian
lower estimate (5.1) and let 0 < α ≤ dH

dW
. For any porous set E ⊂ X there exists CE > 0 such that

(5.23) ‖1E‖1,α ≥ CE lim sup
r→0+

1

rαdW
µ({x ∈ E : d(x,Ec) < r}).

Proof. Applying Proposition 5.10 with u = 1E , for any t > 0 and 0 < r < diamdE we have

‖1E‖1,α = sup
t>0

t−α
∫
X

∫
X

pt(x, y)|1E(x)− 1E(y)|µ(dx)µ(dy)

≥ 2c5e
−c6c2c

dH
E

1

rαdW
µ({y ∈ E : d(y,Ec) < r}).

Taking lim supr→0+ yields (5.23). �

Proposition 5.15. Let X be Ahlfors dH-regular with a heat kernel that satisfies the sub-Gaussian
upper estimate (5.1) and let E ⊂ X be a bounded measurable for which

(5.24) lim sup
r→0+

∫
{y∈E : d(y,Ec)<r}

∫
B(y,r)∩Ec

1

d(x, y)dH+αdW
µ(dx)µ(dy) <∞

for some α > 0. Then, 1E ∈ B1,α(X).

Proof. In order to bound ‖1E‖1,α we follow the proof of Theorem 5.1 with some small modifica-
tions. Using the same notation, for any fixed t, r > 0 we have, on the one hand

A(t, r) ≤ c8 exp
(
− c9

(rdW
t

) 1
dW−1

)
‖1E‖L1(X,µ) = c8 exp

(
− c9

(rdW
t

) 1
dW−1

)
µ(E),

with the corresponding constants in the mentioned proof. On the other hand, following the estimate
for B(t) we get

B(t, r) = 2

∫
X

∫
B(y,r)

1Ec(x)1E(y) pt(x, y)µ(dx)µ(dy)

≤ 2c3
tdH/dW

∞∑
k=1

∫
X

∫
B(y,21−kr)

exp

(
− c4

( (2−kr)dW

t

) 1
dW−1

)
1Ec(x)1E(y)µ(dx)µ(dy)

≤ 2c3

∞∑
k=1

(21−kr)αdW+dH

tdH/dW
exp

(
− c42

− dW
dW−1

( (21−kr)dW

t

) 1
dW−1

)
× 1

(21−kr)αdW+dH

∫
X

∫
B(y,21−kr)

1Ec(x)1E(y)µ(dx)µ(dy)

≤ 2c3t
α

∫
E

∫
B(y,r)∩Ec

1

d(x, y)αdW+dH
µ(dx)µ(dy)

∞∑
k=1

(21−kr

t1/dW

)αdW+dH
exp

(
− 2c9

( (21−kr)dW

t

) 1
dW−1

)
≤ c10t

α

∫
E

∫
B(y,r)∩Ec

1

d(x, y)αdW+dH
µ(dx)µ(dy)

= c10t
α

∫
{y∈E : d(y,Ec)<r}

∫
B(y,r)∩Ec

1

d(x, y)αdW+dH
µ(dx)µ(dy),
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where c10 := c32αdW+dH+1(2dW log 2)−1
∫∞

0
s
α+

dH
dW exp

(
− 2c9s

1
dW−1

)
ds. For any t > 0 it thus holds

that

t−α
∫
X

∫
X

pt(x, y)|1E(x)− 1E(y)|µ(dx)µ(dy)

≤ t−αc8 exp
(
− c9

(rdW
t

) 1
dW−1

)
µ(E) + c10

∫
{y∈E : d(y,Ec)<r}

∫
B(y,r)∩Ec

1

d(x, y)αdW+dH
µ(dx)µ(dy).

By assumption, we can now choose rε > 0 small enough so that

sup
t>0

t−α
∫
X

∫
X

pt(x, y)|1E(x)− 1E(y)|µ(dx)µ(dy) ≤ c11

rαdWε

µ(E) + c10cε <∞

for some cε > 0. �

Proposition 5.16. Let X be Ahlfors dH-regular with a heat kernel that satisfies the sub-Gaussian
upper estimate (5.1) and let E ⊂ X be a bounded measurable for which

(5.25) lim sup
r→0+

1

rαdW
µ({y ∈ E : d(y,Ec) < r}) <∞

for some 0 ≤ α ≤ dH
dW

. Then, (5.24) holds for that set E.

Proof. Let E ⊂ X be a bounded measurable set. For any r > 0, write∫
{y∈E : d(y,Ec)<r}

∫
B(y,r)∩Ec

1

d(x, y)dH+αdW
µ(dx)µ(dy)

=

∫ ∞
0

(µ⊗ µ)
({

(x, y) ∈ E × Ec : d(x, y) < r, d(x, y) < s−(dH+αdW )−1})
ds.

Since r < s−(dH+αdW )−1

if and only if s < r−(dH+αdW ), the latter integral equals∫ r−(dH+αdW )

0

(µ⊗ µ)
({

(x, y) ∈ E × Ec : d(x, y) < r
})
ds

+

∫ ∞
r−(dH+αdW )

(µ⊗ µ)
({

(x, y) ∈ E × Ec : d(x, y) < s−(dH+αdW )−1})
ds

=

∫ r−(dH+αdW )

0

∫
{y∈E : d(y,Ec)<r}

µ(B(x, r) ∩ Ec)µ(dx) ds

+

∫ ∞
r−(dH+αdW )

∫
{y∈E : d(y,Ec)<s−(dH+αdW )−1}

µ(B(y, s−(dH+αdW )−1

) ∩ Ec)µ(dy) ds.

The Ahlfors regularity now yields∫
{y∈E : d(y,Ec)<r}

∫
B(y,r)∩Ec

1

d(x, y)dH+αdW
µ(dx)µ(dy)

≤ c2
rαdW

µ({y ∈ E : d(y,Ec) < r})

+ c2

∫ ∞
r−(dH+αdW )

µ
(
{y ∈ E : d(y,Ec) < s−(dH+αdW )−1}

)
s
− dH
dH+αdW ds.

Letting r → 0+, r−(dH+αdW ) →∞ and (5.24) follows from (5.25). �
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5.3.2. Further results. For the following result the examples include the finite and infinite Sier-
pinski gasket (Figure 4 and [BP88]) and, more generally, finite and infinite nested fractals, [Lin90,
Bar98,Bar03,Bar13]. Other examples can be constructed in the class of p.c.f. self-similar sets,
[Kig01,Kig12], fractafolds [ST12,Str03a] and, more generally, finitely ramified cell structures [Tep08].
To obtain similar results for fractals that are not finitely ramified, one can use the methods of [BB89,
BB99,BBKT10,KY92,Kaj10].

Theorem 5.17. Let E ⊆ X be a measurable set and let pt(x, y) satisfy the upper heat kernel estimate
in (5.1). If there exists 0 < δ 6 dH such that for all ε > 0

(5.26) (µ× µ)
(
{(x, y) ∈ Ec × E : d(x, y) < ε}

)
6 c7

(
εdH+δ + ε2dH

)
,

then for all t > 0 it holds that

(5.27)
(
t−δ/dW + t−dH/dW

)
‖Pt1E − 1E‖L1(X,µ) 6 c11 <∞,

where c11 is a constant given by (5.33) that depends on δ, dH and dW .

Theorem 5.18. Let E ⊆ X be a measurable set and let pt(x, y) satisfy the lower heat kernel estimate
in (5.1). If there exist δ > 0 and ε > 0 such that

(5.28) (µ× µ)
(
{(x, y) ∈ Ec × E : d(x, y) < ε}

)
≥ c8εdH+δ,

then, for t = εdW , it holds that

(5.29) t−δ/dW ‖Pt1E − 1E‖L1(X,µ) > 2c5c8e
−c6 > 0.

Corollary 5.19. If there exists δ > 0 and ε0 > 0 such that (5.28) holds for any 0 < ε < ε0,
then (5.29) holds for any 0 < t < εdW .

Localized version of Theorem 5.17.

Theorem 5.20. Let pt(x, y) satisfy the upper heat kernel estimate (6.1) and let E ⊂ B ⊂ X be
bounded measurable set. If there exists 0 < δ 6 dH such that for all ε > 0

(5.30) (µ× µ)
(
{(x, y) ∈ (B ∩ Ec)× E : d(x, y) < ε}

)
6 c7ε

dH+δ,

then for all t > 0 it holds that

(5.31) t−δ/dW ‖Pt1E − 1E‖L1(B,µ) 6 c11 <∞,
where c11 is a constant given by (5.35) that depends on δ, dH and dW .

Remark 5.21.
(1) In Theorem 5.17, dH controls the behavior of the left hand side in (5.26) when ε is large. For

small t the leading term is t−δ/dW .
(2) The constant δ plays the role of the (upper) co-dimension of the boundary and the constant c7

plays the role of the (possibly fractal) upper Minkowski content corresponding to that dimension
(see Proposition 5.22, [Fal03,Mat95]). There is an extensive literature on the subject for
fractal subsets E of a Euclidean space, such as [ADMG17,WZ13,Win15,PW14,RZ12,
FK12,LPW11, and references therein]. We note that, although [BH97] does not explicitly
refer to the Minkowski content, it appears in the proof of the main theorem as µ+(A).

(3) In Theorem 5.18 the constant δ also plays the role of a (lower) co-dimension of the boundary
and the constant c8 plays the role of an weaker version of the (possibly fractal) lower Minkowski
content corresponding to that dimension. A useful sufficient condition for (5.28) is given in
Proposition 5.23.

(4) The values of the constant δ can be different in Theorem 5.17 and in Theorem 5.18, so one
can speak about an upper-co-dimension δ and about a lower-co-dimension δ. In general we
have δ > δ, but in most examples we have δ = δ.
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Proof of Theorem 5.17. Using the fact thate the semigroup Pt is conservative, we can rewrite

‖Pt1E − 1E‖L1(X,µ) = ‖1EcPt1E‖L1(X,µ) + ‖1EPt1Ec‖L1(X,µ) = 2‖1EcPt1E‖L1(X,µ).

For any fixed t > 0, since pt(x, y) ≥ 0, we have that

‖1EcPt1E‖L1(X,µ) =

∫
Ec

∫
E

pt(x, y)µ(dy)µ(dx) =

∫ ∞
0

µ⊗ µ({(x, y) ∈ Ec × E : pt(x, y) > s}) ds.

Moreover, in view of (5.1), pt(x, y) > s implies

d(x, y) ≤ t
1
dW

(
− c−1

4 log(c−1
3 st

dH
dW )

) dW−1

dW =: F (t, s)

and F (t, s) > 0 if and only if s < c5t
− dH
dW . Therefore, we obtain

(5.32) ‖1EcPt1E‖L1(X,µ) ≤ c7
∫ c3t

−dH/dW

0

(F (t, s))dH+δds+ c7

∫ c3t
−dH/dW

0

(F (t, s))2dHds.

The first integral can be estimated by

c7

∫ c3t
−dH/dW

0

t
dH+δ

dW

(
− c−1

4 log(c−1
5 st

dH
dW )

) (dW−1)(dH+δ)

dW ds

≤ c7c3t
δ
dW

∫ 1

0

(
− c−1

4 log u
) (dW−1)(dH+δ)

dW du

= c7c3c
−(dW−1)(dH+δ)/dW
4 Γ

( (dW − 1)(dH + δ)

dW

)
t
δ
dW ,

where we have used the substitution u = c−1
3 st

dH
dW . A similar estimate is obtained for the second integral

in (5.32) by substituting δ by dH . Thus, (5.27) holds with

(5.33) c11 = 2c3c7

{
Γ
(

(dW−1)(dH+δ)
dW

)
c
−

(dW−1)(dH+δ)
dW

4 + Γ
(

(dW−1)(dH+dH)
dW

)
c
− 2(dW−1)dH

dW
4

}
.

�

Proof of Theorem 5.18. For each fixed t > 0, define

(5.34) AE,t1/dW := {(x, y) ∈ Ec × E | d(x, y) ≤ t1/dW }.

Due to the lower estimate (5.1), pt(x, y) ≥ c5 exp (−c6) t−dH/dW for any (x, y) ∈ AE,t1/dW . Assump-
tion (5.28) now yields

‖1EcPt1E‖L1(X,µ) =

∫
E

∫
Ec
pt(x, y)µ(dx)µ(dy) ≥

∫
A
E,t1/dW

pt(x, y)µ(dx)µ(dy)

≥ c5e−c6t−
dH
dW µ× µ(AE,t1/dW ) ≥ c5e−c6t−

dH
dW c8t

(dH+δ)

dW = c5c8e
−c6t

δ
dW

as we wanted to prove. �

Proof of Theorem 5.20. As in Theorem 5.17, it suffices to show t−δ/dW ‖1EcPt1E‖L1(B,µ) 6 c11.
Moreover, we have that pt(x, y) > s implies d(x, y) < F (t, s) as in (6.10) and F (s, t) > 0 if and only if
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s < c3t
−dH/dW . Thus,

‖1EcPt1E‖L1(B,µ) =

∫
B∩Ec

∫
E

pt(x, y)µ(dy)µ(dx)

=

∫ ∞
0

µ× µ
(
{(x, y) ∈ (B ∩ Ec)× E | pt(x, y) > s}

)
ds

≤
∫ ∞

0

µ× µ
(
{(x, y) ∈ (B ∩ Ec)× E | d(x, y) < F (t, s)}

)
ds

=

∫ ∞
0

µ× µ
(
{(x, y) ∈ Ec × E | d(x, y) ≤

∫ c3t
−dH/dW

0

min{F (t, s), d(E,B)}}
)
ds,

where d(E,B) := supx∈E infy∈B d(x, y). Applying (5.30) and estimating the integral as in the proof of
Theorem 5.17 yields

‖1EcPt1E‖L1(B,µ) ≤ c7c3t
δ
dW c

− (dW−1)(dH+δ)

dW
4 Γ

( (dW − 1)(dH + δ)

dW

)
t
δ
dW

and (5.31) holds with

(5.35) c11 = c7c3c
− (dW−1)(dH+δ)

dW
4 Γ

( (dW − 1)(dH + δ)

dW

)
t
δ
dW .

�

We give next a sufficient condition for (5.26) when X is an Ahlfors dH -regular geodesic space.

Proposition 5.22. Let X be Ahlfors dH-regular and geodesic. If E ⊆ X has a compact boundary
∂E and for any ε > 0 the measure of the ε-neighborhood (∂E)ε of ∂E satisfies

(5.36) µ((∂E)ε) = O
(
εδ
)
ε→0+

then (5.26) holds.

Proof. Since the space X is geodesic, for any x ∈ E and y ∈ Ec there exists z = z(x, y) ∈ ∂E
such that d(x, y) = d(x, z) + d(z, y). Therefore x, y ∈ (∂E)ε if x ∈ E, y ∈ Ec and d(x, y) < ε, so that

(µ⊗ µ)
(
{(x, y) ∈ Ec×E : d(x, y) < ε}

)
=

∫
Ec

∫
E

1B(x,ε)(y)µ(dx)µ(dy)

≤
∫

(∂E)ε

∫
E

1B(x,ε)(y) µ(dx)µ(dy) ≤ µ ((∂E)ε) c2ε
dH .

Due to (5.36) and the fact that
µ((∂E)ε) = O

(
εdH
)
ε→∞

because ∂E is compact, the proof is complete. �

Without assuming the underlying space X to be geodesic we can give a sufficient condition ensur-
ing (5.28) which by Theorem 5.11 provides a lower bound of the α-perimeter of the set E ⊆ X.

Proposition 5.23. Let X be an Ahlfors dH-regular space. Suppose that E ⊆ X has a compact
boundary ∂E and for all n ≥ 1 there exist rn > 0 and x1, . . . , xn ∈ ∂E such that Bn,k := B

(
xk,

rn
2

)
⊆ X,

k = 1, . . . , n, are disjoint and satisfy

(5.37) µ(Bn,k ∩ E) ≥ c9rdHn and µ(Bn,k ∩ Ec) ≥ c10r
dH
n

for all k = 1, . . . , n. Furthermore, assume that for some c12 > 0 and dH > dim(∂E) > 0 we have

(5.38) n > c12 · r− dim(∂E)
n .

Then, (5.28) holds with c8 = c9c10c12, ε = rn and δ = dH − dim(∂E).
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Proof. Notice that
n⋃

X=1

(
Bn,k ∩ Ec

)
×
(
Bn,k ∩ E

)
⊆ {(x, y) ∈ Ec × E : d(x, y) < ε}.

In view of (5.37) we thus have that

µ⊗ µ({(x, y) ∈ Ec×E : d(x, y) < rn}) ≥
n∑
k=1

µ
(
Bn,k ∩ E

)
µ
(
Bk,n ∩ Ec

)
≥ n c9c10 r

2dH
n .

�

Remark 5.24. Note that (5.37) means that both E and E × E are Ahlfors dH-regular. We do not
specifically use what notion of dimension dimH(∂E) of ∂E is the most appropriate in this proposition,
but usually it is the Hausdorff dimension, which in most of examples coincides with the box counting,
Minkowski, and fractal self-similarity dimensions (see e.g. [Fal03, Section 3.1]).

If {Bn,k}nX=1 is a disjoint cover of ∂E by sets of diameter rn, it follows that n ∼ r− dimB ∂E
n see e.g.

[Fal03, Section 3.1], where dimB stands for box dimension. Due to the fact that dimH ∂E ≤ dimB ∂E,
see [Fal03, p.46] and rn is small, we can assume rn < 1, hence n ≥ c12r

− dimH ∂E
n and

(µ⊗ µ)
(
{(x, y) ∈ Ec×E : d(x, y) < rn}

)
≥ c11r

2dH−dimH ∂E
n = c12r

dH+δ
n .

5.4. Density of B1,α(X) in L1(X,µ)

A noteworthy application of the results yielding Theorem 5.11 is that it actually provides sufficient
conditions to ensure that B1,α(X) is dense in L1(X,µ).

Theorem 5.25. Let X be Ahlfors dH-regular geodesic space with sub-Gaussian upper heat kernel
estimate and α > 0. Assume that there is a family of bounded open sets E ⊂ X which generates the
topology of X and such that

(5.39) lim sup
r→0+

1

rαdW
µ
(
{x ∈ E : d(x,Ec) < r}

)
<∞

for some 0 < α ≤ dH
dW

. Then, B1,α(X) is dense in L1(X,µ).

Proof. By Theorem 5.11 and Corollary 5.13 respectively, 1E ∈ B1,α(X) holds for bounded open
sets and thus for simple functions. Since these are dense in L1(X,µ) the assertion follows. �

Example 5.26. (i) If X is the infinite Sierpinski gasket as in [BP88] (see also Section 5.6.1), a
suitable family of open sets consists of (open) triangular cells of any side length. For each such set
E ⊂ X, the boundary ∂E consists of three points and (∂E)−r is the union of three triangular cells of
side length r. Hence, µ(∂E)−r = crdH and Theorem 5.25 holds with α = dH

dW
.

(ii) A similar result as for the Sierpinski gasket can be expected for any nested fractal [Lin90,Bar98].

Remark 5.27. When X is the Sierpinski carpet or a similar fractal the situation is more delicate.
We mention some points here; a complete answer remains open.
(i) We believe that in this case Theorem 5.25 will not be applicable because there may not be such family
of open sets. Intuitively and in view of Example 5.30, one expects open sets E ⊂ X to asymptotically
fulfill µ(∂E)−r ∼ rdH−dimH ∂E. Therefore, only sets of finite (or countable) boundary would produce the
critical exponent but these may not generate the topology of X. In fact, in the Sierpinski carpet or the
Menger sponge, there are no non-empty open sets with non-empty finite boundary [BB99]. This is true
for any generalized Sierpinski carpet in the sense of Barlow and Bass.

(ii) It may still be true that B1,
dH
dW (X) is dense in L1(X,µ), only dense functions will not be generated

by indicator functions of a base of open sets.
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5.4.1. Examples. Let us now discuss several examples of different nature where the previous
results apply. In particular, we can identify sets of finite α-perimeter for the corresponding ranges of
the parameter α.

Example 5.28 (Smooth domains in the d-dimensional Euclidean space). Consider X = Rd, dH = d,
dW = 2, µ = λd the d-dimensional Lebesgue measure. A smooth domain E with ∂E closed and (d− 1)-
rectifiable satisfies

(5.40) lim sup
r→0+

1

r
λd((∂E)r) =

2λd−1(∂E)Γ
(

1
2

)d−1

(d− 1)Γ
(
d−1

2

)
because the (d−1)Minkowski content of ∂E coincides with λd−1(∂E), see e.g. [Fed69, Theorem 3.2.39].
Since Rd is geodesic, Theorem 5.11 (4) is satisfied with αdW = 1 and hence 1E ∈ B1,1/2(Rd).

Example 5.29 (Rectifiable domains in the d-dimensional Euclidean space). More generally, if
∂E ⊂ Rd is closed and m-rectifiable, again by [Fed69, Theorem 3.2.39] we have

(5.41) lim sup
r→0+

1

rd−m
λd((∂E)r) =

2λm(∂E)Γ
(

1
2

)m
mΓ
(
m
2

) .

Thus, Theorem 5.11 (4) is satisfied with αdW = d − m, which is the codimension of ∂E and 1E ∈
B1, d−m2 (Rd).

For instance, if E is the so-called Koch snowflake domain in R2 whose boundary is displayed in
Figure 2, then dH = 2, dW = 2 and m = log 4

log 3 . More precisely, from [LP06, Theorem 1] we have the
tube formula

(5.42) λ2((∂E)−r ) = G1(r)r2− log 4
log 3 +G2(r)r2,

where G1, G2 are periodic functions. Thus, in this case Theorem 5.11 yields 1E ∈ B1,α(X) with
α = 1− log 4

2 log 3 .

Figure 2. von Koch snowflake domain.

Example 5.30 (Subsets of the Sierpinski carpet). Consider X to be the Sierpinski carpet built in
the standard way on the unit square [0, 1]2, so that dH = log 8

log 3 and dW = unknown but unique > 2.

(1) Let E = X ∩ [0, 1
3 ]2 be a sub-square cell in the standard self-similar construction of X. Setting

r = 3−k, an inner neighborhood of the boundary consists of 2 · 3k copies of a carpet Xr with side
length r. Thus,

µ((∂E)−r ) = 2 · 3kµ(Xr) = 2 · 3kr log 8
log 3 = 2r

log 8
log 3−1.

Theorem 5.11 (4) is satisfied with αdW = log 8
log 3 − 1 and hence 1E ∈ B

1, δ
dW (X) with δ = log 8

log 3 − 1.
(2) If E = X ∩

(
[0, 1

2 ] × [0, 1]
)
is the left half of the carpet X, a similar computation as the previous

case yields 1E ∈ B
1, δ
dW (X) with δ = log 8

log 3 −
log 2
log 3 = 2 log 2

log 3 .
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Notice that in each case, the dimension of the boundary of E was 1 or log 2
log 3 respectively, supporting the

conjecture from Remark 5.27.

Figure 3. Sierpinski carpet

Example 5.31 (Subsets of the Menger sponge). Let X be the standard Menger sponge on the unit
cube [0, 1]3. Here, dH = log 20

log 3 and dW = unknown but unique > 2.

(1) For E = X ∩ [0, 1
3 ]3 is a sub-cube cell in the standard self-similar construction of X, then 1E ∈

B
1, δ
dW (X) with δ = log 20

log 3 − 2.

(2) For the left half of the cubical sponge, E = X ∩
(
[0, 1

2 ] × [0, 1]2
)
, we have 1E ∈ B

1, δ
dW (X) with

δ = log 20
log 3 −

log 4
log 3 = log 5

log 3 .

5.5. Weak Bakry-Émery curvature condition BE(κ)

Definition 5.32. We will say that (X,µ, E ,F) satisfies the weak Bakry-Émery non-negative cur-
vature condition BE(κ) if there exist a constant C > 0 and a parameter 0 < κ < dW such that for every
t > 0, g ∈ L∞(X,µ) and x, y ∈ X,

|Ptg(x)− Ptg(y)| ≤ C d(x, y)κ

tκ/dW
‖g‖L∞(X,µ).(5.43)

Several examples of spaces satisfying the condition BE(κ) will be given later. We first observe that
the weak Bakry-Émery is related to the Hölder regularity of the heat kernel.

Lemma 5.33. Assume that (X,µ, E ,F) satisfies the weak Bakry-Émery condition BE(κ). Then,
there exist a constant C > 0 such that for every t > 0, x, y, z ∈ X,

|pt(x, z)− pt(y, z)| ≤ C
d(x, y)κ

t(κ+dH)/dW

Proof. Indeed, it is easily seen that the weak Bakry-Émery estimate is equivalent to:∫
X

|pt(x, z)− pt(y, z)|dµ(z) ≤ C d(x, y)κ

tκ/dW
.

One has then

|pt(x, z)− pt(y, z)| =
∣∣∣∣∫
X

(pt/2(x, u)− pt/2(y, u))pt/2(u, z)dµ(u)

∣∣∣∣
≤ C

tdH/dW

∫
X

|pt(x, z)− pt(y, z)|dµ(z)

�
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Under the weak Bakry-Émery curvature condition, the main result is the following. It can be
thought as an analogue of Lemma 4.10 in a situation where we do not necessarily have a carré du
champ operator.

Theorem 5.34. Assume that the weak Bakry-Émery curvature condition (5.43) is satisfied. Then,
for every f ∈ B

1,1− κ
dW (X), and t ≥ 0,

‖Ptf − f‖L1(X,µ) ≤ Ct1−
κ
dW lim sup

r→0

1

rdH+dW−κ

∫∫
∆r

|f(x)− f(y)| dµ(x) dµ(y)

Proof. In the proof C will denote a constant (depending only on κ, dW , dH) that may change from
line to line. Let g ∈ F , ‖g‖L∞ ≤ 1 and f ∈ B

1,1− κ
dW (X). We have∣∣∣∣∫

X

g(f − Ptf)dµ

∣∣∣∣ =

∣∣∣∣∫ t

0

∫
X

g
∂Psf

∂s
dµds

∣∣∣∣ =

∣∣∣∣∫ t

0

E(g, Psf)ds

∣∣∣∣ .
The idea is now to bound E(g, Psf) by using an approximation of E . For τ ∈ (0,∞) and u ∈ L2(X,µ),
we set

(5.44) Eτ (u.u) :=
1

2τ

∫
X

∫
X

pτ (x, y)|u(x)− u(y)|2 dµ(x) dµ(y).

Note that by the symmetry and the conservativeness of Pt,

Eτ (u, u) =
1

2τ

∫
X

∫
X

pτ (x, y)
(
u(x)2 − 2u(x)u(y) + u(y)2

)
dµ(x) dµ(y)

=
1

2τ

(
〈u, u〉 − 2〈u, Pτu〉+ 〈u, u〉

)
=

1

τ
〈u− Pτu, u〉 t↓0−−→

{
E(u, u) if u ∈ F ,
∞ if u ∈ L2(X,µ) \ F ,

and in particular that (0,∞) 3 τ 7→ Eτ (u, u) is non-increasing. We now have

|Eτ (g, Psf)| = |Eτ (Psg, f)|

≤ 1

2τ

∫
X

∫
X

pτ (x, y)|Psg(x)− Psg(y)||f(x)− f(y)| dµ(x) dµ(y)

≤ C

2sκ/dW τ

∫
X

∫
X

pτ (x, y)d(x, y)κ|f(x)− f(y)| dµ(x) dµ(y).

We can now prove, using the same arguments as in the proof of theorem 5.1 that since f ∈ B
1,1− κ

dW (X),
one has

lim sup
τ→0

1

τ

∫
X

∫
X

pτ (x, y)d(x, y)κ|f(x)− f(y)| dµ(x) dµ(y)(5.45)

≤C lim sup
r→0

1

rdH+dW−κ

∫∫
∆r

|f(x)− f(y)| dµ(x) dµ(y).

As a conclusion we deduce

|E(g, Psf)| = lim
τ→0
|Eτ (g, Psf)| ≤ C

sκ/dW
lim sup
r→0

1

rdH+dW−κ

∫∫
∆r

|f(x)− f(y)| dµ(x) dµ(y).

Therefore, one has∣∣∣∣∫
X

g(f − Ptf)dµ

∣∣∣∣ ≤ Ct1− κ
dW lim sup

r→0

1

rdH+dW−κ

∫∫
∆r

|f(x)− f(y)| dµ(x) dµ(y),

and we conclude by L1 − L∞ duality. �

We now briefly comment on the significance of the parameter κ with two corollaries. In particular,
the following lemma shows that κ is a critical parameter in the L1 theory of X.
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Corollary 5.35. Assume that BE(κ) is satisfied. If f ∈ B1,α(X) with α > 1− κ
dW

, then f = 0.

Proof. Let f ∈ B1,α(X) with α > 1− κ
dW

. One has then

lim sup
r→0

1

rdH+dW−κ

∫∫
∆r

|f(x)− f(y)| dµ(x) dµ(y) = 0.

Therefore, from the previous theorem, one has for every t > 0, ‖Ptf−f‖L1(X,µ) = 0, which immediately
implies f ∈ F and Ptf = f , t ≥ 0. The sub-Gaussian heat kernel upper bound implies then f = 0.

�

Corollary 5.36. One has κ ≤ dW
2 and thus 1− κ

dW
≥ 1

2 .

Proof. For f ≥ 0, we have by Cauchy-Schwartz inequality∫∫
pt(x, y)

∣∣|f(x)|2 − |f(y)|2
∣∣ dµ(x) dµ(y)

≤
∫∫

pt(x, y)
(
|f(x)|+ |f(y)|

)∣∣|f(x)| − |f(y)|
∣∣ dµ(x) dµ(y)

≤2

∫
|f(x)|Pt(|f − f(x)|)(x) dµ(x)

≤2‖f‖2
(∫

Pt(|f − f(x)|2)(x)dµ(x)
)1/2

≤ 2‖f‖2tα‖f‖2,α
so that ‖|f |2‖1,α ≤ 2‖f‖2‖f‖2,α. Hence, if α = 1

2 , one deduces that if f ∈ B2,1/2(X) = F , then f2 ∈
B1,1/2(X). One concludes that B1,1/2(X) is always non-trivial, so that one must have 1− κ

dW
≥ 1

2 . �

We will see that the weak Bakry-Émery estimate can be used to improve Sobolev and isoperimetric
inequalities. We show here that it also yields an improvement in Theorem 5.3.

Theorem 5.37. Let X be Ahlfors dH-regular with sub-Gaussian heat kernel estimates and the
BE(κ) estimate. Let u ∈ L1(X,µ). For s ∈ R, denote Es(u) = {x ∈ X,u(x) > s}. Let α = 1 − κ

dW

and assume that s 7→ lim supr→0+
1

rαdW
µ({x ∈ Es(u) : d(x,X \ Es(u)) < r}) is in L1(R). Then,

u ∈ B1,α(X) and there exists a constant C > 0 independent from u such that:

‖u‖1,α ≤ C
∫
R

lim sup
r→0+

1

rαdW
µ({x ∈ Es(u) : d(x,X \ Es(u)) < r})ds.

In particular, if for a set E ⊂ X with finite measure, lim supr→0+
1

rαdW
µ({x ∈ E : d(x,Ec) < r}) <

+∞, then 1E ∈ B1,α(X) and:

‖1E‖1,α ≤ C lim sup
r→0+

1

rαdW
µ({x ∈ E : d(x,Ec) < r}).

Proof. This follows from the proof of Theorem 5.3 and the statement of Theorem 5.34. �

Corollary 5.38. If in addition X is uniformly locally connected, then Theorem 5.37 holds with
µ((∂Es(u))−r ) instead of µ({x ∈ Es(u) : d(x,X \ Es(u)) < r}).

5.6. Examples of spaces satisfying the weak Bakry-Émery condition

5.6.1. Unbounded Sierpinski gasket and unbounded Sierpinski carpet. We show here first
that the unbounded Sierpinski gasket (X, E ,F , µ) considered in [BP88] satisfies the weak Bakry-Émery
estimate.

Theorem 5.39. The unbounded Sierpinski gasket satisfies BE(κ) with κ = dW − dH .
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Proof. Let f ∈ L∞(X,µ). From Theorem 5.22 in [BP88], one has for t > 0 and λ > 0,

|Ptf(x)− Ptf(y)| ≤ C

λdH/dW
d(x, y)dW−dH‖(L− λ)Ptf‖L∞(X,µ),

where L is the generator of E . We now observe that

|(L− λ)Ptf(x)| ≤
∫
X

|∂tp(t, x, y)− λp(t, x, y)|dµ(y)‖f‖L∞(X,µ).

From the sub-Gaussian upper bound for the heat kernel and its time derivative (see [BP88]), one
deduces ∫

X

|∂tp(t, x, y)− λp(t, x, y)|dµ(y) ≤ C
(

1

t
+ λ

)
.

Therefore, by choosing λ = 1/t one concludes:

|Ptf(x)− Ptf(y)| ≤ CtdH/dW−1d(x, y)dW−dH‖f‖L∞(X,µ).

�

In that case, one has therefore 1 − κ
dW

= dH
dW

, so from Theorem 5.34 the space of interest is

B
1,
dH
dW (X). We note that from Theorem 5.25, B1,

dH
dW (X) is dense in L1(X,µ).10 ROBERT S. STRICHARTZ AND ALEXANDER TEPLYAEV

Figure 2.2. A part of an infinite Sierpiński gasket.

0

3

5

6

-

6

Figure 2.3. An illustration to the computation of the spectrum on the infi-
nite Sierpiński gasket. The curved lines show the graph of the function R(·),
the vertical axis contains the spectrum of σ(−∆Γ0) and the horizontal axis
contains the spectrum σ(−∆).

the preimages of 5 and 3 under the inverse iterations of R. In this case formula (2.14) is
the same as the formulas for eigenprojections in [41]. The illustration to the computation
of the spectrum in Theorem 2.3 is shown in Figure 2.3, where the graph of the function
R is shown schematically and the location of eigenvalues is denoted by small crosses. The
spectrum σ(−∆) is shown on the horizontal axis and the set of eigenvalues Σ0 of −∆Γ0 is
shown on the vertical axis.
A different infinite Sierpiński gasket fractafold can be constructed using two copies of an

infinite Sierpiński gasket with a boundary point, and joining these copies at the boundary.
This fractal first was considered in [2], and has a natural axis of symmetry between left and
right copies. Therefore we can consider symmetric and anti-symmetric functions with respect
to these symmetries. It was proved in [41] that the spectrum of the Laplacian restricted to
the symmetric part is pure point with a complete set of eigenfunctions with compact support.
For the anti-symmetric part the compactly supported eigenfunctions are not complete, and
it was proved in [31] that the Laplacian on Γ0 has a singularly continuous component in
the spectrum, supported on JR, of spectral multiplicity one. As a corollary of these and our
results we have the following proposition.

Figure 4. A part of an infinite Sierpinski gasket.

We now show that the unbounded Sierpinski carpet (X, E ,F , µ) considered in [BB92] satisfies the
weak Bakry-Émery estimate.

Theorem 5.40. The unbounded Sierpinski carpet satisfies BE(κ) with κ = dW − dH .
Proof. The proof is the same as the case of Sierpinski gasket, thanks to [BB92, Theorem 4.9 (b)]

and [Dav97, Theorem 4 or Corollary 5]. �

5.6.2. Fractional metric spaces with fractional diffusion. In [Bar98, Section 3] a class of
processes called fractional diffusions were introduced in the context of fractional metric spaces, which
are complete Ahlfors regular metric spaces with the midpoint property, c.f. [Bar98, Definition 3.2,
Definition 3.5]. In this setting, applying [Bar98, Theorem 3.40] and [Dav97, Theorem 4 or Corollary
5] as in the previous example yields the corresponding weak Bakry-Émery estimate.

Theorem 5.41. A fractional metric space of dimension dH ≥ 1 and associated fractional diffusion
with parameters 2 ≤ dW ≤ dH + 1 satisfies BE(κ) with κ = dW − dH .
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Remark 5.42. Notice that nested fractals ( [Lin90,Bar98]), and in particular the Vicsek set, fall
into this category. In the view of the discussion of Sections 5.8, we can view the case of the Vicsek set
as critical since κ = 1. Note that the Vicsek set is a dendrite, see [Kig95].

5.6.3. Stability of BE(κ) by tensorization. The condition BE(κ) is stable by tensorization.
This yields a lot of examples.

Consider (Xn, dXn , µ
⊗n), where the metric dXn is defined as follows: for any x = (x1, x2, · · · , xn) ∈

Xn and x′ = (x′1, x
′
2, · · · , x′n) ∈ Xn,

dXn(x,x′)
dW
dW−1 =

n∑
i=1

dX(xi, x
′
i)

dW
dW−1 .

Let pXt (x, y) be the heat kernel on X. Then the heat kernel on Xn is given by

pX
n

t (x,y) = pXt (x1, y1) · · · pXt (xn, yn).

Proposition 5.43. if X satisfies BE(κ), then Xn also satisfies BE(κ).

Proof. Let f ∈ L∞(Xn, µ⊗n). Then for any x,x′ ∈ Xn, we have∣∣∣PXnt f(x)− PXnt f(x′)
∣∣∣ ≤ ∣∣∣PXnt f(x1, x2, · · · , xn)− PXnt f(x′1, x2, · · · , xn)

∣∣∣
+
∣∣∣PXnt f(x′1, x2, · · · , xn)− PXnt f(x′1, x

′
2, x3, · · · , xn)

∣∣∣
+ · · ·+

∣∣∣PXnt f(x′1, · · · , x′n−1, xn)− PXnt f(x′1, x
′
2, · · · , x′n)

∣∣∣ .
Notice that for any 1 ≤ i ≤ n, since X satisfies BE(κ), then∣∣∣PXnt f(x′1, · · · , x′i−1, xi, · · · , xn)− PXnt f(x′1, · · · , x′i, xi+1, · · · , xn)

∣∣∣
≤
∣∣∣PXt (PX

n−1

t f(x′1, · · · , x′i−1, ·, xi+1, · · · , xn))(xi)− PXt (PX
n−1

t f(x′1, · · · , x′i−1, ·, xi+1, · · · , xn))(x′i)
∣∣∣

≤ C dX(xi, x
′
i)
κ

tκ/dW

∥∥∥PXn−1

t f(x′1, · · · , x′i−1, ·, xi+1, · · · , xn)
∥∥∥
L∞(X)

≤ C dX(xi, x
′
i)
κ

tκ/dW
‖f‖L∞(Xn).

Hence∣∣∣PXnt f(x)− PXnt f(x′)
∣∣∣ ≤ C 1

tκ/dW

(
n∑
i=1

dX(xi, x
′
i)
κ

)
‖f‖L∞(Xn) ≤ C

dXn(x,x′)κ

tκ/dW
‖f‖L∞(Xn).

(The constant C may or may not depend on n.) �

5.7. Continuity of the heat semigroup in the Besov spaces: the case p ≥ 2

In this section, we study the continuity of the heat semigroup in the Besov spaces in the range
p ≥ 2. This complements the results of Chapter 1, under the additional weak Bakry-Émery estimate
assumption. For the sake of clarity, in the statements in this paragraph the assumptions on the under-
lying space X are explicitly written. Throughout this section, let X be an Ahlfors dH -regular space
that satisfies sub-Gaussian heat kernel estimates and BE(κ) with 0 < κ ≤ dW

2 .

Theorem 5.44. For any p ≥ 2, there exists a constant C > 0 such that for every t > 0 and
f ∈ L2(X,µ) ∩ L∞(X,µ)

‖Ptf‖pp,κ/dW ≤
C

t
κp
dW

‖f‖2L2(X,µ)‖f‖p−2
L∞(X,µ).

In particular, for t > 0, Ptf ∈ B
p, κ
dW (X).



5.7. CONTINUITY OF THE HEAT SEMIGROUP IN THE BESOV SPACES: THE CASE p ≥ 2 75

Proof. First, note that Ptf ∈ Lp(X,µ) ∩ F for any p ≥ 2. In order to prove that ‖Ptf‖p,κ/dW is
finite, we proceed as in the proof of Theorem 5.1 and consider, for any s, r > 0,

A(s, r) :=

∫
X

∫
X\B(y,r)

ps(x, y)|Ptf(x)− Ptf(y)|pµ(dx)µ(dy),

B(s, r) :=

∫
X

∫
X(y,r)

ps(x, y)|Ptf(x)− Ptf(y)|pµ(dx)µ(dy).

In what follows, C will denote a positive constant that may change from line to line. On the one hand,
from the proof of Theorem 5.1 we know that the upper bound on the heat kernel implies

A(s, r) ≤ c8 exp
(
− c9

(rdW
s

) 1
dW−1

)
‖Ptf‖pLp(X,µ).

On the other hand, the aforementioned proof also yields

B(s, r) ≤ c3
∞∑
n=1

(21−nr)pκ+dH

sdH/dW
exp

(
− c9

( (21−nr)dW

s

) 1
dW−1

)
× 1

(21−nr)pκ+dH

∫
X

∫
B(y,21−nr)

|Ptf(x)− Ptf(y)|pµ(dy)µ(dx).

Writing |Ptf(x) − Ptf(y)|p = |Ptf(x) − Ptf(y)|p−2|Ptf(x) − Ptf(y)|2 and applying BE(κ) to the first
factor we obtain

B(s, r) ≤ C‖f‖p−2
∞

tκ(p−2)/dW

∞∑
n=1

(21−nr)pκ+dH

sdH/dW
exp

(
− c9

( (21−nr)dW

s

) 1
dW−1

)
× 1

(21−nr)2κ+dH

∫
{(x,y)∈X×X : d(x,y)<21−nr}

|Ptf(x)− Ptf(y)|2µ(dy)µ(dx)

≤C‖f‖
p−2
∞ spκ/dW

tκ(p−2)/dW
sup
s̃∈(0,r]

(
Nκ

2 (Ptf, s̃)
)2 ∞∑

n=1

( (21−nr)dW

s

) pκ+dH
dW exp

(
− c9

( (21−nr)dW

s

) 1
dW−1

)
≤ C‖f‖p−2

∞
tκ(p−2)/dW

spκ/dW ‖Ptf‖22,κ/dW ,

where the last inequality follows from the proof of the lower bound in Theorem 5.1. We have thus
proved that for any r > 0

s−pκ/dW
∫
X

∫
X

ps(x, y)|Ptf(x)− Ptf(y)|pµ(dx)µ(dy)

≤ c8s−pκ/dW exp
(
− c9

(rdW
s

) 1
dW−1

)
‖Ptf‖pLp(X,µ) +

C‖f‖p−2
∞

tκ(p−2)/dW
‖Ptf‖22,κ/dW .

This yields

sup
s>0

s−pκ/dW
∫
X

∫
X

ps(x, y)|Ptf(x)− Ptf(y)|pµ(dx)µ(dy)

≤ C

rpκ
‖Ptf‖pLp(X,µ) +

C‖f‖p−2
∞

tκ(p−2)/dW
‖Ptf‖22,κ/dW

and letting r →∞ we obtain

‖Ptf‖pp,κ/dW ≤
C‖f‖p−2

∞
tκ(p−2)/dW

‖Ptf‖22,κ/dW .
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We now find an upper bound for ‖Ptf‖2,κ/dW . From Lemma 1.8, one has for t > 0

‖Ptf‖2,κ/dW ≤
2

tκ/dW
‖Ptf‖L2(X,µ) + sup

s∈(0,t]

s−κ/dW
(∫

X

Ps(|Ptf − Ptf(y)|2)(y)dµ(y)

)1/2

≤ 2

tκ/dW
‖f‖L2(X,µ) + t

1
2−

κ
dW sup

s∈(0,t]

s−1/2

(∫
X

Ps(|Ptf − Ptf(y)|2)(y)dµ(y)

)1/2

.

We now note that from spectral theory,

sup
s∈(0,t]

s−1/2

(∫
X

Ps(|Ptf − Ptf(y)|2)(y)dµ(y)

)1/2

≤ C
√
E(Ptf, Ptf) ≤ C

t1/2
‖f‖L2(X,µ)

and the proof is complete. �

We first point out two corollaries.

Corollary 5.45. For any p ≥ 2, there exists a constant C > 0 such that for every t > 0 and
f ∈ L2(X,µ)

‖Ptf‖pp,κ/dW ≤
C

t
κp
dW

+
(p−2)dH

2dW

‖f‖pL2(X,µ).

In particular, for t > 0, Pt : L2(X,µ)→ B
p, κ
dW (X) is bounded for every p ≥ 2.

Proof. From the heat kernel upper bound, we have that Pt : L2(X,µ)→ L∞(X,µ) is continuous
with

‖Ptf‖L∞(X,µ) ≤
C

t
dH
2dW

‖f‖L2(X,µ).

The result then easily follows from the theorem 5.44 applied to Ptf instead of f . �

Since Pt is also bounded from L2(X,µ)→ B1, 12 (X) = F , by using the interpolation inequalities in
proposition 1.20, one obtains:

Corollary 5.46. For any p ≥ 2, t > 0, Pt : L2(X,µ) → B
p,(1− 2

p ) κ
dW

+ 1
p (X) is bounded. More

precisely,

‖Ptf‖p,(1− 2
p ) κ

dW
+ 1
p
≤ C

t(
1− 2

p )
(

κ
dW

+
dH
2dW

)
+ 1
p

‖f‖L2(X,µ).

Proof. Let p ≥ 2 and q ≥ p. By applying proposition 1.20 with

θ =

1
2 − 1

p
1
2 − 1

q

and
α = θ

κ

dW
+

1

2
(1− θ) ,

we get
‖Ptf‖p,α ≤ ‖Ptf‖θq,κ/dW ‖Ptf‖

1−θ
2,1/2.

Now, from corollary 5.45,

‖Ptf‖q,κ/dW ≤
C

t
κ
dW

+
(q−2)dH
2qdW

‖f‖L2(X,µ),

and from spectral theory

‖Ptf‖2,1/2 ≤
C√
t
‖f‖L2(X,µ).

One deduces
‖Ptf‖p,α ≤

C

t
θ
(

κ
dW

+
(q−2)dH
2qdW

)
+ 1−θ

2

‖f‖L2(X,µ).
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By letting q → +∞, one has , θ → 1− 2
p and α→

(
1− 2

p

)
κ
dW

+ 1
p . It follows therefore

‖Ptf‖p,(1− 2
p ) κ

dW
+ 1
p
≤ C

t(
1− 2

p )
(

κ
dW

+
dH
2dW

)
+ 1
p

‖f‖L2(X,µ).

�

Finally, for p ≥ 2 we now prove the boundedness of Pt : Lp(X,µ)→ B
p,(1− 2

p ) κ
dW

+ 1
p (X).

Theorem 5.47. For any p ≥ 2, there exists a constant C > 0 such that for every t > 0 and
f ∈ Lp(X,µ)

‖Ptf‖p,(1− 2
p ) κ

dW
+ 1
p
≤ C

t(
1− 2

p ) κ
dW

+ 1
p

‖f‖Lp(X,µ).

In particular, for t > 0, Pt : Lp(X,µ)→ B
p,(1− 2

p ) κ
dW

+ 1
p (X) is bounded.

Proof. As usual, in the sequel, C is a constant that may change from line to line. From theorem
5.44, for any q ≥ 2, there exists a constant C > 0 such that for every t > 0 and f ∈ L2(X,µ)∩L∞(X,µ)

‖Ptf‖qq,κ/dW ≤
C

t
κq
dW

‖f‖2L2(X,µ)‖f‖q−2
L∞(X,µ).

From the heat kernel upper bound, we have that Pt : Lq(X,µ)→ L∞(X,µ) is continuous with

‖Ptf‖L∞(X,µ) ≤
C

t
dH
qdW

‖f‖Lq(X,µ).

Therefore, one deduces that exists a constant C > 0 such that for every t > 0 and f ∈ L2(X,µ)∩Lq(X,µ)

‖Ptf‖qq,κ/dW ≤
C

t
κq
dW

+
(q−2)dH
qdW

‖f‖2L2(X,µ)‖f‖q−2
Lq(X,µ).

If A ⊂ X is a set of finite measure, one deduces that

‖Pt(f1A)‖qq,κ/dW ≤
Cµ(A)1− 1

2q

t
κq
dW

+
(q−2)dH
qdW

‖f‖qLq(A,µ).

Thus, for every f ∈ Lq(A,µ),

‖Pt(f1A)‖q,κ/dW ≤
Cµ(A)

1
q−

1
2q2

t
κ
dW

+
(q−2)dH
q2dW

‖f‖Lq(A,µ).

On the other hand, for every f ∈ L2(A,µ)

‖Pt(f1A)‖2,1/2 ≤
C√
t
‖f‖L2(A,µ).

Let now 2 ≤ p ≤ q and

θ =

1
2 − 1

p
1
2 − 1

q

and

α = θ
κ

dW
+

1

2
(1− θ) .

From the Riesz-Thorin interpolation theorem one deduces that for every f ∈ Lp(A,µ)

‖Pt(f1A)‖p,α ≤
Cµ(A)

θ
q−

θ
2q2

t
θ
(

κ
dW

+
(q−2)dH
q2dW

)
+ 1−θ

2

‖f‖Lp(A,µ).
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As before, by letting q → +∞, one has , θ → 1− 2
p and α→

(
1− 2

p

)
κ
dW

+ 1
p . One deduces that there

exists a constant C > 0 (independent from A) such that for every t > 0 and f ∈ Lp(X,µ)

‖Pt(f1A)‖p,(1− 2
p ) κ

dW
+ 1
p
≤ C

t(
1− 2

p ) κ
dW

+ 1
p

‖f‖Lp(A,µ) ≤
C

t(
1− 2

p ) κ
dW

+ 1
p

‖f‖Lp(X,µ).

The conclusion easily follows since A is arbitrary. �

We finish the section with two interesting consequence of the Besov continuity of the semigroup.

Proposition 5.48. Let L be the generator of E, p ≥ 2. Denote

α∗p =

(
1− 2

p

)
κ

dW
+

1

p
.

and Lp be the domain of L in Lp(X,µ). Then

Lp ⊂ Bp,α∗p(X)

and for every f ∈ Lp,

(5.46) ‖f‖p,α∗p ≤ C‖Lf‖
α∗p
Lp(X,µ)‖f‖

1−α∗p
Lp(X,µ).

Proof. For λ > 0, write

Rλf = (L− λ)−1f =

∫ ∞
0

e−λtPtfdt.

We have then

‖Rλf‖p,α∗p ≤
∫ ∞

0

e−λt‖Ptf‖p,α∗pdt ≤
∫ ∞

0

e−λt
C

tα
∗
p
‖f‖pdt ≤ Cλα

∗−1‖f‖p.

It follows that
‖f‖p,α∗p ≤ Cλα

∗−1‖(L− λ)f‖p ≤ C(λα
∗−1‖Lf‖p + λα

∗‖f‖p).
Taking λ = ‖Lf‖p‖f‖−1

p , we then get the conclusion.
�

For p ≥ 1, we denote:

α∗p =

(
1− 2

p

)
κ

dW
+

1

p
.

We have then the following theorem that complements Theorem 1.25 of Chapter 1.

Theorem 5.49. Let 1 ≤ p ≤ 2. For every f ∈ Bp,α∗p(X), and t ≥ 0,

‖Ptf − f‖Lp(X,µ) ≤ Ctα
∗
p lim sup

r→0

1

rdH+dWα∗p

(∫∫
∆r

|f(x)− f(y)|p dµ(x) dµ(y)

)1/p

Proof. With Theorem 5.47 in hands, the proof is similar to that of Theorem 1.25 . �

5.8. Critical exponents and generalized Riesz transforms

Let X be an Ahlfors dH -regular space that satisfies sub-Gaussian heat kernel estimates and BE(κ)
with 0 < κ ≤ dW

2 . For p ≥ 1, we denote in this section:

α∗p(X) = inf {α > 0 : Bp,α(X) is trivial} .
Theorem 5.50. The following inequalities hold:
• For 1 ≤ p ≤ 2,

1

2
≤ α∗p(X) ≤

(
1− 2

p

)
κ

dW
+

1

p
.
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• For p ≥ 2, (
1− 2

p

)
κ

dW
+

1

p
≤ α∗p(X) ≤ 1

2
.

Proof. Let p ≥ 2. Let βp =
(

1− 2
p

)
κ
dW

+ 1
p . Thanks, to Theorem 5.47, Bp,βp(X) is dense in

Lp(X,µ), because for f ∈ Lp(X,µ), Ptf ∈ Bp,βp(X) and Ptf → f when t→ 0. Next, we prove that for
α > βp, and 1 ≤ p ≤ 2, Bp,α(X) is trivial, which is a consequence of Theorem 5.49 since for f ∈ Bp,α(X)
one has then

lim sup
r→0

1

rdH+dW βp

(∫∫
∆r

|f(x)− f(y)|p dµ(x) dµ(y)

)1/p

= 0

and thus Ptf = f , t ≥ 0. �

Remark 5.51. Note that for the unbounded Sierpinski gasket, from previous results (see Example
5.26), one has

α∗1(X) =
dH
dW

.

It is natural to conjecture that if X is an Ahlfors dH -regular space that satisfies sub-Gaussian heat
kernel estimates and BE(κ) with 0 < κ ≤ dW

2 , under possible additional conditions, we may actually
always have

α∗p(X) =

(
1− 2

p

)
κ

dW
+

1

p
, p ≥ 1.

This is will be the object of a further study. We however briefly comment on this problem and its
connection to a natural notion of Riesz transform.

For p > 1, α ∈ (0, 1] let us say that X satisfies (Rp,α) if there exists a constant C = Cp,α such that

‖f‖p,α ≤ C‖(−L)αf‖Lp(X,µ),

where f is in the proper domain. For instance, in the strictly local framework of Chapter 4, under the
strong Bakry-Émery curvature condition, ‖f‖pp,1/2 ∼

∫
X

Γ(f)p/2dµ and (Rp,1/2) is therefore equivalent
to boundedness of the Riesz transform in Lp(X,µ).

One has then the following:

Lemma 5.52. Assume that for every 1 < p ≤ 2, (Rp,βb) is satisfied with βp =
(

1− 2
p

)
κ
dW

+ 1
p .

Then for every p ≥ 1,

α∗p(X) =

(
1− 2

p

)
κ

dW
+

1

p
.

Proof. By analyticity of the semigroup, one has then for every f ∈ Lp(X,µ), 1 < p ≤ 2,

‖Ptf‖p,βp ≤ C‖(−L)βpPtf‖Lp(X,µ) ≤
C

tβp
‖f‖Lp(X,µ).

Therefore, for t > 0, Pt : Lp(X,µ)→ Bp,βp(X) is bounded. In particular, Bp,βp(X) is dense in Lp(X,µ)
and we can argue as before. Details are omitted. �

5.9. Sets of finite perimeter

Definition 5.53. Let X be an Ahlfors dH-regular space that satisfies sub-Gaussian heat kernel
estimates and BE(κ) with 0 < κ ≤ dW

2 . A set E ⊂ X is said to be of finite perimeter if 1E ∈
B

1− κ
dW (X).

An important property of sets of finite perimeter is the following:
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Theorem 5.54. There exist constants c, C > 0 such that for every set E ⊂ X of finite perimeter,

c sup
r>0

1

rdW−κ+dH
(µ⊗ µ) {(x, y) ∈ E × Ec : d(x, y) < r}

≤‖1E‖1,α ≤ C lim sup
r→0+

1

rdW−κ+dH
(µ⊗ µ) {(x, y) ∈ E × Ec : d(x, y) < r} ;

Proof. This is a consequence of Theorem 5.1 and Theorem 5.34 applied to 1E . �

Remark 5.55. In the previous theorem, note that

lim sup
r→0

1

rdW−κ+dH
(µ⊗ µ) {(x, y) ∈ E × Ec : d(x, y) ≤ r} ≤ C lim sup

r→0

1

rdW−κ
µ((∂E)r),

where, as everywhere in the section, (∂E)r denotes the r-neighborhood of ∂E.

5.10. Sobolev and isoperimetric inequalities

Combining the results of Part I, Chapter 2, with the results of this chapter, one immediately
obtains the following corollaries. The proofs are similar to the ones in Section 4.7, so will be omitted
for concision.

Corollary 5.56. Let (X,µ, E ,F) be a symmetric Dirichlet space with sub-Gaussian heat kernel
estimates. Then, one has the following weak type Besov space embedding. Let 0 < δ < dH . Let
1 ≤ p < dH

δ . There exists a constant Cp,δ > 0 such that for every f ∈ Bp,δ/dW (X),

sup
s≥0

sµ ({x ∈ X : |f(x)| ≥ s}) 1
q ≤ Cp,δ sup

r>0

1

rδ+dH/p

(∫∫
∆r

|f(x)− f(y)|p dµ(x) dµ(y)

)1/p

where q = pdH
dH−pδ . Furthermore, for every 0 < δ < dH , there exists a constant Ciso,δ such that for every

measurable E ⊂ X, µ(E) < +∞,

µ(E)
dH−δ
dH ≤ Ciso,δ sup

r>0

1

rδ+dH
(µ⊗ µ) {(x, y) ∈ E × Ec : d(x, y) ≤ r}(5.47)

In the previous corollary, when p = 1 (the most interesting for isoperimetry), one may replace the
sup by the lim sup provided that the weak Bakry-Émery curvature condition is satisfied.

Corollary 5.57. Let (X,µ, E ,F) be a symmetric Dirichlet space with sub-Gaussian heat kernel
estimates that satisfies the weak Bakry-Émery curvature condition (5.43) with a parameter κ such that
dW − dH < κ < dW . Let δ = dW − κ. There exists a constant C1,δ > 0 such that for every
f ∈ B1,δ/dW (X),

sup
s≥0

sµ ({x ∈ X, |f(x)| ≥ s}) 1
q ≤ Cp,δ lim sup

r>0

1

rδ+dH

∫∫
∆r

|f(x)− f(y)| dµ(x) dµ(y)

where q = pdH
dH−δ . Furthermore, there exists a constant Ciso,δ such that for every measurable E ⊂ X,

µ(E) < +∞,

µ(E)
dH−δ
dH ≤ Ciso,δ lim sup

r→0

1

rδ+dH
(µ⊗ µ) {(x, y) ∈ E × Ec : d(x, y) ≤ r} .(5.48)

Remark 5.58. In the limiting case κ = dW − dH (like the unbounded Sierpinski gasket), one
has the following result. There exists a constant Ciso > 0 such that for every measurable E ⊂ X,
0 < µ(E) < +∞,

lim sup
r→0

1

r2dH
(µ⊗ µ) {(x, y) ∈ E × Ec : d(x, y) ≤ r} ≥ Ciso,(5.49)
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Remark 5.59. In the previous theorem, if E ⊆ X has a compact topological boundary ∂E

lim sup
r→0

1

rδ+dH
(µ⊗ µ) {(x, y) ∈ E × Ec : d(x, y) ≤ r} ≤ C lim sup

r→0

1

rδ
µ((∂E)r),

where (∂E)r denotes the r-neighborhood of ∂E.





CHAPTER 6

Non-local Dirichlet spaces with heat kernel estimates

Let (X, d, µ) be a metric measure space. We assume that B(x, r) := {y ∈ X | d(x, y) < r} has
compact closure for any x ∈ X and any r ∈ (0,∞), and that µ is Ahlfors dH -regular, i.e. there exist
c1, c2, dH ∈ (0,∞) such that c1rdH ≤ µ

(
B(x, r)

)
≤ c2rdH for any r ∈

(
0,+∞

)
. Furthermore, we assume

that on (X,µ) there is a heat kernel pt(x, y). If the metric measure space (X, d, µ) satisfies a certain
chain condition and all its metric balls are relatively compact, it is known from [GK08, Theorem 4.1]
that the sub-Gaussian heat kernel estimates (5.1) will force the associated Dirichlet form to be local. If
the Dirichlet form is non-local, the mentioned result tells us that the only possible heat kernel estimates
are

(6.1) c5t
− dH
dW

(
1 + c6

d(x, y)

t1/dW

)−dH−dW
≤ pt(x, y) ≤ c3t−

dH
dW

(
1 + c4

d(x, y)

t1/dW

)−dH−dW
,

with 0 < dW ≤ dH + 1. We refer to [GK08,GHL03,GHL14,GHH17,GK17,GL15,BGPV14] for
further details and results in this direction. The present chapter is devoted to the study of the spaces
Bp,α(X) in this framework of non-local Dirichlet spaces with heat kernel estimates (6.1). To compare
both situations more easily, we will follow the same structure as the previous chapter about the local
case.

6.1. Metric characterization of Besov spaces

We start by relating our Besov space Bp,α(X) with other Besov type spaces that have been con-
sidered in the literature in the non-local context; see e.g. [Gri03,Str03b].

For α ∈ [0,∞) and p ∈ [1,∞), recall the Besov seminorm

‖f‖p,α = sup
t>0

t−α
(∫

X

∫
X

|f(x)− f(y)|ppt(x, y)dµ(x)dµ(y)

)1/p

and the Besov space
Bp,α(X) = {f ∈ Lp(X,µ) : ‖f‖p,α < +∞}.

Recall also the metric Besov type seminorm defined in (5.2). That is, for f ∈ Lp(X,µ),

Nα
p (f, r) :=

1

rα+dH/p

(∫∫
∆r

|f(x)− f(y)|p dµ(x) dµ(y)

)1/p

.

Here, as in the previous chapters, for r > 0 the set ∆r denotes the collection of all (x, y) ∈ X ×X with
d(x, y) < r. For any q ∈ [1,∞) such that p ≤ q, define

Nα
p,q(f) :=

(∫ ∞
0

(
Nα
p (f, r)

)q dr
r

)1/q

,

and for q =∞, define
Nα
p,∞(f) := sup

r>0
Nα
p (f, r).

The Besov space is then defined by

Bα
p,q(X) = {u ∈ Lp(X) : Nα

p,q(f) <∞}.
We determine first which of the these spaces coincides with Bp,α(X) when p ∈ [1,∞) and α ∈ [0, 1/p).

83
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Theorem 6.1. Let p ≥ 1 and 0 ≤ α < 1/p. We have BαdW
p,∞ (X) = Bp,α(X) and there exist two

constants c, C > 0 (depending on p, α, dH , dW ) such that

cNαdW
p,∞ (f) ≤ ‖f‖p,α ≤ C NαdW

p,∞ (f).1

Proof. We follow the proof for Theorem 5.1 by first proving the lower bound. By the upper bound
in (6.1), one has for r, t > 0∫

X

∫
X

|f(x)− f(y)|ppt(x, y)dµ(x)dµ(y)

≥ c

tdH/dW

∫
X

∫
B(y,r)

|f(x)− f(y)|p(
1 + d(x,y)

t1/dW

)dH+dW
dµ(x)dµ(y)

≥ c

tdH/dW
1(

1 + r
t1/dW

)dH+dW

∫
X

∫
B(y,r)

|f(x)− f(y)|pdµ(x)dµ(y)

≥ c

tdH/dW
rαdW p+dH(

1 + r
t1/dW

)dH+dW
NαdW
p (f, r)p

Choosing r = t1/dW , it easily follows that

‖f‖p,α ≥ c sup
t>0

NαdW
p (f, t1/dW ) = cNαdW

p,∞ (f).

We now turn to the upper bound. We set A(t) and B(t) as in (5.6), respectively (5.7), so that∫
X

∫
X
|f(x) − f(y)|ppt(x, y)dµ(x)dµ(y) = A(t) + B(t). By (6.1) and the inequality |f(x) − f(y)|p ≤

2p−1(|f(x)|p + |f(y)|p),

A(t) ≤ c3
tdH/dW

∫
X

∫
X\B(y,r)

(
1 + c4

d(x, y)

t1/dW

)−dH−dW
· 2p|f(y)|p dµ(x) dµ(y)

=
2pc3
tdH/dW

∞∑
k=1

∫
X

∫
B(y,2kr)\B(y,2k−1r)

(
1 + c4

d(x, y)

t1/dW

)−dH−dW
|f(y)|p dµ(x) dµ(y)

≤ 2pc3
tdH/dW

∞∑
k=1

∫
X

µ
(
B(y, 2kr)

)(
1 + c4

2(k−1)r

t1/dW

)−dH−dW
|f(y)|p dµ(y)

≤ 2pc3
tdH/dW

∞∑
k=1

c2r
dH2kdH‖f‖pLp

(
1 + c4

2(k−1)r

t1/dW

)−dH−dW
= C‖f‖pLp

∞∑
k=1

(2k−1r

t1/dW

)dH(
1 +

c4
2

2kr

t1/dW

)−dH−dW

≤ C‖f‖pLp
∞∑
k=1

∫ 2kr

t1/dW

2k−1r

t1/dW

sdH
(

1 +
c4
2
s

)−dH−dW ds

s

≤ C‖f‖pLp
tαp

rαdW p

∫ ∞
0

sαdW p+dH−1

(
1 +

c4
2
s

)−dH−dW
ds

≤ C tαp

rαdW p
‖f‖pLp ,(6.2)

where the last integral is bounded as long as α ∈ [0, 1/p).

1Here and after, the letters c, C denote constants independent of important parameters which may change at each
circumstance.
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On the other hand, for B(t), by (6.1) we have

B(t) ≤ c3
tdH/dW

∫
X

∫
B(y,r)

(
1 + c4

d(x, y)

t1/dW

)−dH−dW
|f(x)− f(y)|p dµ(x) dµ(y)

≤ c3
tdH/dW

∞∑
k=1

∫
X

∫
B(y,21−kr)\B(y,2−kr)

(
1 + c4

d(x, y)

t1/dW

)−dH−dW
|f(x)− f(y)|p dµ(x) dµ(y)

≤ c3
tdH/dW

∞∑
k=1

∫
X

∫
B(y,21−kr)

(
1 + c4

2−kr

t1/dW

)−dH−dW
|f(x)− f(y)|p dµ(x) dµ(y)

≤ c3
∞∑
k=1

(21−kr)αdW p+dH

tdH/dW

(
1 + c4

2−kr

t1/dW

)−dH−dW 1

(21−kr)αdW p+dH

∫
X

∫
B(y,21−kr)

|f(x)− f(y)|p dµ(x) dµ(y)

≤ Ctαp sup
s∈(0,r]

NαdW
p (f, s)p

∞∑
k=1

( 2−kr

t1/dW

)dH+αdW p
(

1 + c4
2−kr

t1/dW

)−dH−dW

≤ Ctαp sup
s∈(0,r]

NαdW
p (f, s)p,

(6.3)

where the last series converges for all α ∈ [0, 1/p).
Combining (6.2) and (6.3), we conclude that by taking r →∞,

sup
t>0

1

tαp

∫
X

∫
X

|f(x)− f(y)|ppt(x, y)dµ(x)dµ(y) ≤ C sup
s>0

NαdW
p (f, s)p,

and hence ‖f‖p,α ≤ CNαdW
p,∞ (f). The proof is thus complete. �

We can also establish several inclusions that cover the case when α ∈ [1/p,∞).

Proposition 6.2. Let p ∈ [1,∞). We have

(1) if α ∈ [0, 1/p], then BαdW
p,p (X) ⊂ Bp,α(X).

(2) if α ∈ [1/p,∞), then Bp,α(X) ⊂ BαdW
p,p (X).

In particular, Bp,1/p(X) = B
dW /p
p,p (X).

Proof. We first show (1). Fixing a decreasing geometric sequence {rk}k∈Z, we can write

∑
k∈Z

Nα
p (f, rk)p '

∫ ∞
0

Nα
p (f, r)p

dr

r
.
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Using the upper bound in (6.1), for any α ∈ [0, 1/p] we have that∫
X

∫
X

|f(x)− f(y)|ppt(x, y)dµ(x)dµ(y)

=
∑
k∈Z

∫
X

∫
B(x,rk)\B(x,rk+1)

|f(x)− f(y)|ppt(x, y)dµ(x)dµ(y)

≤
∑
k∈Z

c3t
− dH
dW

(
1 + c4

rk+1

t1/dW

)−dH−dW ∫
X

∫
B(x,rk)\B(x,rk+1)

|f(x)− f(y)|pdµ(x)dµ(y)

=
∑
k∈Z

c3t
(
t1/dW + c4rk+1

)−dH−dW ∫
X

∫
B(x,rk)\B(x,rk+1)

|f(x)− f(y)|pdµ(x)dµ(y)

≤
∑
k∈Z

c3t
(
t1/dW

)−dW+αpdW
(c4rk+1)

−dH−αpdW
∫
X

∫
B(x,rk)\B(x,rk+1)

|f(x)− f(y)|pdµ(x)dµ(y)

≤ C
∑
k∈Z

tαpNαdW
p (f, rk+1)p ≤ CtαpNαdW

p,p (f)p.

This implies

‖f‖p,α ≤ CNαdW
p,p (f),

and hence BαdW
p,p (X) ⊂ Bp,α(X).

Next we prove (2). Notice that for any δ ∈ (0, 1) and d′W = dW /δ, there exist two constants c, C
such that

pt(x, y) ≥ c
∫ ∞
t1/δ

t

s1+δ
s−dH/d

′
W exp

−C (d(x, y)d
′
W

s

)1/(d′W−1)
 ds.

See for instance [Gri03, Section 5.4]. Following the proof in Theorem 5.1, we obtain for α ≥ 1/p,∫
X

∫
X

|f(x)− f(y)|pps(x, y)dµ(x)dµ(y)

≥ c
∫ ∞
t1/δ

t

s1+δ
s−dH/d

′
W

∫
X

∫
B
(
y,s1/d

′
W

) |f(x)− f(y)|pdµ(x)dµ(y)ds

≥ c
∫ ∞
t1/δd

′
W

t

rδd
′
W−αdW p

NαdW
p (f, r)p

dr

r

≥ ctαp
∫ ∞
t1/dW

NαdW
p (f, r)p

dr

r
,

where we get the second inequality by changing the variable. It follows that

‖f‖p,α ≥ c sup
t>0

(∫ ∞
t1/dW

NαdW
p (f, r)p

dr

r

)1/p

= cNαdW
p,p (f),

and we conclude (2). �

We finish this section by giving an alternative, equivalent expression for the seminorm ‖f‖1,1 that
will turn useful later on.

Lemma 6.3. Let f ∈ B1,1(X). Then the seminorm ‖f‖1,1 is equivalent to

W1,1(f) :=

∫
X

∫
X

|f(x)− f(y)|
d(x, y)dH+dW

dµ(x)dµ(y).
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Proof. We first show that ‖f‖1,1 ≤ CW1,1(f), which follows directly from the heat kernel estimate
(6.1). Indeed, for every t > 0,

1

t

∫
X

∫
X

|f(x)− f(y)|pt(x, y)dµ(x)dµ(y)

≤ c3
t

∫
X

∫
X

t
− dH
dW

(
1 + c4

d(x, y)

t1/dW

)−dH−dW
|f(x)− f(y)|dµ(x)dµ(y)

=
c3
t

∫
X

∫
X

t(
t1/dW + c4d(x, y)

)dH+dW
|f(x)− f(y)|dµ(x)dµ(y) ≤ CW1,1(f).

Next we show the reverse inequality. For every t > 0,∫
X

∫
X

c5(
t1/dW + c6d(x, y)

)dH+dW
|f(x)− f(y)|dµ(x)dµ(y)

≤ 1

t

∫
X

∫
X

|f(x)− f(y)|pt(x, y)dµ(x)dµ(y) ≤ ‖f‖1,1.

By Lebesgue’s dominated convergence theorem, we have W1,1(f) ≤ C‖f‖1,1. This completes the proof.
�

6.2. Coarea type estimates

From Theorem 6.1 we can derive as in the local case several estimates involving the fractional
perimeter in the non-local setting, which in this case include the case when dW < 1. As in Chapter 5,
given a function u ∈ L1(X,µ) we denote Es(u) = {x ∈ X, u(x) > s}, for E ⊂ K denote by (E)r the
r-neighborhood of E and by ∂E its topological boundary.

Theorem 6.4. Let X be Ahlfors dH-regular with a heat kernel that satisfies the upper estimate
in (6.1). For u ∈ L1(X,µ), assume that there is 0 < α ≤ min{dH/dW , 1} and R > 0 such that

(6.4) hR(u, s) = sup
r∈(0,R]

1

rαdW
µ
{
x ∈ Es(u) : d(x,X \ Es(u)) < r

}
is in L1(R, ds). Then, u ∈ B1,α(X) and there exist constants C1, C2 > 0 independent of u such that

(6.5) ‖u‖1,α ≤ C1R
−α‖u‖L1(X,µ) + C2

∫
R
h(u, s)ds.

In particular, for any set E ⊂ X we have

(6.6) ‖1E‖1,α ≤ C1R
−αµ(E) + C2 sup

r∈(0,R]

1

rαdW
µ
{
x ∈ E : d(x,X \ E) < r

}
.

Proof. This is analogous to the local case and we only give a sketch of the proof. Applying
Theorem 6.4 with f = 1Es(u) and p = 1 we have that, for any R > 0 and s ∈ R,

(6.7) t−α
∫
X×X

|1Es(u)(y)− 1Es(u)(x)| pt(x, y) dµ(y)dµ(x)

≤ C1R
−αdW ‖1Es(u)‖L1(X,µ) + C2 sup

r∈(0,R]

NαdW
1 (1Es(u), r).

Moreover, in view of definition (5.2) and applying the Ahlfors dH -regularity of the space X we get

NαdW
1 (1Es(u), r) =

1

rαdW+dH
µ⊗ µ

(
{(x, y) ∈ Es(u)× (X \ Es(u)) : d(x, y) < r}

)
≤ 1

rαdW+dH

∫
{x∈Es(u) : d(x,X\Es(u)}

µ
(
B(y, r)

)
dµ(x)

≤ 1

rαp
µ
(
{x ∈ Es(u) : d(x,X \ Es(u)}

)
= hR(u, s).
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Plugging this into (6.7), integrating both sides of over R and noting that
∫
R ‖1Es(u)‖L1(X,µ) = ‖u‖L1(X,µ)

finally yields (6.5). The last assertion follows from the fact that Es(1E) = E if s ∈ [0, 1) and zero
otherwise. �

Remark 6.5. The previous theorem could be stated with 0 < α < 1. However, if α > dH/dW , there
will be no function hR(u, s) satisfying the required conditions. Analogous reasons explain this restriction
for α in all subsequent statements.

We can now derive the same corollaries as in the local case, since these do not involve heat kernel
estimates. We restate them for completeness and refer for proof to the previous chapter.

Corollary 6.6. Let X be a uniformly locally connected space with a heat kernel that satisfies the
upper heat kernel estimate (6.1). If E ⊂ X has finite measure and for some 0 < α ≤ min{ dHdW , 1}

sup
r∈(0,R]

1

rαdW
µ
{
x ∈ E : d(x, ∂E) < r

}
<∞,

then 1E ∈ B1,α(X) and

‖1E‖1,α ≤ C1R
−αdW µ(E) + C2 sup

r∈(0,R]

1

rαdW
µ
{
x ∈ E : d(x, ∂E) < r

}
.

Corollary 6.7. Let X be a uniformly locally connected space with a heat kernel that satisfies the
upper estimate (6.1) and let u ∈ L1(X,µ). Assume that ∂Es(u) is finite and s 7→ |∂Es(u)| is in L1(R),

where |∂Es(u)| denotes the cardinality of ∂Es(u). Then, if dH ≤ dW , we have u ∈ B
1,
dH
dW (X) and there

exists a constant C > 0 independent of u such that

‖u‖1,dH/dW ≤ C
∫
R
|∂Es(u)|ds.

In particular, if E ⊂ X is a set of finite measure whose boundary is finite, then 1E ∈ B
1,
dH
dW (X) and

‖1E‖1,dH/dW ≤ C|∂E|.
In the same fashion, the analogous of Proposition 5.10 will hold when the level sets Es(u) are

uniformly porous at large scales.

6.3. Sets of finite perimeter and fractional content of boundaries

6.3.1. Characterizations of the sets of finite perimeter. In the previous sections we have
provided the non-local counterpart of all ingredients that lead to the characterization result provided
by Theorem 5.11 in the local case. With the corresponding restriction on the parameter α, the same
result will hold in this setting.

Theorem 6.8. Under the assumptions of Theorem 6.1, for a bounded measurable set E ⊂ X and
0 < α ≤ min{1, dH/dW } we consider the following properties:

(1) 1E ∈ B1,α(X);

(2) sup
r>0

1

rαdW+dH
(µ⊗ µ)

(
{(x, y) ∈ E × Ec : d(x, y) < r}

)
< +∞;

(3) lim sup
r→0+

1

rαdW+dH
(µ⊗ µ)

(
{(x, y) ∈ E × Ec : d(x, y) < r}

)
< +∞;

(4) lim sup
r→0+

1

rαdW
µ
(
{x ∈ E : d(x,Ec) < r}

)
< +∞;

(5) lim sup
r→0+

∫
{x∈E : d(x,Ec)<r}

∫
B(x,r)∩Ec

1

d(x, y)dH+αdW
dµ(y)dµ(x) < +∞;

(6)
∫
E

∫
Ec

1

d(x, y)dH+αdW
dµ(y)dµ(x) < +∞.
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Then, the following relations hold:
(i) (1) ⇔ (2) ⇔ (3); moreover there exist constants c, C > 0 independent of E such that

c sup
r>0

1

rαdW+dH
(µ⊗ µ)

(
{(x, y) ∈ E × Ec : d(x, y) < r}

)
≤ ‖1E‖1,α ≤ C sup

r>0

1

rαdW+dH
(µ⊗ µ)

(
{(x, y) ∈ E × Ec : d(x, y) < r}

)
;

(ii) (4) ⇒ (5) ⇒ (1);
(iii) (6) ⇒ (1);
(iv) If in addition E is porous, c.f. (5.20), then (1) ⇒ (4);

The proofs follow verbatim, replacing Theorem 5.1 by Theorem 6.1 and Theorem 5.3 by Theo-
rem 6.4. Notice that Proposition 5.16 is does not actually involve any heat kernel estimates. Assuming
uniformly locally connectedness on the space, which includes the case of X being geodesic, we obtain
as in Corollary 5.5 the corresponding characterization of sets with finite α-perimeter in terms of inner
Minkowski contents.

6.3.2. Further results.

Theorem 6.9. Assume that pt(x, y) satisfies the upper heat kernel estimate (6.1) and dH < dW .
If there exists 0 < α < dH/dW such that for all ε > 0,

(6.8) µ⊗ µ{(x, y) ∈ Ec × E : d(x, y) < ε} 6 c7
(
εdH+αdW + ε2dH

)
,

then for all t > 0 it holds that

(6.9)
(
t−α + t−dH/dW

)
‖Pt1E − 1E‖L1(X,µ) 6 c11 <∞,

where c11 is a constant given by (6.11) that depends on δ, dH and dW .

Proof. In view of (6.1), pt(x, y) > s implies

(6.10) d(x, y) < t1/dW c−1
4

[(
c−1
3 t

dH
dW s

)− 1
dW+dH − 1

]
=: F (t, s).

Moreover, F (t, s) > 0 if and only if s < c3t
− dH
dW and the corresponding first term in the expression (5.32)

can now be bounded by∫ c3t
−dH/dW

0

c7c
−dH+αdW
4 t

dH+αdW
dW

[(
c−1
3 t

dH
dW s

)− 1
dW+dH − 1

]dH+αdW
ds

= c7c3c
−(dH+αdW )
4 tα

∫ 1

0

(
u
− 1
dW+dH − 1

)dH+αdW
du

which is finite since by assumption 0 < δ < dH < dW . Thus,

c7

∫ c3t
−dH/dW

0

(F (t, s))dH+αdW ds ≤ c7c3c−(dH+αdW )
4 tα

dW + dH
dW (1− α)

and, since dH < dW , the same estimate for the second term in (5.32) with α = dH/dW yields

c7

∫ c3t
−dH/dW

0

(F (t, s))dH+dHds ≤ c7c3c−2dH
4 t

dH
dW

dW + dH
dW − dH

so that (6.9) holds with

(6.11) c11 = c7c3c
−dH
4 max

{
cαdW4

dW + dH
dW (1− α)

, c−dH4

dW + dH
dW − dH

}
.

�
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Theorem 6.10. Assume that pt(x, y) satisfies the lower heat kernel estimate in (6.1). If there exist
α > 0 and ε > 0 such that

(6.12) µ⊗ µ{(x, y) ∈ Ec × E : d(x, y) < ε} ≥ c8εdH+αdW ,

then, for t = εdW , it holds that

(6.13) t−α‖Pt1E − 1E‖L1(X,µ) > 2c5c8e
−c6 > 0.

Corollary 6.11. If there exists α > 0 and ε0 > 0 such that (6.12) holds for any 0 < ε < ε0,
then (6.13) holds for any 0 < t < εdW .

Proof of Theorem 6.10. The lower estimate in (6.1) implies that

pt(x, y) ≥ c5t−
dH
dW c

−(dH+dW )
6

and hence assumption (6.12) yields

‖1EcPt1E‖L1(X,µ) ≥
∫
A
E,t1/dW

pt(x, y)µ(dx)µ(dy) ≥ c5c−(dH+dW )
6 t

− dH
dW µ⊗ µ(AE,t1/dW )

≥ c5c−(dH+dW )
6 t

− dH
dW c8t

(dH+αdW )

dW = c5c8c
−(dH+dW )
6 tα.

�

Under weaker assumptions, the following localized version of Theorem 6.9 is available.

Theorem 6.12. Let E ⊂ B ⊂ X and assume that pt(x, y) satisfies the upper heat kernel esti-
mate (6.1). If there exists 0 < α < 1 such that for all ε > 0,

(6.14) µ⊗ µ{(x, y) ∈ (B ∩ Ec)× E : d(x, y) < ε} 6 c7εdH+αdW ,

then for all t > 0 it holds that

(6.15) t−α‖Pt1E − 1E‖L1(B,µ) 6 c11 <∞,
where c11 is a constant given by (6.16) that depends on α, dH and dW .

Proof. Following the proof of Theorem 5.20 verbatim we have

‖1EcPt1E‖L1(B,µ) ≤
∫ c3t

−dH/dW

0

c7F (t, s)dH+αdW ds.

Since 0 < α < 1 by assumption, the same computations as in the proof of Theorem 6.9 imply that (6.15)
holds with

(6.16) c11 = c7c3c
−(dH+αdW )
4

dW + dH
dW (1− α)

.

�

6.4. Critical exponent for B1,α(X)

The observation that the space B1,α(X) is trivial for any α > 1 is the starting point of the discussion
that will be carried out in this section, where we compute

(6.17) α∗ = inf{α > 0 : B1,α(X) is trivial}.

Proposition 6.13. If f ∈ B1,α(X) with α > 1, then f = 0.
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Proof. Notice first that for any f ∈ B1,α(X),

‖Pt(|f − f(·)|)‖L1(X,µ) ≤ tα‖f‖1,α.
Now assume that f is bounded (in fact, one can consider fN defined in the proof of Proposition 1.11).
Then,

‖Pt(|f − f(·)|)‖L1(X,µ) ≤
∫
X

Pt(|f − f(x)|2)(x)dµ(x)

≤ 2‖f‖L∞(X)‖Pt(|f − f(·)|)‖L1(X,µ) ≤ 2tα‖f‖L∞(X)‖f‖1,α.
On the one hand, since α > 1, we have

lim
t→0

1

t

∫
X

Pt(|f − f(x)|2)(x)dµ(x) = 0.

On the other hand, as in Lemma 1.9 and Proposition 1.10 we know that
1

t

∫
X

Pt(|f − f(x)|2)(x)dµ(x) = 2Et(f),

where Et(f) is decreasing. Hence, ‖Pt(|f−f(·)|)‖L1(X,µ) = 0 for every t > 0 and therefore Ptf(x) = f(x)
for every t > 0. The upper bound in (6.1) yields

|f(x)| = |Ptf(x)| ≤
∫
X

pt(x, y)|f(y)|dµ(y) ≤ C

tdH/dW
||f ||L1(X,µ)

and letting t→∞, we obtain that f = 0. �

In order to compute the critical parameter α∗, we shall make the following assumption on the
underlying metric measure space (X, d, µ):

Assumption 6.14. There exists a constant C > 0, such that for every f ∈ B1
1,∞(X)

sup
ε>0

1

εdH+1

∫
∆ε

|f(y)− f(x)| dµ(x)dµ(y) ≤ C lim sup
ε→0+

1

εdH+1

∫
∆ε

|f(y)− f(x)| dµ(x)dµ(y),

where ∆ε = {(x, y) ∈ X ×X, d(x, y) < ε}.
This property of the metric space (X, d, µ) is for instance satisfied if (X, d) satisfies the assumptions

of section 4.3, see remark 4.12.
One has then the following theorem:

Theorem 6.15. Under Assumption 6.14 and if dW ≤ 1, then α∗ = 1 and B1,α∗(X) = BdW
1,1 (X). If

dW > 1, then α∗ = 1
dW

and B1,α∗(X) = B1
1,∞(X).

Proof. If dW ≤ 1, it follows from Proposition 6.13 that B1,α(X) is trivial for any α > 1. It
remains to justify that B1,α(X) or equivalently BαdW

1,∞ (X) is not trivial if α < 1. This follows from the
fact 4 below since one has then B1

1,∞(X) ⊂ BαdW
1,∞ (X).

If dW > 1, the conclusion follows by considering the following four facts.
Fact 1. B1,α(X) is trivial for α > 1. This immediately follows from Proposition 6.13.

Fact 2. B1,1(X) is trivial. Let f ∈ B1,1(X), then for any ε > 0, Lemma 6.3 yields

1

εdH+1

∫
∆ε

|f(y)− f(x)| dµ(x)dµ(y) ≤ εdW−1

∫
∆ε

|f(y)− f(x)|
d(x, y)dH+dW

dµ(x)dµ(y) ≤ CεdW−1‖f‖1,1.

Thus,

lim sup
ε→0+

1

εdH+1

∫
∆ε

|f(y)− f(x)| dµ(x)dµ(y) = 0.

From assumption (6.14), this implies that f is constant and thus 0.
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Fact 3. B1,α(X) is trivial for any 1
dW

< α < 1. By Theorem 6.1, we have B1,α(X) = BαdW
1,∞ (X).

Thus it suffices to show that Bβ
1,∞(X) is trivial for 1 < β < dW . For any ε > 0,

1

εdH+1

∫
∆ε

|f(y)− f(x)| dµ(x)dµ(y) ≤ εβ−1

εdH+β

∫
∆ε

|f(y)− f(x)| dµ(x)dµ(y) ≤ Cεβ−1Nβ
1,∞(f).

Taking the limsup when ε goes to zero, again we have that f is a constant.

Fact 4. It remains to justify that B1, 1
dW (X) is not trivial, or equivalently, B1

1,∞(X) is not trivial.
Fix x0 ∈ X and R > 0. Set

φx0,R(x) = max{0, R− d(x0, x)}.

Then φx0,R is non-negative, L1-integrable and supported in the ball B(x0, R) (see also Section 4.1 for
these functions). For any r > 0, we have∫∫

∆r

|φx0,R(x)− φx0,R(y)| dµ(x)dµ(y)

≤2

∫
B(x0,R)

∫
B(x0,R)c∩B(y,r)

|R− d(x0, y)| dµ(x)dµ(y)

+

∫
B(x0,R)

∫
B(x0,R)∩B(y,r)

|d(x0, x)− d(x0, y)| dµ(x)dµ(y)

≤CrdH+1RdH .

The second inequality above holds since x ∈ B(x0, R)c and y ∈ B(x0, R) implyR−d(x0, y) ≤ d(x, y) ≤ r.
Therefore it easily follows from the definition that φx0,R ∈ B1

1,∞(X) with semi-norm estimate depending
on R. �

6.5. Sobolev and isoperimetric inequalities

6.5.1. Discussion on Sobolev inequalities for non-local Dirichlet spaces. The standard
Poincaré type inequalities do not make sense for non-local Dirichlet forms (although there are some
forms of Poincaré type inequalities for Dirichlet forms, such as [OSCT08,CW17]); however, the
following global Sobolev inequality makes sense: do there exist constants C > 0 and κ ≥ 1 such that
for every u ∈ F , (∫

X

|u|2κ dµ
) 1

2κ

≤ C
√
E(u, u)

We now explore one condition under which the above inequality will hold. Recall that E is transient if
there is some almost-everywhere positive f ∈ L1(X) such that∫ ∞

0

Ptf dt

is finite almost everywhere in X. Here Ptf is the heat extension of f , namely,

Ptf(x) =

∫
X

pt(x, y) f(y) dµ(y).

Thus transience of the form E implies that Ptf decays fast as t → ∞ almost everywhere in X. For
the rest of this subsection we will assume that E is a transient regular Dirichlet form on L2(X), and
that (E ,F) is strongly continuous. By completing (E ,F) with respect to the norm u 7→ ‖u‖L2(X) +√
E(u, u) if necessary, we may assume also that this pair is a Hilbert space (see [FOT11, Theorem 1.5.2,

Lemma 1.5.5]). We now have the following version of Sobolev inequality:
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Lemma 6.16 (Theorem 1.5.3 in [FOT11] or Theorem 2.1.5 in [CF12] ). For a Dirichlet form
(E ,F), the strongly continuous semigroup Pt is transient if and only if there exists a bounded function
g ∈ L1(X) such that g is positive almost everywhere in X such that for all u ∈ F we have∫

X

|u| g dµ ≤
√
E(u, u).

While the conclusion of the above lemma looks remarkably like the desired Sobolev inequality, the
problem here is that we do not have good control over g, and in general we would like to have control
over the Lq(X,µ)-norm of u for some q > 0, not just over the L1(X, g dµ)-norm.

For a compact set K ⊂ X we set the variational capacity of K to be the number

Cap0(K) := inf
u
E(u, u),

where the infimum is over all u ∈ F ∩C0(X) (where C0(X) is the collection of all compactly supported
continuous functions on X) with u(x) ≥ 1 for all x ∈ K, see [FOT11, Section 2.4]. The following
capacitary type inequality holds.

Lemma 6.17 ( [FOT11, Lemma 2.4.1]). For u ∈ F ∩ C0(X) and t > 0 let Kt denote the set
{x ∈ X : |u(x)| ≥ t}. Then we have that∫ ∞

0

2tCap0(Kt) dt ≤ 4 E(u, u).

The above lemma indicates that there are plenty of compact sets in X with finite capacity. Let
K ⊂ X be a compact set such that Cap0(K) is finite. Then we can find a sequence uk ∈ F∩C0(X) with
uk ≥ 1 on K and limk E(uk, uk) = Cap0(K) <∞. Since truncations of a function in F do not increase
its Dirichlet energy, we know that E(ûk, ûk) ≤ E(uk, uk) where ûk = max{0,min{uk, 1}}. Thus without
loss of generality we may assume that 0 ≤ uk ≤ 1 on X. Therefore {uk}k forms a locally bounded
sequence in L2(X), and by multiplying each uk by a fixed η ∈ F ∩ C0(X) with 0 ≤ η ≤ 1 on X and
η = 1 on the ball B(x0, n) for some fixed x0 ∈ X and n ∈ N, we get a bounded sequence in F , which,
as F is a Hilbert space, gives a convex combination subsequence that converges to some function u ∈ F
(we do this for each positive integer n and employ a Cantor-type diagonalization argument to do so)
with E(u, u) ≤ limk E(uk, uk) = Cap0(K). Employing a further subsequence argument, we can ensure
that u ≥ 1 in K; however, u may no longer be continuous on X, see also [FOT11, Lemma 2.1.1]. Such
a function u is called a 0-th order equilibrium potential of K in [FOT11].

Given the above notion of capacity, the following theorem identifies a property on E under which
we have the desired Sobolev inequality.

Theorem 6.18 ( [FOT11, Theorem 2.4.1]). If there is some κ ≥ 1 and Θ > 0 such that

(6.18) µ(K)1/κ ≤ ΘCap0(K)

for each compact K ⊂ X, then there is some C > 0 with 0 < C2 ≤ (4κ)κΘ such that(∫
X

|u|2κ dµ
)1/2κ

≤ C
√
E(u, u).

The inequality (6.18) is an analog of the isoperimetric inequality adapted to the non-local Dirichlet
form. The optimal constant Θ is called the isoperimetric constant of E , and is a non-local analog of the
Cheeger constant. Indeed, [FOT11, Theorem 2.4.1] claims even more, that the support of a Sobolev
type inequality is equivalent to this isoperimetric inequality. Should E support such an inequality, then
the total capacity of a compact set K given by

Cap1(K) := inf
u

∫
X

u2 dµ+ E(u, u)

with infimum over all u ∈ F ∩C0(X) with u ≥ 1 on K has the same class of null capacity sets as Cap0.
We refer the interested reader to [FOT11, Theorem 2.4.3] for examples of Sobolev type inequality for
measures in Euclidean spaces.
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We point out here that this notion of isoperimetric inequality is weaker than the traditional one
where Cap0(K) is replaced with the relative 1-capacity ofK, namely infimum of the numbers

∫
X
|∇u| dµ

over all u ∈ F ∩ C0(X) with u ≥ 1 on K. In the case of the non-local Dirichlet form the quantity∫
X
|∇u| dµ does not make usual sense (although see [HRT13] for a version of such an integral for

arbitrary Dirichlet forms). On the other hand, the results of [FOT11, Theorem 2.1.1] tell us that Cap0

has an extension to a Choquet capacity on X.
Fix u ∈ F ∩ C0(X), and let t > 0. For ε > 0 we set

uεt =
min{ε,max{u− t, 0}}

ε
.

Then by the Markov property of E we know that E(uεt , u
ε
t ) ≤ E(u, u)/ε2. Observe that uεt → χKt in

L1(X) as ε→ 0+. Suppose we know that lim infε→0+ E(uεt , u
ε
t ) <∞. Then

Cap0(Kt) ≤ lim inf
ε→0+

E(uεt , u
ε
t ) <∞.

If E is strongly local and supports a 2-Poincaré inequality, then using the fact that distance functions
belong to F we can obtain a comparison between Cap0(Kt) and the Minkowski co-dimension 1 content
of ∂Kt for almost every t > 0, see for example the arguments in [CJKS17, JKY14]. For strongly
local Dirichlet forms we have shown in Chapter 4 that the correct BV class is B1,1/2(X). For non-local
Dirichlet forms (and indeed even for forms that are not strongly local) it is not clear which of the Besov
classes B1,α(X) should be the correct analog of BV functions, see Theorem 6.8. From this theorem, we
see that if E ⊂ X is bounded and measurable such that 1E ∈ B1,α(X), then by choosing r > 2diam(E),

c

rαdW+dH
µ(E)µ(B(x0, r/2)) ≤ ‖1E‖1,α

where x0 ∈ X such that B(x0, r/2)∩E is empty and B(x0, r/2) ⊂ ⋃x∈E B(x, r). One can look on this
as the Besov space analog of the isoperimetric inequality.

6.5.2. Besov spaces embeddings. Note that by combining the results of Part I, Chapter 2, with
the results of this chapter, one immediately obtains the following corollaries. The proofs are similar to
the ones in Section 4.7, so will be omitted for concision.

Corollary 6.19. Let (X,µ, E ,F) be a symmetric non-local Dirichlet space with heat kernel esti-
mates (6.1). Let 0 < δ < dH . Let 1 ≤ p < min

{
dH
δ ,

dW
δ

}
. There exists a constant Cp,δ > 0 such that

for every f ∈ Bp,δ/dW (X),

sup
s≥0

sµ ({x ∈ X, |f(x)| ≥ s}) 1
q ≤ Cp,δ sup

r>0

1

rδ+dH/p

(∫∫
∆r

|f(x)− f(y)|p dµ(x) dµ(y)

)1/p

where q = pdH
dH−pδ . Furthermore, for every 0 < δ < dH , there exists a constant Ciso,δ such that for every

measurable E ⊂ X, µ(E) < +∞,

µ(E)
dH−δ
dH ≤ Ciso,δ sup

r>0

1

rδ+dH
(µ⊗ µ) {(x, y) ∈ E × Ec : d(x, y) ≤ r}(6.19)

Corollary 6.20. Let (X,µ, E ,F) be a symmetric non-local Dirichlet space with heat kernel esti-
mates (6.1) and dW ≤ dH . Let 0 < δ < dH . Let p = dW

δ and assume p ≥ 1. There exists a constant
Cp,δ > 0 such that for every f ∈ Bp,δ/dW (X),

sup
s≥0

sµ ({x ∈ X, |f(x)| ≥ s}) 1
q ≤ Cp,δ

(∫ ∞
0

(
NdW /p
p (f, r)

)p dr
r

)1/p

,

where q = pdH
dH−pδ and

NdW /p
p (f, r) :=

1

rdW /p+dH/p

(∫∫
∆r

|f(x)− f(y)|p dµ(x) dµ(y)

)1/p



CHAPTER 7

Sets of finite perimeter in some infinite-dimensional examples

In this chapter, we study some infinite-dimensional examples of Dirichlet spaces X, associated sets
of finite perimeter and discuss the connection with B1,1/2(X). Our goal is not to study the general
theory of Besov spaces related to infinite-dimensional Dirichlet spaces, but rather to look at some
specific examples.

In many infinite-dimensional examples, coming back to the original ideas by De Giorgi [DG54] it
seems interesting to take advantage of the existence of nice integration by parts formulas to construct BV
functions and sets of finite perimeter. To provide the reader with a motivation, we briefly present below
those ideas in a general setting, avoiding at first the exact assumptions and technicalities associated
with a possible infinite-dimensional setting.

Let (X,µ, E ,F = dom(E)) be a quasi regular local symmetric Dirichlet space. We assume that E
can be written as

E(f, f) = ‖Df‖2H,
where D is a closed unbounded operator from L2(X,µ) to some (separable) Hilbert space H. In many
situations (see for instance [Ebe99], Theorem 3.9 and the examples below), we are able to think of H
as a L2 space of sections of a vector bundle over X: more precisely, H is isometrically isomorphic to
some

∫ ⊕
X
Hx dµ(x) and for any η1, η2 ∈ H,

〈η1, η2〉H =

∫
X

〈η1, η2〉Hx dµ(x).

In this situation, following De Giorgi in [DG54], for f ∈ L1(X,µ) it is then natural to define:

Varf = sup

{∫
X

fD∗ηdµ : η ∈ dom(D∗), ‖η‖Hx ≤ 1, µ-almost everywhere
}
,

where D∗ is the adjoint operator of D and one defines then:

BV (X) :=
{
f ∈ L1(X,µ) : Varf < +∞

}
.

This allows one to define the perimeter of a measurable set E ⊂ X with 1E ∈ BV (X) by

P (E,X) = Var1E .

When X is a complete Riemannian manifold and D = ∇ is the Riemannian gradient, this construction
yields the usual BV space and sets with finite perimeters are Caccioppoli sets.

In the following examples, the strong Bakry-Émery condition is satisfied

‖DPtf‖Hx ≤ (Pt‖Df‖H.)(x).

and one shall prove:

Theorem 7.1. Let X be one of the Dirichlet spaces studied in Sections 7.1 or 7.2. Let E be a
measurable set with finite measure. The following are equivalent:

(1) P (E,X) < +∞;
(2) The limit limt→0+

∫
X
‖DPt1E‖Hxdµ(x) exists.

95
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Moreover, if E is a set satisfying one of the above conditions, then 1E ∈ B1,1/2(X) and

‖1E‖1,1/2 ≤ 2
√

2P (E,X) = 2
√

2 lim
t→0+

∫
X

‖DPt1E‖Hxdµ(x).

The theorem is stated in a class of specific examples, but the method which is developed is actually
relatively general.

7.1. Wiener space

In this section, we discuss sets of finite perimeters in abstract Wiener space, The theory of BV
functions is already very well established and understood in that case (see Fukushima-Hino [FH01],
and also the survey [MNP15] and the references therein).

Let (X,H, µ) be an abstract Wiener space in the sense of L. Gross [Gro67], so X is a separable
real Banach space, H is a separable real Hilbert space continuously and densely embedded into X and
µ is a Gaussian measure satisfying for l ∈ X∗ ⊂ H∗ ' H,∫

X

exp (i〈l, x〉)µ(dx) = exp

(
−1

2
‖l‖2H

)
.

We define the Ornstein-Uhlenbeck semigroup on L2(X,µ) by the formula:

Ptf(x) =

∫
X

f
(
e−tx+

√
1− e−2ty

)
dµ(y), f ∈ L2(X,µ), x ∈ X.(7.1)

The associated Dirichlet form may be written in terms of the Malliavin derivative. We now describe
this Dirichlet form. We say that a functional F : X → R is a smooth cylindric functional if, for some
n, it can be written in the form

F (x) = f (〈x, l1〉, · · · , 〈x, ln〉) ,
where f is smooth and bounded, and l1, · · · , ln ∈ H∗ . Here 〈x, l〉 stands for the Wiener integral. The
set of smooth cylindric functionals will be denoted by C and will be used as nice core algebra. Note
that C is dense in L2(X,µ). If F ∈ C, one defines its Malliavin derivative by the formula,

DF (x) =

n∑
i=1

∂f

∂xi
(〈x, l1〉, · · · , 〈x, ln〉) li ∈ H.(7.2)

We can then consider the pre-Dirichlet form (E , C, µ) given for F,G ∈ C by

E(F,G) =

∫
X

〈DF (x), DG(x)〉Hdµ(x).

The closure of this pre-Dirichlet form yields a quasi-regular local symmetric Dirichlet space (X,F , µ)
whose semigroup is precisely the Ornstein-Uhlenbeck semigroup (see [Kus82]).

Note that the Dirichlet form E admits a carré du champ and that one has for f ∈ F , and x ∈ X,

Γ(f)(x) = ‖Df(x)‖2H.
where D stands for the closed extension of the formula (7.2). One can check directly from the formula
(7.1) that for f ∈ C,

DPtf(x) = ~PtDf(x)

where ~Pt is a semigroup on L2(X,H, µ) that satisfies for every η ∈ L2(X,H, µ),

‖~Ptη(x)‖H ≤ e−t(Pt‖η‖H)(x)(7.3)

In particular, one has the strong Bakry-Émery curvature condition:

‖DPtf(x)‖H ≤ (Pt‖Df‖H)(x), f ∈ F .
We are now ready to define sets of finite perimeter, following Fukushima-Hino [FH01].
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One can think of D as a closed unbounded operator L2(X,µ) → L2(X,H, µ). Denote its adjoint
by D∗ (this is the so-called Skorohod integral). If E ⊂ X is a measurable set,

P (E,X) = sup

{∫
E

D∗ηdµ : η ∈ dom(D∗), ‖η(x)‖H ≤ 1, µ-almost everywhere
}
,

and we say that E has a finite perimeter if P (E,X) < +∞. As everywhere in the paper, for f ∈
Lp(X,µ), we define:

‖f‖p,α = sup
t>0

t−α
(∫

X

Pt(|f − f(y)|p)(y)dµ(y)

)1/p

.

and
Bp,α(X) = {f ∈ Lp(X,µ) : ‖f‖p,α < +∞}.

The theorem is the following:

Theorem 7.2. Let E be a measurable set. The following are equivalent:
(1) P (E,X) < +∞;
(2) The limit limt→0+

∫
X
‖DPt1E(x)‖Hdµ(x) exists.

Moreover, if E is a set satisfying one of the above conditions, then 1E ∈ B1,1/2(X) and

‖1E‖1,1/2 ≤ 2
√

2P (E,X) = 2
√

2 lim
t→0+

∫
X

‖DPt1E‖Hxdµ(x).

The fact that (1) is equivalent to (2) is actually already essentially known (see [MNP15]), but we
give here a proof that immediately adapts to the case considered in the following section. The proof
will be divided in several lemmas.

Lemma 7.3. Let E be a measurable set. If the limit

lim
t→0+

∫
X

√
Γ(Pt1E)dµ(x)

exists then 1E ∈ B1,1/2(X) and

‖1E‖1,1/2 ≤ 2
√

2 lim
t→0+

∫
X

√
Γ(Pt1E)dµ(x).

Proof. The strong Bakry-Émery estimate implies that for every f ∈ F and t ≥ 0, one has µ-almost
everywhere

‖Ptf − f‖1 ≤
√

2t

∫
X

√
Γ(f)dµ.

Let E be a measurable set such that limt→0+

∫
X

√
Γ(Pt1E)dµ(x) exists. One has for every s ≥ 0,

‖Pt+s1E − Ps1E‖1 ≤
√

2t

∫
X

√
Γ(Ps1E)dµ.

Taking the limit when s→ 0+ yields,

‖Pt1E − 1E‖1 ≤
√

2t lim
s→0+

∫
X

√
Γ(Ps1E)dµ

and so 1E ∈ B1,1/2(X) with

‖1E‖1,1/2 ≤ 2‖Pt1E − 1E‖1 ≤ 2
√

2 lim
t→0+

∫
X

√
Γ(Pt1E)dµ(x).

�

Lemma 7.4. For every η ∈ L2(X,H, µ), and t > 0, ~Ptη ∈ dom(D∗).
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Proof. For f ∈ F and η ∈ L2(X,H, µ), one has∫
X

〈Df(x), ~Ptη(x)〉Hdµ(x) =

∫
X

〈~PtDf(x), η(x)〉Hdµ(x) =

∫
X

〈DPtf(x), η(x)〉Hdµ(x).

Since the operator DPt is bounded in L2, the conclusion follows. �

Lemma 7.5. If f ∈ F , then

sup

{∫
X

fD∗ηdµ : η ∈ dom(D∗), ‖η(x)‖H ≤ 1, µ-a.e.
}

=

∫
X

‖Df(x)‖Hdµ(x).

Proof. Let f ∈ F . It is clear that for η ∈ dom(D∗) such that ‖η(x)‖H ≤ 1, one has∫
X

fD∗ηdµ =

∫
X

〈Df, η〉Hdµ ≤
∫
X

‖Df‖Hdµ

We now prove the converse inequality. Let f ∈ F . Let s, ε > 0 and consider

η = ~Ps

(
Df

‖Df‖H + ε

)
.

From the previous lemma η ∈ dom(D∗) and from (7.3), one has

‖η(x)‖H ≤ 1, µ-a.e.

Moreover, ∫
X

fD∗ηdµ =

∫
X

〈
Df, ~Ps

(
Df

‖Df‖H + ε

)〉
dµ.

Letting s→ 0+ and ε→ 0 yields∫
X

‖Df‖Hdµ ≤ sup

{∫
X

fD∗ηdµ : η ∈ dom(D∗), ‖η(x)‖H ≤ 1, µ-a.e.
}
.

�

We are now ready to prove Theorem 7.2.

Proof. It just remains to prove that 1 is equivalent to 2.
Let E be a measurable set and η ∈ dom(D∗), ‖η(x)‖H ≤ 1 a.e.. We have∫

X

(Pt1E)D∗ηdµ =

∫
X

〈DPt1E , η〉Hdµ ≤
∫
X

‖DPt1E‖Hdµ.

Since we have in L2, limt→0 Pt1E = 1E , one deduces∫
E

D∗ηdµ ≤ lim inf
t→0+

∫
X

‖DPt1E‖Hdµ.

Thus,

sup

{∫
E

D∗ηdµ : η ∈ dom(D∗), ‖η(x)‖H ≤ 1

}
≤ lim inf

t→0+

∫
X

‖DPt1E‖Hdµ.

On the other hand, again if E be a measurable set and η ∈ dom(D∗), ‖η(x)‖H ≤ 1 a.e., then we have:∫
X

(Pt1E)D∗ηdµ =

∫
X

1EPtD
∗ηdµ =

∫
X

1ED
∗ ~Ptηdµ ≤ sup

{∫
E

D∗ηdµ : η ∈ dom(D∗), ‖η(x)‖H ≤ 1

}
,

where in the last inequality we used the fact that ‖~Ptη‖H ≤ 1. Since from the previous lemma we know
that

sup

{∫
X

(Pt1E)D∗ηdµ : η ∈ dom(D∗), ‖η(x)‖H ≤ 1

}
=

∫
X

‖DPt1E(x)‖Hdµ(x),

and so,

lim sup
t→0+

∫
X

‖DPt1E(x)‖Hdµ(x) ≤ sup

{∫
E

D∗ηdµ : η ∈ dom(D∗), ‖η(x)‖H ≤ 1

}
.
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The proof is complete. �

7.2. Path spaces with Gibbs measure

In this section, we present new examples of infinite-dimensional Dirichlet spaces for which one can
construct sets of finite perimeter as in the Wiener space. The examples are Dirichlet spaces built on the
space of continuous functions C(R,Rd), where the reference measure is the Gibbs measure associated
with the formal Hamiltonian:

H(w) =
1

2

∫
R
‖w′(x)‖2dx+

∫
R
U(w(x))dx, w ∈ C(R,Rd),

where U : Rd → R is an interaction potential. The corresponding diffusion processes are defined through
the Ginzburg-Landau type stochastic partial differential equations:

dXt(x) =

(
d2

dx2
Xt(x)−∇U(Xt(x))

)
dt+ dWt(x), t > 0, x ∈ R,(7.4)

where (Wt) is a white noise process.
In the sequel we will assume that the interaction potential U satisfies the following conditions:
(1) U is two times continuously differentiable and ∇2U ≥ 0;
(2) There exists A > 0 and p > 0 such that for every x ∈ Rd:

‖∇U(x)‖+ ‖∇2U(x)‖ ≤ A(1 + ‖x‖p);
(3) lim‖x‖→+∞ U(x) = +∞.
We now briefly sketch, omiiting some details, the construction of the relevant Dirichlet space. For

the details, we refer to Kawabi [Kaw08] or Kawabi-Röckner [KR07].
We denote X = C(R,Rd)1 . We first define a set of smooth cylindric functionals. We say that a

functional F : X → R is a smooth cylindric functional if, for some n, it can be written in the form

F (w) = f (〈w, φ1〉, · · · , 〈w, φn〉) ,
where f is smooth and bounded, and φ1, · · · , φn are smooth and compactly supported. Here, we use
the notation 〈w, φi〉 =

∫
R〈w(x), φi(x)〉dx. The set of smooth cylindric functionals will be denoted by C

and will be used as nice core, as in the Wiener space example.
We denote byH the space of square integrable functions R→ Rd. If F ∈ C, one defines its derivative

by the formula,

DF =

n∑
i=1

∂f

∂xi
(〈w, φ1〉, · · · , 〈w, φn〉)φi ∈ H.

Let now µ be the U -Gibbs measure defined by (2.1) in [Kaw08]. Note that C is dense in L2(X,µ).
We can then consider the pre-Dirichlet form (E , C, µ) given for F,G ∈ C by

E(F,G) =

∫
X

〈DF (w), DG(w)〉Hdµ(w).

The closure of this pre-Dirichlet form yields a quasi-regular local symmetric Dirichlet space (X,F , µ).
We shall denote by {Pt, t ≥ 0} the semigroup of this Dirichlet form. It is worth noting that {Pt, t ≥ 0}
is conservative and is indeed the semigroup associated to the spde (7.4) (see [KR07]).

Note that the Dirichlet form E admits a carré du champ and that one has for f ∈ F ,
Γ(f)(w) = ‖Df(w)‖2H.

In this framework, one has the strong Bakry-Émery estimate (see Proposition 2.1 in [Kaw06]):

‖DPtf(w)‖H ≤ (Pt‖Df‖H)(w), f ∈ F ,

1Strictly speaking, the construction needs to be performed on a subspace X of C(R,Rd).
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Actually, according to Lemma 3.1. in [Kaw08], as in the Wiener space example, for f ∈ F ,
DPtf(w) = ~PtDf(w)

where ~Pt is a semigroup on L2(X,H, µ) that satisfies for every η ∈ L2(X,H, µ),

‖~Ptη(w)‖H ≤ (Pt‖η‖H)(w).(7.5)

From there, the situation is exactly similar to the Wiener space case that was studied in the previous
section and, if E ⊂ X is a measurable set, we set

P (E,X) = sup

{∫
E

D∗ηdµ : η ∈ dom(D∗), ‖η(x)‖H ≤ 1, µ-almost everywhere
}
,

and we say that E has a finite perimeter if P (E,X) < +∞. The same proof that we gave in the Wiener
space example works and Theorem 7.2 therefore holds.



Bibliography

[ACDH04] Pascal Auscher, Thierry Coulhon, Xuan Thinh Duong, and Steve Hofmann, Riesz transform on manifolds
and heat kernel regularity, Ann. Sci. École Norm. Sup. (4) 37 (2004), no. 6, 911–957. MR 2119242

[ADMG17] Luigi Ambrosio, Simone Di Marino, and Nicola Gigli, Perimeter as relaxed Minkowski content in metric
measure spaces, Nonlinear Anal. 153 (2017), 78–88. MR 3614662

[AF03] Robert A. Adams and John J. F. Fournier, Sobolev spaces, second ed., Pure and Applied Mathematics
(Amsterdam), vol. 140, Elsevier/Academic Press, Amsterdam, 2003. MR 2424078

[AFP00] Luigi Ambrosio, Nicola Fusco, and Diego Pallara, Functions of bounded variation and free discontinuity
problems, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York,
2000. MR 1857292

[AMP04] L. Ambrosio, M. Miranda, Jr., and D. Pallara, Special functions of bounded variation in doubling metric
measure spaces, Calculus of variations: topics from the mathematical heritage of E. De Giorgi, Quad. Mat.,
vol. 14, Dept. Math., Seconda Univ. Napoli, Caserta, 2004, pp. 1–45. MR 2118414

[AS61] N. Aronszajn and K. T. Smith, Theory of Bessel potentials. I, Ann. Inst. Fourier (Grenoble) 11 (1961),
385–475.

[Bar98] Martin T. Barlow, Diffusions on fractals, Lectures on probability theory and statistics (Saint-Flour, 1995),
Lecture Notes in Math., vol. 1690, Springer, Berlin, 1998, pp. 1–121.

[Bar03] , Heat kernels and sets with fractal structure, Heat kernels and analysis on manifolds, graphs, and
metric spaces (Paris, 2002), Contemp. Math., vol. 338, Amer. Math. Soc., Providence, RI, 2003, pp. 11–40.

[Bar13] M. T. Barlow, Analysis on the Sierpinski carpet, Analysis and geometry of metric measure spaces, CRM
Proc. Lecture Notes, vol. 56, Amer. Math. Soc., Providence, RI, 2013, pp. 27–53. MR 3060498

[BB89] Martin T. Barlow and Richard F. Bass, The construction of Brownian motion on the Sierpiński carpet, Ann.
Inst. H. Poincaré Probab. Statist. 25 (1989), no. 3, 225–257. MR 1023950

[BB92] , Transition densities for Brownian motion on the Sierpiński carpet, Probab. Theory Related Fields
91 (1992), no. 3-4, 307–330. MR 1151799

[BB99] , Brownian motion and harmonic analysis on Sierpinski carpets, Canad. J. Math. 51 (1999), no. 4,
673–744. MR 1701339

[BB12] Fabrice Baudoin and Michel Bonnefont, Log-Sobolev inequalities for subelliptic operators satisfying a gener-
alized curvature dimension inequality, J. Funct. Anal. 262 (2012), no. 6, 2646–2676. MR 2885961

[BB16] , Reverse Poincaré inequalities, isoperimetry, and Riesz transforms in Carnot groups, Nonlinear Anal.
131 (2016), 48–59.

[BBBC08] Dominique Bakry, Fabrice Baudoin, Michel Bonnefont, and Djalil Chafaï, On gradient bounds for the heat
kernel on the Heisenberg group, J. Funct. Anal. 255 (2008), no. 8, 1905–1938. MR 2462581

[BBG14] Fabrice Baudoin, Michel Bonnefont, and Nicola Garofalo, A sub-Riemannian curvature-dimension inequality,
volume doubling property and the Poincaré inequality, Math. Ann. 358 (2014), no. 3-4, 833–860. MR 3175142

[BBKT10] Martin T. Barlow, Richard F. Bass, Takashi Kumagai, and Alexander Teplyaev, Uniqueness of Brownian
motion on Sierpiński carpets, J. Eur. Math. Soc. (JEMS) 12 (2010), no. 3, 655–701. MR 2639315

[BBST99] Oren Ben-Bassat, Robert S. Strichartz, and Alexander Teplyaev, What is not in the domain of the Laplacian
on Sierpinski gasket type fractals, J. Funct. Anal. 166 (1999), no. 2, 197–217. MR 1707752

[BCLSC95] D. Bakry, T. Coulhon, M. Ledoux, and L. Saloff-Coste, Sobolev inequalities in disguise, Indiana Univ. Math.
J. 44 (1995), no. 4, 1033–1074.

[BG17] Fabrice Baudoin and Nicola Garofalo, Curvature-dimension inequalities and Ricci lower bounds for sub-
Riemannian manifolds with transverse symmetries, J. Eur. Math. Soc. (JEMS) 19 (2017), no. 1, 151–219.

[BGL14] Dominique Bakry, Ivan Gentil, and Michel Ledoux, Analysis and geometry of Markov diffusion operators,
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol.
348, Springer, Cham, 2014. MR 3155209

[BGPV14] A. D. Bendikov, A. A. Grigor’yan, K. Pittè, and V. Vëss, Isotropic Markov semigroups on ultra-metric spaces,
Uspekhi Mat. Nauk 69 (2014), no. 4(418), 3–102. MR 3400536

[BH91] Nicolas Bouleau and Francis Hirsch, Dirichlet forms and analysis on Wiener space, De Gruyter Studies in
Mathematics, vol. 14, Walter de Gruyter & Co., Berlin, 1991.

101



102 BIBLIOGRAPHY

[BH97] Serguei G. Bobkov and Christian Houdré, Some connections between isoperimetric and Sobolev-type inequal-
ities, Mem. Amer. Math. Soc. 129 (1997), no. 616, viii+111. MR 1396954

[BK14] Fabrice Baudoin and Bumsik Kim, Sobolev, Poincaré, and isoperimetric inequalities for subelliptic diffusion
operators satisfying a generalized curvature dimension inequality, Rev. Mat. Iberoam. 30 (2014), no. 1, 109–
131. MR 3186933

[BK17] Fabrice Baudoin and Daniel J Kelleher, Differential one-forms on Dirichlet spaces and Bakry-Emery esti-
mates on metric graphs, arXiv:1604.02520, to apear in Trans. Amer. Math. Soc. (2017), 1–42.

[BP88] Martin T. Barlow and Edwin A. Perkins, Brownian motion on the Sierpiński gasket, Probab. Theory Related
Fields 79 (1988), no. 4, 543–623.

[BSC00] Alexander Bendikov and L Saloff-Coste, On-and off-diagonal heat kernel behaviors on certain infinite dimen-
sional local dirichlet spaces, American Journal of Mathematics 122 (2000), no. 6, 1205–1263.

[Bus82] Peter Buser, A note on the isoperimetric constant, Ann. Sci. École Norm. Sup. (4) 15 (1982), no. 2, 213–230.
MR 683635

[CCFR17] Li Chen, Thierry Coulhon, Joseph Feneuil, and Emmanuel Russ, Riesz transform for 1 ≤ p ≤ 2 without
Gaussian heat kernel bound, J. Geom. Anal. 27 (2017), no. 2, 1489–1514. MR 3625161

[CCH] Li Chen, Thierry Coulhon, and Bobo Hua, Riesz transforms for bounded laplacians on graphs,
arXiv:1802.02410.

[CF12] Zhen-Qing Chen and Masatoshi Fukushima, Symmetric Markov processes, time change, and boundary theory,
London Mathematical Society Monographs Series, vol. 35, Princeton University Press, Princeton, NJ, 2012.
MR 2849840

[Che70] Jeff Cheeger, A lower bound for the smallest eigenvalue of the Laplacian, Problems in analysis (Papers ded-
icated to Salomon Bochner, 1969), Princeton Univ. Press, Princeton, N. J., 1970, pp. 195–199. MR 0402831

[CJKS17] Thierry Coulhon, Renjin Jiang, Pekka Koskela, and Adam Sikora, Gradient estimates for heat kernels and
harmonic functions, arXiv:1703.02152 (2017).

[CW17] Xin Chen and Jian Wang, Weighted poincaré inequalities for non-local dirichlet forms, Journal of Theoretical
Probability 30 (2017), no. 2, 452–489.

[Dav89] E. B. Davies, Heat kernels and spectral theory, Cambridge Tracts in Mathematics, vol. 92, Cambridge Uni-
versity Press, Cambridge, 1989. MR 990239

[Dav97] , Non-Gaussian aspects of heat kernel behaviour, J. London Math. Soc. (2) 55 (1997), no. 1, 105–125.
MR 1423289

[DG54] Ennio De Giorgi, Su una teoria generale della misura (r − 1)-dimensionale in uno spazio ad r dimensioni,
Ann. Mat. Pura Appl. (4) 36 (1954), 191–213.

[DGL77] E. De Giorgi and G. Letta, Une notion générale de convergence faible pour des fonctions croissantes
d’ensemble, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 4 (1977), no. 1, 61–99. MR 0466479

[Dun08] Nick Dungey, A Littlewood-Paley-Stein estimate on graphs and groups, Studia Math. 189 (2008), no. 2,
113–129. MR 2449133

[Ebe99] Andreas Eberle, Uniqueness and non-uniqueness of semigroups generated by singular diffusion operators,
Lecture Notes in Mathematics, vol. 1718, Springer-Verlag, Berlin, 1999. MR 1734956

[EKS15] Matthias Erbar, Kazumasa Kuwada, and Karl-Theodor Sturm, On the equivalence of the entropic curvature-
dimension condition and Bochner’s inequality on metric measure spaces, Invent. Math. 201 (2015), no. 3,
993–1071. MR 3385639

[Eld10] Nathaniel Eldredge, Gradient estimates for the subelliptic heat kernel on H-type groups, J. Funct. Anal. 258
(2010), no. 2, 504–533. MR 2557945

[Fal03] K. Falconer, Fractal geometry, second ed., John Wiley & Sons, Inc., Hoboken, NJ, 2003, Mathematical
foundations and applications.

[Fed69] H. Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153,
Springer-Verlag New York Inc., New York, 1969.

[FH01] Masatoshi Fukushima and Masanori Hino, On the space of BV functions and a related stochastic calculus in
infinite dimensions, J. Funct. Anal. 183 (2001), no. 1, 245–268.

[FK12] U. Freiberg and S. Kombrink, Minkowski content and local Minkowski content for a class of self-conformal
sets, Geom. Dedicata 159 (2012), 307–325.

[FOT11] Masatoshi Fukushima, Yoichi Oshima, and Masayoshi Takeda, Dirichlet forms and symmetric Markov pro-
cesses, extended ed., De Gruyter Studies in Mathematics, vol. 19, Walter de Gruyter & Co., Berlin, 2011.
MR 2778606

[GHH17] Alexander Grigor’yan, Eryan Hu, and Jiaxin Hu, Lower estimates of heat kernels for non-local Dirichlet
forms on metric measure spaces, J. Funct. Anal. 272 (2017), no. 8, 3311–3346. MR 3614171

[GHL03] Alexander Grigor’yan, Jiaxin Hu, and Ka-Sing Lau, Heat kernels on metric measure spaces and an application
to semilinear elliptic equations, Trans. Amer. Math. Soc. 355 (2003), no. 5, 2065–2095. MR 1953538

[GHL14] A. Grigor’yan, J. Hu, and K.-S. Lau, Estimates of heat kernels for non-local regular Dirichlet forms, Trans.
Amer. Math. Soc. 366 (2014), no. 12, 6397–6441.



BIBLIOGRAPHY 103

[GK08] A. Grigor’yan and T. Kumagai, On the dichotomy in the heat kernel two sided estimates, Analysis on graphs
and its applications, Proc. Sympos. Pure Math., vol. 77, Amer. Math. Soc., Providence, RI, 2008, pp. 199–210.

[GK17] Alexander Grigor’yan and Naotaka Kajino, Localized upper bounds of heat kernels for diffusions via a multiple
Dynkin-Hunt formula, Trans. Amer. Math. Soc. 369 (2017), no. 2, 1025–1060. MR 3572263

[GKS10] Amiran Gogatishvili, Pekka Koskela, and Nageswari Shanmugalingam, Interpolation properties of Besov
spaces defined on metric spaces, Math. Nachr. 283 (2010), no. 2, 215–231. MR 2604119

[GL15] Alexander Grigor’yan and Liguang Liu, Heat kernel and Lipschitz-Besov spaces, Forum Math. 27 (2015),
no. 6, 3567–3613. MR 3420351

[Gri03] Alexander Grigor’yan, Heat kernels and function theory on metric measure spaces, Heat kernels and anal-
ysis on manifolds, graphs, and metric spaces (Paris, 2002), Contemp. Math., vol. 338, Amer. Math. Soc.,
Providence, RI, 2003, pp. 143–172. MR 2039954

[Gro67] Leonard Gross, Abstract Wiener spaces, Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berke-
ley, Calif., 1965/66), Vol. II: Contributions to Probability Theory, Part 1, Univ. California Press, Berkeley,
Calif., 1967, pp. 31–42. MR 0212152

[Hei01] Juha Heinonen, Lectures on analysis on metric spaces, Universitext, Springer-Verlag, New York, 2001.
MR 1800917

[Hin13a] Masanori Hino, Measurable Riemannian structures associated with strong local Dirichlet forms, Math. Nachr.
286 (2013), no. 14-15, 1466–1478. MR 3119694

[Hin13b] , Upper estimate of martingale dimension for self-similar fractals, Probab. Theory Related Fields 156
(2013), no. 3-4, 739–793. MR 3078285

[Hin16] , Some properties of energy measures on Sierpinski gasket type fractals, J. Fractal Geom. 3 (2016),
no. 3, 245–263. MR 3549797

[HKM18] Michael Hinz, Dorina Koch, and Melissa Meinert Meinert, Sobolev spaces and calculus of variations on
fractals, preprint arXiv:1805.04456 (2018).

[HKST15] Juha Heinonen, Pekka Koskela, Nageswari Shanmugalingam, and Jeremy T. Tyson, Sobolev spaces on metric
measure spaces, New Mathematical Monographs, vol. 27, Cambridge University Press, Cambridge, 2015, An
approach based on upper gradients. MR 3363168

[HRT13] Michael Hinz, Michael Röckner, and Alexander Teplyaev, Vector analysis for Dirichlet forms and quasilin-
ear PDE and SPDE on metric measure spaces, Stochastic Process. Appl. 123 (2013), no. 12, 4373–4406.
MR 3096357

[Jia15] Renjin Jiang, The Li-Yau inequality and heat kernels on metric measure spaces, J. Math. Pures Appl. (9)
104 (2015), no. 1, 29–57. MR 3350719

[JKY14] Renjin Jiang, Pekka Koskela, and Dachun Yang, Isoperimetric inequality via Lipschitz regularity of Cheeger-
harmonic functions, J. Math. Pures Appl. (9) 101 (2014), no. 5, 583–598.

[Kaj10] Naotaka Kajino, Spectral asymptotics for Laplacians on self-similar sets, J. Funct. Anal. 258 (2010), no. 4,
1310–1360. MR 2565841

[Kaw06] Hiroshi Kawabi, A simple proof of log-Sobolev inequalities on a path space with Gibbs measures, Infin. Dimens.
Anal. Quantum Probab. Relat. Top. 9 (2006), no. 2, 321–329. MR 2235553

[Kaw08] , Topics on diffusion semigroups on a path space with Gibbs measures, Proceedings of RIMSWorkshop
on Stochastic Analysis and Applications, RIMS Kôkyûroku Bessatsu, B6, Res. Inst. Math. Sci. (RIMS), Kyoto,
2008, pp. 153–165. MR 2407561

[Kig95] Jun Kigami, Harmonic calculus on limits of networks and its application to dendrites, J. Funct. Anal. 128
(1995), no. 1, 48–86. MR 1317710

[Kig01] , Analysis on fractals, Cambridge Tracts in Mathematics, vol. 143, Cambridge University Press, Cam-
bridge, 2001. MR 1840042

[Kig12] , Resistance forms, quasisymmetric maps and heat kernel estimates, Mem. Amer. Math. Soc. 216
(2012), no. 1015, vi+132. MR 2919892

[Kot07] Brett L. Kotschwar, Hamilton’s gradient estimate for the heat kernel on complete manifolds, Proc. Amer.
Math. Soc. 135 (2007), no. 9, 3013–3019. MR 2317980

[KR07] Hiroshi Kawabi and Michael Röckner, Essential self-adjointness of Dirichlet operators on a path space with
Gibbs measures via an SPDE approach, J. Funct. Anal. 242 (2007), no. 2, 486–518. MR 2274818

[KRS03] Pekka Koskela, Kai Rajala, and Nageswari Shanmugalingam, Lipschitz continuity of Cheeger-harmonic func-
tions in metric measure spaces, J. Funct. Anal. 202 (2003), no. 1, 147–173. MR 1994768

[KST04] Pekka Koskela, Nageswari Shanmugalingam, and Jeremy T. Tyson, Dirichlet forms, Poincaré inequalities,
and the Sobolev spaces of Korevaar and Schoen, Potential Anal. 21 (2004), no. 3, 241–262. MR 2075670

[KSZ14] Pekka Koskela, Nageswari Shanmugalingam, and Yuan Zhou, Geometry and analysis of Dirichlet forms (II),
J. Funct. Anal. 267 (2014), no. 7, 2437–2477. MR 3250370

[Kus82] Shigeo Kusuoka, Dirichlet forms and diffusion processes on Banach spaces, J. Fac. Sci. Univ. Tokyo Sect. IA
Math. 29 (1982), no. 1, 79–95.

[Kus89] , Dirichlet forms on fractals and products of random matrices, Publ. Res. Inst. Math. Sci. 25 (1989),
no. 4, 659–680.



104 BIBLIOGRAPHY

[KY92] Shigeo Kusuoka and Zhou Xian Yin, Dirichlet forms on fractals: Poincaré constant and resistance, Probab.
Theory Related Fields 93 (1992), no. 2, 169–196.

[KZ12] Pekka Koskela and Yuan Zhou, Geometry and analysis of Dirichlet forms, Adv. Math. 231 (2012), no. 5,
2755–2801. MR 2970465

[Led94] M. Ledoux, A simple analytic proof of an inequality by P. Buser, Proc. Amer. Math. Soc. 121 (1994), no. 3,
951–959. MR 1186991

[Led96] Michel Ledoux, Isoperimetry and Gaussian analysis, Lectures on probability theory and statistics (Saint-
Flour, 1994), Lecture Notes in Math., vol. 1648, Springer, Berlin, 1996, pp. 165–294. MR 1600888

[Led03] M. Ledoux, On improved Sobolev embedding theorems, Math. Res. Lett. 10 (2003), no. 5-6, 659–669.
MR 2024723

[Lin90] Tom Lindstrøm, Brownian motion on nested fractals, Mem. Amer. Math. Soc. 83 (1990), no. 420, iv+128.
[LP06] M. L. Lapidus and E. P. J. Pearse, A tube formula for the Koch snowflake curve, with applications to complex

dimensions, J. London Math. Soc. (2) 74 (2006), no. 2, 397–414.
[LPW11] M. L. Lapidus, E. P. J. Pearse, and S. Winter, Pointwise tube formulas for fractal sprays and self-similar

tilings with arbitrary generators, Adv. Math. 227 (2011), no. 4, 1349–1398.
[LSV09] Daniel Lenz, Peter Stollmann, and Ivan Veselic, The allegretto-piepenbrink theorem for strongly local dirichlet

forms, Documenta Mathematica 14 (2009), 167–189.
[LSV11] Daniel Lenz, Peter Stollmann, and Ivan Veselić, Generalized eigenfunctions and spectral theory for strongly

local dirichlet forms, Spectral theory and analysis, Springer, 2011, pp. 83–106.
[Mat95] Pertti Mattila, Geometry of sets and measures in Euclidean spaces, Cambridge Studies in Advanced Mathe-

matics, vol. 44, Cambridge University Press, Cambridge, 1995, Fractals and rectifiability. MR 1333890
[Mir03] Michele Miranda, Jr., Functions of bounded variation on “good” metric spaces, J. Math. Pures Appl. (9) 82

(2003), no. 8, 975–1004. MR 2005202
[MMS16] Niko Marola, Michele Miranda, Jr., and Nageswari Shanmugalingam, Characterizations of sets of finite

perimeter using heat kernels in metric spaces, Potential Anal. 45 (2016), no. 4, 609–633. MR 3558354
[MNP15] Michele Miranda, Jr., Matteo Novaga, and Diego Pallara, An introduction to BV functions in Wiener spaces,

Variational methods for evolving objects, Adv. Stud. Pure Math., vol. 67, Math. Soc. Japan, [Tokyo], 2015,
pp. 245–294. MR 3587453

[MPPP07] Michele Miranda, Jr., Diego Pallara, Fabio Paronetto, and Marc Preunkert, Short-time heat flow and functions
of bounded variation in RN , Ann. Fac. Sci. Toulouse Math. (6) 16 (2007), no. 1, 125–145. MR 2325595

[OSCT08] Kasso A. Okoudjou, Laurent Saloff-Coste, and Alexander Teplyaev, Weak uncertainty principle for fractals,
graphs and metric measure spaces, Trans. Amer. Math. Soc. 360 (2008), no. 7, 3857–3873. MR 2386249

[PP10] K. Pietruska-Pałuba, Heat kernel characterisation of Besov-Lipschitz spaces on metric measure spaces,
Manuscripta Math. 131 (2010), no. 1-2, 199–214.

[PW14] D. Pokorný and S. Winter, Scaling exponents of curvature measures, J. Fractal Geom. 1 (2014), no. 2,
177–219.

[RZ12] J. Rataj and M. Zähle, Curvature densities of self-similar sets, Indiana Univ. Math. J. 61 (2012), no. 4,
1425–1449.

[SC92] L. Saloff-Coste, A note on Poincaré, Sobolev, and Harnack inequalities, Internat. Math. Res. Notices (1992),
no. 2, 27–38. MR 1150597

[SC02] Laurent Saloff-Coste, Aspects of Sobolev-type inequalities, London Mathematical Society Lecture Note Series,
vol. 289, Cambridge University Press, Cambridge, 2002. MR 1872526

[Sha00] Nageswari Shanmugalingam, Newtonian spaces: an extension of Sobolev spaces to metric measure spaces,
Rev. Mat. Iberoamericana 16 (2000), no. 2, 243–279. MR 1809341

[ST12] Robert S. Strichartz and Alexander Teplyaev, Spectral analysis on infinite Sierpiński fractafolds, J. Anal.
Math. 116 (2012), 255–297. MR 2892621

[Str03a] Robert S. Strichartz, Fractafolds based on the Sierpiński gasket and their spectra, Trans. Amer. Math. Soc.
355 (2003), no. 10, 4019–4043.

[Str03b] , Function spaces on fractals, J. Funct. Anal. 198 (2003), no. 1, 43–83.
[Str06] , Differential equations on fractals. a tutorial, Princeton University Press, Princeton, NJ, 2006.
[Stu94] Karl-Theodor Sturm, Analysis on local Dirichlet spaces. I. Recurrence, conservativeness and Lp-Liouville

properties, J. Reine Angew. Math. 456 (1994), 173–196. MR 1301456
[Stu95] , Analysis on local Dirichlet spaces. II. Upper Gaussian estimates for the fundamental solutions of

parabolic equations, Osaka J. Math. 32 (1995), no. 2, 275–312. MR 1355744
[Stu96] K. T. Sturm, Analysis on local Dirichlet spaces. III. The parabolic Harnack inequality, J. Math. Pures Appl.

(9) 75 (1996), no. 3, 273–297. MR 1387522
[Tai64] Mitchell H. Taibleson, On the theory of Lipschitz spaces of distributions on Euclidean n-space. I. Principal

properties, J. Math. Mech. 13 (1964), 407–479. MR 0163159
[Tep08] Alexander Teplyaev, Harmonic coordinates on fractals with finitely ramified cell structure, Canad. J. Math.

60 (2008), no. 2, 457–480. MR 2398758



BIBLIOGRAPHY 105

[Tri78] H. Triebel, Interpolation theory, function spaces, differential operators, VEB Deutscher Verlag der Wis-
senschaften, Berlin, 1978. MR 500580

[Win15] S. Winter, Minkowski content and fractal curvatures of self-similar tilings and generator formulas for self-
similar sets, Adv. Math. 274 (2015), 285–322.

[WZ13] S. Winter and M. Zähle, Fractal curvature measures of self-similar sets, Adv. Geom. 13 (2013), no. 2, 229–244.
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