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Problem 1 

Consider a zipper with infinite number of links. Each link can be in one of the two states: 

a state with energy 

€ 

0 wherein the link is closed, and a state with energy 

€ 

ε > 0  wherein it 

is open. This zipper can unzip only from one end and a link can open only if all the links 

before it (from that end) are already open. At temperature 

€ 

T , find the average number of 

open links and investigate your answer for high and low temperatures. 

Solution 

Partition function is  
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Alternatively, energy (average energy) of the system is 
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and  
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Problem 2 

A classical system of 

€ 

N  distinguishable (no 

€ 

N!), non-interacting particles is placed in a 

three-dimensional harmonic well 

€ 

U r( ) =
x 2 + y 2 + z2
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Find the Helmholtz free energy and the internal energy of the gas. 

Solution 

Partition function for each particle is found as  
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Problem 3 (bonus) 

An ideal gas, 

€ 

PV = NT , with the initial pressure 

€ 

P0 , and volume 

€ 

V0  is heated by a current 

through a platinum wire. The experiment is done twice: first at a constant volume 

€ 

V0 , 

with pressure changing from 

€ 

P0  to 

€ 

P1, and then at a constant pressure 

€ 

P0 , with volume 

changing from 

€ 

V0  to 

€ 

V1. In both instances, gas receives the same amount of heat (current 

is applied for the same amount of time). Assuming constant specific heat, find 

€ 

CP /CV . 

Solution 

For constant volume, 

€ 

dQ = dE = CVdT
ΔQ = CVΔT = CV T1 −T0( )

 

For constant pressure, 
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dQ = dW = CPdT
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