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1. For a relativistic, two-dimensional, completely degenerate electron gas, evaluate the

dependence of the Fermi energy on the areal density of electrons. Evaluate the mean

energy per electron and investigate your answer in the non-relativistic and ultra-

relativistic limits.

Hints:

� Relationship between the energy and momentum of a relativistic particle is given
by
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� In the non-relativistic limit, subtract the rest mass mc2

Solution

(a) N is the total number of electrons, A is the area to which gas is con�ned:
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In the non-relativistic limit, ,
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Subtracting the rest energy mc2,
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2. For a ultra-relativistic, " = cp, three-dimensional, degenerate electron gas, calculate

the temperature correction of the internal energy per electron relative to a completely

degenerate electron gas.
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Solution
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where N (") is the density of levels, �nd
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In this case,
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