Ideal Gas

Final
Stat Physics
(Dated: 03-20-2008)

Abstract

Euler-Maclaurin formula
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. Consider ideal gas of diatomic molecules composed of unlike atoms and whose moment

of inertia is I.

(a) In the limit 7' >> h?/2I, evaluate the first quantum correction to the rotational

specific heat per molecule (see Footnote on p. 140).

Hint: Use Euler-Maclaurin formula.

(b) Using eq. (47.3), numerically evaluate and plot rotational specific heat (see Fig.
4 on p.141).

Solution

Introduce dimensionless parameter
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a=——<<1

Partition function can be converted to integral form using change of variable

x:\/a<K+%)

.Namely, using Euler-Maclaurin formula to the 3rd order correction to the integral,
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FIG. 1: Rotational specific heat per molecule of an ideal gas of diatomic molecules in 3D vis-a-vis

high-temperature approximation 1 (green) and asymptotic behavior (red).

2. Consider now the case when the gas described in the preceding problem is in two

dimensions.

(a) Write down the rotational partition function as a sum and numerically evaluate

and plot rotational specific heat.

For the rotational specific heat:
(b) In the limit 7' << kh%/2I, find the leading term.

(c) In the limit T >> h?/2I, evaluate the classical result and the first quantum

correction.

Solution

The energy states of the rotator are

h2m?
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and are doubly degenerate, except m = 0.Therefore,

ot =1+ 2 Z exp [—amz]
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FIG. 2: Rotational specific heat per molecule of an ideal gas of diatomic molecules in 2D vis-a-vis

high-temperature approximation (2), which obviously coincides with asymptotic behavior (red).

For T << h?/2I (o >> 1),
Zrot =1+ 2eXp (—Oé)
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For T >> h?/2I (o << 1), partition function can be converted to integral form using
Euler-Maclaurin formula
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with no further corrections since f+9(0) =0, j=0,1,2,...
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3. Evaluate specific heat per particle in an infinite one-dimensional square well of size L

in the limits of high and low temperatures.

Solution

Partition function (compare to the preceding problem)

where

For a >> 1 (low temperature),
Z = exp (—a) (14 exp (—3a))
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FIG. 3: Specific heat per particle in an infinite, 1d square well vis-a-vis high-temperature approx-

imation 3 (green) and asymptotic behavior (red).
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FIG. 4: Same as above; notice slow approach to asymptotic behavior.



