Final Spring

1. Show that in d-dimensions and for € = ap®, PV = sE/d regardless of the statistics of

particles in an ideal gas.
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2. Evaluate the isothermal compressibility of an ideal, spinless, 3D, non-relativistic Bose

gas as T' — Ty, the temperature of Bose-Einstein condensation, from above.

Hint: Evaluate the inverse compressibility k7' = —V (9P/0V) v from the Gibbs free

energy and relate the latter to the chemical potential.
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whereof, using T oc V=23, we find
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leading to a divergent compressibility rr.

. Electron gas is confined, at zero temperature, to a compartment of volume V inside
a thermally isolated container of volume V 4+ AV, AV <« 1. The other compartment
(of volume AV) is initially empty. Subsequently, the partition separating the two
compartments, V and AV, is removed. Find the temperature of the electron gas once

the equilibrium is reached.
Solution

By energy conservation
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4. Find the relationship between the isothermal compressibility and the particle number

fluctuation in the grand canonical ensemble.

Hint: use the hint in Problem 2 and make a conversion from a fixed number of particles

to a fixed volume, similar to p. 342 in LL.
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where eq. (112.14) from LL was used.

5. Derive eq. (144.9) in the strong field limit and evaluate the heat capacity in this limit.



