Final - Statistical Physics

Winter Quarter 2004

Two identical ideal gases at pressures P₁ and P₂ and temperatures T₁ and T₂ are in vessels of volumes V₁ and V₂ respectively. The vessels are then connected and gases mix. Find the change of entropy after the system reaches equilibrium. (The system as a whole can be considered as thermally isolated.) Simplify your answer for the cases:
 a) P₁ = P₂ and V₁ = V₂; b) T₁ = T₂ and V₁ = V₂. Bonus question: For both a) and b) explicitly show that the change of entropy is greater or equal than zero.

Hint: $S = -N \log P + Nc_p \log T + (\zeta + c_p) N$

Solution

Number of particles in the vessels

$$N_{1,2} = \frac{P_{1,2}V_{1,2}}{T_{1,2}}$$

Final T and P $(V = V_1 + V_2)$

k

$$E = (N_1 + N_2) T = E_1 + E_2 = N_1 T_1 + N_2 T_2$$
$$T = \frac{N_1 T_1 + N_2 T_2}{N_1 + N_2} = \frac{P_1 V_1 + P_2 V_2}{(P_1 V_1 / T_1) + (P_2 V_2 / T_2)}$$
$$P = \frac{(N_1 + N_2) T}{V_1 + V_2} = \frac{P_1 V_1 + P_2 V_2}{V_1 + V_2}$$

Initial entropy

$$S_0 = S_1 + S_2$$

= $-N_1 \log P_1 + N_1 c_p \log T_1 - N_2 \log P_2 + N_2 c_p \log T_2$
+ $(\zeta + c_p) (N_2 + N_1)$

Final entropy

$$S = -(N_2 + N_1)\log P + (N_2 + N_1)c_p\log T + (\zeta + c_p)(N_2 + N_1)$$

Change of entropy

$$\Delta S = S - S_0$$

= $-\left[N_1 \log \frac{P}{P_1} + N_2 \log \frac{P}{P_2}\right] + c_p \left[N_1 \log \frac{T}{T_1} + N_2 \log \frac{T}{T_2}\right]$

a) $P_1 = P_2$ and $V_1 = V_2$

$$P = P_1 = P_2$$
$$T = \frac{2T_1T_2}{T_1 + T_2}$$

$$\Delta S = c_p \left(N_1 \log \frac{T}{T_1} + N_2 \log \frac{T}{T_2} \right) = \frac{c_p p V}{2} \left(\frac{1}{T_1} \log \frac{T}{T_1} + \frac{1}{T_2} \log \frac{T}{T_2} \right)$$

Using notation $T_2 = T_1 - \Delta T$, $\Delta T \ge 0$, and $0 \le x = \Delta T/T_1 \le 1$,

$$\frac{T}{T_1} = \frac{2(T_1 - \Delta T)}{2T_1 - \Delta T} = \frac{1 - x}{1 - x/2}$$
$$\frac{T}{T_2} = \frac{2T_1}{2T_1 - \Delta T} = \frac{1}{1 - x/2}$$

$$\Delta S = \frac{c_p p V}{2T_2} \left(\frac{T_2}{T_1} \log \frac{T}{T_1} + \log \frac{T}{T_2} \right) = \frac{c_p p V}{2T_2} \left[(1-x) \log \frac{1-x}{1-x/2} + \log \frac{1}{1-x/2} \right] \ge 0$$

Equality is achieved when x = 0, that is $T_2 = T_{1.}$

b) $T_1 = T_2$ and $V_1 = V_2$

$$T = T_1 = T_2$$
$$P = \frac{P_1 + P_2}{2}$$

$$\Delta S = S - S_0 = -\left[N_1 \log \frac{P}{P_1} + N_2 \log \frac{P}{P_2}\right] = -\frac{V}{2T} \left[P_1 \log \frac{P}{P_1} + P_2 \log \frac{P}{P_2}\right]$$

Using notation $P_2 = P_1 - \Delta P$, $\Delta P \ge 0$, and $0 \le x = \Delta P/P_1 \le 1$,

$$\frac{P}{P_1} = \frac{2P_1 - \Delta P}{2P_1} = 1 - x/2$$
$$\frac{P}{P_2} = \frac{2P_1 - \Delta P}{P_1 - \Delta P} = \frac{1 - x/2}{1 - x}$$

$$\Delta S = -\frac{VP_1}{2T} \left[\log \frac{P}{P_1} + \frac{P_2}{P_1} \log \frac{P}{P_2} \right] = -\frac{VP_1}{2T} \left[\log \left(1 - x/2\right) + (1 - x) \log \left(\frac{1 - x/2}{1 - x}\right) \right] \ge 0$$

Equality is achieved when x = 0, that is $P_2 = P_1$.

- 2. A one-dimensional harmonic oscillator, $\varepsilon_n = \hbar \omega (n + 1/2), n \ge 0$, is in thermal equilibrium with a heat bath at temperature T. Evaluate
 - a) The mean value of the oscillator energy $\langle E \rangle$;

b) The root mean square fluctuation of energy about $\langle E \rangle$, $\langle (\Delta E)^2 \rangle^{1/2} = \sqrt{C_v}T$. What is the behavior of $\langle E \rangle$ and $\langle (\Delta E)^2 \rangle^{1/2}$ in the limits of high and low temperature? Solution

Partition function

$$Z = \sum_{n=0}^{\infty} \exp\left[\frac{-\hbar\omega \left(n+1/2\right)}{T}\right]$$
$$= \exp\left(-\frac{\hbar\omega}{2T}\right) \left[1 - \exp\left(-\frac{\hbar\omega}{T}\right)\right]^{-1} = \frac{2}{\sinh\left(\hbar\omega/2T\right)}$$

Energy

$$\langle E \rangle = F - T \frac{\partial F}{\partial T} = T^2 Z^{-1} \frac{\partial Z}{\partial T}$$

$$= \frac{\hbar \omega}{2} \coth\left(\frac{\hbar \omega}{2T}\right) = \frac{\hbar \omega/2, \ T \ll \hbar \omega}{T, \ T \gg \hbar \omega}$$

Heat capacity

$$C_v = \frac{\partial \langle E \rangle}{\partial T} = \frac{\left(\hbar\omega/2T\right)^2}{\sinh^2\left(\hbar\omega/2T\right)}$$

Energy. fluctuation

$$\left\langle \left(\Delta E\right)^2 \right\rangle^{1/2} = \sqrt{C_v}T = \frac{\hbar\omega/2}{\sinh\left(\hbar\omega/2T\right)}$$
$$= \frac{\left(\hbar\omega/2\right)\exp\left(-\hbar\omega/2T\right), \ T \ll \hbar\omega}{T, \ T \gg \hbar\omega}$$