Final - Statistical Physics

Winter Quarter 2004

1. Two identical ideal gases at pressures P_1 and P_2 and temperatures T_1 and T_2 are in vessels of volumes V_1 and V_2 respectively. The vessels are then connected and gases mix. Find the change of entropy after the system reaches equilibrium. (The system as a whole can be considered as thermally isolated.) Simplify your answer for the cases: a) $P_1 = P_2$ and $V_1 = V_2$; b) $T_1 = T_2$ and $V_1 = V_2$. **Bonus question**: For both a) and b) explicitly show that the change of entropy is greater or equal than zero.

Hint: $S = -N \log P + Nc_p \log T + (\zeta + c_p) N$

Solution

Number of particles in the vessels

$$
N_{1,2} = \frac{P_{1,2}V_{1,2}}{T_{1,2}}
$$

Final T and P ($V = V_1 + V_2$)

$$
E = (N_1 + N_2)T = E_1 + E_2 = N_1T_1 + N_2T_2
$$

\n
$$
T = \frac{N_1T_1 + N_2T_2}{N_1 + N_2} = \frac{P_1V_1 + P_2V_2}{(P_1V_1/T_1) + (P_2V_2/T_2)}
$$

\n
$$
P = \frac{(N_1 + N_2)T}{V_1 + V_2} = \frac{P_1V_1 + P_2V_2}{V_1 + V_2}
$$

Initial entropy

$$
S_0 = S_1 + S_2
$$

= $-N_1 \log P_1 + N_1 c_p \log T_1 - N_2 \log P_2 + N_2 c_p \log T_2$
+ $(\zeta + c_p) (N_2 + N_1)$

Final entropy

$$
S = -(N_2 + N_1) \log P + (N_2 + N_1) c_p \log T + (\zeta + c_p) (N_2 + N_1)
$$

Change of entropy

$$
\Delta S = S - S_0
$$

= -[$N_1 \log \frac{P}{P_1} + N_2 \log \frac{P}{P_2}$] + $c_p \left[N_1 \log \frac{T}{T_1} + N_2 \log \frac{T}{T_2} \right]$

a) $P_1 = P_2$ and $V_1 = V_2$

$$
P = P_1 = P_2
$$

$$
T = \frac{2T_1T_2}{T_1 + T_2}
$$

$$
\Delta S = c_p \left(N_1 \log \frac{T}{T_1} + N_2 \log \frac{T}{T_2} \right) = \frac{c_p pV}{2} \left(\frac{1}{T_1} \log \frac{T}{T_1} + \frac{1}{T_2} \log \frac{T}{T_2} \right)
$$

Using notation $T_2 = T_1 - \Delta T$, $\Delta T \ge 0$, and $0 \le x = \Delta T/T_1 \le 1$,

$$
\frac{T}{T_1} = \frac{2(T_1 - \Delta T)}{2T_1 - \Delta T} = \frac{1 - x}{1 - x/2}
$$

$$
\frac{T}{T_2} = \frac{2T_1}{2T_1 - \Delta T} = \frac{1}{1 - x/2}
$$

$$
\Delta S = \frac{c_p pV}{2T_2} \left(\frac{T_2}{T_1} \log \frac{T}{T_1} + \log \frac{T}{T_2} \right) = \frac{c_p pV}{2T_2} \left[(1-x) \log \frac{1-x}{1-x/2} + \log \frac{1}{1-x/2} \right] \ge 0
$$

Equality is achieved when $x = 0$, that is $T_2 = T_1$.

b) $T_1 = T_2$ and $V_1 = V_2$

$$
T = T_1 = T_2
$$

$$
P = \frac{P_1 + P_2}{2}
$$

$$
\Delta S = S - S_0 = -\left[N_1 \log \frac{P}{P_1} + N_2 \log \frac{P}{P_2}\right] = -\frac{V}{2T} \left[P_1 \log \frac{P}{P_1} + P_2 \log \frac{P}{P_2}\right]
$$

Using notation $P_2 = P_1 - \Delta P$, $\Delta P \ge 0$, and $0 \le x = \Delta P/P_1 \le 1$,

$$
\frac{P}{P_1} = \frac{2P_1 - \Delta P}{2P_1} = 1 - x/2
$$

$$
\frac{P}{P_2} = \frac{2P_1 - \Delta P}{P_1 - \Delta P} = \frac{1 - x/2}{1 - x}
$$

$$
\Delta S = -\frac{VP_1}{2T} \left[\log \frac{P}{P_1} + \frac{P_2}{P_1} \log \frac{P}{P_2} \right] = -\frac{VP_1}{2T} \left[\log \left(1 - x/2 \right) + \left(1 - x \right) \log \left(\frac{1 - x/2}{1 - x} \right) \right] \ge 0
$$

Equality is achieved when $x = 0$, that is $P_2 = P_1$.

- 2. A one-dimensional harmonic oscillator, $\varepsilon_n = \hbar \omega (n + 1/2)$, $n \ge 0$, is in thermal equilibrium with a heat bath at temperature T . Evaluate
	- a) The mean value of the oscillator energy $\langle E \rangle$;

b) The root mean square fluctuation of energy about $\langle E \rangle, \langle (\Delta E)^2 \rangle^{1/2} = \sqrt{C_v}T$. What is the behavior of $\langle E \rangle$ and $\langle (\Delta E)^2 \rangle^{1/2}$ in the limits of high and low temperature? Solution

Partition function

$$
Z = \sum_{n=0}^{\infty} \exp\left[\frac{-\hbar\omega(n+1/2)}{T}\right]
$$

= $\exp\left(-\frac{\hbar\omega}{2T}\right) \left[1 - \exp\left(-\frac{\hbar\omega}{T}\right)\right]^{-1} = \frac{2}{\sinh(\hbar\omega/2T)}$

Energy

$$
\langle E \rangle = F - T \frac{\partial F}{\partial T} = T^2 Z^{-1} \frac{\partial Z}{\partial T}
$$

$$
= \frac{\hbar \omega}{2} \coth\left(\frac{\hbar \omega}{2T}\right) = \frac{\hbar \omega/2, T \ll \hbar \omega}{T, T \gg \hbar \omega}
$$

Heat capacity

$$
C_v = \frac{\partial \langle E \rangle}{\partial T} = \frac{(\hbar \omega / 2T)^2}{\sinh^2 (\hbar \omega / 2T)}
$$

Energy. fluctuation

$$
\langle (\Delta E)^2 \rangle^{1/2} = \sqrt{C_v} T = \frac{\hbar \omega / 2}{\sinh (\hbar \omega / 2T)}
$$

$$
= \frac{(\hbar \omega / 2) \exp(-\hbar \omega / 2T), T \ll \hbar \omega}{T, T \gg \hbar \omega}
$$