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QM 15-030-710-002 Spring ****
Assignment 7: Motion in Magnetic Field

The due date for this assignment is ****.
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Reading assignment: Chapter .

1. Show that in the Coulomb gauge the Hamiltonian of a charged particle in the magnetic �eld

can be written as

and check that this operator is Hermitian.

See pp. 456-457 in LL.

2. Find the velocity operator of a charged particle in the magnetic �eld and establish the commu-
tational relationships and .

,

3. For a charged particle in a constant homogeneous magnetic �eld, �nd the operator of the center of
the orbit of the transverse (perpendicular to the magnetic �eld) motion and . Also �nd the
operator of the squared radius of the orbit. Establish the commutational relationships of these
operators with each other and with the Hamiltonian.

Classically,

,

,

that is
, ,

Quantum mechanically,

Commutational relationships
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where, for instance,

Also

,

4. Find the eigenvalue spectrum of and (see preceding problem).

, ,

Therefore, eigenvalues of are

By analogy, and using the result of the previous problem for , the spectrum is the same
as .

5. Find the eigenvalues and eigenfunctions of the stationary states of a charged plane rotator (a charged
particle moving in a plane at a �xed distance form the center) in a constant homogeneous magnetic
�eld perpendicular to the plane.

Using radial gauge, the Hamiltonian of the transverse motion is

Setting and denoting

whose eigenfunctions and eigenvalues are, respectively,

, : integer

6. Find the eigenvalues and eigenfunctions of the stationary states of a neutral particle in a
constant homogeneous magnetic �eld.

,
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7. Establish the relationship between the mean values of the orbital angular momentum and the
magnetic moment of a spin-less charged particle in a magnetic �eld. Show that this relationship
is consistent with gauge invariance.

Classically,

Quantum mechanically,

Taking expectation value and using that

when , we �nd that neither nor are gauge invariant, is.


