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QM 15-030-710-003 Winter ****
Assignment 5: Perturbation Theory

The due date for this assignment is ****.
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Reading assignment: Chapter .

1. For a particle in an in�nitely deep potential well of width ( ), �nd the �rst-order
corrections to the energy levels under the following perturbations:

a)

b)
,

, and

Analyze the conditions of applicability of the perturbation theory.

a)

b)

The condition of applicability of the perturbation theory is that , whereof

meaning that for a sufficiently large the shift of energy levels can be calculated with perturbation
theory.

2. Show that for an arbitrary perturbation , the �rst order correction to the energy levels
in the potential of Problem 1 does not depend on for sufficiently large . Analyze the conditions
of applicability of the perturbation theory.

The second term in parentheses is quickly oscillating for and the corresponding integral .
Therefore,

The actual condition of applicability of the perturbation theory is that where is the
characteristic scale on which the variations of are substantial.
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3. A charged linear harmonic oscillator is placed in the uniform electric �eld directed along the axis
of oscillations. Treating the electric �eld as a perturbation, evaluate the energy level corrections to
second order and compare your result with the exact solution.

Using the normalized WF of the harmonic oscillator, ,

the recurrence relation for the Hermite polynomials,

and the orthogonality of eigenfunctions, �nd the matrix elements of (and, therefore, of
)

,
,

, otherwise

Consequently,

Notice, that this coincides with the exact energy, meaning that all higher order corrections must
be zero.

4. A plane rotator with the moment of inertia and the dipolar moment is placed in a uniform
electric �eld (directed in the plane of rotation) which can be treated perturbatively. Find the
polarizability of the rotator�s ground state.

: .

For an unperturbed rotator,

Using the expression for the perturbation in the Hint,

, or
, otherwise

�nd

5. At , a particle in the ground state of the potential of Problem 1 is a subject to a weak,
time-dependent perturbation of the following form:

a)

b)

c)
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Using perturbation theory to the �rst order, evaluate the probabilities of transitions to other eigen-
states at .

Matrix elements of the perturbation are

, -even
, -odd

Using and the values of the integrals

�nd
, -even

, -odd

where . The condition of applicability of perturbation theory is .

6. A plane rotator with the dipole moment is placed in a spatially uniform variable electric �eld
, . Before the �eld was turned on, the rotator had a de�nite value of the

projection of the angular momentum . Using the �rst-order perturbation theory, evaluate the
probabilities of different values of the projection and energy at . Consider a particular case

,
,

Matrix elements of the perturbation are

, and
, otherwise

Consequently,

,
,

and for above

For the ground state, in particular
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7. A charged linear harmonic oscillator is subject to a spatially uniform electric �eld .
Before the �eld was turned on, the oscillator was in the -th stationary state. The total impulse of
the force is . In the �rst order of the perturbation theory, �nd the probabilities of excitation to
other possible states. Analyze the limiting cases and .

where is related to via

Using ( ),

,
,

, otherwise

and

�nd
,

,

where .


