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QM 15-030-710-002 Winter ****
Assignment 4: Motion in Central Field

The due date for this assignment is ****.
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Reading assignment: Chapter .

1. Find the energy levels and the normalized wave functions of the stationary states of a plane harmonic
oscillator and determine the degeneracy of such states.

: Use separation of variables in Cartesian coordinates and label the states , where and
are the quantum numbers of 1D oscillators.

where and . There are linearly independent
WFs where while , corresponding to
the energy level .

2. In a stationary state (see preceding problem) of a plane harmonic oscillator, �nd the probabil-
ities of various possible projections of the angular momentum along the axis perpendicular to the
plane of oscillations.

: Express the WF in polar coordinates and use .

That is or with equal probability .

3. Find the energies of the discrete spectrum levels in a 2D �eld and their degeneracy.
Compare with the case of the Coulomb �eld .

SE for the radial part of the WF ,

is transformed via substitution into

which is identical to SE in a Coulomb �eld with the substitution or
. Therefore,

where the energy depends only on the combination ( is the �principal� quantum
number in analogy with the Coulomb �eld). The degeneracy of the energy level is
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4. Find an approximate energy of the ground state of a 2D oscillator using the trial function
and the variational method.

Normalization yields .

Minimizing with respect to , we �nd

which should be compared to the exact value .

5. Find the energy levels and the normalized wave functions of the stationary states of a spherical
harmonic oscillator and determine the degeneracy of such states.

where and . The degeneracy of the energy level
is

since for any the degeneracy is , as discussed in the planar case above.

6. Find the effective (mean) potential acting on a charged particle in a hydrogen atom in the
ground state, neglecting the polarization of the latter.

: Use

where and denote the lesser and the greater, respectively, of and , and the orthogonality
of Legendre polynomials.

where is the ground state electron WF in a H -atom. Using hint and the fact that only
will contribute due to spherical symmetry of and orthogonality of Legendre polynomials, we
obtain

In the limiting cases and one �nds, respectively, the Coulomb �eld of the proton
and the almost completely screened �eld of the proton by the electron.
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7. Find an approximate energy of the ground state of a particle in the Coulomb �eld
using the trial function and the variational method. Compare with the exact
result.

Normalization yields .

Minimizing with respect to , we �nd

which should be compared to the exact value .

8. Find the Green�s function of the Schrödinger�s equation for a free particle with ,

such that it decays when . Use the latter to derive an integral form of the Schrödinger�s
equation for discrete spectrum states of a particle in the �eld that decays for .

Using notation , GF (see e.g. Vladimirov, V. S., Equations of mathematical physics,
on reserve),

and SE can be re-written as


