QM 15-030-710-002 Winter **** Assignment 4: Motion in Central Field

The due date for this assignment is ****.

Reading assignment: Chapter V .

oscillator $U(\rho) = k\rho^2/2$ and determine the degeneracy of such states. 1. Find the energy levels and the normalized wave functions of the stationary states of a plane harmonic

Hint: Use separation of variables in Cartesian coordinates and label the states $\psi_{n_1 n_2}$, where n_1 and n_2 are the quantum numbers of 1D oscillators.

Solution

$$
\psi_{n_1 n_2} (x, y) = \psi_{n_1} (x) \psi_{n_2} (y)
$$

$$
E_N = \hbar \omega (N+1)
$$

WFs $\psi_{n_1 n_2}(x, y)$, where $n_1 = 0, 1, 2, ..., N$ while $n_2 = N, N - 1, N - 2, ..., 0$, corresponding to where $N = n_1 + n_2 = 0, 1, 2, ...$ and $n_1, n_2 = 0, 1, 2, ...$ There are $N + 1$ linearly independent the energy level E_N .

2. In a stationary state ψ_{11} (see preceding problem) of a plane harmonic oscillator, find the probabilities of various possible projections of the angular momentum along the axis perpendicular to the plane of oscillations.

Hint: Express the WF in polar coordinates and use $\sin(2\phi) = (e^{2i\phi} - e^{-2i\phi})/2i$. Solution

$$
\psi_{11}(x, y) = \frac{2xy}{\sqrt{\pi}a^3} \exp\left(-\frac{x^2 + y^2}{2a^2}\right) = \frac{2\cos\phi\sin\phi}{\sqrt{\pi}a^3} \rho^2 \exp\left(-\frac{\rho^2}{2a^2}\right)
$$

$$
= \frac{\left(e^{2i\phi} - e^{-2i\phi}\right)}{2i\sqrt{\pi}a^3} \rho^2 \exp\left(-\frac{\rho^2}{2a^2}\right)
$$

That is $m = 2$ or $m = -2$ with equal probability 1/2.

3. Find the energies of the discrete spectrum levels in a 2D field $U(\rho) = -\alpha/\rho$ and their degeneracy. Compare with the case of the Coulomb field $U(r) = -\alpha/r$.

Solution

SE for the radial part of the WF $\psi_{n_{\rho}m} = \chi_{n_{\rho}|m|} \exp(im\phi),$

$$
-\frac{\hbar^2}{2\mu} \left[\frac{d^2}{d\rho^2} + \frac{1}{\rho} \frac{d}{d\rho} - \frac{m^2}{\rho^2} \right] \chi - \frac{\alpha}{\rho} \chi = E\chi
$$

is transformed via substitution $\chi = u/\sqrt{\rho}$ into

$$
\frac{\hbar^2}{2\mu} \left[\frac{d^2}{d\rho^2} + \frac{1}{\rho} \frac{d}{d\rho} - \frac{m^2 - 1/4}{\rho^2} \right] u + \left(\frac{\alpha}{\rho} + E \right) u = 0
$$

which is identical to SE in a Coulomb field with the substitution $m^2 - 1/4 \longleftrightarrow l(l+1)$ or $|m| \longleftrightarrow$ $l + 1/2$. Therefore,

$$
E_{n_{\rho}|m|} = -\frac{\mu\alpha^2}{2\hbar^2 (n_{\rho} + |m| + 1/2)^2} \equiv -\frac{\mu\alpha^2}{2\hbar^2 (N - 1/2)^2}
$$

where the energy depends only on the combination $n_{\rho} + |m| \equiv N - 1$ (N is the "principal" quantum number in analogy with the Coulomb field). The degeneracy of the energy level E_N is

$$
g(N) = 1 + \sum_{|m|=1}^{N} 2 = 2N - 1
$$

 $C \exp(-\alpha \rho)$ and the variational method. 4. Find an approximate energy of the ground state of a 2D oscillator using the trial function $\psi(\rho)$

Solution

Normalization yields $C = 2\alpha^2/\pi$.

$$
\overline{T} = \frac{\hbar^2}{2\mu} \int \left| \frac{d}{d\rho} \psi(\rho) \right|^2 2\pi \rho d\rho = \frac{\hbar^2 \alpha^2}{2\mu}
$$

$$
\overline{U} = \frac{\overline{k\rho^2}}{2} = \int \frac{k\rho^2}{2} |\psi(\rho)|^2 2\pi \rho d\rho = \frac{3}{4} \frac{k}{\alpha^2}
$$

Minimizing $E = T + U$ with respect to α , we find

$$
E_0 \approx 1.22 \hbar \omega
$$

which should be compared to the exact value $E_0 = \hbar \omega$.

harmonic oscillator $U(r) = kr^2/2$ and determine the degeneracy of such states. 5. Find the energy levels and the normalized wave functions of the stationary states of a spherical

Solution

$$
\psi_{n_1 n_2 n_3} (x, y) = \psi_{n_1} (x) \psi_{n_2} (y) \psi_{n_3} (z)
$$

$$
E_N = \hbar \omega (N + 3/2)
$$

where $N = n_1 + n_2 + n_3 = 0, 1, 2, ...$ and $n_1, n_2, n_3 = 0, 1, 2, ...$ The degeneracy of the energy level E_N is

$$
G(N) = \sum_{n_1=0}^{N} (N - n_1 + 1) = \frac{(N + 1)(N + 2)}{2}
$$

since for any n_1 the degeneracy is $N - n_1 + 1$, as discussed in the planar case above.

6. Find the effective (mean) potential $\varphi(r)$ acting on a charged particle in a hydrogen atom in the ground state, neglecting the polarization of the latter.

Hint : Use

$$
\frac{1}{|\mathbf{r} - \mathbf{r}'|} = \sum_{l=0}^{\infty} \frac{r_<^l}{r_>^{l+1}} P_l(\cos \theta)
$$

where $r₀$ and $r₁$ denote the lesser and the greater, respectively, of r and r', and the orthogonality of Legendre polynomials.

Solution

$$
\rho(\mathbf{r}) = e\delta(\mathbf{r}) - e |\psi_0(\mathbf{r})|^2
$$

$$
\varphi(\mathbf{r}) = \int \frac{\rho(\mathbf{r})}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r}' = \frac{e}{r} - e \int \frac{|\psi_0(\mathbf{r})|^2}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r}'
$$

where $\psi_0(\mathbf{r})$ is the ground state electron WF in a H -atom. Using hint and the fact that only P_0 will contribute due to spherical symmetry of ψ_0 and orthogonality of Legendre polynomials, we obtain

$$
\varphi(\mathbf{r}) = \frac{e}{r} - \frac{4e}{a^3} \left[\frac{1}{r} \int_0^r \exp\left(-2r'/a\right) (r')^2 dr' + \int_r^\infty \exp\left(-2r'/a\right) r' dr' \right]
$$

$$
= e \left(\frac{1}{r} + \frac{1}{a} \right) \exp\left(-2r/a\right)
$$

In the limiting cases $r \to 0$ and $r \to \infty$ one finds, respectively, the Coulomb field e/r of the proton and the almost completely screened field (e/a) exp $(-2r/a)$ of the proton by the electron.

using the trial function $\psi(r) = C \exp(-\varkappa^2 r^2)$ and the variational method. Compare with the exact 7. Find an approximate energy of the ground state of a particle in the Coulomb field $U(r) = -\alpha/r$ result.

Solution

Normalization yields $C = (2\kappa^2/\pi)^{3/2}$.

$$
\overline{T} = \frac{\hbar^2}{2\mu} \int |\nabla \psi(r)|^2 dV = \frac{3\hbar^2 \varkappa^2}{2\mu}
$$

$$
\overline{U} = -\frac{\alpha}{r} = -\alpha \int \frac{1}{r} |\psi(r)|^2 dV = -\sqrt{\frac{8}{\pi}} \alpha \varkappa
$$

Minimizing $E = T + U$ with respect to \varkappa , we find

$$
E_0 \approx -\frac{3}{4\pi} \frac{\mu \alpha^2}{\hbar^2} \approx -0.42 \frac{\mu \alpha^2}{\hbar^2}
$$

which should be compared to the exact value $E_0 = -\mu \alpha^2 / 2\hbar^2$.

8. Find the Green's function $G_E(\mathbf{r}, \mathbf{r}')$ of the Schrödinger's equation for a free particle with $E < 0$,

$$
\left(\widehat{H} - E\right)G_E \equiv -\frac{\hbar^2}{2m}\nabla^2 G_E - EG_E = \delta(\mathbf{r} - \mathbf{r}')
$$

Solution such that it decays when $r \to \infty$. Use the latter to derive an integral form of the Schrödinger's equation for discrete spectrum states of a particle in the field $U(r)$ that decays for $r \to \infty$.

Using notation $E = -\hbar^2 \varkappa^2/2\mu$, GF (see e.g. Vladimirov, V. S., Equations of mathematical physics, on reserve),

$$
G_E = \frac{\mu}{2\pi\hbar^2} \frac{\exp\left(-\varkappa\left|\mathbf{r} - \mathbf{r}'\right|\right)}{\left|\mathbf{r} - \mathbf{r}'\right|}
$$

and SE can be re-written as

$$
\psi(\mathbf{r}) = -\int G_E(\mathbf{r}, \mathbf{r}') U(\mathbf{r}') \psi(\mathbf{r}') d\mathbf{r}'
$$