QM 15-030-710-001 Fall **** Assignment 3: Angular momentum

The due date for this assignment is ****.

Reading assignment: Chapter IV.

1. Show that the equality $l^2 = l(l+1)$ follows an assumption that all possible values, $m = -l, -l+1, \dots, l$, of the projection of the angular momentum along an arbitrary axis are equally probable, taking into account that all such axes are equivalent.

Hint:
$$\sum_{m=0}^{l} m^2 = \frac{d^2}{d\alpha^2} \left[\sum_{m=0}^{l} e^{\alpha m} \right]_{\alpha=0}$$

- 2. Show that the functions obtained by application of the operators $\hat{l}_{\pm} = \hat{l}_x \pm i \hat{l}_y$ to the eigenfunctions Ψ_m of \hat{l}_z , $\hat{l}_z \Psi_m = m \Psi_m$, will also be eigenfunctions whose eigenvalues are $m \pm 1$.
- 3. Prove the following relationships for a state Ψ_m corresponding to the quantum number *m* for the projection of the angular momentum along the *z*-axis:

•
$$\overline{l_x} = \overline{l_y} = 0;$$

• $\overline{l_x l_y} = -\overline{l_y l_x} = im/2;$
• $\overline{\hat{l}_x^2} = \overline{\hat{l}_y^2}.$

- 4. In a state Ψ_{lm} with the quantum numbers l and m for the angular momentum and its projection along the z-axis, find the mean value and the variance of the fluctuation of the projection of the angular momentum along the axis \tilde{z} directed at an angle α with respect to z.
- 5. For a particle with the angular momentum l = 1, find the angular dependence of the wavefunction $\Psi_{\widetilde{m}}(\theta, \phi), \theta, \phi$ being the angular variables in the coordinate system with the polar axis z, of a state with a zero projection, $\widetilde{m} = 0$, of the angular momentum along a \widetilde{z} -axis whose direction is defined, respectively, by the polar and azimuthal angles α and β .
- 6. For a particle state with the angular momentum l = 1 and its projection m along the z-axis, find $\overline{\hat{l}_n^n}$ and $\overline{\hat{l}_n^n}$ where n is integer.
- 7. Find the spectrum of a squared vector product of the two angular momenta, $(l_1 \times l_2)^2$.

Hint: $\varepsilon_{ikl}\varepsilon_{\alpha\beta l} = \delta_{i\alpha}\delta_{k\beta} - \delta_{i\beta}\delta_{k\alpha}$

- 8. Consider two weakly interacting systems with quantum numbers (l_1, m_1) and (l_2, m_2) .
 - Find the possible values of the total moment L of the combined system (1+2) and evaluate $\overline{\widehat{\mathbf{L}}}$ and $\overline{\widehat{\mathbf{L}}^2}$:
 - For a particular case $m_1 = l_1$ and $m_2 = l_2 1$, find the probabilities of the possible values of L.