QM 15-030-710-001 Fall **** Assignment 1: Operators in quantum mechanics

The due date for this assignment is ****.

Reading assignment: Chapters I and II.

- 1. Consider the following operators $(-\infty < x < \infty)$:
 - (a) reflection, $\widehat{I}\Psi(x) \equiv \Psi(-x)$
 - (b) translation, $\widehat{T}\Psi(x) \equiv \Psi(x+a)$
 - (c) scale transformation, $\widehat{M}_{c}\Psi(x) \equiv \sqrt{c}\Psi(cx)$
 - (d) complex conjugation, $\widehat{K}\Psi(x) \equiv \Psi^{*}(x)$

Are these operators linear? Find operators which, with respect to these operators, are

- transposed
- complex-conjugate
- Hermitian conjugate
- 2. An operator $\widehat{F} = F\left(\widehat{f}\right)$, where F(z) is a function that can be represented as a series $F(z) = \sum_{n} c_{n} z^{n}$, can be understood as an operator such that $\widehat{F} \equiv \sum_{n} c_{n} \widehat{f}^{n}$. Using this definition, find the explicit form of the following operators:
 - (a) $\exp\left(i\pi \widehat{I}\right)$ (b) $\widehat{T}_a = \exp\left(a\frac{d}{dx}\right)$

where operator \widehat{I} is defined in Problem 1.

- 3. Assuming that λ is a small quantity, find the expansion of the operator $\left(\widehat{A} \lambda \widehat{B}\right)^{-1}$ in powers of λ .
- 4. Prove the following relationship:

$$\exp\left(\widehat{A}\right)\widehat{B}\exp\left(-\widehat{A}\right) = \widehat{B} + \left[\widehat{A},\widehat{B}\right] + \frac{1}{2!}\left[\widehat{A},\left[\widehat{A},\widehat{B}\right]\right] + \dots$$

5. Generally, a linear operator \hat{L} can be considered as a linear integral operator, i.e.

$$\Phi\left(\xi\right) \equiv \widehat{L}\Psi\left(\xi\right) \equiv \int L\left(\xi,\xi'\right)\Psi\left(\xi'\right)d\xi$$

where $L\left(\xi,\xi'\right)$ is the kernel of the operator \hat{L} and ξ are the variables of this representation. How are the kernel of the operators \hat{L}^* , $\tilde{\hat{L}}$, \hat{L}^{\dagger} related to $L\left(\xi,\xi'\right)$? Find the kernels of the following operators:

- (a) \widehat{I}
- (b) \hat{T}
- (c) \widehat{M}_c
- (d) *x*
- (e) $\widehat{p} = -i\hbar \frac{d}{dx}$

where the former three are defined in Problem 1.

- 6. What is the form of the kernel L(x, x') of an operator \widehat{L} which commutes with the operators of:
 - (a) coordinate $\hat{x} \equiv x$

- (b) momentum $\hat{p} \equiv -i\hbar \frac{d}{dx}$
- 7. In a state described by the wave function (WF) of the form

$$\Psi(x) = C \exp\left[\frac{ip_0 x}{\hbar} - \frac{(x - x_0)^2}{2a^2}\right]$$

where p_0 , x_0 , and a are real, find the coordinate distribution function. Determine the mean values and the fluctuations of the coordinate and momentum.

8. Find eigenvalues (EV) and eigenfunctions (EF) of a physical quantity which is a linear combination of the coordinate and momentum, $f = \alpha \hat{x} + \beta \hat{p}$. Prove the orthogonality of such EFs and normalize them appropriately. Consider the limiting cases of $\alpha \to 0$ and $\beta \to 0$.