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QM 15-030-710-001 Fall ****
Assignment 1: Operators in quantum mechanics

The due date for this assignment is ****.
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Reading assignment: Chapters and .

1. Consider the following operators :

re�ection,

translation,

scale transformation,

complex conjugation,

Are these operators linear? Find operators which, with respect to these operators, are

transposed
complex-conjugate
Hermitian conjugate

2. An operator , where is a function that can be represented as a series

, can be understood as an operator such that . Using this de�nition, �nd the
explicit form of the following operators:

where operator is de�ned in Problem 1.

3. Assuming that is a small quantity, �nd the expansion of the operator in powers of

.

4. Prove the following relationship:

5. Generally, a linear operator can be considered as a linear integral operator, i.e.

where is the kernel of the operator and are the variables of this representation.. How

are the kernel of the operators , , related to ? Find the kernels of the following
operators:

where the former three are de�ned in Problem 1.

6. What is the form of the kernel of an operator which commutes with the operators of:

coordinate
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7. In a state described by the wave function (WF) of the form

where , , and are real, �nd the coordinate distribution function. Determine the mean values
and the �uctuations of the coordinate and momentum.

8. Find eigenvalues (EV) and eigenfunctions (EF) of a physical quantity which is a linear combination
of the coordinate and momentum, . Prove the orthogonality of such EFs and normalize
them appropriately. Consider the limiting cases of and .


