QM 15-Phys-710 Fall 2000 Quiz 2: Energy and Momentum. Schrödinger Equation. Monday, November 13

Please complete only one of the following two tests. A combination of parts will not be considered.

Test 1

1. Derive the stationary-state Schrödinger equation in the momentum representation for a particle in the potential U(x). Use this equation to derive the energy level in the potential $U(x) = -\alpha \delta(x)$, $\alpha > 0$ (*Note*: solutions in coordinate representation will not be accepted).

Solution

$$\frac{p^{2}}{2m}a\left(p\right) + \int_{-\infty}^{\infty} V\left(p - p'\right)a\left(p'\right)dp' = Ea\left(p\right)$$

where

$$V(p) = \frac{1}{2\pi\hbar} \int_{-\infty}^{\infty} U(x) \exp\left(-\frac{ipx}{\hbar}\right) dx$$

and

$$a(p) = \frac{1}{2\pi\hbar} \int_{-\infty}^{\infty} \psi(x) \exp\left(-\frac{ipx}{\hbar}\right) dx$$

For $U(x) = -\alpha \delta(x)$,

$$V\left(p\right) = -\frac{\alpha}{2\pi\hbar}$$

and

$$\frac{p^2}{2m}a\left(p\right) - \frac{\alpha}{2\pi\hbar} \int_{-\infty}^{\infty} a\left(p\right) dp = Ea\left(p\right)$$

Denote $\int_{-\infty}^{\infty} a(p) dp = C$, then

$$a\left(p\right) = \frac{\alpha m}{\pi \hbar} \frac{C}{p^2 + 2m \left|E\right|}$$

Substitution back into $\int_{-\infty}^{\infty} a(p) dp = C$ gives

$$1 = \frac{\alpha}{\hbar} \sqrt{\frac{m}{2|E|}}$$

and

$$E_0 = -\frac{m\alpha^2}{2\hbar^2}$$

1. For an infinite well of width a (0 < x < a)

a) Find the normalized wave functions $\psi_n(x)$ of stationary states and their energies E_n (you have to *derive* your results).

The state of a particle in the well is described by the wave function of the form $\psi(x) = Ax(x-a)(x-a/2)$.

- b) Normalize the wave function;
- c) Sketch $\psi(x)$ and compare it with $\psi_1(x)$, the first excited eigenstate;
- d) For this state, find the expectation value of
 - potential energy \overline{U} ;
 - kinetic energy \overline{T}
 - total energy \overline{E} and compare it with the energy of the first excited eigenstate. Explain your result.

1. *Hint*: in b) and d) it may be convenient to make a change of variable y = x - a/2. Solution

a)

$$\psi_n(x) = \frac{\sqrt{\frac{2}{a}} \sin \frac{\pi(n+1)x}{a}, \ 0 < x < a}{0, \ x < 0 \ \text{and} \ x > a}$$
$$E_n = \frac{\hbar^2 \pi^2 (n+1)^2}{2ma^2}$$

b) $A^2 = 840/a^7$

d) $\overline{U} = 0$, $\overline{E} = \overline{T} = 21\hbar^2/ma^2$ and $\overline{E}/E_1 = 21/2\pi^2$ - larger than, but close to, 1. This is because $\psi(x)$ and $\psi_1(x)$ have a large overlap.

2. Consider the following potential:

$$U(x) = \frac{U_0 > 0, \, x > 0}{0, \, x < 0}$$

- a) For a particle with $E > U_0$, can the transmission coefficient be 1?
- b) What are the transmission and reflection coefficients for a particle whose energy is $E < U_0$? Solution
- a) Always less than 1; approaches 1 when $E \gg U_0$.
- b) Transmission and reflection coefficients are 0 and 1 respectively.