QM 15-Phys-710 Fall 2000 Quiz 1: Operators In Quantum Mechanics Friday, October 13

1. \widehat{L} is a linear operator. Is operator $\widehat{L}\widehat{L}^{\dagger}$ Hermitian? - explain your answer.

$$\left(\widehat{L}\widehat{L}^{\dagger}\right)^{\dagger} = \left(\widehat{L}^{\dagger}\right)^{\dagger}\widehat{L}^{\dagger} = \widehat{L}\widehat{L}^{\dagger}$$
 - Hermitian

2. \widehat{f} and \widehat{g} are non-commuting Hermitian operators. Are the following operators Hermitian? - explain your answer.

a) $\widehat{g}\widehat{f}\widehat{g}$ $\left(\widehat{g}\widehat{f}\widehat{g}\right)^{\dagger} = \widehat{g}^{\dagger}\widehat{f}^{\dagger}\widehat{g}^{\dagger} = \widehat{g}\widehat{f}\widehat{g}$ - Hermitian b) $\widehat{f}\widehat{g} - \widehat{g}\widehat{f}$ $\left(\widehat{f}\widehat{g} - \widehat{g}\widehat{f}\right)^{\dagger} = \widehat{g}^{\dagger}\widehat{f}^{\dagger} - \widehat{f}^{\dagger}\widehat{g}^{\dagger} = \widehat{g}\widehat{f} - \widehat{f}\widehat{g} = -\left(\widehat{f}\widehat{g} - \widehat{g}\widehat{f}\right)$ - anti-Hermitian

3. Find the eigenvalues of a Hermitian operator \hat{f} such that $\hat{f}^2 = c\hat{f}$, where c is real.

$$f_i^2 = cf_i$$

$$f_{i1} = 0, f_{i2} = c$$

4. F(x, x') is the kernel of the operator \hat{f} and $F_{inv}(x, x')$ is the kernel of the operator \hat{f}^{-1} . Find

$$\int F\left(x,x^{'}\right)F_{inv}\left(x^{'},x^{''}\right)dx$$

This is the kernel of the unit operator $\widehat{f}\widehat{f}^{-1}$. Therefore,

$$\int F\left(x,x^{'}\right)F_{inv}\left(x^{'},x^{''}\right)dx^{'}=\delta\left(x-x^{''}\right)$$

5. For the operator

$$\widehat{l}_z = i \left(y \frac{\partial}{\partial x} - x \frac{\partial}{\partial y} \right)$$

what is $\tilde{\hat{l}}_z$, \hat{l}_z^* , and \hat{l}_z^{\dagger} ?

$$\widehat{\widehat{l}_z} = \widehat{l}_z^* = -\widehat{l}_z \\ \widehat{l}_z^\dagger = \widehat{l}_z$$

6. The inversion operator is defined as

$$\widehat{I}\Psi\left(\mathbf{r}\right)=\Psi\left(-\mathbf{r}\right)$$

For the operator \hat{l}_z from the preceding problem, find the commutator $\left[\hat{I}, \hat{l}_z\right]$. Since all coordinates change sign under inversion, operator \hat{l}_z doesn't and $\left[\hat{I}, \hat{l}_z\right] = 0$.