QM 15-030-710-002 Winter 1998
Final Exam
Monday, March 15

(15 + 15 points)

1. A particle with spin 1/2 moves in a time-varying uniform magnetic field directed along the z axis.
The time variation of the field is given by some arbitrary function H = H (t). At the initial time
(t = 0), the spin function has the form

exp (—ia) cos §
exp (i) sin 6
At the time ¢:

a) Find the spin function;
b) Find the mean value of the projection of the spin on the x and y axis;

¢) Find the direction along which the projection has a definite value.
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Direction along which projection is 1/2 is
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The letter is found by solving equation (as done in class)
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Solution

Denote spin function

Schrodinger equation

whereof

Projection to axes

[\DM—‘ N~

where
N 1
Sn = Z0°n
g = { Ox, Oy, Oz }
n = {sin@coszb, sin 0sin ¢, cosﬂ}

Note: The direction of projection 1/2 generates a conical surface and, in the case of a constant
field, H (t) = H = const, it rotates with the constant frequency 2ugH/h around the direction of
the field.



2. For the Hamiltonian of a charged, spinless article in the magnetic field,

ﬁzi(ﬁfEA)QJrV(r)
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a) Find the expression for the velocity operator

- i

b) Express the Hamiltonian in terms of velocity operators
¢) Show that

A ieh
[V, Vk] = — €™My
m=c

d) Find the energy of the particle in a uniform magnetic field using the known result for the

harmonic oscillator.

Hint: Introduce new variables, v, = a@, Uy = ozﬁ, such that [ﬁ,@] = —i, and express the

Hamiltonian in terms of these variables.
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