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. The concentration of gas in a cylinder of radius R and height h, rotating
with angular velocity w, is

n(r) = Cexp (mwz’z)

2T

where r is the distance from the cylinder’s axis, m is a molecules mass
and T is temperature (in energy units). Given the total number N of
molecules in the cylinder, evaluate the constant C and find n (r). Express
your answer in terms of

where V' is the volume of the cylinder. Defining a dimensionless parameter
mw?R?
2T

investigate your answer in the limit o < 1 and o > 1.

Solution

Normalization gives
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2. The partition function of an ideal monatomic gas, confined to a volume
V at temperature 7', is given by
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where m is the mass of each atom. Evaluate the Helmholtz free energy
of the gas, FF = —NT'log Z, where N is the total number of atoms in the
gas, and find its equation of state using
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3. To find the Green’s function of the Helmholtz equation in 3D, the following
integral must be evaluated:
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Evaluate Gj (r) for the cases below (pick any two):

(a) when both poles are moved slightly off the axis to the upper plane;

(b) when the poles are moved slightly off the axis; the pole at k to the
upper plane, and the pole —k to the lower plane;



(c) when the poles are moved slightly off the axis; the pole at k to the
lower plane, and the pole —k to the upper plane;

(d) when the integral is understood as the principal value.

Solution
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4. Fresnel integrals, used in many fields of physics (e.g. optics), are defined

as follows:
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Find their approximate expansions for small and large arguments. (Limit
your expansions to O (z°) for # < 1 and O (z71) for z > 1). Hint: to

evaluate S (o0) and C (00), evaluate the integral %exp (—2%/2) dz along

the contour consisting of (¢) the real axis from 0 to +oo, (i) one quarter
of a large circle at |z| = oo, and (4i7) return to the origin along the line

arg (z) = /4.

Solution
For z < 1,
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To evaluate S (c0) and C (o),
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and equating Re and Im parts to zero in the r.h.s.,
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