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1. Two particles, B and C, of equal mass m are connected by a spring BC
of strength k1. They are also connected to opposite walls at, respectively,
points A and D by springs AB and CD, each of strength k2. The particles
move along a straight line in a horizontal, frictionless groove. Using the
Laplace transform method, �nd the motion of the system in the following
cases:

(a) At t = 0 one of the particles moves with velocity v, while the other
particle is at rest and the initial displacement from equilibrium of
either particle is zero.

(b) At t = 0 one of the particles is displaced from its equilibrium position
over a distance a, while the initial displacement from equilibrium of
the other particle is zero and both particles are initially at rest.

Bonus: Solve without the use of Laplace transform and con�rm that you
get the same result.
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Equations of motion
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whereof
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Laplace inversion formula
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where !1;2 are frequencies of normal modes
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(b) Laplace transform
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2. Evaluate the expectation value of kinetic energy for a normalized 3D wave
packet
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using two methods:

(a) Evaluate
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where bp = �i�hr.
(b) Using  (k) = F [ (r)], evaluate
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(Remember that by Parseval�s theorem (2�)�3
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(b) Per pp. 106-107 in M&W, evaluation of F [ (r)] gives
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