
Mathematical Physics Final Exam
Boundary Value Problems, Green�s Functions

12/06/2005

1. Find the two dimensional potential V (r; �) inside a circle of radius a with no charges,

52V = 0

for the boundary potential given by
V (a; �) = V0 sin (�)
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Solution

Look for the solution in the form
V = R (r)� (�)

then
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Because of the boundary condition n = 1 and � = sin � and
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Look for a solution R / r� and �nd

�2 � 1 = 0, � = 1 (convergence at r = 0)

so that
V = Ar sin � = V0
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2. The two surfaces of an in�nite heat conducting slab of thickness D are in contact with the thermal
baths at temperatures T0 (x = 0) and zero (x = D) respectively. Find the temperature inside the slab
for t� D2=�, if initially the slab�s temperature is T0.
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T = 0

and look for a solution in the form T = T1 (x)+4T (x; t), where T1 (x) satis�es the boundary conditions
and 4T (x; t) has zero b.c.

Solution

Look for a solution T = T1 (x) +4T (x; t) where T1 (x) satis�es boundary condition so that

T1 (x) = T0
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and 4T / e��tX (x),
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Consequently

T = T0
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From the initial condition

T0 = T0
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Finally, for t� D2=�,

T = T0
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3. The Poisson�s equation in one dimension has the following form:

d2V

dx2
= 2% (x)

where % (x) is a 1D charge density. Write the solution of the Poisson�s equation in terms of the Green�s
function G (x� x0) of the Laplace operator and, in particular, �nd the potential at origin given

% (x) =
q=`,
0,

�` � x � `
jxj > `

Hint : G (x� x0) = G (jx� x0j) can be found by taking Fourier transform of

d2

dx2
G (x) = � (x)

and treating the pole on the axis of integration as a principal value.

Solution

Taking FT, �nd

�k2G (k) = 1
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so that
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Consequently,

V (x) =
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For the given % (x), the potential at the origin is

V (0) = 2
q
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