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Solution

(20 points)

MathPhys - Winter 2003
Quiz 5
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1. Evaluate the integral

( )

using two di�erent methods

(a) Use

1

1 2 +
= ( )

to evaluate (1) and ( 1) and to prove that

=
(2 + 1)

and

(b) Use the orthonormality

( ) ( ) =
2

2 + 1

1

1 2 +
=

1

1
= (1)

(1) = 1

1

1 + 2 +
=

1

1 +
= ( 1)

( 1) = ( 1)

Di�erentiating on ,

(2 1) + ( 1) = 0

Further di�erentiation gives

(2 1) (2 1) + ( 1) = 0

Di�erentiating on , and multiplying by

2 + = 0

Subtracting the last two equations

2 + (2 1) + (2 1) + = 0

or
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Solution

(15 points)
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+ ( 1) + = 0

and, �nally,

=

Similarly,

+ = ( + 1)

So that

=
(2 + 1)

and

( ) =
(1) (1)

(2 + 1)

( 1) ( 1)

(2 + 1)
=

2

2 + 1

Alternatively,

( ) ( ) =
2

2 + 1

2. Using the generating function for Hermit polynomials,

exp 2 = ( )
!

evaluate

( )

and

(0)

( )
= exp 2 =

exp 2

= 2 exp 2 = 2 !

and

exp = (0)
!

whereof

(0) = 0, (0) = ( 1)
(2 )!

!
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(15 points)
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3. The integral representation for the Bessel’s function is

( ) =
1

2
exp [ ( sin )]

Recall that Fourier series of a 2 -periodic can be written as

( ) = exp ( )

=
1

2
( ) exp ( )

Use the latter to derive the generating function for Bessel’s functions.

exp ( sin ) = ( ) exp ( ) = ( ) [exp ( )]

Introducing = exp ( ) and

sin =
1

2

1

we �nd

exp
2

1
= ( )
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