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MathPhys - Winter 2003
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1. Find the retarded Green’s function of the wave equation

( ; ) = ( ) ( )

for a string of length whose ends are �xed.

Using

( ) =
2

sin sin

and

( ; ) = sin sin

we �nd

+ =
2
( )

=

whereof

=
2 sin

( )

and �nally

( ; ) = ( )
2 sin

sin sin

2. Find the distribution of temperature in a rod 0 thermally insulated along the surface,

1
= 0

if the temperature of its ends is maintained equal to zero and the initial temperature is .

Using

= sin

we �nd

+
1

= 0

whereof
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= exp

Consequently,

= exp sin

and using initial condition

= sin

we �nally �nd

=
4

when is odd, so that

=
4 1

exp sin

3. Find the electrostatic �eld inside a region, bounded by the conducting plates = 0, = and = 0, if the
plate = 0 is charged to a potential the plates = 0, = are grounded (potential is zero), and if there is
no charge inside the region

= 0

Expanding

( ) = ( ) sin

we �nd

( )
= 0

subject to the b.c.

(0) =

Consequently,

( ) = exp

with

= sin

that is

=
4

when is odd. Finally,

( ) =
4 1

exp sin
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4. Find the temperature of the sphere of radius the surface of which is maintained at . At the initial time the
temperature of the sphere was equal to zero.

: Due to radial symmetry, the equation for the temperature is given by

+
2 1

= 0

where the following change of variable

= ( )

might be useful.

= + �

where

+
2 1

� = 0

Substituting

� =

we �nd

1 2
+
2
+
2 2 1

= 0

or

1
= 0

with the b.c.

( ) = 0, (0) = 0

Consequently,

( ) = ( ) sin

so that

+
1

= 0

and

( ) = exp

Then

= + exp
sin

Finally, using initial condition

0 = +
sin

we �nd (multiplying by sin and integrating with 4 ).
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