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1. Solve the differential equation

given the initial conditions

You use the Laplace transform to solve the problem - other methods will not be accepted.

Denoting

we �nd

or

The Laplace inversion integral gives

2. Find the Fourier transform of the function

Since is an even function of ,

3. Expand the function

in a series of Legendre polynomials

: One possible way to solve the problem is as follows: Use the generating function

to derive the relationship
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and also to evaluate .

Differentiating on and on , we �nd

and

respectively Combining the differentiation on of the �rst equation with the shift in
the second equation leads, upon elimination of , to

Analogously, we �nd

and

Consequently,

But, using the generating function at one �nds that

when is even and otherwise. Denoting ,

4. The generating function for the Bessel functions is

At large the asymptotic behavior of is

Using the generating function, �nd the relationship between and and the asymptotic
behavior of the latter.

Differentiating on , we �nd

whereof

and
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Differentiating on , we �nd

whereof

and

Consequently,

For


