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1. Solve the 2D Poisson equation inside a circle of radius charged with the uniform charge
density

and �nd the electric �eld at the perimeter.

: the radial part of the Laplace operator is

Due to circular symmetry, the Poisson equation becomes

since must be �nite. The electric �eld is given by

2. The steady-state concentration of a gas is described by the equation

Find inside a sphere of radius , given that

: the radial part of the Laplace operator is

Due to spherical symmetry, the steady-state equation becomes

whereof

since has to be �nite at . From , �nd
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3. A conducting layer was free from electromagnetic �elds for . At time
, a constant homogeneous magnetic �eld is developed everywhere outside the layer. Find

the magnetic �eld in the layer for and, in particular, at long times . The equation
for the magnetic �eld is given by

where and are the electric conductivity and magnetic permeability respectively.

The boundary and initial conditions can be written as

,

Look for a solution as ,

Subject to b.c.

;

and

Subject to i.c.

�nd

At long times, ,

4. Find the transverse vibrations of a circular membrane

�xed at the edge
;

and produced by a radially symmetric initial distributions of de�ections and velocities

, ;

The zeros of are assumed known. :


