Prof. R.A. Serota Quiz 4

Name ____

1. Four charges

 $q_A = 12 \text{ nC}$ $q_B = 6 \text{ nC}$ $q_C = 4 \text{ nC}$ $q_D = -8 \text{ nC}$

are located in the corners of a square ABCD, whose side is a = 1 m. What is the potential energy of this charge configuration?

Hint: The electric potential energy of the pair of point charges is $U = kq_1q_2/r_{12}$, where $k = 1/4\pi\varepsilon_0 = 8.99 \times 10^9 \text{ N}\cdot\text{m}^2/\text{C}^2$.

Solution

Noting that $\sqrt{2}a$ is the lengths of AC and BD,

$$U = \frac{k}{a} \left(q_A q_B + q_B q_C + q_C q_D + q_D q_A + \frac{q_A q_C + q_B q_D}{\sqrt{2}} \right)$$

= $\frac{(8.99 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2)}{(1 \text{ m})} \left(12 \cdot 6 + 6 \cdot 4 + 4 \cdot (-8) + (-8) \cdot 12 + \frac{12 \cdot 4 + 6 \cdot (-8)}{\sqrt{2}} \right) \left(10^{-9} C \right)^2$
= $-2.9 \times 10^{-7} \text{ J}$

- 2. Consider two widely separated conducting spheres, 1 and 2, the second having one third the diameter of the first. The larger sphere has initially a charge of $q = 10 \ \mu C$ and the smaller one is initially uncharged. Now you connect the spheres with a long thing wire.
 - (a) How are the final potentials V_1 and V_2 of the spheres related?
 - (b) What are the final charges of the spheres?

Hint: The potential at the surface of a sphere of radius R is $V = q/(4\pi\varepsilon_0 R)$. Solution

- (a) The potentials will be the same, $V_1 = V_2$.
- (b) The potential of a sphere is $V = q/4\pi\varepsilon_0 R$ and from $V_1 = V_2$ it follows that $q_1/R_1 = q_2/R_2$ and

 $q_1/q_2 = R_1/R_2 = 3$

but

$$q_1 + q_2 = q = 10\mu C$$

so that the charges are $q_1 = 7.5 \ \mu\text{C}$ and $q_2 = 2.5 \ \mu\text{C}$.