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Abstract

Aging is known to be accompanied by structural changes in the
brain. This is observed in both healthy subjects and those with
neurodegenerative diseases. These anatomical alterations influence
functional dynamics. More specifically, changes in structural net-
works lead to shifts in functional network organization. In this
study, we use functional imaging data from individuals aged 18-88
to reveal substantive and sustained gradual changes in functional
networks across the human lifespan. Our analysis demonstrates
that PageRank - a node centrality measure, effectively captures
age-related changes in the brain’s functional network. As PageR-
ank is the stationary distribution of random walks, changes due to
aging can thus be directly linked to changes in centrality properties
(i.e., the importance) associated with different brain regions. We
use these PageRank vectors in a trajectory analysis framework to
accurately predict the brain ages of subjects. We also present re-
sults from other centrality measures and other relevant methods to
demonstrate the significance of our results. This work lays the foun-
dation for identifying novel biomarkers crucial to characterizing
healthy aging and neurodegenerative diseases.
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1 Introduction

Neuroimages have been an integral source of data for studying
human brains. The structures of different areas of the brain and
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their associated functional properties have been long studied to
understand underlying biological processes, as well as to charac-
terize the changes to these processes associated with development,
healthy aging, injury and different diseases. Structural neuroim-
ages are high-resolution 3D images showing brain regions and
highlighting differences such as white and gray matter. Examples
of structural modalities include structural Magnetic Resonance
Imaging (MRI) and diffusion MRI (dMRI). Functional neuroimages
are 4-dimensional, with three spatial dimensions and one temporal
dimension. Examples include functional MRI (fMRI) and Magnetic
Encephalography (MEG).

While the spatial resolution of functional images is typically
poorer than structural images, the time dimension allows these
images to capture the dynamic activity of the brain, thereby elu-
cidating underlying functional processes active at rest, or while
performing cognitive tasks. Functional images are often studied
in the form of networks called “functional connectomes”. In this
network, nodes represent brain regions, and edges link regions
with similar temporal activity at rest, or in response to external
stimuli. As these responses are measured across time, we can view
edges as linking pairs of regions with high similarity in neuronal
activity. The exact measure of brain activity depends on the imag-
ing technique - for instance, in Blood Oxygen Level Dependent
functional Magnetic Resonance Imaging (BOLD fMRI), brain activ-
ity is measured as a hemodynamic response by each region to its
corresponding neuronal activity.

Over the lifespan, the human brain undergoes structural changes
associated with age. These anatomical alterations are expected to in-
fluence functional organization, leading to observable differences in
functional connectomes. A model capable of capturing age-related
patterns would have to be able to predict the brain age from a suit-
able representation derived from the corresponding neuroimage
[5][10][33]. Based on this central idea, we demonstrate that network
centrality measures of functional networks drawn from fMRIs serve
as useful graph representations that encode age-specific network
properties. Specifically, we show that Pagerank vectors extracted
from functional networks of healthy subjects aged 18 to 88 effec-
tively capture age-related trends. Next, by treating each subject’s
PageRank vector as a node in a population-level graph, we propose
a method to order subjects according to their ages. This framework
achieves competitive performance in predicting brain age across
the lifespan. Additionally, we compare the results obtained using
different centrality measures, including a) PageRank, b) degree, c)
eigenvector, and d) betweenness measures. Finally, we compare
our methodology with other approaches from relevant literature
to demonstrate that network properties of brains strongly encode
age-related information.
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The rest of the paper is organized as follows: In Section 2.1,
we describe the publicly available large-scale dataset used for this
study. Section 2.2 provides details regarding fMRI preprocessing
— steps vital to ensuring that noisy brain images are cleaned and
amenable to downstream analyses. Sections 2.3 and 2.4 introduce
the required concepts of PageRank and trajectory analysis. Sections
3.1-3.4 describe the three core results in this paper. Finally, we
conclude our paper with the related literature and discussion in
Sections 4 and 5, respectively.

2 Materials and Methods

We begin this section with a description of the Cam-CAN dataset,
followed by details of the necessary preprocessing steps required
to facilitate downstream analysis. Next, we provide relevant de-
tails of the methodological frameworks required for our approach.
Specifically, we discuss PageRank centrality, which represents each
functional connectome and pseudotime ordering, which allows us
to predict the subject’s brain age.

2.1 Dataset Description

In this paper, we use the dataset collected by the Cambridge Cen-
tre for Ageing and Neuroscience (Cam-CAN) consortium [22][27].
Specifically, we show results from the Cam-CAN Stage 2 study
cohort !. This dataset is a substantially large publicly available
resource for investigating age-related changes in cognition and
brain function. Cam-CAN Stage 2 includes multimodal image data,
including structural and functional modalities as well as high tem-
poral resolution modalities like Magnetic Encephalography (MEG).
It also provides non-imaging data, such as cognitive-behavioral and
demographical data, collected from a cohort of ~650 individuals
spanning the adult lifespan (from 18 to 88 years). By sampling a
diverse population, this dataset enables a comprehensive charac-
terization of healthy cognitive aging, focusing on understanding
age-related alterations in brain structure, function, and cognitive
performance.

2.2 Preprocessing Steps

The functional MRI data utilized in this study underwent artifact
and noise removal by the dataset curators. More detailed informa-
tion regarding the dataset and preprocessing is available in the
studies conducted by Shafto et al. [22] and Taylor et al. [27]. In
this study, we use the Craddock Atlas [4], which defines 840 func-
tional regions included in the dataset. Our choice for using the
Craddock Atlas is guided by the fact that network measures are
better estimated on larger graphs, which in our context translates to
finer parcellation (i.e., where individual brain regions occupy lesser
volume). In addition to the standard preprocessing pipeline, we com-
puted wavelet transforms of all parcellated time-series. Specifically,
we use the Best-localized Daubechies filter ('bl10’ in MATLAB).
We observed that these post-processed time-series enhanced the
detectability of age-related features.

!https://cam-can.mrc-cbu.cam.ac.uk/dataset/
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2.3 Pagerank Centrality

Pagerank Centrality was first developed to quantify the relative
importance of different webpages in a network of webpages (like
WWW)[17][2]. Given a graph G with n nodes and corresponding
adjacency matrix A, the page-rank centrality of the i—th node,
denoted as y; can be expressed as:

n
u;
yi:aZAijk_é"'ﬂ 1)
j=1 J

Here, A;j = 1if there is an edge from node j to node i, k;? represents
the out-degree of the j—th node. If a node has no outgoing edges,
k;.’ is set to 1 to avoid divide-by-zero errors. « is a free parameter
that must be smaller than 1, and f ensures all nodes (including
those with no out-degrees) have non-zero probabilities.

In matrix terms, we can rewrite the previous equation to

y=aAD 'y +f1 ©)
Rearranging, we get
y=(1-aAD )7L, €)
where D is the out-degree matrix defined as

maX(ZAkb 1) i= ]
D;j = k

0 otherwise

This definition ensures that all diagonals are non-zero. Additionally,
we set f = 1.

Pagerank is a variant of the Eigenvector Centrality, except for
the scaling by k;?. It is similar to Katz Centrality in the sense that we
give a small amount of centrality f for free to each node to ensure
that all nodes have non-zero centralities [16]. Pagerank Centrality
can be interpreted as the stationary distribution of random walks
on the corresponding graph [17]. Thus, y; > 0Vi € {1,...,n} and

n
.21 yi = 1.
i=

Pageranks of Brain Networks: As the output of the prepro-
cessing steps mentioned in Section 2.2, we obtain a (regions x time)
time-series matrix for each subject and each task. For each such
matrix, we compute the Pearson Correlation (PC) between all pairs
of regions to obtain a (regions x regions) matrix, often referred to
as the “Functional Connectome (FC)”. We sparsify this matrix by
retaining the top z% values in the FC to obtain functional networks.
We compute the pagerank vectors of these networks. In our experi-
ments, we set z = {5, 10} as these are common values in practice
[7, 12, 20, 21]. results reported in Section 3 are for z = 10, as the
downstream results are consistent for both values of z.

In the context of our problem setting, we aim to understand
changes to the functional activity of the brain in response to struc-
tural changes caused by aging. We hypothesize and show that these
changes in functional activity are encoded in network properties
such as random walks on functional networks. In other words,
changes to brain structure can be tied to changes to centrality mea-
sures, or relative importance of different regions. Thus, they have
the potential to serve as reliable biomarkers to characterize aging.
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Figure 1: Schematic Representation of our approach. In Stage 1, we compute pagerank vectors from functional networks as
explained in Section 2.3. For each subject, this results in a (regions x 1) vector. We stack these vectors into a matrix. In Stage
2a, we compute a population network using k-NN and use spectral clustering to partition nodes (subjects). The partitions are
shown with the black curves. Finally, in Stage 2b, we find the “backbone” (shown with blue lines), and project all subjects onto
the backbone. Using only the ages of the subjects along the backbone, we can predict ages of all other subjects. Details for Stage
2 are provided in Section 2.4. In this visualization, we have subsampled the data for clarity. The full results are presented in

detail in Section 3.

2.4 Pseudotime Analysis

Given an unordered dataset, Pseudotime Analysis refers to tech-
niques that find ordering of data-points. This ordering is used to
define a pseudotime “age” or “score”. Pseudotime algorithms have
been developed to infer progression of cells through biological pro-
cess such as development or differentiation. Graph-based methods
[9, 28] typically proceed by creating a graph/tree from the given
dataset, where the nodes represent stages of progression and the
edges represent transition between the different stages. In our set-
ting, we know the chronological (actual) ages of the subjects. Our
goal is to characterize the progression of brain age as encoded in
their functional brain networks. We develop our variant of pseudo-
time trajectory analysis inspired by [9], wherein the pseudotime
score/age is the predicted brain age. If the pagerank vectors for
functional networks computed in the previous step accurately cap-
tures network changes due to healthy aging, it is reasonable to
expect that this predicted brain age should correspond closely to
the chronological age. We now describe our pseudotime procedure:

Step 1: Clustering We begin by using k-NN on the pagerank
vectors to represent the entire dataset as a graph. Each node in
this population graph is a subject, and an edge represents pairs

of subjects whose pagerank vectors are sufficiently similar. We
compute the Laplacian Matrix of the graph and perform k-means
on the rows of the eigenvector matrix. This effectively performs
spectral clustering, dividing the dataset into k-clusters. For each
cluster i, we denote the subject closest to the center as C;.

Step 2: Backbone Creation Next, we use the ages of subjects
corresponding to the k cluster centers (i.e., C;) to order the clusters.
This is the only place where we utilize the age of cluster-centers
as labels. In all, we will use k < n ages and predict the ages of the
remaining individuals in the same clusters. Denoting the ordered
cluster centers as {Cy, ..., Cr}, we compute the edges (i.e., lines)
between successive cluster centers as

E C-G (@)
Y = Gill
where j = i + 1. The path Ey3 — E33 — E34 — -+ — Ej_y i is the

“backbone” on which we project all other data points. As j =i+ 1
always, each cluster C; has 2 edges associated with it, namely E;_1 ;
and E; j41.
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Step 3: Projection onto Backbone Then, we project each data
point onto the backbone as follows. Data points belonging to clus-
ters 1 and k are projected onto Ey 2 and Ej_; j respectively. For all
intermediate clusters i (1 < i < k), if subject s with pagerank vector
M; belongs to cluster C;, we compute projections w.r.t both edges

associated with C;. Thus, we compute pzi+1 and pf_l,i, where
p3; = IEL;M;| )
Lj Ljms

We identify the edge corresponding to max(p; ;. p;_; ;) - As dot
products measure similarity, this edge is uniquely identified. We
consider only magnitude because we don’t differentiate between
E;i+1 and —E; j+1 (= Ei41,7). For data-points projected onto the same
edge, the order is determined by the magnitudes of the projection
on the edge.

Step 4: Predict Age We append the ordering of subject across
edges, which gives us the global ordering for the dataset. As each
edge has known ages associated with its endpoints, we predict
the ages of the subjects along an edge by performing a linear in-
terpolation between the end points. Here, we simply use the fact
that each point on a line is a convex combination of its end-points.
Comparing the true age with the predicted age gives us an estimate
of the error.

The strength of this framework is allowing for a weakly super-
vised approach to accurately ascertain the age of a subject without
having to explicitly train with age as labels. While studying atypical
aging, the local neighborhood in the ordering for a subject may
be indicative of abnormalities in brain function when compared to
neighbors. Finally, as the ordering represents a gradual transition
in age, as characterized by changes to stationary probabilities in
different brain regions, we can construct branches to represent
changes to the functional network brought about by neurodegener-
ative diseases that accompany aging for many people. However, as
our focus is on healthy aging, we do not explore these ideas within
the scope of this paper.

2.5 Summary of Our Approach

Starting from preprocessed time-series data obtained from the pro-
cedure detailed in Section 2.2, we compute PCs for each subject and
for each task. Then, we sparsify the PCs to obtain FCs. We perform
PageRank on each FC to compute a distinct regionsx1 vector for
each suject and each task as described in Section 2.3.

For each task, we perform spectral clustering on the pagerank
vectors of all subjects to find clusters of subjects whose PageRank
vectors are similar. We designate the subject closest to the center
of each of these clusters. Using the age of the cluster centers, we
order the clusters (and thereby the corresponding subjects). To find
the order of subjects within a cluster, we find the “backbone” and
project all subjects onto the backbone as explained in Section 2.4.
In Figure 1, we show a schematic workflow of the entire process.

3 Results

We initiate the discussion of our results by showing that PageRank
centralities capture age-related changes in Section 3.1. We leverage
this finding to develop a framework for brain-age prediction in
Section 3.2. Next, we present a comparison across different central-
ity measures in Section 3.3. Finally, we close out this section with

Taimouri & Ravindra

a comparison with other (non-network-based) approaches from
literatures in Section 3.4

3.1 Aging-related changes to the brain is
reflected in network metrics of functional
networks

In this result, we demonstrate that node centrality measures com-
puted independently for each subject’s functional MRI, capture
information on changing functional activity caused by changes to
underlying anatomical structures. Moreover, this behavior remains
consistent across a cohort spanning decades of the human lifespan.
As mentioned earlier, we use PageRank as the metric of choice
due to the insights that may be gleaned by studying changes to
stationary probability distributions of random walks on functional
brain networks.

Once the dataset is suitably preprocessed, we compute the PageR-
ank centrality for each subject and task condition as described in
Section 2.3. We visualize the dataset in Figure 2. The colors of each
data point indicate the age of the corresponding subject. In each
task condition, the data points are arranged according to their brain
age. The visually smooth transition across age suggests that the
data-points may form clusters and lie on low-dimensional mani-
folds.

Next, we compute the k-NN graph on the dataset with each
node corresponding to a subject. We compute the Graph Laplacian
(L = D — A) for this graph and its Fiedler Vector. We partition this
dataset graph into two clusters using the Fiedler Vector (i.e., the
eigen vector corresponding to the smallest non-zero eigenvalue of
L). The results are visualized in Figure 3. We see that the Fiedler
Vector of the dataset graph can be used to partition subjects into
two clusters, that can roughly be characterized as “young” and “old”.
Across the three task conditions, the ages for the two clusters were
42.05 + 14.13 and 67.25 + 13.78 respectively.

To determine the optimal number clusters, we computed cluster
evaluation metrics for k-means with k = {1,...,40}. In Figure 4,
we can see that for the three task conditions, the optimal value of
k = 20 for Silhouette Value. This was in close agreement with Gap
Statistics and the Davies-Bouldin Index. Larger values of k(> 20)
did not improve the downstream prediction accuracy, however
smaller values of k(< 18) increased error in age prediction. Thus,
we fix k = 20. In the next result, we use these age-specific clusters
to predict the brain age of subjects.

3.2 Population-level Network Analysis Leads to
Accurate Age Prediction

Method | MAE
Linear Regression 14.73 £ 11.76
Support Vector Regression | 15.66 + 10.92
(with Gaussian Kernel)

Table 1: Baseline Mean Absolute Errors. This table summarizes
the Mean Absolute Error (MAE) by baseline methods across
three tasks (Rest, Sensorimotor, and Movie) in the CAM-CAN
dataset.
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Figure 2: Pagerank centralities encode age-related features. In this figure, we demonstrate the heterogeneity in PageRank vectors
corresponding to subjects ages 18 through 88 across three task conditions — rest, movie viewing, and sensorimotor activity.
The colors of each data-point indicate the age of the corresponding subject. The graphs show that changes due to age are
indeed reflected in PageRank vectors. For visualization, we reduce each data-point to two dimensions using Diffusion Maps.
Similar trends can be visualized with other non-linear dimensionality reduction techniques such as t-SNE and UMAP (see

Supplementary Material).
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Figure 3: Pagerank centralities encode age-related features — contd. In this figure, we find clusters in the dataset using the Fiedler
Vector. The cluster boundary we see in this figure is in line with the trend in ages seen in Figure 2. Moreover, the clusters can be
found in low-dimensional manifolds. For the purposes of visualization, we reduce each data-point to two dimensions using
Diffusion Maps. Similar trends can be visualized with other non-linear dimensionality reduction techniques such as t-SNE and

UMAP.

In this result, we further bolster our hypothesis that brain net-
work centrality measures encode age-specific information. To do
so, we use the previously computed PageRank centrality vectors for
all subjects to predict the age of each subject. As a baseline for the
predictions obtained from our approach, we report Mean Absolute
Errors (MAE) across three tasks for Linear Regression and Support
Vector Regression in Table 1

Using the PageRank centralities computed from each functional
image, we perform spectral clustering as described in Section 2.4.
We set k = 20, guided by the cluster evaluation metrics discussed
in the previous results (Section 3.1). We order the medians of each
cluster according to age and compute the ordering provided by the
pseudotime procedure discussed in Section 2.4. We note that we are
only using the age-labels of these cluster centers and not those of
other subjects. We repeat this procedure in a leave-one-out fashion.

In each iteration, we leave one subject out of the clustering and
pseudotime ordering procedure. We project the test subject onto
the edges connecting the closest cluster center and select the edge
with the higher projection (i.e., the more similar edge). We use the
edge as a linear interpolation between the ages of the nodes (cluster
centers) on either side. The average prediction error across all tasks
was 4.08 + 0.31 years, which is significantly better than the baseline.
We visualize the actual age (red) and predicted age (blue) for each
task in Figure 5. We also show the MAE for different age cohorts in
Table 2. In both cases, we see a deviation in expected output for the
oldest cohort (78-88) — in Figure 5, we see that the predictions in
this age range is consistently lower than the chronological age, and
in Table 2, we see a corresponding increase in MAE. We believe
this could be due to an acceleration in age-related changes that
is specific to individuals. Further study is required to ascertain
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Figure 4: Cluster Evaluation Metric for different number of
clusters. In this plot, we show the values for Silhouette Val-
ues for different values of k. This suggests that the optimal
number of clusters is approximately 20. Similar plots were
observed with Gap Statistic and Davies-Bouldin Index

the reason for this deviation. Finally, we report that there is no
significant change in MAE for male v/s female and handedness.

Age Range | MAE
18-27 4.29
28-37 3.39
38-47 3.32
48-57 3.29
58-67 3.28
68-77 4.64
78-88 7.08

Table 2: Mean Absolute Errors across age. This table summa-
rizes the Mean Absolute Error (MAE) for different age cohorts.
Our results are largely stable from 18-77. However, the in-
crease in error for ages 78-88 may be attributed to significant
age-related functional changes.

3.3 Comparison of different Node Centrality
Metrics

In this result, we compare the performance in age prediction using
different network centrality measures. In addition to PageRank,
we compare with a) degree centrality, b) eigenvector centrality,
and c) betweenness centrality for each task. As before, we perform
our analysis in a leave-one-out fashion. We compute the different
centrality measures for each subject and each task. We then perform
spectral clustering and predict trajectories (orderings) using the
different centrality measures. To demonstrate the stability of the
entire approach, we repeat the trajectory analysis 10% times.

The results are summarized in Figure 6. For each task, we see
that the error obtained by PageRank is significantly lesser than
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those obtained by degree, eigenvector, and betweenness centrality.
The MAE in the four cases are 4.08 + 0.31, 7.73 + 0.29, 8.91 + 0.33,
and 11.17 + 0.38. We explain the difference in results as follows:
degree centrality is a local measure, and so is not informed by
the overall network topology. Eigenvector centrality does not ac-
count for degrees of neighbors and does not incorporate a damping
factor/follow probability. This seems to make it a weaker represen-
tation of predicting age. Finally, betweenness centrality measures
the number of times a node appears in the shortest path between
all pairs of nodes, and this does not seem to change significantly
with age.

3.4 Comparison with Other Approaches

In this final set of results, we compare our results with other compet-
ing approaches available from literature. Table 3 lists the different
methods, the age-range of the dataset on which the results were re-
ported, and the Mean Absolute Error (MAE) in predicting brain age.
On whole life-span datasets, the results obtained from our method
(= 4 years) is clearly an advancement over other approaches.

We note that results demonstrated on datasets restricted to young
individuals perform slightly better, particularly the method due to
Li et al. [13]. However, when normalized across the age-range, our
method gives 5.7%, whereas the method due to Li et al. yields 15.4%
error. This result strongly suggests that network abstractions of
functional neuroimages are powerful models to characterize aging-
related changes in the brain.

4 Related Literature

Graph properties of functional and structural images of the brain
have long been a topic of research [24][25][30]. While structural
images have been used significantly to predict brain ages (ex: [18,
32]), we focus on methodologies that use functional images to
understand age-dependent changes.

Zuo et al. [34] used rs-fMRI data to demonstrate a correlation
between the voxel-level activity of the brain and age Using different
centrality measures. Vergun et al. [29] explored the effectiveness of
machine learning methods in age prediction. They applied SVMs to
distinguish individuals by age (84% accuracy) and SVRs to predict
chronological age using functional connectivity MRI data. Their
results showed that an SVM classifier discriminated between young
and old subjects with 84% accuracy. Monti et al. [15] proposed an
approach that combines PCA to identify consistent functional con-
nectivity networks across subjects with linear regression models to
estimate brain age. They called this approach “Modular Hierarchi-
cal Analysis” (MHA). Using the CamCAN dataset, their approach
predicted brain age with MAE of ~ 12 years. Similarly, Zhai et al.
[31] used PCA to identify components related to age, and then they
used these components as predictors in various regression models
to estimate brain age. Smyser et al. [23] used SVMs to classify terms
from preterm infants with 84% accuracy.

Deep learning methods have also shown promise in predicting
brain age. Li et al. [13] developed a CNN model to learn features
from whole-brain functional connectivity measures in subjects aged
8to0 22. Chang et al. [3] analyzed rsfMRI data from 176 healthy adults
aged 18 to 78. Using Lasso error, they identify 39 key functional con-
nections predictive of age. Deviations in the Default Mode Network
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Figure 5: Prediction of Brain Age In this figure, we show results for predicting brain age using the pseudotime-ordering method.
Briefly, we cluster subjects into k clusters using spectral clustering, order the cluster centers according to age, and project each
data point onto an edge between consecutive data-points. We use the projections to create an ordering of subjects and compare

them with the actual ages.

Method

Ordinary Least Squares [31]
Modular Hierarchical Analysis (MHA) [15]
Support Vector Regression [31]
Lasso Regression [31]

This paper

Partial Least Squares[19]
Ordinary Least Squares[14]

CNN [13]

Age-Range | MAE
life-span 14.2
life-span | ~ 12
life-span 11.4
life-span 9.2
life-span | 4.08

young 4.7
young 4.27
young 2.15

Table 3: Summary of results pertaining to errors in age prediction. This table summarizes the Mean Absolute Error (MAE)
obtained by different methods. We separate the results according to age-range of participants. The lower MAE for young adults
can be explained by the fact that the age range is typically around 15 years, whereas the age-range for lifespan is about 70 years.

(DMN) were linked to abnormal aging patterns, suggesting that
functional connectivity within the DMN may serve as a biomarker
for early detection of atypical brain aging, even before cognitive
decline becomes apparent. While they report an MAE of 2.48 years
in age prediction, it was achieved only after removing 68 subjects
deemed as “outliers”. On the whole, their reported MAE was 12.32
years.

Baghernezhad and Daliri [1] investigated age-related changes in
human brain functional connectivity using graph theory and ma-
chine learning techniques on rsfMRI data. Their research revealed
that aging is associated with alterations in network centrality mea-
sures. Using a decision-tree classifier, they were able to classify each
subject into 8 to 15 years, 25 to 35 years, and 45 to 75 years with an
accuracy of 82.2%. Hardy et al. [8] utilized magnetoencephalogra-
phy (MEG) to study spontaneous oscillations and functional cou-
pling in resting-state brain networks across the adult lifespan. Their
findings underscored the potential of MEG in capturing age-related
changes in brain function, offering a complementary perspective
to fMRI-based analyses. Farahani et al. [6] reviewed the application
of graph theory to study network alterations associated with aging,
summarizing different methodological advancements and insights
gained from this approach. Taimouri and Ravindra [26] showed
that a small subset of edges in the functional connectome remain

stable across healthy aging. Kumari and Sundarrajan [11] review
methods that use structural images.

These studies collectively highlight the growing interest and ad-
vancements in leveraging network centrality measures, graph theo-
retical frameworks, machine learning, and deep learning techniques
to understand and predict the effects of aging on brain connectivity.
Such efforts are instrumental in uncovering biomarkers for typi-
cal and atypical brain aging, contributing to our understanding of
neural and cognitive health across the lifespan.

5 Conclusion and Discussion

In this paper, we demonstrate a new method to predict brain age
using graph centrality properties of functional networks. Our ap-
proach yielded an MAE of 4.08 + 0.31 years, which is significantly
better than other methods operating on datasets across the human
lifespan (Table 3). Our results are comparable to those reported on
datasets with narrower age ranges (i.e., on adolescents and young
adults). Furthermore, our method does not rely on knowledge of
specific functional networks or their roles in aging. Instead, we
prescribe an entirely data-driven approach that uses network prop-
erties to represent each functional image, and then use this frame-
work to find an ordering of subjects. We show that this ordering is
consistent with the ages of the population.
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Figure 6: Age Prediction for different centrality measures. This
bar-plot shows the mean absolute error for three tasks (rest,
movie-viewing, and sensorimotor) and four centrality mea-
sures (PageRank, degree, eigenvector, and betweenness). For
each task, PageRank is the best centrality measure. Error-
bars for each plot were > 0.4, and so were omitted.

Although our current analysis focuses exclusively on healthy
aging, future work will evaluate whether the network centrality
changes observed here are preserved or altered in neurodegener-
ative diseases such as Alzheimer’s and Parkinson’s. Longitudinal
datasets containing both healthy controls and patients would allow
us to disentangle changes associated with normal aging from those
arising due to pathology, and to determine whether deviations from
the healthy trajectory could serve as early biomarkers of disease.

Multimodal integration presents another promising extension.
By combining structural and functional images, we could create
a unified representation of brain networks, potentially capturing
complementary information and improving prediction accuracy.
This multimodal approach could provide richer inputs that enhance
our ability to characterize both healthy and pathological brain
aging.

In addition, applying our model to new datasets will require care-
ful harmonization across imaging protocols. Differences in scanner
hardware, acquisition parameters (e.g., TR, spatial resolution, num-
ber of volumes), or experimental conditions (e.g., rest vs. task) can
introduce systematic biases that degrade performance. However,
batch-effect correction methods such as ComBat, functional con-
nectivity normalization, or site/scanner harmonization strategies
can mitigate these effects. For datasets with substantially different
paradigms, fine-tuning the model on a small labeled subset may be
necessary. In principle, new data can be integrated by recomputing
centrality measures and projecting them into the existing pseudo-
time space, provided that preprocessing and normalization steps
are consistent with the original training.
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