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The General Problem

Consider molecules, or clusters of atoms: The Free-Energy
Landscape has many wells which are separated by barriers. Some
may be large and all may shift with temperature or external field.

Such transitions are rare when the barrier is large compared to the
available thermal energy. How do we find the paths that
describe the transitions to the new equilibrium state when
such events are rare? A possible solution: constrain paths to
make the desired transition, sample these paths in a
thermodynamic significant manner.



Tubes in Path Space

Imagine the collection of such transition paths. The distribution of
paths then looks like a tube. The mean of the distribution is at
center of the tube with a width of the tube characterized by the
fluctuations. This then is the qualitative picture of what we call
Gaussian tubes.

This idea is not new. A long list of people have worked on ideas
including: Eyink, Friston, Opper, Cornford, Archambeau, ...



What is new in this talk?

Here we concentrate on determining the Ornstein-Uhlenbeck (OU)
Processes that are responsible for the Gaussian distribution.

By uncovering the connection between the measure in path space
and the physical forces, we can developing an understanding of
other properties including Free Energy, and Entropy production,
and and understanding how to include external time-dependent
forces, as needed for example in Optimal Control Theory.
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Variations on a Theme
Jensen: For probability distribution with average E(...) and for a
continuous and convex function f (x), where x refers to a set of

several variables, then the inequality: E
(
f (x)

)
≥ f ( E x ).

Gibbs-Bogoliubov: For a system of particles interacting via a
potential V(x) at an inverse temperature β, the probability

distribution function is P = exp
(
− β V(x)

)
/Z where Z is

the partition function, and the Free Energy is F = −β−1 logZ .

Using a reference system, then Z = Z0 E0 exp
(
− β(V− V0)

)
.

The free-energy bound: Φ = F0 + E0
(
V− V0

)
≤ F

Kullback-Leibler: The KL-distance is a non-symmetric measure of
the difference between two probability measures P and P0.

Dkl(P||P0) = −
∫
X

log
dP

dP0
dP0 ≥ 0

(
F − Φ ≥ 0

)



Lennard-Jones Dimer
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Partition function is not integrable:
∫
dr1 dr2 exp (−β VLJ)

− − − − − − − − −

Expand about r0 = 21/6σ,

Ṽ = V0 +
1

2
(r − r0) · A · (r − r0)

where A is the Hessian evaluated at r0.

− − − − − − − − −

Vary r0 and A to minimize Φ = F̃ + EG
(
VLJ − Ṽ

)



Lennard-Jones Potential (Gray) and its Expansion (Black)
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Lennard-Jones Potential (Gray)
Gaussian Distributions β−1 = 0.1 εLJ
from the potential expansion (Black) and optimal (Blue)
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Some Analysis β−1 = 0.1 εLJ

Plot of the product of the potential times the Gaussian distribution

0.8 1.0 1.2 1.4 1.6

0.0

0.2

0.4

0.6

0.8

1.0



Some Analysis β−1 = 0.2 εLJ

Plot of the product of the potential times the Gaussian distribution
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Brownian Dynamics

Add damping and random forces (thermal effects) to Newton’s Law

d p

d t
= F − γ p + noise

Large γ limit

0 = F − γ p + noise

Absorb γ and m into the time scale
(with β being the inverse temperature)

dx

dt
= F +

√
2/β

dW

dt
=

1

β

∂ log(PB)

∂x
+
√

2/β
dW

dt

Finite representation

xi+1 = xi + Fi ∆t +
√

2∆t/β ξi with P(ξ) ∝ exp(−ξ2/2)



Path Probability
Finite representation

xi+1 = xi + Fi ∆t +
√

2∆t/β ξi with P(ξ) ∝ exp(−ξ2/2 )

Ppath =
∏
i

P(ξi ) = C0 exp(−1

2

∑
i

ξ2i )

Onsager-Machlup Functional

logPpath = C1 −
β

2

∑
i

∆t

2

(∆xi
∆t
− Fi

)2
Continuum limit

logPpath = C2 −
β

2

∫ T

0
dt
( 1

2

(
∂x

∂t

)2

+ G
)

with G =
1

2

∣∣∣F ∣∣∣2 − 1

β
4V

Fix the boundary conditions so that all paths start in one basin and
end in the other. Questions: Advantages? Mathematical rigor?



Molecular Motions
Consider a particle moving in a time-independent potential V(x).
Force: F (x) = −∂V

∂x . and Brownian dynamics

dx = −F (x) dt +
√

2 ε dW

Boundary values: x(0) = x− and x(T ) = x+.
The probability of such paths generates the measure ν on X.

We need a result that is an application of the Ito formula:

dV = − <F (x), dx> + ε4Vdt

Using the Girsanov theorem, the Radon-Nikodym derivative is

dν

dµ0
∝ exp (−I ) with I =

1

2ε

∫ T

0
dt
( 1

2

∣∣∣F ∣∣∣2 − ε∆V
)



Example in Two Dimensions
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Depth of Center Well is 0.25 higher than the other two wells

Value at the two mimima on the x-axis is 0.0 Value at the saddle points is 1.0
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Example in Two Dimensions
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Diffusion and Bridge Diffusion
Consider a particle moving in a time-dependent potential V0(x , t).
The force on the particle is then F0(x , t) = −∂V0

∂x .
For a temperature β−1 = ε, the Brownian dynamics for the
movement of a particle is

dx = −F0(x , t) dt +
√

2 ε dW

Constrain the diffusion so that x(0) = x− and x(T ) = x+.
The probability of such paths generates the measure µ on X.

We need a result that is an application of the Ito formula:

dV0 = − <F0(x , t), dx> +
(
ε4V0 + V̇0

)
dt

Using the Girsanov theorem, the Radon-Nikodym derivative is

dµ

dµ0
∝ exp (−I0) with I0 =

1

2ε

∫ T

0
dt
( 1

2

∣∣∣F0∣∣∣2−ε∆V0−V̇0

)



Gaussian Tubes - 1

Consider a time-dependent Ornstein-Uhlenbeck Process

Vou(x , t) = V
(
m(t)

)
− x

dm

dt
+

1

2
(x −m)A(t)(x −m)

m(t) is the mean path or the center of the tube
A(t) is the restoring force ”constant”

F (x , t) =
dm

dt
− A(t)(x −m)

ṁ pushes the particle from x− to x+ in a time T
A(t) is needed to pull it back on course if it strays too far



Gaussian Tubes - 2

Brownian Dynamics Temperature = ε

dx =
dm

dt
dt − A(t)(x −m) dt +

√
2 ε dW

The Radon-Nikodym derivative

dνou
dµ0

=
1

Zou
exp (−Iou)

with B = A2 − Ȧ and

Iou =
1

2ε

∫ T

0
dt
( 1

2

(
x −m(t)

)
· B(t) ·

(
x −m(t)

)
+

1

2
ṁ · ṁ + x · m̈ − εTr(A) + ṁ · F (m)

)



Gaussian Tubes - 3

Iou =
1

2ε

∫ T

0
dt
( 1

2

(
x−m(t)

)
·B(t) ·

(
x−m(t)

)
+

1

2
ṁ ·ṁ− ṁ · ẋ

)

The full measure can be expressed informally in terms of

Ĩou =
1

2ε

∫ T

0
dt
( 1

2

∣∣∣ẋ − ṁ
∣∣∣2 +

1

2

(
x −m(t)

)
· B(t) ·

(
x −m(t)

))

Note that this is the form we expect. One surprise, the measure in
path space contains B = A2 − Ȧ and not simply A2.

m(t) is the center and B−1/2 is the width of the Gaussian tube.



KL-Distance revisited
Now look at the KL divergence

Dkl(ν||νou) = −Eou log
dν

dνou
= −Eou log

( dν

dµ0
/
dνou
dµ0

)
≥ 0

where µ0 is the Brownian Bridge measure and νou is the OU
measure described above, and ν is the original path measure.

The KL divergence can be written in a compact form as

Dkl(ν||νou) = Eou(I − Iou) + log
(
Eou exp

(
− (I − Iou)

) )
≥ 0

with

I =
1

2ε

∫ T

0
dt G =

1

2ε

∫ T

0
dt
( 1

2

∣∣∣F ∣∣∣2 − ε∆V
)

and

Iou =
1

2ε

∫ T

0
dt
( 1

2

(
x −m(t)

)
· B(t) ·

(
x −m(t)

)
− ṁ · ẋ

)



Possible Optimization algorithms

Find the OU parameters that minimize Dkl .

Dkl(ν||νou) = Eou(I − Iou) + log
(
Eou exp

(
− (I − Iou)

) )
≥ 0

The Gradients

2 ε
∂Dkl

∂m
= Eou

(
(I − Iou) (B · (x −m)− ẍ + m̈)

)
−Eou(I − Iou) Eou

(
(B · (x −m)− ẍ + m̈)

)
and

2 ε
∂Dkl

∂Bαγ
= −Eou

(
(I − Iou)(x −m)α(x −m)γ

)
+Eou(I − Iou) Eou

(
(x −m)α(x −m)γ

)



Numerical Considerations

Iou =
1

2ε

∫ T

0
dt
( 1

2

(
x −m(t)

)
· B(t) ·

(
x −m(t)

)
− ṁ · ẋ

)
At the beginning of the path, the particle is confined to a one of
the wells. Both ṁ and Ȧ are zero. Thus B = A2 in such a region.

Extract m and A from traditional methods in these regions.

Use path sampling to concentrate on the transitional regions
where ṁ and Ȧ are not zero.

Note that once B has been found, one still needs to find A by
solving a differential equation: B = A2 − Ȧ .



Lennard-Jones Clusters: 1/β = 0.13

Iou =
1

2ε

∫ T

0
dt
( 1

2

(
x −m(t)

)
· B(t) ·

(
x −m(t)

)
− ṁ · ẋ

)
For the 13-atom cluster, we considered the transition from its
ground state to a conformation where one atom sits on the
surface, and a ”dimple” exists on the opposite side.
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Figure: LJ13: Energy along the path.
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Discussion

Summary

I Tried to motivate the concept of ”optimized” Gaussian
distributions

I Introduced the idea of Gaussian tubes

I Started with time-dependent OU processes

I Connected the OU processes to the Gaussian tubes

I Discussed a possible algorithm for finding the optimized OU
processes

I Looked briefly at some numerical considerations

Future

I Free Energy – endpoints

I Integration along the path
Free Energy Barriers and Entropy production

I Optimal Control - imposed time-dependent external force


