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Lennard-Jones: 13 atoms
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The General Problem

Consider molecules, or clusters of atoms: The Free-Energy
Landscape has many wells which are separated by barriers. Some
may be large and all may shift with temperature or external field.

Such transitions are rare when the barrier is large compared to the
available thermal energy. How do we find the paths that
describe the transitions to the new equilibrium state when
such events are rare? A possible solution: constrain paths to
make the desired transition, sample these paths in a
thermodynamically significant manner.

We use a Hybrid Monte Carlo
Method in infinite dimensional
path space to sample transitions
in small clusters interacting via
Lennard-Jones potentials. 2.00.5 1.0 1.5
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Sampling in Finite Dimensions

For simplicity I will frame the discussion in terms of
thermodynamics.

Consider N coordinates q, the thermal distribution is given in
terms of the Boltzmann factor:

P(q) =
1

Z
exp
(
− V (q)/ε

)
where ε is the temperature of the physical system.

To understand the physical properties, one needs the expectations
of measurable quantities:

EεOp =
1

Z

∫
dq Op(q) exp

(
− V (q)/ε

)
One then numerically samples the distribution P to calculate the
thermodynamics of such a system.



Monte Carlo - Importance Sampling

In this talk, I only have time to describe the method, based on a
Markov Chain:

1. Start with some initial set q0

2. Generate new set q1 at random

3. Accept or reject q1 according to the Metropolis criterion

If
P(q1)

P(q0)
> η, then accept (otherwise reject)

where η is a uniform random number between zero and one.

If a bias is introduced when generating q1, then the accept/reject
criterion must be modified to preserve the (detailed) balance. This
is usually called the Metropolis-Hasting criterion.



Molecular Dynamics

Consider the molecules in this room. If we simply follow Newton’s
laws, we should be able to understand their thermodynamical
properties.
This then corresponds to exploring the joint distribution:

P(q, p) = P(q)PG (p)

where PG is a Gaussian distribution of the momenta, usually called
the Maxwell Boltzmann distribution.
We then have a underlying Hamiltonian:

H =
1

2
p ·M−1 · p + V (q)

with
dx

dt
=
∂H

∂p
and

dp

dt
= −∂H

∂x

Rely on the chaotic characteristics of the dynamical system to
explore all available phase space.



Advantages and Disadvantages

Monte-Carlo methods are exact but may not be very efficient.

Conservation laws my be violated in Molecular-Dynamics
calculations due to errors in the deterministic integration. Use
methods that are better than leap-frog (but at what cost?).

Leap-frog (velocity-Verlet) for time step h: {q0, p0} → {q1, p1}

p1/2 = p0+
h

2
F (q0) q1 = q0+hM−1·p1/2 p1 = p1/2+

h

2
F (q1)

This map is volume conserving and reversible (symplectic).

Combine these two methods: Hybrid Monte Carlo



Hybrid Monte Carlo

This then has the potential of being an exact method. Why?
Because it uses the accept/reject step to correct errors introduced
by the approximate integration schemes.
The Mass matrix can be chosen to improve the sampling efficiency.
The steps {q0} → {q1}

1. Pick the momentum {p0} according to the correct Gaussian
distribution

2. Evolve {q0, p0} → {q1, p1} → ... → {qn, pn}
via deterministic integration

3. Accept/reject according the Metropolis-Hasting criterion

if scheme is sympletic
P(qn, pn)

P(q0, p0)
> η

4. Repeat

Three ingredients:
(1) Choice of M (2) the splitting and (3) type of the integrator.



Brownian Dynamics

Overdamped limit of the
Langevin equation

dq = F (q) dt +
√

2 ε dW

q(t+s)−q(t) =

∫ t+s

t
F (q) dt +

√
s 2 ε

(
Wt+s−Wt

)
Figure: Norbert Wiener - 1923

Definition A standard (one-dimensional) Wiener process (also
called Brownian motion) is a stochastic process {Wt}t≥0 indexed
by nonnegative real numbers t with the following properties:
(1) W0 = 0.
(2) With probability 1, the function t →Wt is continuous in t.
(3) The process {Wt}t≥0 has stationary, independent increments.
(4) The increment Wt+s −Ws has the NORMAL(0, 1) distribution.



Onsager-Machlup Functional

q(t + s)− q(t) =

∫ t+s

t
F (q) dt +

√
s 2 ε

(
Wt+s −Wt

)
Computationally (Ito Calculus, Euler-Maruyama method)

q(t+h)−q(t) = h F
(
q(t)

)
+
√
h 2 ε ξ PG (ξ) =

1√
2π

exp(−1

2
ξ2)

String the steps together to make a path: {q0, q1, q2, ..., qn}
Onsager-Machlup functional gives the probability of the path:

Ppath = exp

(
− 1

2 ε

∑ h

2

∣∣∣∆q

h
− F

∣∣∣2)
Quadratic Variation: sum over a number of steps that corresponds
to a length of time T is given by QVα =

∑ ∣∣∆qα
∣∣2 = 2T ε.

How does one proceed to continuum limit? What are the
corresponding expressions in infinite dimensions?



Infinite Dimensions
dq = F (q) dt +

√
2 ε dW

Brownian Measure π0(q)
Radon-Nikodym derivative, using the Girsanov equation

dπ

dπ0
= exp

(
1

2 ε

(∫ T

0
dt

1

2

∣∣∣F ∣∣∣2 −
〈
F (q), dq

〉))
The < ... > denote inner product. In particular, need to use the Ito
formula to evaluate last term which is a stochastic integral

dπ

dπ0
= exp

(
− 1

2 ε

∫ T

0
dt
( 1

2

∣∣∣F ∣∣∣2 − ε4V
))

= exp

(
− 1

2 ε

∫ T

0
dt G

)

Now constrain the path to end at a fixed configuration: q(T ) = q+

The double-ended path probability is given by

dπ

dπ0
∝ exp (− Φ

2 ε
) and q(0) = q− q(T ) = q+



Sampling in Path Space

First look at the finite dimensional version.
Informally the path probability can be written as

π(q) ∝ exp

(
− 1

2 ε

∫ T

0
dt
( 1

2

∣∣∣∂q
∂s

∣∣∣2 + G
))

Define an effective Hamiltonian (with L = d2/dt2)

Heff = −1

2

〈
q, Lq

〉
+

1

2

〈
p,M−1p

〉
+ Φ

The effect of the interactions are contained within Φ.

Want the first two terms to be a mixture of Brownian Bridges.
This forces M = −L.

Heff = −1

2

〈
q, Lq

〉
− 1

2

〈
v , Lv

〉
+ Φ



Equations of Motion

Effective Hamiltonian (with L = d2/dt2)

H = −1

2

〈
q, Lq

〉
− 1

2

〈
v , Lv

〉
+ Φ

Evolution of path (Hamilton’s equations)

∂q

∂τ
= v and

∂v

∂τ
= −q + L−1∇G

Splitting and Integration scheme

w0 = v0 +
h

2
L−1∇G0(

q1

w1

)
=

(
cos θ sin θ
− sin θ cos θ

)
·
(

q0

w0

)
v1 = w1 +

h

2
L−1∇G1



Comments

The grid along the path must be fine enough as to resolve the
Quadratic Variation, that is given by QV =

∑
∆q2 = 2T ε.

Splitting: half-step, full step, half step.

Because the ”full step” is exact,
(1) the quadratic variation is preserved.
(2) the curse of dimensions is negated.

Now take another look at

H = −1

2

〈
q, Lq

〉
− 1

2

〈
v , Lv

〉
+ Φ

Note that the first two terms are proportional to the quadratic
variation. Also remember that during the deterministic integration,
energy sloshes between kinetic and potential energy.
Thus to preserve the quadratic variation the last term in H must
be much smaller than the first two terms.



Lennard-Jones: building the 13-atom cluster
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Lennard-Jones Clusters: ε = 0.13

For the 13-atom cluster, we considered the transition from its
ground state to a conformation where one atom sits on the
surface, and a ”dimple” exists on the opposite side.
For the 14-atom cluster, we considered the process that starts with
the ”extra” atom on one side of the cluster and ends with the
”extra” atom on the other side.
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Figure: LJ13: Energy along the path.
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Lennard-Jones cluster: inspecting the transition
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HMC - Some Numerical Aspects

The effective Hamiltonian for Np in Nd dimensions can be written

as H =
∑

i α

(
− 1

2〈qi α, Lqi α〉 − 1
2〈vi α , Lvi α〉

)
+ 〈1, G (q) 〉.

On a finite grid, using the quadratic variation of the conditioned
Brownian Bridges, both the first and second terms become Nu×T ,
where T is the temperature and Nu is the number of divisions
along the path. To keep the quadratic variation of the path nearly
constant, the last term must be small compared to the other two.
If one uses Ḡ as an average value of G , then ∆u = U

Nu
>> Ḡ

NpNd T .

The value of Ḡ can be approximated by its equilibrium average.
Thus for these clusters we take ∆u ≈ 0.0001.

For the time step h used in the deterministic integration, we have
chosen h = 0.00024 which gives us an acceptance rate of over
90%. We then integrate over NMD steps. We chose NMD ≈ 15000
to give NMDh a value somewhere between 1 and 3.



Messages to take Home

I Explained how to implement the Hybrid Monte Carlo Method
and how it can be used to sample Path Space

I Studied small Lennard-Jones clusters

I Even for such simple systems: HMC in path space provides
physical insights


