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Starting Point - Brownian Dynamics

Sample Boltmann Distribution: PB ∝ exp (−V /T )

dx = F du +
√

2T dW = T D logPB du +
√

2T dW

F is the force F = −DV
T is the temperature
u is the time along the path
dW is the standard Wiener Process

If a large energy barrier exists, the transition becomes a rare event.

The thrust of this work is to find an efficient way of sampling the
transition paths themselves in a thermodynamically significant
manner.



Brownian Paths

Finite Representation of a path

xi+1− xi = Fi∆u +
√

2T ∆u ξi with PG (ξ) = 1√
2π

exp
(
− ξ2

2

)

Note: Path is continuous and almost nowhere differentiable.

Quadratic Variation

Qv =
∑

i

(
xi+1 − xi

)2
= 2T U

U is the length of the path

The grid space ∆u must be sufficiently small to resolve the
quadratic variation.

The high-frequency modes are dominated by noise.



Onsager-Machlup Functional

xi+1 − xi = Fi∆u +
√

2T ∆u ξi with PG (ξ) = 1√
2π

exp
(
− ξ2

2

)
The path probability can be constructed (OM functional)

πpath ∝
∏
i

exp
(
−
ξ2
i

2

)
= exp

(
−∆u

4T

∑
i

(
∆x

∆u
− Fi

)2
)

Now consider a double ended path: fix both ends. These boundary
conditions are chosen so that the starting configuration lies in one
free-energy basin, and the other end lies in another basin.

The relative probability of such a path is expressed in terms of the
path positions themselves. The noise history is implicitly included
in the expression.



Continuum Limit

OM Functional: πpath ∝ exp
(
−∆u

4T

∑
i

(
∆x
∆u − Fi

)2)
Continuum Limit (The Measure – informally)

πpath ∝ exp
(
− I0

2T

)
where I0 = 1

2〈x , Lx〉+ 〈1, G (x) 〉

〈...〉 is the usual inner product,
L = −d2/du2 (non-negative) and
G = 1

2 |DV |
2 − T 4V

The function G is sometimes denoted as the path potential.
In the continuum limit, G contains the Laplacian of the particle
potential. Note, that in equilibrium, E

(
|DV |2

)
= T E (4V ),

Need Girsanov’s theorem and Ito’s formula to justify these steps.



Langevin Sampling

Let the path evolve as a function of algorithmic time t:

∂x

∂t
= 2T D log πpath +

√
4T

∂w

∂t
=
∂2x

∂u2
+ DG +

√
4T

∂w

∂t

This is subject to the imposed Boundary Conditions.

Stiff: different modes have different relaxation times.

Use ”preconditioning,” to arrive at the SPDE:

∂x

∂t
= −x − L−1 DG +

√
4T

dB

dt

with the last term being the unit Brownian Bridge, and again
L = −d2/du2

All modes evolve at the same rate (democratic).



Metropolis Adjusted - Smart Monte Carlo

We want to sample paths from the measure (almost surely
infinite), that we can write informally as

πpath ∝ exp
(
− I0

2T

)
with I0 = 1

2〈x , Lx〉+ 〈1, G (x) 〉

Use an approximation to ∂x
∂t = −x − L−1 DG +

√
4T B(t)

as a (biased) way of generating a proposed path evolution.
Use a Metropolis-Hasting criterion to accept or reject the proposal.

Set ∆t in the approximation of the SPDE to allow efficient
movement through path space.

Proposed moves using small values of ∆t tend to be accepted but
a large number of steps are needed to move appreciably far away
from current path.
Proposed moves using large values of ∆t tend to be rejected as
the integration errors become prohibitively large.



Hybrid Monte Carlo (HMC)

We want to sample paths from the measure

πpath ∝ exp
(
− I0

2T

)
and I0 = 1

2〈x , Lx〉+ 〈1, G (x) 〉

Augment I0 to include ”Kinetic Energy” thereby forming I:
I = 1

2〈p, M
−1p〉+ 1

2〈x , Lx〉+ 〈1, G (x) 〉
where M is the mass matrix.
The path p is composed of auxiliary variables, corresponding to
momenta: they are conjugate to x , they do not alter the stationary
distribution of paths and their (Gaussian) distribution is known.

HMC has four (4) ingredients.

1. Choice of mass Matrix M.

2. Hamiltonian Flow

3. Integrator that is reversible and volume conserving

4. Accept/reject criteria (based on ”energy drift”)



HMC - Mass Matrix

The effective Hamiltonian can be informally written as

I = 1
2〈p, M

−1p〉+ 1
2〈x , Lx〉+ 〈1, G (x) 〉

We choose M−1 = L.

By inspecting the above equation for I, we see that we keep the
desired feature that all the modes evolve at the same rate.

The paths x and p are conditioned bridges, both having the same
quadratic variation.



HMC - Hamiltonian Flow

The effective Hamiltonian can be informally written as

I = 1
2〈p, Lp〉+ 1

2〈x , Lx〉+ 〈1, G (x) 〉

Use Hamilton’s equations:

∂x

∂t
=
∂ I
∂p

= L p

∂p

∂t
= −∂ I

∂x
= −L x − DG

We can combine these and get

∂2x

∂t2
= −x − L−1DG

Note: we have seen something similar to the above equation
before.



HMC - Integrator

Consider the second order equation and convert it to

v =
∂x

∂t
and

∂v

∂t
= −x − L−1DG

Splitting of the Verlet integrator:

1. Half step wi = vi − h
2 L−1DGi

2. Full step – Rotation(
xi+1

wi+1

)
=

(
cos θ sin θ
− sin θ cos θ

)(
xi
wi

)
3. Half step vi+1 = wi+1 − h

2 L−1DGi+1

cos θ = cos h or
4− h2

4 + h2
sin θ = sin h or

4 h

4 + h2

Integration scheme is Reversible and Volume Conserving.
For finite representations, this Verlet splitting preserves the
Quadratic Variation of the evolving path.



HMC: Metropolis-Hastings Criterion

The value of I is almost surely infinite in the continuum limit.

Must devise a method to calculate differences in I as the path
evolves without subtracting large (possibly infinite) numbers.

At the end of every MD step, ∆I can be tracked.

∆I = 〈1, Gi+1〉 − 〈1, Gi 〉

+
h2

8

(
〈DGi+1, L

−1DGi+1〉 − 〈DGi , L
−1DGi 〉

)
− h

2 sin θ

(
〈DGi+1, xi+1 − xi 〉 − 〈DGi , xi − xi+1〉

)
Accumulate the changes as one performs MD integration. If step
size, h, is small, drift in I is minimal, the evolved path will be
accepted. For large step sizes, the integration error will be
substantial, and the entire sequence of paths will be rejected.



HMC: importance of Verlet splitting

Hilbert Space HMC

Standard HMC
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Figure: 1-d. Acceptance rate plotted as a function of N, the number of
points used in the representation of the path.



Langevin vs HMC

Figure: 1-d. Averages using Langevin
with Metropolis-Hastings.

Figure: 1-d. Averages using the Hybrid
Monte Carlo scheme.

Figure: LJ13: Energy along the path:
beginning path.

Figure: LJ13: Energy along the path:
annealed path.



Hybrid Monte Carlo Summary
We discussed the four (4) ingredients.

1. Choice of mass Matrix M.

2. Hamiltonian Flow

3. Integrator that is reversible and volume conserving

4. Accept/reject criteria (based on ”energy drift”)

1-dimension. Beskos, et al.
HMC is better than the Langevin (preconditioned) sampling.
Lennard-Jones systems.
With Langevin, the path evolves stochastically. The time step
must be small since the hard-core nature of the potential makes
the energy penalty prohibitively large for large step sizes.
In the HMC method, the systematic push of the MD integration
allows the path to be shoved to new regions of path space using an
energetically favorable route. But to do so, it needs thousands of
integration steps.



Conclusion - Message to take home

I Algorithms on function space are robust to mesh refinement.

I The Langevin and Hybrid Monte Carlo (HMC) methods were
described.

I The methods are similar in many ways.
I A series of short random bursts nudge the path along in the

Langevin method.
I A long, steady push is supplied to the path in the HMC

algorithm.

I Sampling path space: HMC is more efficient.

I The cost of the long deterministic integration is more than
offset by the larger distances transversed during the sustained
push that it provides.

I The stochastic sampling, inherent in the Langevin approach,
results in a more diffusive evolution of the path.


