University of Cincinnati PACE Industrial Design and Engineering Invitational Competition

Chevy/GMC Truck/SUV Center Console Fall 2007

AGENDA

Overview

Activities Benchmarking Team Building

Technology

Industrial Design Engineering

Family

Industrial Design Engineering

Business

Industrial Design Engineering

Questions

10 week (one quarter) long project

Faculty Members

Brigid O'Kane Professor of Industrial Design

College of Design, Architecture, Art, and Planning School of Design

<u>UC West Campus</u>

Sam Anand Professor of Mechanical Engineering

College of Engineering

One Big Team in Three Categories

ID = Industrial Design ME= Mechanical Engineering

Technology

Family

Business

Collaborative Activities

Brain Storming

Mind Mapping

Brain Storming Results

Mind Mapping Results

Weekly Collaborative Meetings

Benchmarking Study

Competitive analysis results from dealership visits

GM Moraine Plant Field Trip

October 26, 2007

2001-present Chevrolet TrailBlazer

Moraine Assembly New Models

http://www.chevrolet.com/trailblazer/photogallery/

2001-present GMC Envoy

2004 – Present GMC Envoy Denali

GM Moraine Plant Handout

Balancing Center Console Design Requirements	Piece Cost	Investment Cost	Buildability - DFM (Assembly & Mfg.	Part Proliferation/Build Combinations	Labor Impact (Attachment Design)	Assembly Plant Tooling	Error Proofing	Ergonomic Concerns	Vehicle Integration	Mass	Safety	Serviceability
Appearance												
Styling	~	~	~	~	~	~	~	~	~	~	~	~
Color & Material Selection	~	~	~	~	~	~	~	~	~	~	1	~
Brand & Trim Level Uniqueness	~	~	~	~	~	~	~	~	~	~	~	~
Function					1800-1							
Cup Holders	~	~	~	~	1	~	1	~	~	1	1	~
Storage	~	~	~	~	~	1	~	1	1	~	1	1
Emergency Brake	~	~	~	~	~	~	~	1	~	~	1	
Gear Shift	~	~	1	~	1	~	~	1	1	1	~	1
Option Content	~	~	~	~	~	~	~	1	~	~	~	1
Interface to IP & its functions	~	~	1	~	~	~	1	~	~	1	~	~
Quality								191-14	100		1233	
Interior Fit & Finish	~	~	~	~	1	1	~	1	1	1	1	1
Squeak & Rattle	~	~	1	~	~	~	1	~	1	~	1	1
Harmony	~	~	~	1	1	1	~	1	~	1	1	~
Reliability	S						4 . S.	10		59 - See		W
Material Durability	~	1	1	~	~	1	~	1	1	1	1	1
Validation Requirements-Functional & Environmental	1	1	1	1	1	1	1	1	1	1	1	1

Survey Overview

The Survey

Total number of respondents: 327

Student Name	Number of Respondents
Jonathan Wicks	31
Thomas Gernetzke	31
Bradley Smith	31
Laura Reilly	31
Andrew Kreyenhagen	31
Curtis Wilson	32
Clay Mastin	30
Lukas Yates	46
Ryan Wohleber	33
Jason Fuller	31

Sample of Features from Surveys

•

•

.

•

•

- Phone Charger
- Contact Solution
- Cologne
- Hand Sanitizer
- Check Book
- Letters
- Bank Slips
- CDs
- Pens
- Post-Its
- Note Paper
- Cell Phone
- Gum
- Change
- Tools
- Sun Glasses
- Cassette Tapes

- Condoms
- Personal Razors
- Deodorant
- Map
- Keys
 - Gloves
 - Comb
 - Cleaning Wipes
 - iPod
- Hair Clips
- Insurance Information
- Vehicle Registration
- Tire Pressure Gauge
- Drinks
- FM Transmitter
- Cigarettes
- Napkins / Tissues

- Purse / Bag
- Writing Tools
- Harmonica
 - Ice

•

- Medical Pack
- Bottles, Pacifier
- Toys for Kids
- Sketch Book
- Lotion
- Air Freshener
- Cosmetics
- Garbage
- Money / Coin holder
- Food (Snacks)
- Mints
- Lighter
- Radar Detector

Usability of console

Storage: 98%

Best full size truck (score 1-6)

GM: 5.53 Ford: 4.33 Chrysler: 3.50 Toyota: 3.37 Nissan: 2.09 Honda: 1.78

Recyclability concerns

Very important: 74% Note: 96% would pay 5% more for a vehicle with recycled materials.

GPS 74% wanted GPS

TECHNOLOGY

Tom Gernetzke

Co-Captain: Technology Major: Industrial Design

TECHNOLOGY

Technology

Tom Gernetzke

Clay Mastin

Charles Ser

Ryan Wohleber

Phil Weckesser Ben Stayton

Survey Results of Technology Features

TECHNOLOGY

86% wanted AC/DC power outlet

52% wanted personal computing (music, scheduling, etc.)

74% wanted touch screen interface for major cabin controls (temperature settings, music selection, etc.)

72% wanted removable hard drive which could be connected to a PC or truck's onboard computer (enabling easy music transfer, online CPU diagnostics, etc.)

74% wanted customizable technology

68% wanted charging pad

58% wanted cell phone interface

FECHNOLOGY

MP3 interface options should be improved

65% wanted technology integrated into console

2.5 was the average number of electronics carried in the vehicle

78% wanted digital storage

#1 desired feature was AC/DC power outlet

Features designed Technology

TECHNOLOGY

Solid state removable hard drive 32 GB Interface with existing display on the instrument panel Small/portable device Vehicle diagnostics Repair estimates, fuel consumption, etc. Dual Function: Interface with vehicle and personal data used with PC Security system Music files AC outlet and USB interface

Industrial Design Ideation Sketches

TECHNOLOGY

Technology

Industrial Design Ideation Sketches

TECHNOLOGY

Technology

Industrial Design Ideation Sketches Technology

To MUCCHS CHAIR DAC

TECHNOLOGY

Design Proposal

ECHNOLOGY

Technology: removable solid state drive, AC outlet, and USB ports

Design Proposal

Technology: removable solid state drive, AC outlet, and USB ກຸມາວ

Design Proposal

Technology: removable solid state drive, AC outlet, and USB ports

Feature Positioning

Technology: removable solid state drive, AC outlet, and USB ports

TECHNOLOGY

Ben Stayton

anale cits

Co-Captain: Technology Major: Mechanical Engineering

Design Process

TECHNOLOGY

Removable hard drive restrictions

- Capacity
- Dimensions
- Portability
- Cost

32 GB 1.8" form factor Solid state drive Final Dimensions: 72.26 mm x 55.27 mm x 12.5 mm

NX5 Procedure

TECHNOLOGY

Technology

Hard disk

- Creation of housing architecture
- Additional pocket for placement
- Features
 - Removable
 - USB connectivity
 - Thumb grip
 - Modular

Outlet

- 110-120V / 60 Hz electrical receptacle
- Additional USB ports

Consider 15

Finite Element Analysis Results

TECHNOLOGY

Technology

Solid State Drive

Parameters

- 1 Watt power generation (with a safety factor of 2.0) spread over interior faces, 1.06 μ W/mm²
- Ambient temperature 20 °C
- Initial temperature 26 °C
- Maximum temperature of 26.17 °C at bottom
- Minimum temperature of 21.35 °C at top

Electrical Outlet Cover Parameters

- 1,000N side load

Finite Element Analysis Results

TECHNOLOGY

Solid State Drive Thermal Analysis

Technology

Electrical Door Hinge Stress

Jonny Wicks Co-Captain: Family Major: Industrial Design

Survey Results of Family Features

General comment

"The map light is hard to deal with because it's on the rearview mirror and lights up the entire dash."

Additional survey results

83% wanted flex light58% wanted removable safety light

Features designed

Family

Removable LED light

- Battery-powered
- Detachable flexible neck stores in console
- Multiple intensity levels
- Flashes for distress signaling
- 0.5" maximum diameter
- Safety considerations for driver visibility etc.

Retractable LED light

- Lights for second-row passengers
- Flexible neck

Thermoelectric cup holders

- Heat and cool beverages
- Inserts removable for cleaning

Industrial Design Ideation Sketches Family

Family: LED lights, thermoelectric cup holders

Family: LED lights, thermoelectric cup holders

Family: LED lights, thermoelectric cup holders

Rob DeJager-Kennedy

Co-Captain: Family Major: Mechanical Engineering

Design Process

Family

Removable Light

- Case
 - Hand-held, magnetic, freestanding
- Neck
 - Length, removable for storage
- Head
 - Geometry, LED design
 - Interface with Console
 - Locking mechanism, spring release

UNIVERSITY OF Cincinnati

Closed Storage for Removable Neck

- Consistent with existing geometry
- Door motion is accessible to both passenger and driver

Design Process

Family

Front Console Insert Assembly

- Thermoelectric cup holders
 - Incorporate features into existing space
 - Positioning of features

Retractable Second Row Lighting

- Lights store flush in console
- Turn on when fully extended

Completed Analysis Family

Light release

1.5 inches pop-up when released
3 lbf required, thus requires 2lbf/in spring
Motion simulation preformed on latch mechanism
No interferences found

Light lid

FEA stress analysis performedUsed friction coefficient of 0.39 on pins

Front insert

- •Overall assembly
- •Exploded view/sequence

UNIVERSITY OF

Cincinnat

Finite Element Analysis Results

Family

Thermal heating

5 μW/mm² used on cup sides
10 μW/mm² used on coffee
21 C used as initial temperature
15 C used as ambient temperature
Minimum temperature at top and sides 13 C
Maximum temperature at bottom 53 C
Natural convection will even temperature out
Power required for thermoelectric is 0.64 Watts

Thermal Cooling

5 μW/mm² used on cup sides
10 μW/mm² used on coffee
26 C used as initial and ambient temperatures
Maximum temp at top 25 C
Minimum temp at bottom -3 C
Natural convection will even temperature out
Power required for thermoelectric is 0.96 Watts

Lukas Yates Co-Captain: Business Major: Industrial Design

Business

Brad Smith

Jeremy Briggs Curt Wilson

Curtis Forquer Lukas Yates

Andrew Kreyenhagen

Survey Results of Business Features

45% thought it is important to have my computer in car

94% wanted a fold out surface to write on and/or a surface to hold a laptop computer

Features designed Business

BUSINESS

- Retractable table slides in front of driver or passenger
- Push to open, push to close
- Soft rubber edge
- Clipboard or laptop
- Take out existing pocket in top of lid
- Translucent, lights up

Industrial Design Ideation Sketches

BUSINESS

Industrial Design Ideation Sketches

Business: In-console work surface

Industrial Design Ideation Sketches

Business: In-console work surface

Business: In-console work surface

UNIVERSITY OF Cincinnati

Design Proposal Business: In-console work surface

BUSINESS

BUSINESS

Positioning Business: In-console work surface A<u>A</u> 1 • 1.00 • 🗹 📮 ush-in/push-out work surface 10 0 UNIVERSITY OF Cincinnati

Jeremy Briggs

Co-Captain: Business Major: Mechanical Engineering

Design Process

Business

BUSINESS

- Size working with existing lid
- Placement existing parts that need modified
- Rail types
 - Telescoping -> Double Telescoping
 - Lateral PTFE bearings
- Position Locking
- Push to open / push to close latch
- Table design ergonomic hand groove underneath, front contour, pencil holder, rubber lip
- FEA Analysis
 - Assumptions
 - One-dimensional stress (materials) (uniform force)
 - Asymmetric force

NX5 Procedure Business **Overall Console** 7-1 Lid Assembly Table Assembly UNIVERSITY OF Cincinnati

Motion Analysis

Business Videos of table sliding motion

Analyzed parameters of existing model interior

Finite Element Analysis

Business

BUSINESS

Polypropylene Table Analysis – Asymmetric Loading

Finite Element Analysis

Business

Aluminum Rail Material Analysis

Stress analysis under distributed load

Displacement animation under

distributed load

UNIVERSITY OF Cincinnati

85-3++001

A 154 515

Finite Element Analysis Business

Steel Rail Material Analysis

sim_steal : Solution 1 Result Load Case 1, Static Step 1 Displacement - Nodal, Magnitude Min : 0.000e+000, Mox . 2.551e+000, mm Deformation : Displacement - Nodal Animation Frame 1 of 8

2.338e+000

2.126e+000

1.913e+000

1.701e+000

1.488e+000

1.276e+000

1.063e+000

8.503e-001

6.378e-001

4.252e-001

2.126e-001

0.000e+000

UNIVERSITY OF

Displacement animation under distributed load

Finished Product Business

BUSINESS

BUSINESS

Overview of Final Design

Technology Feature

- Removable solid state drive, AC outlet, and USB ports
- Family Feature
 - LED lights with flexible necks and thermoelectric cup holders
- Business Feature
 Push-in/push-out work surface

Thank You General Motors and PACE

Comments and Questions

