

HIGH PERFORMANCE INTERDISCIPLINARY TEAMWORK, A CONTINUUM OF EXPERTISE

Revising Perceptions of Design and Engineering Roles in Collaborative Product Development

Brigid O'Kane Associate Professor of Design

Kevin Dohn, Pre-Junior

PACE

Outline of Presentation

- Student Work in Presentation
- Introduction
- Overview of University of Cincinnati
- Designers and Engineers –

A Comparison

- Collaborative Process for Designers
 and Engineers
- The Necessity for Collaboration
- High Performance Interdisciplinary Teamwork
- New Model for Collaborative Practice

Gary Ragle, Senior

Nick Womldorff, Junior

PACE

Introduction

Brigid O'Kane

- Associate Professor of Design, College of DAAP
- Coordinator of Transportation Track
- Co-Coordinator for PACE activities
- 10 Years of industry experience

Brigid O'Kane Giving Demo

PACE

Introduction

Brigid O'Kane

- Associate Professor of Design, College of DAAP
- Coordinator of Transportation Track
- Co-Coordinator for PACE activities
- 10 Years of industry experience

James O'Kane at General Motors Design Center, 10-15-1973

PACE

University of Cincinnati (UC)

- Public Institution
- 36,000 students at UC
- 16 Colleges at UC
- Quarter system
- Co-operative education
- 2400 students at DAAP

College of DAAP

Sample of Interdisciplinary Teams at UC

Senior Transportation -> Mo Capstone Bu

Industrial Design Mechanical Engineering Business / Marketing Fashion Design Industry Partners General Motors P&G JCPenny

Industrial Design and Engineering, Senior Capstone

Colleges Involved in PACE Activities

Brigid O'Kane -Associate Professor of Industrial Design

School of Design, DAAP

Sam Anand Professor of Mechanical and Industrial Engineering

College of Engineering

PACE

PACEsPACE

- Center for Global Design and Manufacturing
- Industrial Design and Mechanical engineering
- Participation of faculty members from other schools
- Dedicated space on campus
- Focal point for PACE projects and collaborative activities

Engineering and Design Critique with Wayne Cherry

Final Presentation for a Senior Collaborative Project

Designers and Engineers A Comparison

PACE

The Designer's Role

- To design
- Consider role of engineer
- Overall vision or "blue sky" ideas
- Product concept and innovation
- Passion for arrangement of form
- Focus on quality, aesthetics, function, and material
- Intuitive

Joe Palermo, Senior

Divergent Thinking

- Design / Arts / Humanities
- Many possible answers
- Directed by the elaboration of ideas
- Generates many possibilities and ideas

Jonny Wicks – Pre Junior

Ryan Wohleber – Pre Junior

PACE

The Engineer's Role

- To engineer
- Consider role of a designer
- Most direct path to the solutions
- Technological innovations
- Focus on performance, quality, technology, and manufacturing
- Speak technical language
- Thinker

Members of the Robotics Team with the Bearcat3 Robot

Convergent Thinking

- Engineering / Math / Science / Technology
- One correct answer
- Directed by a set of guidelines
- Clarifies specific pathways to a solution

Collaborative Design and Engineering of an Automobile Wheel

PACE

Perceptual Gaps

- Discipline specific differences in perspectives that stem from thinking
 - Vogel and Cagan 2002

Understanding the Difference is Critical in Effective Collaboration

Perception of Each Other

Description from Designers

- They don't care about how the product looks as long as it works
- Math people
- Technical
- Orderly, boxy
- Unimaginative
- Simplistic and practical
- Function over form

Description from Engineers

- Abstract
- Think outside the box
- Impractical
- Short sighted
- Eccentric
- Adds cost to a product for no reason
- Too good for their own good
- Hindrance to functional design

The Hairball and the Cube

Two Different Languages

Classical and Romantic Thinking

Human Understanding

- Classical Engineers
- Romantic Designers

"These tools for example...this wrench...has a certain romantic beauty to it, but its purpose is always purely classical. It's designed to change the underlying form of the machine."

Pirsig, Robert M. Zen and the Art of Motorcycle Maintenance, 1975

PACE

Can There Possibly be Similarities?

With all these differences can there Possibly be similarities?

- Different functions
- Different views of product
- Different ways of thinking
- Perceptual gaps
- Perceptions of each other
- Hairball and the cube
- Classical and romantic thinking

PACE

Dominance in Thinking is Not an Absolute

Left Brain

• Language dominant and works in a logical and sequential order

The key is that our dominance is a preference, not an absolute.

We use both sides of the brain, it is just that one side gets more use. Similar to being right or left handed.

Right Brain

• More visual and works intuitively, holistically, and randomly

The Body Paradox. Angela Katona - Batchelor, Boise State University

Form and Function

Function Follows Form - Designer

Form is Function

"Form follows function - that has been misunderstood. Form and function should be one, joined in a spiritual union."

Frank Lloyd Wright

Form Follows Function – Engineer

FREE FORM?

Working from a common perspective generates relations and understanding.

RIGID FORM?

2007 ANNUAL FORUM

The entire design process includes:

Divergent

Convergent

Designers and engineers experience both the divergent and convergent processes

There are several different models of this process:

1) Multiple Divergent and One-step Convergent Repeating Process

3) Multiple Divergent and One-step Convergent Process

•Divergent - Broadening Transformation Process:

One idea generates more ideas

Design research, brainstorming, and engineering exploration expand innovation

•Convergent - Deepening Transformation Process:

More ideas to one solution generates more details

Narrowing and optimizing design solutions creates designs greater detail and resolve

2) Random Multiple Divergent and Multiple Convergent Repeating Process

4) Structural Multiple Divergent and Multiple Convergent Process

—The Logic of Intuition and Creative Engineering

Understanding things in common builds a platform of understanding, which is critical to effective collaboration

Professor Brigid O'Kane

Collaborative Process for Design and Engineering

Finding Common Ground in Collaborative Process

INTUITIVE	CREATIVE	STRATEGIC	
	CHAOS	ORDER	RATIONAL

✓ A CONTINUUM OF EXPERTISE

Pace

Organic Growth of Innovation

A Continuum of Expertise

Designer's Realm

A Continuous Exchange Between Design and Engineering

PACE

Design and Engineering Survey

Colander

Toilet Brush

Napkin Holder

Design and Engineering Survey

A Total of 34 Designers and Engineers Surveyed

Symbol	Function	Number of Surveys
E	Engineers	34
D	Designers	34

AC

Design and Engineering Survey

The Necessity for Collaboration

Pace

The Necessity for Collaboration

- Teaching innovation drive excellence
- High overall product performance
- Offer students a real world situation
- Students addressing the most challenging issues of humanity
- Changing perceptions changes minds
- Industry motivated by profit
- Institutions of education driven by knowledge

PACE

The Necessity for Collaboration

"Technology makes a difference, but it is the human dimension that ultimately determines the nature and extent of that difference."

- Walton 2003. Design Management Journal

"Collaboration creates a feedback loop that you don't get on your own. The more different ideas you have the healthier your intellectual culture is. Working in a team environment is more likely to lead to new and surprising innovations."

- Franz 2007. Executive Director, Manifest Gallery

Triad 02. Sun Kyoung Kim, University of Illinois Urbana Champaign

Creating High Performing Interdisciplinary Teamwork

PAC

Greatest Challenges in Collaborative

- Differences are the single, most destructive factor within the product development process
- Communication between the two disciplines is key
- Understand the other person and take time to listen
- Understand that differences may be a misconception and not necessarily what is so

Engineering / Design Workshop

EV1 Disassembly

Creating High-Performing Interdisciplinary Teams

- Build trust
- Build balance
- Create an understanding of different disciplines
- Build common language for communication
- Overcome misconceptions

Bobby Deddens, Senior

Engineering / Design Team Meeting

Cultivating Strong Team Members

- A designer must maintain the designer's role
- An engineer must maintain the engineer's role
- Strong team members create powerful teams
- Keep everyone involved and empowered

Gary Ragle, Senior

"I wouldn't want to drive a car you engineered and you wouldn't want to drive a car that I designed."

- Unknown Engineer to Wayne Cherry. Former Vice President of General Motors Design

Philosophy of Non-Isolation

Industry / Academia

Students / Colleagues

Trans-Generational

Creating Strong Interdisciplinary Leaders

Who Wears the Pants?

Engineer?

Or

Designer?

Finger-ware. Nathan Cline, University of Iowa

New Model For Collaborative Practice

New Model for Collaborative Practice

- Change / Adapt / Preserve
- Have the wisdom to preserve what works and change what does not work
- Respect for each other's discipline
- Understand that different disciplines
 overlap
- Nurture organic growth within the PLM process
- Maintain respective roles

Collaborative Meeting

Final Presentation

PACE

Collaborative Workshops

- Design workshop for engineering
- Engineering workshop for design
- Structured team meetings

Design Workshop for Engineers

Engineering Workshop for Designers

Engineering Workshop for Designers

PACE

Collaborative Workshops

Experimental Learning and Active Teaching

This Mixture Advances the Collaborative Learning Process

Engineer Drawing

Designers Discussing

Perceptions after the Collaborative Experience

Description from Designers

- Necessary
- Helpful
- Finding new / innovative mechanisms
- Good sense / respect for design

Description from Engineers

- Creative, skilled, and enthusiastic
- Dedicated, high energy
- Good presentation skills
- Good at brainstorming / finding alternatives
- Adaptive and positive attitude

New Model for Collaborative Practice

Engineer's Realm

Designer's Realm

A Continuum of Expertise

Generates Powerful Interdisciplinary Teams

DRIVES EXCELLENCE IN INNOVATION

Thank You

Mark Chrapla, Senior

