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Abstract—Bug-related research, e.g., fault localization, program repair, and software testing, relies heavily on high-quality and large-scale

software bug repositories. The importance of such repositories is twofold. On one side, real-world bugs and their associated patchesmay

inspire novel approaches for finding, locating, and repairing software bugs. On the other side, the real-world bugs and their patches are

indispensable for rigorous andmeaningful evaluation of approaches to software testing, fault localization, and program repair. To this end, a

number of software bug repositories, e.g., iBUGSandDefects4J, have been constructed recently bymining version control systems andbug

tracking systems. However, fully automated construction of bug repositories by simply taking bug-fixing commits from version control

systems often results in inaccurate patches that containmany bug-irrelevant changes. Althoughwemay request experts or developers to

manually exclude the bug-irrelevant changes (as the authors of Defects4J did), such extensive human interventionmakes it difficult to build

large-scale bug repositories. To this end, in this paper, we propose an automatic approach, calledBugBuilder, to construct bug repositories

from version control systems. Different from existing approaches, it automatically extracts complete and concise bug-fixing patches and

excludes bug-irrelevant changes. It first detects and excludes software refactorings involved in bug-fixing commits.BugBuilder then

enumerates all subsets of the remaining part, and discards invalid subsets by compilation and software testing. If exactly a single subset

survives the validation, this subset is taken as the complete and concise bug-fixing patch for the associated bug. In casemultiple subsets

survive, BugBuilder employs a sequence of heuristics to select themost likely one. Evaluation results on 809 real-world bug-fixing commits

in Defects4J suggest thatBugBuilder successfully extracted complete and concise bug-fixing patches from forty-three percent of the

bug-fixing commits, and its precision (99%) was even higher than human experts.We also built a bug repository, calledGrowingBugs,

with the proposed approach. The resulting repository serves as evidence of the usefulness of the proposed approach, aswell as a publicly

available benchmark for bug-related research.

Index Terms—Bug, defect, testing, patch, repository, dataset, refactoring

Ç

1 INTRODUCTION

HIGH-QUALITY and large-scale bug repositories are
urgently needed by research in the software engineer-

ing community for various reasons, e.g., fault localization,
software testing, program repair, and prediction of bugs.
The benefits of bug repositories are twofold. On one side,
real-world bugs and their concise patches are indispensable
for rigorous evaluation of numerous automatic or semi-
automatic approaches to localizing faulty statements [1], [2],

[3], [4], [5], to predicting the number of bugs in software
applications [6], [7], [8], [9], and to repairing faulty applica-
tions [10], [11], [12], [13], [14], [15]. Because we expect such
approaches to work well on real-world applications, it is
critical to evaluate such approaches with a large number of
real-world bugs (and their corresponding patches) from
real-world applications before they could be widely applied
in the wild [16], [17]. Although automatically generated
mutants or manually injected bugs could also be exploited
for the evaluation [18], they could be essentially different
from real-world bugs, and thus conclusions drawn on them
may not hold on real-world bugs. On the other side, real-
world bugs and their concise patches may also inspire
researchers to propose novel approaches to finding, localiz-
ing, and repairing software bugs. For example, by analyzing
a large number of real-world bugs, researchers may figure
out what kind of statements are more error-prone, and thus
they could try to repair such statements first during auto-
matic program repair [19] to improve the efficiency of pro-
gram repair. Another example is that researchers have
discovered many common fix patterns by reading human-
written patches [20]. Leveraging such patterns in turn has
significantly increased the performance of automatic pro-
gram repair [20]. Finally, data-driven and learning-based
approaches in automatic program repair [21], [22], [23] and
bug detection [24] usually depend on a large number of
diverse real-world bugs and their concise patches. Notably,
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the quality of these bugs, e.g., the diversity of the bugs and
the accuracy of the patches, could significantly influence the
performance of such data-driven approaches.

To this end, a few bug repositories have been constructed
to facilitate bug-related research [16]. According to their con-
struction, we divide such repositories into the following
three categories. The first category of bug repositories is con-
structedmanually. Typical examples of this category include
SIR [18], BugBench [25], IntroClass [26], Codeflaws [27],
QuixBugs [28], DroixBench [29], and DBGBench [30]. These
repositories are constructed manually, and thus all of them
are quite limited in scale and diversity. The second category
of bug repositories is constructed automatically. For exam-
ple, iBUGS [17] and ManyBugs [26] were constructed by
automatically extracting bug-fixing commits as bug-fixing
patches. Although such automated construction could result
in large bug repositories with great diversity, the quality of
the patches is questionable. Existing studies [16], [31] suggest
that bug-fixing commits often contain bug-irrelevant
changes, e.g., refactorings. Consequently, if we take all of the
changes in a bug-fixing code commit as the patch of the asso-
ciated bug report, the resulting patch could be inconcise, and
contain code changes irrelevant to the bug. A code change is
bug-irrelevant if it changes/adds/removes functionalities
that are not associated with the bug report or it does not
change the external behaviors of the system (e.g., software
refactorings). A complete and concise bug-fixing patch
should include all bug-relevant changes (complete) and
exclude all bug-irrelevant changes (concise). The third cate-
gory of bug repositories is constructed semi-automatically.
A typical example is the well-known Defects4J [16]. To
extract complete and concise bug-fixing patches from bug-
fixing commits, Defects4J automatically takes all changes in
a bug-fixing commit as an initial patch, and then manually
excludes bug-irrelevant changes from it. As a result, the
resulting patch is highly accurate, often both complete and
concise. However, such extensive human intervention
makes it difficult and expensive to increase the size of the
repository. Consequently, the scale of Defects4J and the
diversity of its patches remain limited.

To automate the construction of large-scale and high-
quality bug repositories, in this paper, we propose an auto-
matic approach, called BugBuilder, to extracting concise and
complete bug-fixing patches from human-written patches
in version control systems. For each bug-fixing commit, it
works as follows. First, it identifies refactorings within the
bug-fixing commit by an existing tool (i.e., Refactoring-
Miner [32]), and removes refactorings from human-written
patches by reapplying the identified refactorings to the
buggy version of the application. Second, it automatically
generates all potential patches by enumerating all possible
combinations of the remaining non-refactoring changes.
Third, it validates the potential patches on test cases. If all
but one potential patch are invalid, the remaining one is
deemed as a complete and concise patch. If multiple ones
pass the validation, BugBuilder leverages a sequence of
highly accurate heuristics to select the most likely patch.
Notably, if the human-written patch is composed of both
refactorings and bug-fixing changes, BugBuilder splits it
into two ordered patches: a refactoring patch and a follow-
ing bug-fixing patch. It is highly similar to Defects4J which

splits a human-written patch into a bug-irrelevant patch
and a following bug-fixing patch.

The evaluation of the proposed approach is composed of
two parts. In the first part, we applied the proposed approach
(BugBuilder) to the 809 real-world bug-fixing commits col-
lected by Defects4J. On each of the evaluated commits, we
leveraged BugBuilder to extract concise patches automati-
cally. If a patch was successfully generated, we compared it
against the manually constructed patch provided by
Defects4J. On the 809 bug-fixing commits, BugBuilder auto-
matically generates 350 patches where 334 were identical to
manually constructed patches in Defects4J. For the other 16
patches that are different frommanually constructed patches,
we manually analyzed the associated bug reports as well as
the code commits. Our evaluation results suggest that out of
the 16 pairs of mismatched patches, 12 were caused by
incomplete patches in Defects4J whereas the generated
patches were complete and concise. Only four out of the 350
generated patches were inaccurate (complete but not con-
cise), and all of them were caused by incomplete detection of
refactorings. In the second part of the evaluation, we con-
structed a large bug repository by applying the proposed
approach to open-source applications. The resulting reposi-
tory, called GrowingBugs, is composed of 1,491 real-world
bugs and their concise patches, automatically collected from
169well-known andwidely used Java applications. This is an
expanded version of our previous conference paper [33].
Compared against the conference version, this paper makes
the following expansions:

� We further improve the approach by proposing a
sequence of heuristics to select the correct patch
from multiple candidate patches. In the conference
version, the proposed approach gives up when there
are more than one candidate patch for a single bug-
fixing commit, which has a significant and negative
influence on the recall of the proposed approach.
Selecting patches with the strategies proposed in this
paper improves the recall of the proposed approach
by 8% whereas the precision keeps untouched. The
implementation of the improved approach is pub-
lished on GitHub1.

� We build a high-quality bug repository, called Gro-
wingBugs2, with the proposed approach. On one side,
successfully building the repository with the pro-
posed approach further validates the usefulness of
the proposed approach. On the other side, the result-
ing repository can serve as a benchmark to facilitate
future bug-related research, especially automated
program repair and fault localization. To the best of
our knowledge, it is the largest Java bug repository
composed of real-world bugs and concise patches.

The rest of this paper is structured as follows. Section 2
introduces related work. Section 3 motivates the research
with a motivating example, and Section 4 presents the
details of the proposed approach. Section 5 presents the
evaluation of the proposed approach, and Section 6 builds a

1. [Online]. Available: https://github.com/liuhuigmail/BugBuilder
2. [Online]. Available: https://github.com/liuhuigmail/GrowingBug
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new bug repository with the proposed approach. Section 7
discusses some closely related issues, and Section 8 con-
cludes the paper.

2 RELATED WORK

2.1 Bug Repositories

The importance of large-scale and high-quality bug reposito-
ries is well-recognized, and thus a number of bug reposito-
ries have been constructed recently. To the best of our
knowledge, the software-artifact infrastructure repository
(SIR) [18] is the first attempt in the construction of bug repos-
itories. It is composed of bugs from 17C programs and 7 Java
programs. Each of the programs has several different faulty
versions, and each faulty version contains several known
bugs and associated test suites to reveal the bugs. However,
the bugs in SIR are different from real-world bugs because
such bugswere hand-seeded or obtained frommutation [34].
It may reduce the usability of the bug repository.

Some bug repositories were constructed by collecting
real-world bugs from assignments or competitions. For
example, Spacco et al. [35] collected real-world bugs made
by students during programming tasks. Their resulting bug
repository contains hundreds of faulty projects accompa-
nied by test cases. IntroClass [26] proposed by Le et al.
Codeflaws [27] proposed by Tan et al. and QuixBugs [28]
proposed by Lin et al. contain real-world bugs from pro-
gramming competitions/challenges. However, such bugs
made in programming assignments or competitions could
be significantly different from real-world bugs in industry,
and thus bug-related approaches validated on such reposi-
tories may not work in industry.

Some bug repositories were constructed by manually col-
lecting real-world bugs from real-world applications. For
example, Lu et al. [25] manually collected 19 real-world
bugs from 17 programs, Tan et al. [29] manually collected
24 reproducible crashes from 15 open-source Android
Apps, and B€ohme et al. [30] requested twelve experts to col-
lect 27 real-world bugs from open-source C projects. P�eter
et al. [36] manually validated 453 real-world JavaScript
bugs from JavaScript server-side programs. Although such
real-world bugs are of high quality, manual collection of
real-world bugs is tedious and time-consuming, and thus
the sizes of such bug repositories are often limited. As a
result, the diversity of the bugs is limited.

Automatic and semi-automatic approaches have been
proposed to collect real-world bugs. For example, iBUGS [17]
extracted 369 bugs automatically from version control sys-
tems, and took the whole bug-fixing commits as bug-fixing
patches with the assumption that all changes in the bug-fix-
ing commits are bug-related. However, existing studies (e.g.,
[16], [31]) suggested that bug-fixing commits often contain
bug-irrelevant changes, e.g., implementation of new features
and software refactorings that do not change software func-
tionalities. Consequently, taking all changes in bug-fixing
commits as bug-fixing patches may result in unconcise
patches:Apatch is deemed unconcise if it contains bug-irrele-
vant changes. The authors of ManyBugs [26] also took the
whole bug-fixing commit as a patch, and thus the patches in
the repository are potentially unconcise. Bugs.jar [37], con-
taining 1,158 real-world bugs and patches automatically

collected from open-source applications (Apache@GitHub),
is another large-scale bug repository that took the whole
bug-fixing commits as bug-fixing patches. Evaluating bug-
related approaches with such unconcise patches could result
in misleading conclusions, and the unconcise patches may
make it harder to assess patch correctness in automated pro-
gram repair.

Defects4J [16] isolated bug-fixing changes from bug-irrel-
evant changes manually. Each bug in Defect4J is associated
with three versions: the original buggy version (called Vn�1),
the fixed version (called Vn), and an intermediate version
(called Vbug). Applying the bug-irrelevant changes to the orig-
inal buggy version (Vn�1) results in the intermediate version
Vbug. Applying the concise bug-fixing patch in Defects4J to
Vbug fixes the bug and results in the fixed version Vn. Notably,
both the original buggy version and the fixed version were
retrieved from the version control systems. However, the
intermediate version was created manually by experts to
contain all bug-irrelevant changes. As a result of the manual
isolation, bugs and patches in Defects4J are highly accurate.
Consequently, Defects4J becomes one of the most frequently
used bug repositories in the software engineering commu-
nity. To evaluate automated program repair tools/algo-
rithms (called APR tools for short) with Defects4J, we should
apply the APR tools to Vbug (instead of the original buggy ver-
sion Vn�1) to generate patches, and compare the generated
patches against the patch in Defects4J. Besides APR tools,
fault localization tools/algorithms may also leverage the
patches in Defects4J for quantitative evaluation (taking Vbug

as the buggy program to be fixed). Another significant
advantage of Defects4J is that it provides an extensible
framework to enable reproducible studies in software testing
research. However, the manual intervention requested by
Defects4J prevents it from being fully automatic, and thus
the repository remains limited in scale and diversity.

Some bugs were collected automatically according to
Continuous Integration (CI). For example, BEARS proposed
by Madeiral et al. [38] finds potential pairs of buggy and
patched program versions from open-source projects
according to commit building state from Continuous Inte-
gration (CI). The core step of its bug collection is the execu-
tion of the test suite of the program on two consecutive
versions. If a test failure is found in the faulty version and
no test failure is found in its patched version, the authors of
BEARS take the two versions as the faulty and the fixed ver-
sions respectively whereas their difference is taken as the
associated patch. Notably, the difference may contain some
bug-irrelevant changes, e.g., software refactorings. How-
ever, BEARS does not distinguish bug-fixing changes from
bug-irrelevant changes within the same source code com-
mit. Similar to BEARS, Tomassi et al. [39] also collected
bugs/patches according to CI and did not exclude bug-irrel-
evant changes from the collected patches, either. As a result,
all such patches could be unconcise.

Based on the preceding analysis, we conclude that exist-
ing bug repositories are limited in either scale or quality.
Manually or semi-automatically constructed repositories
are limited in scale because they request extensive human
intervention. In contrast, automatically constructed ones
could be inaccurate because the automatically extracted
patches often contain bug-irrelevant changes [31].
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2.2 Distinguishing Special Changes in Code
Commits

Approaches have been proposed to distinguish some special
changes in code commits. For example, DiffCat proposed
by Kawrykow and Robillard [40] identifies non-essential
changes (especially refactorings) in version histories, highly
similar to RefactoringMiner [32] that our approach leverages
to identify refactorings. It leverages CHANGEDISTIL-
LER [41] to detect changes between two successive versions,
and then it identifies non-essential changes by comparing
the changes to a set of predefined types of fine-grained non-
essential changes. RefactoringMiner [32] exploits an AST
based approach to match software entities in different ver-
sions of the same application, and then identifies refactorings
based on the entitymatching by a sequence of heuristic rules.
Notably, RefactoringMiner was specially designed to detect
refactorings whereas DiffCat is not confined to refactorings,
and thus the latter may identify some non-refactoring and
non-essential changes, e.g., changes in code format (like
removing white spaces). RefactoringMiner, after a long-term
evolution, covers more refactoring types than DiffCat. Diff-
Cat and RefactoringMiner at best may serve as only the first
step for concise patch extraction (see Fig. 1 for more details).
Simply recommending refactoring-excluded patches (output
of DiffCat or RefactoringMiner) would result in numerous
unconcise patches when commits contain non-refactoring
bug-irrelevant changes. As a result, developers need to man-
ually check/clean all of the recommended patches to guaran-
tee the quality.

Thung et al. [42] proposed an approach to identifying root
causes of bugs. Root causes of a bug refer to the lines of code in
the buggy version that are responsible for the bug. Notably, root
causes are essentially different from concise patches. Conse-
quently, these approaches [40], [42] do not address the same
issue as we do, i.e., automatically constructing bug-fixing
patch repositories. Notably, neither Thung et al. [42] nor
Kawrykow and Robillard [40] leverage off-the-shelf refactor-
ing mining tools, and neither of them reapply discovered
refactorings as we do.

3 MOTIVATING EXAMPLE

This section explains why it is challenging to extract concise
patches from bug-fixing commits automatically. Listing 1
presents a motivating example for illustration. It is a bug-
fixing commit extracted from JacksonDataind [43], and the

associated bug report is publicly available online [44]. The
changes involved in the commit are highlighted in standard
diff style. Red lines beginning with ‘-’ are removed by the
commit whereas green lines beginning with ‘+’ are inserted
by the commit. Other lines are untouched.

Listing 1. A Bug-Fixing Commit from JacksonDatabind

The changes within such bug-fixing commit is composed
of two parts. The first part is to rename method
”_hasCustomValueHandler” as ”_hasCustomHandlers” (Lines
19-20), and to update the method invocation of the renamed
method (Lines 9-10 and 15-16). The second part of the com-
mit is to fix the reported bug: ”Using org.apache.logging.log4j.
core.jackson.Log4jJsonObjectMapper to deserialize the appended
JSON object is throwing an exception with 2.9.2 but worked with
2.9.1.”. When the parameter t is a map, the method should
return true if the Java type of the keys in the map has value
handler. The buggy version decides to return true or false
based on the type of the content only (i.e., ct on Line 22) and
thus it would result in incorrect return value when t is a
map. To this end, the commit deletes the return statement on
Line 24 and inserts two if statements on Lines 25-28 and
Lines 29-33 to handle map as a special case.

For the motivation example in Listing 1, it would result
in an unconcise patch that contains bug-irrelevant changes
(i.e., the rename method refactoring on Lines 9-10, 15-16, and

Fig. 1. Overview of BugBuilder.
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19-20) if we simply extract all changes in the bug-fixing
commit as the patch. BugBuilder successfully extracts the
complete and concise patch (i.e., the changes on Lines 24-
33) from the bug-fixing commit. It works as follows.

� First, it discovers the rename method refactoring by
analyzing the changes made in the commit.

� Second, it reapplies the identified refactoring to the
faulty version, resulting in a new version V 0

n�1, called
refactoring-included version.

� Third, it computes all changes between V 0
n�1 and the

fixed version (Vn). The resulting changes are noted
as Chgs. Notably, Chgs does not include the rename
method refactoring because it has already been done
on V 0

n�1. Consequently, Chgs is composed of the
changes on Lines 24-33 only.

� Fourth, BugBuilder enumerates and validates all pos-
sible subsets ofChgs. Such subsets are called potential
patches. Only a single potential patch (ptch=Chgs)
passes the validation whereas applying any of the
other potential patches to V 0

n�1 results in compiler
errors or fails to pass any new test cases in the fixed
version. Consequently, ptch is the only candidate
patch that survives the validation.

� Finally, BugBuilder outputs patch as the patch for the
associated bug because it is the only candidate patch.

4 APPROACH

4.1 Overview

Fig. 1 presents an overview of the proposed approach Bug-
Builder. It takes as input two consecutive versions of a soft-
ware application, i.e., Vn�1 and Vn. The latter version Vn is
called Vfix or the fixed version whereas Vn�1 is called the
faulty version. The two consecutive versions are accompa-
nied by two test suites, noted as Tn�1 and Tn, respectively.
Tn�1 and Tn exclude broken test cases that fail on their asso-
ciated version of the application. The evolution from Vn�1 to
Vn is driven by a bug-fixing commit whose commit message
contains an ID of a validated bug report. With such input,
BugBuilder extracts the concise patch from the commit as
follows:

� First, it identifies refactorings that have been applied
to Vn�1. The identification is conducted by Refactor-
ingMiner [32], a state-of-the-art approach to mining
software refactorings by comparing two consecutive
versions of the same application. The first step
results in a list of refactorings, noted as R.

� Second, if R is not empty, BugBuilder applies all of
the discovered refactorings to Vn�1 via Eclipse refac-
toring APIs. The applications result in a new version
V 0
n�1 (called refactoring-included version) that is differ-

ent from both Vn�1 and Vn.
� Third, BugBuilder distinguishes the difference

between the refactoring-included version (V 0
n�1) and the

fixed version (Vn). The difference is represented as a
sequence of changes, noted as Chgs.

� Fourth, BugBuilder enumerates all possible subse-
quences of Chgs, and validates whether the subse-
quences represent candidate patches. For a
subsequence schg � Chgs, BugBuilder applies all

changes in schg to V 0
n�1, resulting in a new version

V 00
n�1. The subsequence schg represents a candidate

patch if and only if V 00
n�1 passes all test cases in Tn�1

and passes some test cases in Tn that fail on Vn�1.
� Finally, BugBuilder selects the most likely patch

from the validated candidate patches. If only a single
candidate patch is generated by BugBuilder, it is
deemed as the concise and complete patch for the
associated bug report. However, when BugBuilder
generates multiple candidate patches, it selects the
most likely one from the candidate patches accord-
ing to a series of heuristics. If none of the heuristics
works, no patch would be recommended for the
given commit.

It should be noted that the patches generated by Bug-
Builder should be applied to V 0

n�1 (refactoring-included ver-
sion). Applying such patches to the original buggy version
(Vn�1) may result in compilation errors and may not fix the
bugs. Although we may revise BugBuilder to generate
patches that could be directly applied to the original buggy
version, we decide to follow the widely used Defects4J: In
Defects4J, patches are also intended to be applied to V 0

n�1

(called Vbug in Defects4J [16]). Following the same pattern
may facilitate the users of Defects4J to make advantage of
BugBuilder.

4.2 Mining and Reapplying Refactorings

Software refactoring is to restructure software applications
without changing their external behaviors. It is commonly
used to improve software quality, especially the readability
and maintainability [45], [46]. Notably, software refactoring
is frequently conducted with other development activities,
e.g., bug fixing. Consequently, to extract concise bug-fixing
patches, we should identify and exclude refactorings within
the commits. Our strategy is to discover refactorings involved
in bug-fixing commits (by data mining) and remove such
refactorings (by reapplication of refactorings) before patches
are extracted.

Automated identification of software refactorings from
version control systems has been extensively studied, and
some automatic, highly accurate approaches [47], [48], [49],
[50], [51] have been proposed. The discovered refactorings
have been exploited to facilitate the evaluation of automatic
refactoring recommendation algorithms [52], empirical
studies on code evolution [53], and library API migra-
tion [54]. However, to the best of our knowledge, such
approaches have not yet been applied to automatic extrac-
tion of patches as what we do in this paper.

To make the paper self-contained, we present here a brief
introduction to automatic refactoring detection, and more
details are referred to related work [32], [55]. An automatic
refactoring detection algorithm takes as input two consecu-
tive versions (noted as Vn�1 and Vn, respectively) of the
same application. It first matches elements (e.g., classes,
methods, and variables) across versions. With the matched
elements, it identifies which elements in the former version
(i,e., Vn�1) have been removed, which elements in the latter
version (i.e., Vn) have been added, and which elements are
kept untouched. It then infers refactorings based on the
removed, added, and untouched elements according to a
list of pre-defined heuristic rules. For example, if a method
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m in class C1 (of version Vn�1) matches a method m0 in class
C2 (of version Vn) and C1 does not match C2, the algorithm
recognizes the changes as a move method refactoring that
moves methodm from class C1 to class C2. The performance
of the algorithms depends on the accuracy of the employed
element matching algorithm and the quality of the heuristic
rules. In this paper, we leverage RefactoringMiner [55] to dis-
cover refactorings in bug-fixing code commits because exist-
ing study suggests that it is highly accurate (precision=99.6%
and recall=94%) [32]. A significant advantage of Refactoring-
Miner is that it leverages an AST-based highly accurate
matching algorithm, and this algorithm does not require any
user-defined thresholds [55].

BugBuilder excludes the discovered refactorings by reap-
plying such refactorings to the faulty version Vn�1, and
employs the resulting version (called V 0

n�1) instead of the
original faulty version Vn�1 to generate the patch. The ratio-
nale is that we can divide the revision (bug-fixing commit)
into two steps: (i) applying refactorings on Vn�1, which
results in an intermediate version V 0

n�1; and (ii) fixing bugs
and implementing new features (if there is any) on V 0

n�1. For
convenience, we call the intermediate version V 0

n�1 refactor-
ing-included version. Notably, reapplication of the discovered
refactorings is accomplished by calling Eclipse refactoring
APIs [56]. Such APIs are widely used and well-established.
For example, if a bug-fixing commit contains a rename refac-
toring that changes the name of method m from oldMethod-
Name to newMethodName, we can reapply the refactoring by
calling the method Rename in Listing 2.

Listing 2. Reapplication of Rename Refactoring

Notably, the method Rename in Listing 2 depends on a
sequence of Eclipse refactoring APIs. Invocations of such
APIs are highlighted with green background in the code
snippet. We have to customize the code snippet for different
categories of refactorings to forward refactoring information
from RefactoringMiner to refactoring APIs because the
required refactoring information and refactoring APIs vary
significantly among different categories of refactorings.
Currently, we have customized the code snippet for eight
most common refactorings, including rename classes, rename
methods, rename variables, rename fields, rename parameters,
rename packages, extract methods, and extract variables. Accord-
ing to our analysis, such refactorings account for the major-
ity (72%) of the refactorings in the bug-fixing commits in
Defects4J. The empirical study conduced by Murphy et al.
[57] also suggests that ”rename” is by far the most popular
refactoring common and ”extract” is on the third place. The

most challenging part in implementing the replication of
refactorings is to figure out how Eclipse implements the
refactorings, and how to invoke the related APIs to auto-
mate the refactorings without any human intervention.
Notably, refactoring APIs in Eclipse are complex and hard
to understand. There are a large number of refactoring-
related classes in JDT. One of the most simple refactoring
extract variable involves more than ten classes distributed in
different packages. Heavy coupling with UI elements is also
preventing readers to find out the clear map for API invoca-
tion without activating UI elements.

4.3 Generating Potential Patches

Given the refactoring-included version V 0
n�1 and its associated

bug-fixing version Vn, BugBuilder should generate all possi-
ble bug-fixing patches. To this end, it computes the differ-
ence between V 0

n�1 and Vn (excluding their differences in test
cases). The difference is represented as a sequence of token-
level changes (e.g., removing or inserting a token), noted as
Chgs ¼< chg1; chg2; . . . ; chgk > . Each of the token-level
changes is composed of three parts: position, token, and edi-
tion typewhere edition type is either ”remove” or ”insert”.

BugBuilder generates potential bug-fixing patches by enu-
merating all subsequences of Chgs. Each subsequence schg �
Chgs represents a potential bug-fixing patch that makes all of
the token-level changes in schg on V 0

n�1, and ignores other
changes in Chgs. To reduce the number of potential patches,
we also introduce coarse-grained changes: line-level changes.
If a whole line of source code has been removed from V 0

n�1,
we represent it as a line-level change instead of a sequence of
token-level changes. Insertion of a new line of source code is
handled in the same way as a line-level change. Conse-
quently, a potential patch is finally represented as a sequence
of token-level and/or line-level changes.

4.4 Validating Potential Patches

BugBuilder validates a potential patch pt as follows. First, it
applies this potential patch to the refactoring-included ver-
sion V 0

n�1, resulting in a new version V 00
n�1. If the resulting

version V 00
n�1 could not compile successfully, the potential

patch pt is discarded as an illegal patch and its validation
terminates.

If V 00
n�1 passes the preceding validation (i.e., compilation),

BugBuilder further validates it with test cases associated
with the faulty version (noted as Tn�1) and test cases associ-
ated with the fixed version (noted as Tn) as follows:

� The potential patch pt is not a valid bug-fixing patch
and its validation terminates if any test case in Tn�1

fails on V 00
n�1;

� BugBuilder collects all test cases in Tn that fail on
Vn�1, and notes such test cases as potential triggering
test cases that may expose the associated bug;

� The potential patch pt is deemed invalid if V 00
n�1 fails

to pass any potential triggering test cases. Otherwise,
it is taken as a candidate patch.

4.5 Selecting From Candidate Patches

If BugBuilder generates exactly a single candidate patch
from a bug-fixing code commit, it is deemed a concise patch
for the reported software bug associated with the bug-fixing
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commit. Consequently, the approach recommends the can-
didate patch for the associated bug report.

However, it is challenging, if not impossible, to select
automatically the correct one from a number of candidate
patches because none of them could be filtered out by the
associated test cases: All of them can pass the associated test
cases, including all of the potential triggering test cases. To
this end, in this paper, we only make recommendations for
some special cases if there are multiple candidates.

First, it employs heuristic rule H1 in Section 4.5.1 to
exclude such candidate patches that contain only part of
repeated changes. Second, if multiple candidate patches
survive the heuristic rule H1, BugBuilder employs the sec-
ond heuristic rule H2 in Section 4.5.2 to exclude candidate
patches that contain optional changes. If exactly a single
candidate patch survives both H1 and H2, it is recom-
mended by BugBuilder as the correct concise and complete
patch. Details are presented in the following subsections.

4.5.1 Repeated Changes

Heuristics 1 (H1). Suppose that a candidate patch candi con-
tains a sequence of changes chgs ¼< chg1; chg2; . . . ; chgk >
, and the whole sequence of changes have been repeated (for n
times) in other places by the enclosing bug-fixing code commit.
If adding all such repeated changes to candidate patch candi
results in another candidate patch candj, it is likely that candi-
date patch candi is incomplete and thus invalid.

The rationale for the heuristic is that developers may fix the
reported bug with a sequence of changes to pass the trigger-
ing test case, and fix the same bug in other places not cov-
ered by the triggering test case. In this case, a validated
patch should contain all of the bug-fixing changes to make
the patch complete.

Listing 3. Repeated Changes

A typical example is presented in Listing 3. The changes
on Lines 9-10 alone, i.e., changing ‘curEntry.setGrou-
pId(Integer.parseLong(val))’ into ‘curEntry.
setGroupId(Long.parseLong(val))’ can pass the
triggering test cases associated with the commit. However,
the same bug also appears on Line 14 that is not covered by

the triggering test cases. Consequently, the developer
repeated exactly the same bug-fixing actions on Line 14 to
fix the bug completely. The changes on Line 9 and Line 14
together, as suggested by Defects4J, compose the concise
and complete bug-fixing patch. Notably, the incomplete
candidate patch (i.e., changes on Line 9 alone) can pass the
associated triggering test cases because the triggering test
cases are insufficient: additional test cases is required to
reveal uncovered buggy statements (i.e., Line 14). To facili-
tate the comprehension of bug-fixing commits, we strongly
encourage developers to create triggering test cases that are
able to distinguish incomplete candidate patches from com-
plete ones.

BugBuilder employs the heuristics H1 to exclude invalid
candidate patches that contain only part of the repeated
changes. If it excludes all but one candidate patch, Bug-
Builder recommends the remaining one as the validated
patch for the associated bug report.

4.5.2 Optional Changes

Heuristics 2 (H2). Suppose that candidate patch candi is a
superset of another candidate patch candj, it is likely that
candi contains optional changes (i.e., this patch is not concise)
if all of the following preconditions hold:

1) The difference is not empty, i.e., diffi;j ¼ candi �
candj 6¼ ;,

2) diffi;j is not simply repeating changes in candj, and
3) All source code (in the buggy version) modified or

deleted by diffi;j and all source code (in the fixed ver-
sion) inserted by diffi;j are covered by the associated
test cases.

Listing 4. Optional Changes

An illustrating example is presented in Listing 4. This exam-
ple comes from open-source application Apache Commons
CLI [58]. This commit is to fix bug report #CLI-51 [59]:
parameter value “-something” misinterpreted as a parame-
ter. This commit makes two changes: replacing Line 16 with
Lines 17-18, and replacing Line 8 with Line 9. The first
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change (on Line 16-18) is directly related to the associated
bug, and fixes it completely.

The other change (on Line 8-9), however, is not directly
related to the bug fixing. In the original version, the string
variable token is explicitly initialized with constant
“null”. The bug-fixing commit deletes the initialization (as
shown on Line 9). However, the deletion is optional and is
not indispensable for the bug fixing. In fact, this change
does not change any functionality of the software because
string variables would be initialized with “null” by
default. Consequently, this change should be taken as soft-
ware refactoring.

Notably, RefactoringMiner [55] fails to recognize this
refactoring because it is not a typical or popular software
refactoring, no special heuristics rules have been proposed
to recognize such rare refactorings.

The rationale of heuristics H2 is that some optional
changes within bug-fixing commits (e.g., atypical software
refactorings) should be excluded from concise bug-fixing
patches. However, the employed refactoring-mining
tool [55] cannot detect such changes and thus we cannot
exclude them by detecting-and-reapplying refactorings (as
we do in Section 4.2).

Notably, the preconditions (especially the third one) for
the heuristics H2 are indispensable. If the difference diffi;j
is not covered by test cases, it is risky to tell that such
changes are optional. We employ the bug-fixing commit in
Listing 5 to illustrate the necessity of the precondition. This
commit comes from open-source application Closure Com-
piler to fix bug report #issues-1144 [60]. In this example,
BugBuilder generates two candidate patches. The first one
(called theBigger) is composed of the changes on Lines 8,
16, 24, 32, and 33. The second one (called theSmaller) is
composed of the changes on Lines 8, 24, 32, and 33. The
only difference is that theBigger contains changes on
Line 16 whereas theSmaller does not. Excluding the third
condition of heuristics H2, i.e., (does not request the differ-
ences between the patches to be covered by test cases), the
proposed approach would exclude theBigger by taking
changes on Line 16 as optional changes by mistake. How-
ever, changes on Line 16 are indispensable for the bug fix-
ing. Without such changes, the updated IF statement on
Line 33 may not work correctly when the given document
contains more than one scope. The smaller candidate patch
theSmaller passes the validation of the proposed
approach (as introduced in Section 4.4) because the associ-
ated test cases are insufficient, failing to cover the changes
on Line 16. By enabling the preconditions of H2, however,
the proposed approach avoids such kinds of mistakes.

BugBuilder employs the heuristics H2 to exclude incon-
cise candidate patches. If it excludes all but one candidate
patch, BugBuilder recommends the remaining one as the
validated patch for the associated bug report. If more than
one candidate patch survives, BugBuilder does not recom-
mend any patch for the given bug-fixing commit.

5 EVALUATION

In this section, we evaluate the proposed approach (Bug-
Builder) on bug-fixing commits collected by well-known
Defects4J.

5.1 Research Questions

The evaluation aims to investigate the following research
questions:

� RQ1: How often do bug-fixing commits contain bug-
irrelevant changes and what percentage of the
changes in bug-fixing commits are bug-irreverent?

� RQ2: How accurate is BugBuilder in extracting com-
plete and concise bug-fixing patches from bug-fixing
commits? How often could real-world patches in
version control systems be extracted accurately and
automatically by BugBuilder?

� RQ3: To what extent does the refactoring detection
and replication affect the precision and recall of
BugBuilder?

� RQ4: To what extent do the candidate selection strat-
egies influence the performance of BugBuilder?

� RQ5: How long does it take BugBuilder to extract a
patch from a bug-fixing commit, and how is
BugBuilder’s performance influenced by the size of
commits?

Listing 5.Bug-Fixing Changes Not Covered by Test Cases

5.2 Dataset

In this section, we evaluate BugBuilder with the raw data in
Defects4J that contains 835 real-world bugs collected from
real-world applications. For each bug, Defects4J provides
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the bug-fixing code commit, the versions immediately fol-
lowing/preceding the bug-fixing commit (called Vn and
Vn�1, respectively), and the manually confirmed patch for
the bug. Vn and Vn�1 were taken from version control his-
tory by Defects4J without any modification. Vn�1 is different
from the faulty version (Vbug) provided by Defects4J. Apply-
ing bug-irrelevant change in the commit to Vn�1 results in
Vbug whereas applying the bug-fixing patch to Vbug should
result in the fixed version Vn.

Only Vn and Vn�1 were leveraged as the input of Bug-
Builder, whereas the manually constructed patches pro-
vided by Defects4J were leveraged only to assess the
performance of BugBuilder, i.e., whether the automatically
generated patches are identical to the manually constructed
ones. BugBuilder does not depend on the reference patches
(in Defects4J) to generate bug-fixing patches.

In total, 809 bug-fixing commits from Defects4J were lev-
eraged for the evaluation. Although Defect4J contains 835
bug-fixing commits from 17 projects, we failed to retrieve
the Vn�1 version for project Chart because the version IDs
for this project are invalid. Consequently, this project was
excluded from our evaluation. We did not exploit other
bug-patch datasets, like iBUGS and ManyBugs, for the eval-
uation because they do not exclude bug-irrelevant changes
from the final bug-fixing patches.

5.3 Experiment Design

5.3.1 RQ1: Popularity of Bug-Irrelevant Changes Within

Bug-Fixing Commits:

If bug-fixing commits often contain bug-irrelevant changes,
it could be risky to take the whole bug-fixing commits as
bug-fixing patches. This assumption serves as the basis of
the proposed approach. To validate the assumption, we
compared the manually constructed bug-fixing patches in
Defects4J against their associated bug-fixing commits. The
comparison was conducted in two steps. First, we investi-
gated how often the bug-fixing patches are identical to their
associated code commits:

Psame ¼ number of commits identical to associated patches

number of bug-fixing commits

(1)

Assuming that patches in Defects4J are complete and concise,
bug-fixing commits that are not identical to the associated
patches must contain bug-irrelevant changes. Consequently,
Pdiff ¼ 1� Psame is the percentage of bug-fixing commits that
contain bug-irrelevant changes.

Second, we investigated what percentage of changes in
bug-fixing commits are bug-fixing changes and what per-
centage of changes are bug-irrelevant changes. Because
patches in Defects4J have been manually constructed to
exclude bug-irrelevant changes [16], we took the size of the
patches in Defects4J as the size of bug-fixing changes in the
associated bug-fixing commits.

5.3.2 RQ2: Precision and Recall of BugBuilder

To investigate the precision and recall of BugBuilder, we
evaluated it on each of the bug-fixing commits in Defects4J
as follow:

� First, we retrieved its associated Vn and Vn�1 versions
as well as the manually constructed patch pt4j associ-
ated with the bug-fixing commit;

� Second, we leveraged BugBuilder to generate
patches, taking Vn�1 and Vn as input;

� Third, if BugBuilder resulted in a patch pt, we com-
pared it against the manually constructed patch pt4j
to reveal whether the automatically generated patch
was identical to the manually constructed one. In
case they were identical, we called the generated
patch a matched patch. Notably, the comparison
between generated patches and the ground truth
was a pure textual comparison of the patches, and it
was fully automatic.

An automatically generated patch was taken as a com-
plete and concise patch if and only if it was a matched
patch, i.e., it was identical to the manually constructed
patch (provided by Defects4J) associated with the same
bug-fixing commit.

Based on the preceding process, we computed the preci-
sion and recall of BugBuilder as follows:

Precision ¼ number of matched patches

number of generated patches
(2)

Recall ¼ number of matched patches

number of patches in Defects4J
(3)

5.3.3 RQ3: Impact of Refactoring Detection and

Reapplication

BugBuilder excludes refactorings from generated patch by
discovering refactorings contained in the bug-fixing commit
and reapplying the discovered refactorings to the associated
faulty version (see Section 4.2 for details). To investigate to
what extent the leveraged refactoring detection and reapplica-
tionmay affect the precision and recall of BugBuilder, we dis-
abled refactoring detection and reapplication, and repeated
the evaluation (as specified in Section 5.4.3).

5.3.4 RQ4: Effect of Patch Selection

As specified in Section 4.5, BugBuilder employs a sequence
of heuristics to select the correct (both concise and complete)
bug-fixing patch when BugBuilder generates more than one
candidate patch for a single bug-fixing commit. To investi-
gate how accurate the employed heuristics are and how
they affect the performance (both precision and recall) of
BugBuilder, we computed how often the heuristics were
employed and how often the selection was correct/incor-
rect. We also disabled the selection (i.e., generating a bug-
fixing patch for a given commit only if there was exactly a
single candidate patch for the commit), to quantitatively
assess the effect of the heuristics.

5.3.5 RQ5: Scalability of BugBuilder

The performance of BugBuilder is important because we
should apply it to a large number of bug-fixing commits to
construct a large-scale and high-quality bug repository. To
investigate the performance and the scalability of Bug-
Builder, we depicted the quantitative relation between the
run time of BugBuilder and the size of involved commits.
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5.4 Results and Analysis

5.4.1 RQ1: Bug-Fixing Commits Often Contain

Bug-Irrelevant Changes

For each commit in Defects4J, we counted the size of the
commit (in lines) and the size of the associated concise
bug-fixing patch. The latter represents the size of bug-fix-
ing changes whereas the former represents the size of
whole changes, including both bug-fixing changes and
bug-irrelevant changes. Evaluation results are presented
on Table 1. From this table, we make the following
observations:

� Bug-irrelevant changes are common in bug-fixing
commits. On average, bug-fixing changes account
for only 63% of the changes made in bug-fixing
commits. In other words, 37%=1-63% of the changes
in bug-fixing commits are bug-irrelevant. All such
bug-irrelevant changes should be excluded from
bug-fixing patches. Consequently, taking the whole
bug-fixing commits as bug-fixing patcheswould result
in unconcise patches. Such unconcise patches, if
employedby the evaluation of bug-related approaches
(e.g., fault localization and program repair), could be
misleading.

� The ratio of bug-fixing changes to all changes in bug-
fixing commits varies significantly from project to
project. As suggested by the last column of Table 1,
the ratio varies from 96% (on project Jackson Data-
format XML) to 47% (on project Commons CSV).
One possible reason for the variation is that different
projects often pose different guidelines on how
patches should be committed.

To investigate how often bug-fixing commits contain
bug-irrelevant changes, we computed Pdiff in Section 5.3.1.
Our evaluation results suggest that 379 out of the 809 bug-
fixing commits contain bug-irrelevant changes, resulting in
a Pdiff ¼ 47% ¼ 379=809. The results suggest that simply tak-
ing the whole bug-fixing commits as bug-fixing patches
may frequently result in unconcise patches.

We conclude based on the preceding analysis that bug-
fixing commits often contain a large percentage of bug-
irrelevant changes. Consequently, we should exclude
such bug-irrelevant changes from bug-fixing patches to
guarantee the quality of bug-fixing patches.

5.4.2 RQ2: BugBuilder is Accurate

To answer RQ2, we applied BugBuilder to each of the bug-
fixing code commits in Defects4J and compared its gener-
ated patches against the manually constructed patches in
Defects4J. If the generated patch is identical to the corre-
sponding patch provided by Defects4J, we call it a matched
patch.

Table 2 presents the evaluation results. The first two col-
umns of the table specify the project names and the number
of bug-fixing commits in the projects. The third column
presents the number of patches generated by BugBuilder.
The fourth column presents the number of the matched
patches, i.e., generated patches that are identical to the man-
ually constructed ones in Defects4J. The precision and recall
of BugBuilder are presented in the last two columns. From
Table 2, we make the following observations:

� BugBuilder succeeded frequently. In total, it gener-
ated 350 bug-fixing patches from 809 bug-fixing
commits. Among them, 334 are identical to manually
constructed patches in Defects4J, which results in a
recall 41%=334/809.

� BugBuilder was highly accurate. Among the 350
automatically generated patches, 95%=334/350 are
identical to manually constructed ones in Defects4J.
Notably, on 6 out of the 16 projects, BugBuilder
achieves 100% precision, i.e., all patches generated
from such projects are both complete and concise.
Such a high precision (95%) guarantees that the
resulting bug repositories built with BugBuilder
could be highly reliable.

From the table, we also observe that 16 (=350-334) out of
the 350 patches generated by BugBuilder are different from
their corresponding patches in Defects4J. We call them mis-
matched patches because they do not match the benchmark
(manually constructed patches provided by Defects4J). To
investigate why they are different from the benchmark, we
manually analyzed such mismatched patches, referring to
the corresponding patches in Defects4J, associated bug
reports, and the associated code commits. Based on the
manual analysis, we observed that all of the 16 mismatched
patches are supersets of their corresponding reference
patches in Defects4J. Consequently, the reason for the mis-
match should be either (or both) of the following:

1) The patches generated by BugBuilder are complete
but not concise. In other words, they include some
bug-irrelevant changes as well as all bug-fixing
changes;

2) The manually constructed patches in Defects4J are
incomplete, i.e., they miss some bug-fixing changes
that appear in the patches generated by BugBuilder.

It is surprising that the patches automatically generated by
BugBuilder are often even better than manually constructed

TABLE 1
Bug-Fixing Changes Within Bug-Fixing Commits

Project Size of
Commits (N1)

Size of Bug-fixing
Changes (N2)

N2=N1

Jackson Dataformat XML 119 114 96%
Joda Time 264 242 92%
Commons Collections 38 29 76%
Commons Lang 689 516 75%
Commons JXPath 582 430 74%
Jackson Databind 2,104 1,508 72%
Gson 239 168 70%
Commons Codec 275 193 70%
Commons CLI 473 325 69%
Jsoup 1,163 777 67%
Jackson Core 485 307 63%
Commons Compress 602 372 62%
Commons Math 1,246 763 61%
Mockito 503 277 55%
Closure Compiler 4,108 2,111 51%
Commons CSV 119 56 47%

TOTAL 13,009 8,188 63%
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patches in Defects4J. Twelve out of the 16 mismatched
patches were manually confirmed as correct (i.e., both com-
plete and concise) whereas their corresponding patches in
Defects4J missed some bug-fixing changes (i.e., they were
incomplete). Counting in such 12 complete and concise
patches, the precision of BugBuilder increases to 99%=(334
+12)/350, and its recall increases to 43%=(334+12)/809. We
will take these updated precision and recall as the baseline in
the following evaluation (e.g., in Sections 5.4.3 and 5.4.4). We
observe that its precision (99%) is even higher than the experts
who manually constructed the Defects4J patches: On the 350
commits where BugBuilder generates patches, BugBuilder
generates only 4 unconcise patches whereas the experts
resulted in 12 incomplete patches.

The first and the foremost reason for incomplete patches
in Defects4J is that fixing a bug may require duplicate (or
highly similar) changes in multiple places (e.g., multiple
documents) but human experts missed some places. Listing
6 presents a typical example. This is a bug-fixing commit
from Apache Commons Codec [61], and the associated bug
report is publicly available online [62]. As the bug report
explains, the return statements return new String(bytes, Char-
sets.xxx) in a sequence of newStringxxx methods (Lines 7, 13,
19, 25, and 31) could not handle null input, and thus they
should be replaced with return newString(bytes, Charsets.
xxx). However, the patch in Defects4J [63] contains only the
changes in one of the methods (i.e., the first method in List-
ing 6), and thus it is incomplete. In contrast, our approach
successfully generates the complete patch containing all of
the similar changes in all newStringxxxmethods.

Another reason for the incomplete patches in Defects4J is
that they ignore the required changes inmethod declarations
and/or variable declarations. Listing 7 presents a typical
example. The associated commit comes from Apache Com-
mons CSV [64], and the associated bug report is publicly
available online [65]. The manually constructed patch pro-
vided by Defects4J is publicly available at [66]. As the bug
report explains, CSVFormat with header does not work with
CSVPrinter. To fix the bug, the developers added the whole if
statement (Lines 25-27) to print the header if it is not null.

Listing 6. Duplicate Changes in Multiple Places Ignored
by Human Experts

Notably, the method declaration of printRecord explicitly
specifies that it has the potential to throw IOException. Conse-
quently, inserting an invocation of this method (Line 16)
forces the enclosing method (and its caller, method print on
Line 6) to explicitly specify the IOException in their method
declarations (Line 7 and Line 17). Otherwise, the revision
would result in compiler errors. However, the patch in

TABLE 2
Precision and Recall of BugBuilder

Project Bug-fixing Commits Generated Patches Matched Patches Precision Recall

Commons CLI 39 19 19 100% 49%
Closure Compiler 174 70 68 97% 39%
Commons Codec 18 12 10 83% 56%
Commons Collections 4 1 1 100% 25%
Commons Compress 47 25 24 96% 51%
Commons CSV 16 10 9 90% 56%
Gson 18 9 8 89% 44%
Jackson Core 26 10 10 100% 38%
Jackson Databind 112 36 35 97% 31%
Jackson Dataformat XML 6 2 2 100% 33%
Jsoup 93 42 38 90% 41%
Commons JXPath 22 7 6 86% 27%
Commons Lang 64 31 29 94% 45%
Commons Math 106 46 45 98% 42%
Mockito 38 19 19 100% 50%
Joda Time 26 11 11 100% 42%

TOTAL 809 350 334 95% 41%
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Defects4J ignores such changes in method declarations, and
thus it is incomplete. In contrast, our approach generated the
complete patch including the changes inmethod declarations.

Listing 7. Throw Statements Ignored by Human Experts

To investigate why BugBuilder generated four unconcise
patches, we manually analyzed such bug-fixing commits,
the associated bug reports, and the generated patches. Our
analysis results suggest that all of the 4 unconcise patches
were created because the leveraged refactoring-mining tool
missed some refactorings in the involved code commits. As
a result, the uncovered refactorings were taken as a part of
the bug-fixing patches generated by BugBuilder, which in
turn resulted in unconcise patches.

Listing 8 presents a typical example. This example comes
from Google Gson [67]. The associated bug report is publicly
available online [68]. The bug report complains that the
method (more specifically, the return statement on Line 19)
would result in null pointer exceptions when typeAdapter is
null. To fix the bug, developers inserted an if statement (Line
20) to validate that typeAdapter is not null. The patch pro-
vided by Defects4J [69] is composed of two changes only:
Line 20 and Line 22. Other changes are ignored. In contrast,
our approach takes all of the changes in the listing as bug-fix-
ing changes. One possible rationale for Defects4J to exclude
other changes from the patch is that they could be taken as
refactorings: decomposing statement return typeAdapter.null-
Safe(); (Line 19) into two statements typeAdapter=typeAdapter.
nullSafe(); on Line 21 and return typeAdapter on Line 23.
Because variable typeAdapter would not be used anywhere

after the return statement (Line 23), it could be used as a tem-
porary variable safely. As a result of the usage, the keyword
final (Line 9) should be removed from the declaration of vari-
able typeAdapter because it is assigned/changed on Line 21
as a temporary variable. Wewill not argue that such changes
should not be taken as refactorings. However, it is a rather
complex and unusual extract variable refactoring (if it is)
because an extract variable refactoring usually defines a new
variable instead of employing an existing variable temporar-
ily. Such unusual refactoring is beyond the capability of the
state-of-the-art refactoring mining tools. Consequently, Bug-
Builder failed to recognize this refactoring and thus took all
of the changes as bug-fixing changes.

Listing 8. Imperfect Patch Caused by Undiscovered
Refactorings

While the example in Listing 8 illustrates how unusual
refactorings affect BugBuilder, the example in Listing 9
illustrates how BugBuilder is affected by unsupported
refactorings. The bug-fixing commit in Listing 9 comes from
Google Closure Compiler [70] and the associated bug report
is available at [71]. The bug-fixing changes include the
changes on the while condition (Lines 11-13) and the if state-
ment (Lines 18-21). Such changes are included in both the
automatically generated patch and the manually con-
structed Defects4J patch. However, other changes, i.e., mov-
ing the declaration of local variables (parameter and
argument) from the interior of the while iteration (Lines 15
and 16) to the outside of the while iteration (Lines 7-8), are
not taken by Defects4J as bug-fixing changes because they
should be taken as refactorings: The movement would not
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change the functionality of the method but improves its per-
formance by avoiding the repeating definition of the same
variables. However, this kind of refactorings is not yet sup-
ported by the refactoringmining tool that is leveraged byBug-
Builder. Consequently, BugBuilder failed to remove such
refactorings from its generated patches. Notably, it remains
controversial whether the refactorings should be excluded
from the patch because without such refactorings it is impos-
sible to use variable parameter in the while condition (as the
patch does). However, in this paper, we conservatively take it
as a false positive of BugBuilder to avoid controversies.

Listing 9. Imperfect Patch Caused by Unsupported
Refactorings

In Section 4.4, we exclude such potential patches that fail
all potential triggering test cases. To validate whether it is
practical to exclude all potential patches that fail at least one
potential triggering test case, we change the filtering condi-
tion and repeat the evaluation. Our evaluation results sug-
gest that this new setting reduces the performance of the
proposed approach: The number of generated correct
patches is reduced from 346 to 335, and the precision is
reduced slightly from 98.9% to 98.5%.

Based on the preceding analysis, we conclude that Bug-
Builder is highly accurate with a precision of 99%. It also
achieved a reasonable recall of 43%, which suggests that
it can automatically and accurately extract both complete
and concise bug-fixing patches from around half of the
bug-fixing commits.

5.4.3 RQ3: Refactoring Detection and Reapplication

Improves Recall by 10%

Refactoring detection and reapplication as introduced in Sec-
tion 4.2 is an important part of the proposed approach. To
investigate its importance, we disabled it and repeated the

evaluation as specified in Sections 5.3.2 and 5.4.2. Our eval-
uation results are presented in Fig. 2 where default setting
means that all components (including refactoring detection
and reapplication) of the proposed approach were enabled.

From Fig. 2, we make the following observations:

� First, refactoring detection and reapplication has a
significant positive impact on the recall of Bug-
Builder. Enabling it substantially improves both the
number of generated patches and the number of cor-
rect patches. The number of correct patches gener-
ated by the proposed approach was increased from
319 to 346. As a result, enabling the refactoring detec-
tion and reapplication improved the recall of Bug-
Builder from 39% to 43%, resulting in a substantial
increase of 10%=(43%-39%)/39%.

� Second, refactoring detection and reapplication has lit-
tle impact on the precision of BugBuilder. We notice
that the precision keeps stable (99% � 346=350 �
319=323) regardless of the changes in the setting. A
possible reason for the stable precision is that the other
components of the approach can exclude incomplete
and unconcise patches. As a result, the proposed
approach can reach a high precision regardless of the
refactoring detection and reapplication.

Detecting and reapplying refactoring can improve the
recall of the proposed approach because bug-fixing commits
often contain refactorings. With the help of RefactoringMiner,
we have discovered refactorings from 192 out of the involved
809 bug-fixing commits.We call such commits refactoring-con-
taining commits. Eighty-three out of the 192 refactoring-con-
taining commits contain no refactorings except for the
supported refactorings that the current implementation of our
approach can identify and reapply. From these 83 commits,
BugBuilder successfully generated 27 complete and concise
patches. Disabling the detection and reapplication of refactor-
ing, however, made the proposed approach miss all such
patches. A simple and intuitive alternative approach for Bug-
Builder is to take the whole bug-fixing commit as a patch if
and only if the bug-fixing commit does not contain any refac-
torings (not limited to the eight categories of refactorings sup-
ported by the current implementation of BugBuilder). We call
this alternative approach refactoring-based approach.
It would generate 617=809-192 patches from 809 bug-fixing
commits in Defects4J. However, up to 217 out of the 617
patches are unconcise, i.e., containing non-refactoring bug-
irrelevant changes, like implementation of new features. As a
result, its precision 65%=1-217/617 is significantly lower than
that (99%) of BugBuilder. Such a low precision makes it

Fig. 2. Impact of refactoring detection and replication.
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unsuitable for automated construction of high-quality bug
repositories.

Based on the preceding analysis, we conclude that
detecting and reapplying refactorings improved recall of
BugBuilder substantially by 10% whereas its precision
was unchanged.

5.4.4 RQ4: Patch Selection is Highly Accurate

To answer RQ4, we identified all cases where the patch
selection was activated, and compared the selected patches
against the benchmark in Defects4J. Notably, the patch
selection was activated if and only if BugBuidler generated
more than one candidate patches for a single commit and
BugBuidler exploited the heuristics (as specified in Sec-
tion 4.5) to select the correct patch from them.

Our evaluation results are presented in Table 3. From this
table, we observe that the patch selection had been activated
on 66 bug-fixing commits, resulting in 26 selected bug-fixing
patches. We also notice that all of the selected patches were
identical to those in Defects4J, suggesting that the accuracy
of the patch selection had a high accuracy of 100%. All such
results suggest that the employed selection strategies are
highly reliable.

We also disabled the patch selection and repeated the
evaluation on bug-fixing commits collected by Defects4J.
Notably, when patch selection was disabled, BugBuilder
generated bug-fixing patch for a bug-fixing commit if and
only if it generated exactly a single candidate patch from
the commit. Our evaluation results are presented in Fig. 3
where default setting enabled the patch selection. From this
figure, we make the following observations:

� First, the patch selection substantially improved the
success rate (i.e., recall) of BugBuilder by 8%. With-
out the patch selection, BugBuilder generated 320
correct patches. Enabling the patch selection improved
the number to 346. As a result, the number of the cor-
rect patches (and the recall of BugBuilder as well) was
improved substantially by 8%=(346-320)/320.

� Second, the patch selection did not reduce the preci-
sion of BugBuilder. The patch selection was highly
accurate, and all of the selected patches were correct.
Consequently, it did not result in any negative impact
on the overall precision of the proposed approach.

We conclude based on the preceding analysis that patch
selection substantially improved the recall of BugBuilder
by 8% without any negative effect on its precision.

5.4.5 RQ5: Scalability

Fig. 4 (histogram with a trendline) depicts the relationship
between the size of bug-fixing commits and the run time of
BugBuilder on such commits. Notably, BugBuilder termi-
nates when its run time reaches the upper limit (40 minutes
on a single commit) to avoid extensive execution on a few
big commits. The evaluation is conducted on a personal
computer with Intel Core i9, 16GB RAM, and Mac OS.

From Fig. 4, we observe that the run time increased signif-
icantly when the commit size increased. Around 34% of the
commits ran out of themaximal time slot. We also notice that
BugBuilder efficiently handled bug-fixing commits that con-
tain up to thirty lines of changes. By increasing the maximal
time slot (40minutes at present) for each commit, BugBuilder
has the potential to handle larger commits in the future.

Detecting and reapplying refactorings improved not only
the recall of the proposed approach, but also the efficiency
of the approach. In total, the proposed approach (Bug-
Builder) reapplied refactorings on 83 commits, and its aver-
age run time on such commits was 21 minutes. We disabled
the detection and reapplication of refactorings, and reap-
plied BugBuilder to such commits. The average run time on
such commits was not reduced. Instead, it was surprisingly
increased by 24%=(26-21)/21. A possible reason is that
removing refactorings from the commit (via refactoring
detection and reapplication) would reduce the size of search
space for potential patches, and thus reduce the time in
searching for the correct patches.

Based on the preceding analysis, we conclude that Bug-
Builder is scalable, and most of the commits could be
handled within 40 minutes. Detecting and reapplying
refactorings have a substantial contribution to the perfor-
mance of the proposed approach.

5.5 Threats to Validity

A threat to external validity is the limited size of the evalua-
tion data, i.e., bug-fixing commits. In the evaluation, we eval-
uated BugBuilder on 809 bug-fixing commits collected by
Defects4J. Special characteristics of such commits may have
biased the conclusions of the evaluation. The commits were
selected because Defects4J provided manually constructed
concise patches that exclude bug-irrelevant changes. As a
result, we could leverage such patches as the ground truth to

TABLE 3
Patch Selection

Metrics Value

Number of Activations 66
Number of Selected Patches 26
Number of Correct Selection 26
Number of Incorrect Selection 0
Accuracy 100%

Fig. 3. Impact of patch selection.
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evaluate the quality of the patches generated by the proposed
approach. To the best of our knowledge, Defects4J was the
only bug repository that providedmanually constructed con-
cise patches for real-world bugs in open-source applications.
That is the reason why the evaluation was confined to the
bug-fixing commits in Defects4J. To reduce the threat, how-
ever, we should evaluate the proposed approach with more
bug-fixing commits in the future.

A threat to construct validity is that the evaluation
requested manual checking of the generated patches (and
patches in Defects4J) whereas manual checking could be
inaccurate. During the evaluation, we manually checked
the generated patches and their corresponding patches in
Defects4J when they did not match each other, to figure
out which of them were incorrect. Such manual checking
could be biased and inaccurate. Herbold et al. [31] con-
ducted a large-scale empirical study on tangled bug-fixing
commits. They requested multiple participants to manu-
ally identify bug-fixing changes within such bug-fixing
commits. However, their evaluation results suggest that
more than ten percentages of the changed lines are hard
to label: Participants failed to reach consensus on such
changes. It may suggest that sometimes manual labeling
of the patches could be debatable. To reduce the threat,
we presented typical examples in Section 5.4.2, and made
all of the manually checked patches publicly available
at [72].

Another threat to construct validity is that the evaluation
was based on an unverified assumption that a generated
patch is correct if it is identical to that constructed by
experts (stored in Defects4J). However, as discussed in Sec-
tion 5.4.2, human experts may also make incorrect (espe-
cially incomplete) patches occasionally, and thus it could be
risky to say that a generated patch is deemed correct if it is
identical to the manually constructed patch.

6 GROWINGBUGS: A BUG REPOSITORY BUILT

WITH BUGBUILDER

In this section, we build a bug repository with BugBuilder.
On one side, it may further validate the usefulness of the
proposed approach. On the other side, it may provide a
new benchmark for bug-related research.

6.1 Design and Principle

One of the fundamental principles in designing Growing-
Bugs is that the new bug repository should reuse the APIs
of Defects4J. We notice that Defects4J represents the state of
the art in this field, and has been widely employed. Conse-
quently, inheriting its commonly used APIs could signifi-
cantly facilitate the users of Defects4J to take advantage of
GrowingBugs.

The second principle is that the construction (of the new
repository) should not involve intensive human interven-
tion.We should automate asmany steps (of the construction)
as possible. At the same time, however, the data (especially
the bug-fixing patches) should be highly accurate.

Finally, we should collect bugs from various real-world
applications. Such applications should come from different
domains and be developed by different developers/compa-
nies. Extracting bugs from a small number of applications
may reduce the diversity of the resulting bug repository.
Limited application domains and a limited number of
involved developers/companies may also have a negative
impact on the diversity of the bug repository.

6.2 Process

Fig. 5 specifies how we construct GrowingBugs. On the first
step, we retrieve bug-fixing commits from version control
system (GitHub) according to both commit messages and
bug tracking systems (or subsystems) including Google-
Code [73], Jira [74], GitHub [75], SourceForge [76] and Bug-
zilla [77]. Similar to existing work [16], [17], [37], we only
retrieve these commits whose commit messages contain
bug report IDs that could be retrieved from the associated
bug tracking systems. Notably, we should list all projects to
be exploited before we can start the automated construction.
To this end, we add all Java projects from Apache Software
Foundation to the list because most of the projects in
Defects4J come from Apache community. Besides that, we
also add to the list some popular Java applications that are
collected automatically from Github. The final list contains

Fig. 4. Scalability of the approach.

Fig. 5. Constructing GrowingBugs with BugBuilder.
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1,214 Java projects. For each of the selected projects, we
manually specify the URL to its bug tracking system.

For each of the resulting bug-fixing commits, we auto-
matically locate the configuration and download the third-
party libraries requested by the commit. Notably, it is likely
that the compilation results in errors because of various rea-
sons, e.g., missing libraries and syntactic errors. In this case,
we employ a sequence of heuristics to fix the errors. For
example, if the specified version of a library is missing, we
automatically replace it with the following new versions,
expecting some of them can remove the compilation error.
Another example is to replace the explicitly specified JDK
version with the latest one. Only if the two successive ver-
sions (i.e., Vbuggy and Vfixed) associated with a bug-fixing
commit are compilable, the bug commit could be exploited
to build the bug repository. Otherwise, it is discarded.

Because BugBuilder depends on triggering test cases to
extract concise and complete bug-fixing patches, we should
exclude such commits that are not associated with trigger-
ing test cases. To this end, we run the test cases in Vfixed,
identify all passed test cases, and validate whether any of
them fail on the older version Vbuggy. If not, the commit is
discarded. Otherwise, the commit could be fed into Bug-
Builder to extract the concise bug-fixing patch. If Bug-
Builder succeeds in extracting the patch for the commit, we
add the commit as well as the extracted concise patch to the
repository (i.e., GrowingBugs).

Notably, many of the selected projects were discarded
without activating BugBuilder because of the following rea-
sons. First, many of the projects could not be compiled or
executed successfully, and thus they could not be handled
by Defects4J’s framework. Second, many of them do not
employ bug tracking systems, and thus Defects4J and Bug-
Builder cannot identify bug-fixing commits from them.
Third, many bug-fixing commits do not contain any poten-
tial triggering test cases, and thus they were filtered out by
Defects4J’s framework. If we failed to retrieve (with the
help of Defects4J’s framework) any bug-fixing commits
from a project, the project was discarded. For the preceding
three reasons, 952 out of the 1,214 selected projects have
been discarded, and only 262 project have been fed into
BugBuilder to extract concise patches.

6.3 Results

After months of construction, we built a bug repository of
1,491 real-world bugs and their concise patches. An over-
view of the repository is presented in Table 4. Number of

bugs is the total number of bugs in the repository. Number of
projects is the number of Java projects from which the bugs
were extracted. Size of source code is the size of the the buggy
projects within the bug repository. Size of buggy code is the
number of buggy code lines that are removed or updated
by the bug-fixing patches in the repository. Total size of
patches is the total number of source code lines that are
removed, updated, or inserted by the patches in the reposi-
tory.Number of triggering test cases is the total number of trig-
gering test cases in the repository.

GrowingBugs covers 169 open-source applications and
most of such applications are well-known and widely used
in the industry. We also notice that such applications cover
various domains, including (but not limited to) mathemati-
cal computing, image processing, document processing,
graphical user interface, compilation, network, middleware,
web, data mining, mobile computing, and resource manage-
ment. Covering a large number of widely used applications
from various domains may improve the diversity of the
bugs in the repository.

We also notice that the number of bugs from a single
application varies significantly from application to applica-
tion. While Closure Compiler contains 174 bugs, up to 56
applications contain only a single bug. Notably, the number
of bugs from a single application could be influenced by
various factors, e.g., the size of the application and the evo-
lutionary history of the application. Besides, it is also signifi-
cantly influenced by the employed process of bug tracking
and resolving, i.e., how often bug reports are recorded in
bug tracking systems and how often bug fixing patches are
accompanied by triggering test cases.

6.4 Challenges and Limitations

The most challenging part of the construction was to make
involved applications compilable. It was very often that the
specified version of the application resulted in compilation
errors. However, it remained challenging to fix such errors
automatically although we have proposed a sequence of
heuristics to fix them (as specified in Section 6.2). As a result,
a large percentage of bug-fixing commits were discarded.

Another challenge was that bug-fixing commits might
not contain triggering test cases that could be leveraged to
verify the corresponding patches, or the test cases did not
cover all bug-fixing changes. As a result, BugBuilder cannot
extract concise patches from such commits.

One of the limitations of the proposed approach is that it
relies on bug tracking systems whereas many open-source
applications do not employ bug tracking systems at all or
rarely used them. According to our experience in the con-
struction of GrowingBugs, less than ten percentages of the
applications in GitHub frequently employed professional
bug tracking systems (e.g., Bugzilla and Jira) to track soft-
ware bugs. Some applications employed GitHub to track
issues but failed to explicitly distinguish bug reports from
other issues, which also prevented BugBuilder from extract-
ing bug-fixing commits for such applications.

We conclude based on the preceding analysis that Bug-
Builder could be employed to build bug repositories
although some technical and non-technical challenges are
preventing it from reaching its maximal potential. Future
research is required to resolve such challenges.

TABLE 4
Resulting Bug Repository

Metrics Value

Number of Bugs 1,491
Number of Projects 169
Size of Source Code (LOC) 87,467,254
Size of Buggy Code (LOC) 3,934
Total Size of Patches (LOC) 14,881
Minimal Size of Patches (LOC) 1
Maximal Size of Patches (LOC) 196
Number of Triggering Test Cases 3,160
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7 DISCUSSION

7.1 It is Critical to Detect and Reapply Refactorings

Bug-fixing commits may contain three categories of changes:
bug-fixing changes, refactorings, and functionality-related
bug-irrelevant changes (e.g., implementation of new fea-
tures). If a bug-fixing commit contains bug-fixing changes
only (called pure bug-fixing commit), BugBuilder has the
potential to extract the patch (that is equivalent to the whole
commit) by generating and validating potential patches. If a
bug-fixing commit contains both bug-fixing changes and
refactorings (but no functionality-related bug-irrelevant
changes), BugBuilder leverages the Refactoring Detection
and Reapplication (RDR for short) to turn the commit into a
pure bug-fixing commit, and then extracts a patch from it.
Notably, 24%=192/809 of the bug-fixing commits in
Defects4J contain refactorings, which quantitatively suggests
the importance of RDR (Section 4.2). RDR has the potential to
rescue such commits that otherwise are deemed to be
missed. However, the current implementation of BugBuilder
supports only eight categories of refactorings, which pre-
vents RDR from reaching its maximal potential: It improved
recall by 10% only in the evaluation. Supporting all refactor-
ings in the futuremay result in further improvement.

Another significant benefit of RDR is that it improves the
efficiency of the proposed approach. Excluding refactorings
significantly reduces the size of commits, and thus reduces
the number of potential patches. Evaluation results in Sec-
tion 5.4.5 suggest that disabling RDR increased BugBuilder’s
run time by 24% on refactoring-contained commits.

7.2 Extremely High Precision vs Fairish Recall

We prefer high precision to high recall in extracting bug-fix-
ing patches although both of them are desirable. Only if the
proposed approach achieves an extremely high precision,
we can guarantee the quality of the bug repositories built
with the proposed approach. Our evaluation results in Sec-
tion 5 confirm that the proposed approach achieved a high
precision of 99%, and the automatically generated patches
were comparable to (and sometimes better than) patches
manually constructed by human experts. That is the reason
why we leveraged it to build GrowingBugs.

Notably, a fairish recall (43%) of the proposed approach
is acceptable because it could be remedied by applying the
proposed approach to more bug-fixing commits. There are
massive bug-fixing commits available online, e.g., GitHub.
However, improving the recall of the proposed approach
would increase the size (and thus the diversity) of the bug
repository built by the proposed approach. Consequently,
any improvement on the recall is highly desirable if it man-
ages to maintain the precision of the proposed approach.

7.3 Controversy in Isolation of Refactorings

The empirical study conducted recently by Herbold et al.
[31] suggests that sometimes different participants cannot
reach consensus on which changes are bug-irrelevant (and
thus should be isolated from the bug-fixing patches). It may
suggest that controversy is almost inevitable in labelling
patches. Whether refactorings should be excluded from
bug-fixing patches is a typical controversy in labeling of
bug-fixing commits. On one side, the the isolation of bug-

irrelevant changes from bug-fixing commits (as the authors
of Defects4J did) may influence the performance of auto-
mated program repair tools [78]. We take the patch in List-
ing 10 as an example to illustrate the impact. Developers
have extracted the expression ”compiler.getCodingConven-
tion()” as a new variable ”convention” (Line 12) and
replaced the original expression (Line 14) with the variable
(Line 15). It is a typical extract variable refactoring, and thus
such changes are isolated from the final bug-fixing patch by
BugBuilder. The other changes (i.e., changes on Lines 20-22)
fix the bug, and thus they constitute the bug-fixing patch.
To fix the bug, APR tools should only synthesize the if state-
ment (Line 20-22). However, if we do not isolate the extract
variable refactoring from the patch, APR tools should either
synthesize all changes on Lines 12, 14-15, and 20-22, or to
synthesize the if statement (Line 20-22) where direct vari-
able access ”convention” on Line 20 should be replaced
with more complex expression ”compiler.getCodingCon-
vention()”. In any case, however, the patch to be synthe-
sized becomes more complex, which may reduce the chance
for APR tools to succeed.

Listing 10. Excluding Refactorings May Influence Pro-
gram Repair and Fault Localization

On the other side, however, failing to isolate refactorings
from patches may have significant impact on the perfor-
mance of fault localization tools. To assess the performance
of fault localization tools, we usually identify faulty code
according to bug-fixing patches: Source code removed or
changed by the patches is faulty. Such faulty code serves as
the ground truth in assessing the performance of fault local-
ization tools. For the example in Listing 10, if we do not
remove the extract variable refactoring (Lines 12, 14, and 15)
from the patch, Line 14 would be tagged as faulty code and
thus fault localization tools that locate this line would be
counted as ”successful”. However, this line (Line 14) is in
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fact bug-free and thus it is incorrect for fault localization
tools to locate this line.

The conflicting impact of the isolation as explained in the
preceding paragraphs makes it difficult to build a perfect
bug repository. As a compromise, if the patches extracted
by BugBuilder exploit methods or variables created by
extract method refactorings or extract variable refactorings
that have been excluded from the patches, we create alterna-
tive patches for them and let users to decide which patches
should be used. For patches exploiting extracted methods,
we create their alternative patches by adding the whole
extract method refactorings to the patches. For patches
exploiting extracted variables, we create their alternative
patches by replacing the accesses to the extracted variables
with the equivalent expressions. For the example in List-
ing 10, the alternative patch is presented in Listing 11. The
access to extracted variable ”convention” on Line 20in List-
ing 10 has been replaced with the original expression
”compiler.getCodingConvention()” on Line 9 in Listing 11.
Notably, Lines 12, 14, and 15 in Listing 10 are part of the
extract variable refactoring, but they are not included by the
alternative patch because they are not directly connected to
the patch.

Listing 11. Alternative Patch

7.4 Limitations

During the evaluation introduced in Section 5, BugBuilder
failed on around 57% of the bug-fixing commits for various
reasons. BugBuilder works on a bug-fixing commit only if

� The commit is composed of bug-fixing changes only,
or

� The commit is composed of only bug-fixing changes
and refactorings.

However, BugBuilder may fail when the commit con-
tains functionality-related bug-irrelevant changes, e.g.,
implementation of new features, which has a significant
negative impact on the usability of the proposed approach.
Take the bug-fixing commit in Listing 7 as an example to
explain why it is so challenging to distinguish bug-fixing
changes from functionality-related bug-irrelevant changes.
Adding the functionality to print headers of CSVFormat is
taken as a bug-fixing action there. However, it could be
taken as an implementation of a new feature (printing herd-
ers of CSVFormat) as well if this functionality has not been
specified in the original requirements. Consequently, it is
challenging (even for human experts) to distinguish bug-

fixing changes from other functionality-related changes
without the help of requirements and bug reports. How-
ever, automatic and accurate comprehension of require-
ments and bug reports in plain texts remains challenging,
let alone requirements that are often unavailable. Most of
the bug-fixing commits where BugBuilder failed to contain
functionality-related bug-irrelevant changes, and this is the
major reason for the low recall of BugBuilder.

BugBuilder may also fail even if a given commit only
contains bug-fixing changes and refactorings. Notably, if
the refactorings within the commit are only applicable after
the bug-fixing changes, existing refactoring mining tools
like RefactoringMiner [32] cannot identify such refactorings
by comparing the fixed version (vn) and the original buggy
version (vn�1). For example, if developers insert a fragment
of source code to fix a bug, and then apply extract method
refactoring to extract the inserted source code as a new
method, RefactoringMiner cannot identify the extract method
refactoring because the extracted source code is not avail-
able in the original buggy version. As a result, BugBuilder
would fail to split the commit accurately into a refactoring
patch and a following bug-fixing patch. If the refactorings
are required by the bug fix (and thus applied before the fix)
or independent of the fix (and thus could be applied before
the fix), BugBuilder has the potential to split the bug-fixing
commit into a refactoring patch and its following bug-fixing
patch.

Although BugBuilder succeeded on only 43% of the bug-
fixing commits, it enables automatic construction of large
bug-patch repositories for the following reasons. First, Bug-
Builder is automated with extremely high precision. Sec-
ond, BugBuilder is not biased by the types of bugs, but
affected by only whether the fixes are mixed with other
functionality-related changes. Finally, there are many open-
source projects to be exploited. Applying BugBuilder to
such projects automatically could significantly increase the
size of bug repositories.

7.5 Further Improvement on Recall

In theory, BugBuilder should be able to generate complete
and concise patches for all pure bug-fixing commits (with-
out any bug-irrelevant changes). However, BugBuilder suc-
ceeded on only 281 out of the 400 pure bug-fixing commits
(called pure commits for short) in Defects4J. The major reason
for the failure is the setting of the maximal time slots:
71%=84/119 of the failed pure commits ran out of the maxi-
mal time slots. Increasing the time slots may improve the
recall in the future.

Another reason for the failure is the redundancy of some
patches. The patch in Listing 12 is a good example where
potential redundancy prevents the proposed approach from
extracting the correct patch. This example comes from Lang
and the manual patch provided by Defects4J is publicly avail-
able at https://github.com/rjust/Defects4J/blob/master/
framework/projects/Lang/patches/52.src.patch The patch
inserts four lines of source code (i.e., Lines 19-22) to handle a
special case where ch=‘/ ’. We agree with Defect4J that all of
the changes on the four lines are bug-fixing changes. How-
ever, rejecting some changes (i.e., changes on Lines 21-22) of
the patch would not change the semantics of the program:
Removing Line 22 means that the program will enter the
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following default branch where ’out.write(ch)’ (Line 24)
would be executed. We also notice that ch=‘/ ’ (Line 19), and
thus ’out.write(ch)’ (Line 24) is equivalent to the removed
statement ’out.write(’/’)’ (Line 21). Consequently, removing
Lines 21-22 (resulting in a new candidate patch) happens to
keep the semantics of the program. However, BugBuilder
was confused by such a case where multiple patches are
semantically equivalent.

Listing 12. Potential Redundancy in Patches

Improving the implementation of the proposed approach
to support additional categories of refactorings may also
significantly improve recall in future. Notably, 57%=109/
192 of the refactoring-containing commits in Defects4J con-
tain some refactorings unsupported by the current imple-
mentation. Consequently, supporting all such refactoring in
future has the potential to double the effect of RDR that cur-
rently improves recall by 10%.

8 CONCLUSIONS AND FUTURE WORK

Bug-related research extensively depends on large-scale
and high-quality repositories of real-world bugs. However,
existing approaches to building such repositories either fail
to exclude bug-irrelevant changes from patches or require
extensive human intervention. To this end, in this paper, we
propose a novel approach, called BugBuilder, to extracting
complete and concise patches from bug-fixing commits
automatically. BugBuilder excludes refactorings by auto-
matic detection and reapplication of refactorings. On the
resulting refactoring-included version, BugBuilder gener-
ates all potential patches and validates them with test cases.
If only a single potential patch for a bug-fixing commit
passes the validation, BugBuilder presents it as a patch for
the associated bug report. If more than one potential patch
pass the validation, BugBuilder employs a sequence of heu-
ristic rules to select the most likely one from them. Bug-
Builder has been evaluated on 809 bug-fixing commits in
Defects4J. Our evaluation results suggest that it successfully
generated complete and concise patches for more than forty

percent of the bug-fixing commits, and its precision was
even higher than human experts. With the help of Bug-
Builder, we also built GrowingBugs, a large-scale and high-
quality repository of real-world bugs. The resulting bug
repository could serve as a publicly available benchmark
for bug-related research.

We have released both BugBuilder and GrowingBugs on
GitHub to facilitate both replications of the evaluation and
potential third-party reuse. Although GrowingBugs is a
generic Java bug repository, it is practical and meaningful
in future to build repositories of bugs in specific domains or
planform, e.g., real-world bugs in mobile applications and
real-world bugs in machine learning applications. We also
plan to host bug-related competitions, e.g., fault localization
and program repair, based on our bug repository. Finally, it
could be potentially fruitful to support additional refactor-
ing types and to exploit additional strategies to fix compila-
tion errors in subject applications.
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