
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 9, NO. 4, NOVEMBER 2013 2147

Enterprise Information Systems
Architecture—Analysis and Evaluation

Nan Niu, Member, IEEE, Li Da Xu, Senior Member, IEEE, and Zhuming Bi, Senior Member, IEEE

Abstract—Numerous software architecture proposals are avail-
able to industrial information engineers in developing their
enterprise information systems. While those proposals and corre-
sponding methodologies are helpful to engineers in determining
appropriate architecture, the systematic methods for the evalu-
ation of software architecture are scarce. To select appropriate
software architecture from various alternatives appropriately, a
scenario-based method has been proposed to assess how software
architecture affects the fulfillment of business requirements. The
empirical evaluation on the selection of a supply chain software
tool has shown that the developed method offers remarkable
insights of software development and can be incorporated into the
industrial informatics practice of an organization with a moderate
cost.

Index Terms—Enterprise information systems, industrial in-
formatics, software architecture, scenario-based method, system
evaluation.

I. INTRODUCTION

I NFORMATION TECHNOLOGY (IT) plays a dominant
role in today’s industrial automation. For example, in

designing a controlled drive system, an engineer working in
the 1980s would deal primarily with mechanical and electronic
components, whereas 90% of today’s engineering time is
devoted to the tasks on information systems [1]. Enterprise
Information Systems (EISs) are the key IT assets for industrial
enterprises to organize, plan, schedule, and control their busi-
ness processes [2]. In particular, for supply chain management,
EISs have become critical enablers for modern enterprises
to streamline processes and achieve effectiveness, efficiency,
competency, and competitiveness of the material flow. An
essential component of an EIS is software architecture. Soft-
ware architecture describes a set of system components as
well as their topological relations in an EIS [3]. An advantage
of architecture analysis lies in the early decisions about a

Manuscript received November 08, 2012; revised December 01, 2012; ac-
cepted December 21, 2012. Date of publication January 11, 2013; date of cur-
rent version October 14, 2013. Paper no TII-12-0762.
N. Niu is with the Department of Computer Science, Mississippi State Uni-

versity, MS 39762 USA (e-mail: niu@cse.msstate.edu).
L. D. Xu is with the State Key Laboratory of Synthetical Automation for

Process Industries, Northeastern University, Shenyang 110819, China, and also
with the Shanghai Jiao Tong University, Shanghai 200052, China, and also with
the Department of Information Technology and Decision Sciences, Old Do-
minion University, Norfolk, VA 23529 USA (e-mail: lxu@odu.edu).
Z. Bi is with the Department of Engineering, Indiana University Purdue Uni-

versity Fort Wayne, Fort Wayne, IN 46805 USA (e-mail: biz@ipfw.edu).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TII.2013.2238948

software system’s high level design [4]. Due to the importance
of software architecture, the study in this field is emerging.
Researchers have recently proposed many software architec-

ture descriptions to accelerate industrial applications [5]. These
descriptions can be classified into domain-specific EISs [6], dis-
tributed real-time control [7], [8], embedded and dependable
systems [9], [10], agent platforms [11], [12], and service-ori-
ented architecture [13], [14]. In designing and implementing
an EIS, software architecture must support the key business
drivers; these drivers are also referred to as quality attributes or
non-functional requirements (NFRs). Such a support is aligned
with the enterprise missions and adds value to the system level
[3]. As a proof-of-concept, existing architecture only supports
single NFR, e.g., extensibility [8], fault tolerance [9] and so on.
When selecting software architecture for an EIS, industrial

engineers need to consider multiple and often conflict NFRs.
For example, a system’s flexibility and real-time performance
are conflicted with each other and must be balanced in soft-
ware development [12]. Despite the increasing number of the
proposals of software architecture options, fewer methods are
available to evaluate software architecture against the require-
ments of a specific application. This has caused a hurdle in de-
veloping an EIS since the objectives of software architecture
must be simultaneously considered to meet the requirements of
today’s IT-driven industrial automation. To select software ar-
chitecture, a user-oriented method has been proposed to eval-
uate software architecture choices [15]; key NFRs are reviewed
and the quality attribute scenarios are leveraged to assess the
degree to which software architecture choices have influenced
the fulfillment of the NFRs.
The reported work has been motivated to assist and sup-

port engineers in understanding the strengths and weaknesses
of software architecture. This understanding will guide the
selection of an EIS solution to meet business purposes. A
new evaluation method is proposed and validated via a case
study, and the result has shown that the evaluation on software
architecture can offer concrete insights into EIS design and
evolution [4]. The rest of the paper is organized as follows.
Section II lays the background of our research based on the
literature review, the classifications and identified limitations of
existing methodologies. Section III details our scenario-based
assessment approach for software architecture. Section IV
presents an application of our approach and discusses the em-
pirical study results for the verification. Section V summaries
our works with the conclusions and the directions of our future
work.

1551-3203 © 2013 IEEE



2148 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 9, NO. 4, NOVEMBER 2013

II. CLASSIFICATIONS OF EXISTING RESEARCH EFFORTS

EISs have been emerged as vital tools with modern com-
puting technologies to support the business processes at both of
intra- and inter-organizational levels [2]. For examples, the ap-
plications of EISs in aerospace engineering have recently been
explored [16], [17]. In this section, we review the key driving
factors behind EISs and discuss how they have been supported
by the research community.

A. Classification of NFRs

In software development, functional requirements describe
what the system can do and non-functional requirements
(NFRs) describe how well the system can be to fulfill required
functions. NFRs, such as usability and reliability, represent the
consideration of subjective performances at the system level.
NFRs assist decision-making in selecting software tools in the
hierarchical structure of an EIS [18].
The implementation of an EIS is usually focused on a few of

major NFRs. However, the ill-consideration of driving NFRs in
selecting suitable software architecture could be the most fatal
mistake, which is very hard to be fixed at the late stage of the
system implementation [18]. To uncover the key NFRs, a set
of commercial software tools and the relevant publications on
EISs [2], [7]–[13], [19] are selected and compared in Table I.
The source references of each identified NFR have been pro-
vided. The 1st column lists what we believe the most descrip-
tive quality attributes an EIS should possess. It is encouraging to
note that, even with a limited number of the reviewed publica-
tions, a diversified set of recurring NFRs have been explored by
the researchers, and various terminologies are employed to de-
scribe similar meanings. Therefore, concepts semantically close
to the key NFRs are given in the 2nd column. Note that the
exact meanings of a terminology are not necessary the same
(e.g., “flexibility” in [7] and [12] have different emphases). Each
NFR’s goal is expanded by the topics in the 3rd column. Table I
has helped to reveal the contemporary informatics concerns. In-
terested readers might look into the detailed discussion on EIS
requirements [2], [11]. A new perspective provided in Table I
is the distinction between business- and software-driven NFRs.
The business drivers at one end of the spectrum enable an enter-
prise to organize and promote its businesses; such capabilities
are viewed as a superior advantage in contrast to the continuous
evolution of traditional information systems [2]. The NFRs at
the other end of the range reflect the guiding principles that drive
the software architecture design.

B. Types of Software Architecture

Software architecture describes system components as well
as their external properties, and the internal relations of com-
ponents [3]. This research field emerged in the 1990s when the
major work was to establish the fundamentals of software ar-
chitecture including description languages, formal logic, archi-
tectural styles, design patterns, and the like. In the context of
industrial informatics, software architecture represents the busi-
ness structures and processes of an EIS, and it is a vital tool to
support the assessment of design operations at an early stage [2].
A significant contribution to the development of software ar-

chitecture is the patterns codification which can be used as the

TABLE I
KEY NFRS FOR EISS

blueprint of components, constraints, and their relations. Pat-
terns define the general solutions that can be reused to accelerate
the software development process. Some methods to apply the
operational patterns for the EIS design are as follows.
• General purpose software packages encapsulate data
structures and algorithms to implement a generic but
customizable solution of business problems based on the
best practices. Market-leading providers include SAP AG,
Oracle Corporation, and Baan Co. In these packages, many
operational patterns are exploited: database-centered data
sharing, pipeline-based data processing, event driven mes-
sage invocation, to name a few. The packaged software
tools have been adopted by a variety of enterprises to
optimize their business processes [2].

• Domain-specific software architecture is tailored to EISs in
a specified domain. Such architecture includes some spe-
cial components which differ from common components
of generic software architecture. For example, an industry-
oriented ERP is capable of accommodating the require-
ments especially for a certain industry domain; some in-
significant software elements and tools included in generic
software package can be removed to reduce the complexity
[6]. Major enabling technologies for DSSA domain-spe-
cific software architecture include Enterprise Java Beans
(EJB), Microsoft’s Component Object Model ,
and business component factory [20].

• Distributed computing involves several interacting el-
ements coordinated to achieve a system-level goal.
Distributed programming typically falls into one of the
following architectural options: client-server, n-tier archi-
tecture, and peer-to-peer. For the application of distributed
computing, Ferrolho and Crisóstomo [7] presented dis-
tributed architecture to develop a flexible manufacturing



NIU et al.: ENTERPRISE INFORMATION SYSTEMS ARCHITECTURE 2149

cell using the Ethernet network. In addition, programming
languages with parallel and concurrency supports (e.g.,
C++) and middleware technologies (e.g., CORBA) are
among the key enablers for distributed computing.

• Agent and multi-agent systems (MAS) have received much
attention recently and they have been deployed widely. An
agent is an autonomous entity situated in the environment;
whereas a MAS is composed of a group of agents; the
agents within a MAS can cooperate or compete each other
to achieve the goals at the system level [21]. MASs have
been successfully applied in manufacturing [11], behavior
scheduling [12], workflow management [22], and business
rules integration [23]. For example, Metzger and Polaków
have investigated the applications of MSA in the process
control [19].

• Service-oriented architecture (SOA) can be viewed as a
recent advance in integrating heterogeneous platforms
including legacy software tools [2]. A SOA allows an EIS
to extend its capabilities by applying reusable software
modules so that the development cost can be reduced
without reinventing a wheel [24]. Equipped with methods
like Simple Object Access Protocol (SOAP),Web Services
Description Language (WSDL), and Universal Discovery,
Description, and Integration (UDDI), the SOA has been
introduced as a critical enabling technology to EISs [13],
[14].

In summary, industrial information engineers have begun to
leverage the central ideas of software architecture—abstraction
and separation of functions—to tackle the complexity of EIS de-
velopment. Some combined approaches are also proposed; for
example, Zhang and Jiang incorporated software agents into the
SOA for the coordination and interactions in complex systems
[22]. As the number of EIS solutions keeps increasing, it be-
comes important to systematically evaluate software architec-
ture in designing and implementing an EIS.

III. SCENARIO-BASED SOFTWARE ARCHITECTURE ANALYSIS

The user-oriented method is proposed to facilitate the deci-
sion-makings related to EIS software architecture. The evalua-
tion in the proposed method, according to Section II-A, shall be
performed based on the intended business and quality attribute
goals. This is because the way software architecture supports
the driving NFRs determines how an EIS will behave. The per-
formance of an EIS in turn will shape the business strategies and
technical capabilities of enterprises.
The benefits of fulfilling the EIS NFRs are unarguable [10];

however, there are many unsolved practical issues when NFRs
are considered in the implementation of EISs. For example,
NFRs are usually subjective and hard to be quantified. This
calls for qualitative methods to reason how well the EIS soft-
ware can meet the NFRs [18]. Moreover, users express their
missions with different terminologies [26], even though there
are several standards related to NFRs, e.g., the International Or-
ganization for Standardization and International Electro-tech-
nical Commission (ISO/IEC) 25030. Terminological interfer-
ences relevant to the EISs are unavoidable, as illustrated in the
first and second columns of Table I. Another challenge is that an
EIS has to balance a set of the conflict objectives to determine its

Fig. 1. Framework for scenario-based EIS software architecture analysis.

software architecture. Some examples of the conflict objectives
are flexibility vs. productivity, scalability vs. reliability; more-
over, all of the objectives contribute to the cost factor. It is nec-
essary for industrial information engineers to consider all of the
objectives simultaneously at the system level.
To meet practical challenges in evaluating software archi-

tecture based on the given NFRs, we propose a scenario-based
method as shown in Fig. 1, where boxes and arrows rep-
resent entities and activities respectively. The core compo-
nent—“evaluation”—is highlighted in a shaded callout. As
depicted in Fig. 1, the scenarios play two important roles
in the evaluation: firstly, they allow the abstract NFRs to be
concretely defined, operationally measured, and meaningfully
communicated among the stakeholders; secondly, they link
architecture choices to the satisfaction of the EIS drivers, which
helps the management to make an informed decision about the
system that is best suited to their needs. The rest of this section
describes key activities of the proposed method in details.

A. Identifying NFRs

Without losing the generality, an EIS for an academic depart-
ment is used as an example in this section; it is called a re-
search administration system (RAS) in the rest of paper. The
purpose of the RAS is to manage the research expenses for a
group of researchers. The participants in the RAS can be easily
extended to multi-institutions even multi-countries. In the pro-
posed RAS, participators are able to register and take part in
project events, upload or download project reports, and claim
costs for the tasks. The project activities are planned and the
progress is updated periodically.
RAS is a typical EIS, which is capable of maintaining data

and providing the interfaces to users to access, transfer, process,
and report data related to the research projects. Meanwhile, the
fulfillment of several NFRs exhibited by the system will deter-
mine the success of RAS. Despite that many NFRs have been
listed and discussed in Table I; when a specific application of
EIS is considered, a sub-set of NFRs can be selected based on
the priorities of the goal in the application. In other words, a



2150 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 9, NO. 4, NOVEMBER 2013

NFR might be crucial to one application but insignificant to an-
other application. While all of the NFRs should be considered,
an industrial information engineer should select a few of major
NFRs in applying the proposed method to simplify the evalua-
tion. The following NFRs are considered as major NFRs in the
example EIS.
• Performance. RAS deals with transactions varying in du-
ration and complexity. Without good performance, RAS
could lead to unsatisfactory services or even corporate loss.
As indicated in Table I, the performance can be refined
along the time and space dimensions.
—Response Time. Speeding information processing will
shorten the duration of transactions, thereby improving
the performance of RAS.

—Memory Usage. The performance can be affected if the
RAS uses the internal computing memory extensively.
Making efficient use of external computer storage, on
the other hand, enhances system performance.

• Integrity. RAS must ensure accuracy and consistency of
the data to maintain the business standards. Note that busi-
ness standards are the necessary authorities and routines in
the business practice. They are used to ensure that the busi-
ness organizations regulate the business processes.

• Persistence. RAS is required to store and retrieve the state
as data in non-volatile storage. Persistence refers to the
characteristic of state that outlives the process that created
it. Such a characteristic must be accounted for as an archi-
tectural decision.

While other NFRs, such as security factor, may be necessary
to be considered for an RAS, the above list of NFRs is sufficient
for an illustrative purpose. However, the stakeholders need to
elicit the key NFR drivers for their particular EIS instead of
adopting existing NFR standards without any modification [27].
To identify a driving NFR, one might justify whether or not the
change of this NFR will have an impact on the whole software
architecture [3].

B. Eliciting Scenarios

In this section, a scenario refers to the quality attribute sce-
nario. A scenario is an abstracted description of system to be
designed; both the user and designer’s perspectives have to be
considered. Scenarios play an important role in requirements
elicitation and analysis.
Scenarios are frequently used in the system development

process, e.g., use case scenarios are a part of the rational
unified process and the primary sources of the definition of
requirements in the agile software development.
When dealing with subjective concepts like NFRs, scenarios

can be used to evaluate if a set of subjective attributes can be
satisfied by software architecture. For this reason, the quality
attributes scenarios are created to evaluate the interactions of
system from the perspectives of the subjective attributes [15].
In contrast to the terminology scenarios used by others, the sce-
nario here must relate to subjective attributes.
In other words, NFRs have to be defined clearly in a scenario.

For example the statement “a system is flexible’ is invalid since
it is vague and meaningless. All systems are flexible to accom-

modate a certain type of changes [28]. On the other hand, the
following statement will be valid for a scenario:

“A user expects to insert an editable field for searching
and add an active in the graphical user interface; the icons
in the toolbar must be scaled, and the changes should be
completed within 3 hours; these changes address the issues
4 and 12 raised in the bug report so that usability will be
improved.”

The scenarios make NFRs measurable and also help resolve ter-
minological ambiguities by capturing the stakeholders’ precise
concerns. For an RAS, we devise the following scenarios.
• Sce1: To meet the system requirements, RAS developers
take into account the organizational workload. Some trans-
actions (e.g., Submit_Expense_Report) are invoked more
frequently than others (e.g., Foreign_Exchange). Caching
frequently occurring and business-critical transactions
will improve the response time and persistence, though
the memory usage is likely to experience extra overhead.

• Sce2: A temporal constraint of RAS is that a participator is
not allowed to attend a meeting unless he or she registers
it. RAS administrators want efficient enforcement of in-
tegrity constraints so that unsatisfied business rules can be
detected, monitored, and eventually corrected. However,
searching and checking every constraint at every point in
time can negatively affect system performance.

• Sce3: When planning a research-related business trip, the
users would like RAS to interact with a variety of external
services like flight, hotel, and car rental so that the main
memory usage can be reduced. Not only shall RAS ensure
local integrity constraints, but the complex cross-organi-
zational constraints such as “the travel expense must be
less than themaximized amount specified for each research
project” must also be enforced.

There are other factors be considered. For example, a sce-
nario should associate the tasks with the roles of participators
[15]. In this way, system usages can be evaluated from multiple
perspectives: software developers in Sce1, system administra-
tors in Sce2, and end users in Sce3. The other factor is the use
of templates; although a few of templates have been introduced
[3], the proposed scenario used general descriptions instead of
formatted structure. In Table II, the relationship of the scenarios
and theNFRs is specified on a qualitative rating scale. The check
mark and cross mark have shown the positive and negative con-
tributions of the scenario to the NFR, respectively, and the field
with ‘N/A’ has shown that the NFR is not explicitly considered
in the scenario [18].

C. Evaluating of System Architecture

Tradeoff on the conflict objectives must be made in an
engineering situation that involves competing contingencies.
Tradeoff on software architecture is about how to make the
decisions with a full comprehension of both the upside and
downside of a particular choice. We examine two software
architecture alternatives for RAS.
The first is database-centered architecture presented in Fig. 2,

where the design considerations are arranged in a grid. The hor-
izontal axis depicts the types of conceptual or ontological fea-



NIU et al.: ENTERPRISE INFORMATION SYSTEMS ARCHITECTURE 2151

TABLE II
CONTRIBUTION RELATION BETWEEN SCENARIOS AND NFRS

Fig. 2. Database-centered layered architecture.

Fig. 3. Web services architecture.

tures involved in an RAS: Entity, Activity, and Constraint. The
vertical axis describes the features of the organizations in a se-
mantic model: Classification, Aggregation, and Specialization.
The other narrative contents in the plot have shown how the ob-
jectives of RAS are translated and related to the system compo-
nents. The architecture, as shown in Fig. 2, is a layered structure
where the information flow occurs only in two adjacent layers.
This modular property of information hiding, together with the
centralized data model, makes the database-centered architec-
ture a suitable support for the caching organizational workload
requirement in Sce1 and the checking local integrity constraints
requirement in Sce2.
The second option of software architecture for RAS, as il-

lustrated in Fig. 3, is a distributed service-oriented infrastruc-
ture that exploits the Web services. In a nutshell, the interac-
tions among themachines are supported by a web service, which
is WSDL-based machine-processable interface. As a result, the
Web services architecture is particularly suited for supporting
the remote communication use case described in Sce3. At the
same time, the caching need stated in Sce1 can be supported by
client-side applications.

Fig. 4. BXD’s SCM software architecture alternatives.

Having teased out what scenarios are explicitly supported by
each design alternative, software architecture options can be
evaluated. The main idea is to use the scenarios to connect soft-
ware architecture with the driving NFRs and to propagate the
contribution relations through qualitative design reasoning. For
reasoning, the evaluation is focused on finding a solution that
is sufficiently good rather than fully optimal in all aspects. The
underlying rationale of reasoning in such a matter is that the sat-
isfaction of NFRs is not a straight true or false answer [18]. Take
Table II as an example, nomatter which scenario or combination
of scenarios are supported, there is always one or more NFRs
that are negatively affected. In another word, the optimal archi-
tecture that meets all of the RAS stakeholders’ needs is simply
nonexistent.
Effective design analysis under the circumstances like the de-

sign of an RAS, in our opinion, depends on the ability to aggre-
gate and present the relevant information in an insightful way to
help decision makers to find the right balance among the NFRs.
We use an intuitive and integrated graphical representation to
serve this purpose.

D. Documentation of Architectural Decisions

The integrated view of Fig. 4 offers not only a novel synergy
of quality attribute information [17] and label propagation [18],
but also a valuable input to the architectural decision-making
process. For decision makers, recommending a top-down
method is recommended to prioritize the NFRs firstly and then
determine an architecture solution that meets the priorities the
best. In Fig. 4, if Integrity is a key factor that determines the
success of RAS, then Sce2 needs to be supported and thus the
database-centric architecture can be selected. Similarly, RAS
can be developed by using Web services if Memory Usage is
a primary concern.
It is worth to mention that the process of the proposed evalua-

tion is interactive and human can be involved at any stages. For
example, although the label propagation can be partially or even



2152 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 9, NO. 4, NOVEMBER 2013

fully automated [18], designers can offer invaluable guidance
in the process; the interactions can be made to override estab-
lished labels. However, no override should be performed unless
the rationales of change are properly documented. In this sense,
the composed contribution graph shown in Fig. 4 serves as one
of the views for documenting software architecture. Other com-
monly employed views include components and connectors, use
cases, and structural and behavioral diagrams [3]. The bottom-
right component of Fig. 1 has shown the advantages of multi-
views for the representation of software architecture.
It cannot be overemphasized that an architecture solution is

determined only if the design tradeoffs are thoroughly appreci-
ated. In cases that informed timing decision cannot be reached,
an incremental evaluation is necessary. The “refine” arrow of
Fig. 1 demonstrates such an iterative process. In the case of
RAS, it can be inferred from Table II that Memory Usage and
Integrity seems to be mutually conflict NFRs—any scenario that
helps to achieve one requirement will fail to achieve the other.
If this is the case, the priority must not be given to both NFRs;
otherwise, more scenarios could be elicited to establish a com-
promise between them.

IV. EMPIRICAL EVALUATION

We applied the proposed method to an EIS to illustrate its
application. How to make tradeoffs in determining software ar-
chitecture has been discussed to application, and how to make
tradeoffs in determining software architecture in this section.

A. Background

The empirical evaluation is for the selection of system
architecture for a supply chain management (SCM) software
used in the BXD Corporation (a fictitious name); it is a leading
electronics provider in the southeast of the United States.
The main activities of the BXD’s supply chain are involved
in several stages including customer orders, replenishments,
manufacturing, and procurements. Over the years, the respon-
sible department for each stage focused on its own operation
efficiency, e.g., BXD retail department improved its inventory
ownership, delivery modes, order quantity, size of workforce,
and service sequence. However, the lack of integration and
coordination became a serious bottleneck in the transactions
between two stags. Since the late 1990s, BXD has realized the
importance of integrated planning, scheduling, and controlling
the supply chain via a well-defined infrastructure.
Accordingly, software architecture has enabled BXD to

increase the synergy of cross-functional business integration.
BXD currently adopts a package-based architectural style for
its SCM software, as shown in the top of Fig. 4. The SCM
software components run through ERP, warehouse manage-
ment systems (WMS), and transportation management system
(TMS) via the electronic data interchange (EDI) interfaces.
The ERP package has contributed to the SCM by fulfilling
two main functions: 1) a transaction processing engine that
allows the integrated management of data over the enterprise,
and 2) a workflow management that controls numerous process
flows, such as the order-to-cash and purchasing processes.
The WMS basically controls the storage and the movement
of the BXD products and raw materials, including shipping,

receiving, and holdings. The WMS also helps maintain the key
customer ordering pattern and the status of the bin utilization,
especially when BXD’s material flow is not uniform. The TMS,
a third major component in BXD’s package-based architecture,
organizes the freight consolidation operations and coordinates
company shipments. The key TMS functions are to plan ter-
restrial rounds, manage air and maritime supports, simulate
transport scheme and costs, and track shipment batch records.
The BXD deployed the packaged-based architecture in the

early 2000s as one of the “best practices” at that time. Having
being evolved for nearly a decade to address the company’s
changing requirements, the SCM software became a legacy
system that exhibited some deficiencies in satisfying business
and quality attribute drivers, especially in terms of integrating
distributed, heterogeneous, and cross-organizational functions.
For this reason, the BXD has explored the possibility of

changing its SCM to a service-oriented architecture (SOA)
sketched at the bottom of Fig. 4. Compared to the traditional
package based architecture, the SOA has incorporated a set of
supply chain engines (SCE) [14] that allow efficient handling
of distributed users. Another distinction is that the previously
tangled services are separated in the SOA due to the modular-
ized architecture.

B. Verification and Results

We have collaborated with the BXD in evaluating the two ar-
chitecture alternatives shown in Fig. 4. BXD provided us with
the required documents such as the specifications of software
systems, software descriptions, and definitions of the business
missions. Studying these materials helped us understand the
context of BXD’s SCM.
Our main analysis was then performed with a group of six

domain experts. In the analysis, we presented a list of NFRs
from Table I to tailor in the needs of the company. BXD experts
judged the relevance of the NFRs to their business and also pro-
vided additional NFRs that they thought necessary to be con-
sidered. As a result, 15 NFRs were viewed as important ones to
the success of BXD. This included both business drivers (e.g.,
integration and performance) and software drivers (e.g., modi-
fiability and testability). Nearly six scenarios were selected for
each role of the BXD stakeholders.
Each scenario was applied in up to 4 NFRs, and it was

described less than five sentences. The architecture alterna-
tives were analyzed in a top-down way, as recommended in
Section III-D, based on the criterion of how well they supported
the prioritized NFRs. The assessment was iterated for several
rounds to resolve ambiguities and consolidate expert opinions.
The conducted workshop generated many insights that BXD

regarded valuable. Of particular interests were the insuffi-
ciently addressed NFRs. Our preliminary study has suggested
that BXD’s SCM software would exhibit the quality attributes
in a sub-optimal way. The problems were further classified
into three categories: 1) Omission refers to the risks caused by
unfinished activities, e.g., risks from missing an operational
definition for a flexible end-to-end procurement or logistic
business process; 2) Commission refers to the risks caused by
a suspicious decision related to software architecture, e.g., the
risks from a wrong selection of operating platform which is



NIU et al.: ENTERPRISE INFORMATION SYSTEMS ARCHITECTURE 2153

Fig. 5. Classification of insufficiently addressed NFRs in case study.

a failure to support a heterogeneous computing environment;
and 3) Others refer to the risks that are neither omissions nor
commissions, e.g., the system maintenance cost rate increases
as the system meets the needs of diversified user communities
for the purposes of integration, testing, and training. In this
way, the above mentioned flexibility, performance, and cost
NFRs are deemed as inadequately addressed and are classified
as omission, commission, and others respectively.
Fig. 5 has shown the distribution of the inadequately ad-

dressed NFRs uncovered in the workshop. Note that the
tradeoff analysis is applied to the package-based architecture in
a retrospective manner as it is in operation for a period of time
already. In contrast, the tradeoffs of the SOA are assessed in a
proactive way. Among a total of 15 NFRs, 13 NFRs experience
certain levels of deficiencies in the package-based architecture,
whereas this number reduces to 7 in SOA. In other words,
our method has effectively helped BXD stakeholders seek the
answers for the right questions and avoid potential mistakes in
determining software architecture. A synthesis of 18 architec-
ture evaluations observes that the omissions are twice as many
as the commissions [29]. While this is roughly the case for
package-based architecture (7 omissions and 3 commissions),
it is surprising to realize that the SOA analysis results in an
equal number of omissions and commissions—2 occurrences
of each risk type. This may suggest that our scenario-based
method has overcome the limitation of architecture analysis
by revealing a significant number of omission errors; however,
such a speculation warrants further investigation.
To shed light on handling EIS architecture tradeoffs in prac-

tice, important observations from the empirical evaluation are
summarized as follows.We found the effort involved in carrying
out our method was moderate and the process was straightfor-
ward so that it could be integrated into the implementation of
other IT projects. From our experience, the creation of the sce-
narios resembles to software testing: it is hard to tell how many
tests are sufficient; however, it is practical to determine a step
from which the improvement of the credibility of testing results
can be negligible. Another important factor is to reduce the re-
quired resources; with the helps from the experts, we devised
about six scenarios for each stakeholder role in only 30 min-
utes, which turned out to be adequate for our analysis.

We realized that including a wide variety of stakeholder roles
in conducting architecture tradeoff analysis is extremely impor-
tant in sense that a comprehensive set of important and conflict
goals could be balanced. The business-driven NFRs listed in
Table I tend to be mentioned and emphasized more than the soft-
ware driven ones during the BXDworkshop. This imbalance to-
ward business drivers is understandable among industrial infor-
matics practitioners; but a more balanced view would allow the
tradeoffs to be reasoned more thoroughly. In this sense, Table I
or other codified NFR catalogs like [18] can be of great practical
value. In fact, devising scenarios to make NFRs measurable and
analyzing software architecture tradeoffs were not confined to
the determination of software architecture. Our partner BXD be-
lieves that the proposed method can be extended and applied to
the phase of system operations to predict potential problems in
product life cycle at a minimized cost.

V. SUMMARY AND FUTURE WORK

A large group of industrial information engineers have
focused on developing software tools for EISs, since factory
automations are now driven by information technologies.
Despite the emerging trend that more informatics is carried
out at the early stage of product development, the evolution
of EISs has not caught up with this trend. Specifically, the
research on software architecture for EISs remains inadequate
to deal with today’s IT-driven industrial automation. Thus,
there is a critical need to evaluate software architecture and
select most appropriate one to fulfill the business requirements,
in particular, NFRs. In this paper, we have identified the chal-
lenges confronting the EIS software architecture development,
proposed a scenario-based method for the tradeoff analysis
of software architecture, and conducted an empirical study to
verify the method. The study on a manufacturing company’s
supply chain software has demonstrated the applicability and
usefulness of the new method. On one hand, only moderate
effort is needed to analyze and evaluate software architecture.
On the other hand, the discovered architecture tradeoffs provide
valuable and practical insights into EIS design and evolution.
There are several dimensions in which our work can be ex-

panded in future. Firstly, the level of the details of the reported
empirical study should be increased to enhance the strengths of
the developed method. Secondly, identifying and codifying in-
dustrial-oriented NFR catalogs and analysis patterns [6] should
be in order. Thirdly, in terms of evaluating the EIS architecture
alternatives, it is worth comparing a proposed scenario-based
method with other holistic approaches [30]. Finally, we would
like to combine our approach with the recent thread on formal
methods in informatics [31] to address cutting-edge research is-
sues in EISs.

REFERENCES

[1] O. Kaynak, “The exhilarating journey from industrial electronics to
industrial informatics,” IEEE Trans. Ind. Informat., vol. 1, p. 73, May
2005.

[2] L. D. Xu, “Enterprise systems: State-of-the-art and future trends,”
IEEE Trans. Ind. Informat., vol. 7, pp. 630–640, Nov. 2011.

[3] L. Blass, P. Clements, and R. Kazman, Software Architecture in Prac-
tice, 2nd ed. Norwell, MA, USA: Addison-Wesley, 2003.



2154 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 9, NO. 4, NOVEMBER 2013

[4] G. A. Fodor, “Industrial informatics: predicting with abstractions,”
IEEE Trans. Ind. Informat., vol. 1, p. 3, Feb. 2005.

[5] Z. D. Zhou, R. Valerdi, and S.-M. Zhou, “Guest editorial special section
on enterprise systems,” IEEE Trans. Ind. Informat., vol. 8, no. 3, pp.
630–630, 2012.

[6] S. Wu, L. Xu, and W. He, “Industry-oriented enterprise resource plan-
ning,” Enterprise Inf. Syst., vol. 3, pp. 409–424, May 2002.

[7] A. Ferrolho and M. Crisóstomo, “Intelligent control and integration
software for flexible manufacturing cells,” IEEE Trans. Ind. Informat.,
vol. 3, pp. 3–11, Feb. 2007.

[8] Q. Zhu, Y. Yang, M. Di Natale, E. Scholte, and A. Sangiovanni-Vin-
centelli, “Optimizing the software architecture for extensibility in hard
real-time distributed systems,” IEEE Trans. Ind. Informat., vol. 3, pp.
621–636, Nov. 2010.

[9] F. Salewski and S. Kowalewski, “Hardware/software design consider-
ations for automotive embedded systems,” IEEE Trans. Ind. Informat.,
vol. 5, pp. 156–163, Aug. 2008.

[10] D. Cancila, R. Passerone, T. Vardanega, and M. Panunzio, “Toward
correctness in the specification and handling of non-functional at-
tributes of high-integrity real-time embedded systems,” IEEE Trans.
Ind. Informat., vol. 6, pp. 181–194, May 2010.

[11] M. Ulieru and M. Cobzaru, “Building holonic supply chain manage-
ment systems: An e-logistics application for the telephone manufac-
turing industry,” IEEE Trans. Ind. Informat., vol. 1, pp. 18–30, Feb.
2005.

[12] S. Theiss, V. Vasyutynskyy, and K. Kabitzsch, “Software agents in in-
dustry: A customized framework in theory and praxis,” IEEE Trans.
Ind. Informat., vol. 5, pp. 147–156, May 2009.

[13] S. Runde and A. Fay, “Software support for building automation re-
quirements engineering—An application of semantic web technologies
in automation,” IEEE Trans. Ind. Informat., vol. 7, pp. 723–730, Nov.
2011.

[14] G. Cândido, A. W. Colombo, J. Barata, and F. Jammes, “Service-ori-
ented infrastructure to support the deployment of evolvable production
systems,” IEEE Trans. Ind. Informat., vol. 7, pp. 759–767, Nov. 2011.

[15] I. Ozkaya, L. Bass, R. L. Nord, and R. S. Sangwan, “Making practical
use of quality attribute information,” IEEE Software, vol. 25, no. 2, pp.
25–33, Mar./Apr. 2008.

[16] Y. H. Yin, J. Y. Xie, L. D. Xiu, and H. Chen, “Imaginal thinking-based
human-machine design methodology for the configuration of reconfig-
urable machine tools,” IEEE Trans. Ind. Informat., vol. 8, no. 3, pp.
659–6668, 2012.

[17] L. D. Xu, C. Wang, Z. Bi, and J. Yu, “AutoAssem: An automated as-
sembly planning system for complex products,” IEEE Trans. Ind. In-
format., vol. 8, no. 3, pp. 630–630, 2012.

[18] L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos, Non-Functional
Requirements in Software Engineering. Norwell, MA, USA: Kluwer,
2000.

[19] M. Metzger and G. Polaków, “A survey on applications of agent tech-
nology in industrial process control,” IEEE Trans. Ind. Informat., vol.
7, pp. 570–581, Nov. 2011.

[20] P. Herzuma and O. Sims, Business Component Factory: A Compre-
hensive Overview of Component-Based Development for Enterprise.
New York, NY, USA: Wiley, 2000.

[21] M. Wooldridge, An Introduction to MultiAgent Systems. Chichester,
U.K.: Wiley, 2002.

[22] M. B. Blake, “Agent-based workflow configuration and management
of on-line services,” in Proc. Int. Conf. Electronic Commerce Research
(ICECR-4), Dallas, TX, USA, 2001, pp. 567–588.

[23] S. Ali, B. Soh, and T. Torabi, “A novel approach toward integration
of rules into business processes using an agent-oriented framework,”
IEEE Trans. Ind. Informat., vol. 2, pp. 145–154, Aug. 2006.

[24] D. Krafzig, K. Banke, and D. Slama, Enterprise SOA: Service-Oriented
Architecture Best Practices. Upper Saddle River, NJ, USA: Prentice-
Hall PTR, 2004.

[25] T. I. Zhang and H. Jiang, “A framework of incorporating software
agents into SOA,” in Proc. Artificial Intelligence Soft Computing (ASC
2005), Benidorm, Spain, 2005.

[26] N. Niu and S. Easterbrook, “So, you think you know others’ goals? A
repertory grid study,” IEEE Software, vol. 24, no. 2, pp. 53–61, Mar./
Apr. 2007.

[27] N. Niu, M. Jin, and J.-R. C. Cheng, “A case study of exploiting enter-
prise resource planning requirements,” Enterprise Inf. Syst., vol. 5, pp.
183–206, May 2011.

[28] N. Niu and S. Easterbrook, “Concept analysis for product line require-
ments,” in Proc. Int. Conf. Aspect-Oriented Software Development.
(AOSD-8), Charlottesville, VA, 2009, pp. 137–148.

[29] L. Bass, R. L. Nord, W. Wood, and D. Zubrow, “Risk Themes Discov-
ered Through Architecture Evaluations,” CMU/SEI, Pittsburgh, PA,
USA, Tech. Rep. TR-2006-012, Sep. 2006.

[30] M. C. Chou, H. Ye, X.-M. Yuan, Y. N. Cheng, L. Chua, Y. Guam, S.
E. Lee, and Y. C. Tay, “Analysis of a software-focused products and
service supply chain,” IEEE Trans. Ind. Informat., vol. 2, pp. 295–302,
Nov. 2006.

[31] J. Campos, “Guest editorial special section on formal methods inmanu-
facturing,” IEEE Trans. Ind. Informat., vol. 6, pp. 125–126, May 2010.

Nan Niu (M’09) received the B.Eng. degree from
Beijing Institute of Technology, China, and the M.Sc.
degree from the University of Alberta, AB, Canada,
and the Ph.D. degree from the University of Toronto,
ON, Canada, all in computer science.
He is an Assistant Professor in Computer Science

and Engineering at Mississippi State University, MS,
USA. His research interests include software engi-
neering, requirements engineering, program compre-
hension, and industrial informatics.

Li Da Xu (M’86–SM’11) received the M.S. degree
in information science and engineering from the
University of Science and Technology of China,
in 1981, and the Ph.D. degree in systems science
and engineering from Portland State University,
Portland, OR, USA, in 1986.
He serves as the Founding Chair of IFIP TC8

WG8.9 and the Founding Chair of the IEEE SMC
Society Technical Committee on Enterprise Infor-
mation Systems.

Zhuming Bi (M’11–SM’12) received Ph.D. degrees
from Harbin Institute of Technology, China, and the
University of Saskatchewan, Canada, in 1994 and
2002, respectively.
He is an Assistant Professor of Mechanical Engi-

neering at Indiana University Purdue University Fort
Wayne (IPFW), IN, USA. His current interests in-
cludemechatronics, automatic robotic processing, re-
configurable manufacturing and assembling systems.


