1784

IEEE TRANSACTIONS ON CYBERNETICS, VOL. 46, NO. 8, AUGUST 2016

Optimal Group Size for Software Change Tasks:
A Social Information Foraging Perspective

Tanmay Bhowmik, Student Member, IEEE, Nan Niu, Senior Member, IEEE,
Wentao Wang, Student Member, IEEE, Jing-Ru C. Cheng, Ling Li, and Xiongfei Cao

Abstract—Group size is a key factor in collaborative software
development and many other cybernetic applications where task
assignments are important. While methods exist to estimate its
value for proprietary projects, little is known about how group
size affects distributed and decentralized cybernetic applications
and in particular open source software (OSS) development. This
paper presents a novel approach in which we frame developers’
collective resolution of OSS change tasks as a social information
foraging problem. This new perspective enables us to predict the
optimal group size and quantify group size’s effect on individ-
ual performance. We test the theory with data mined from two
projects: 1) Firefox and 2) Mylyn. This paper not only uncovers
the mismatch of optimal and actual group sizes, but also reveals
the association of optimality with improved productivity. In addi-
tion, the social-level productivity gain is observed as project
evolves. We show this paper’s impact by extending the frontiers of
knowledge in two areas: 1) social coding and 2) recommendation
systems.

Index Terms—Cybernetic application, group size, productivity,
social information foraging theory, task assignment.

I. INTRODUCTION

N COLLABORATIVE software engineering and distri-

buted cybernetic applications [1]-[5], group size matters.
While larger groups are reported to decrease software devel-
opment productivity [6], smaller ones may lack the problem
solving expertise for complex projects [7]. Clearly, the group
size affects both performance of individual developers and
outcome of the group as a whole.

For traditional proprietary software development, managers
must carefully plan and control the project staffing. To sup-
port this, many methods are proposed in the software effort

Manuscript received December 29, 2014; revised March 25, 2015; accepted
April 2, 2015. Date of current version July 15, 2016. This work was supported
by the U.S. National Science Foundation under Grant CCF-1350487. This
paper was recommended by Associate Editor L. D. Xu.

T. Bhowmik is with the Department of Computer Science and Engineering,
Mississippi State University, Mississippi State, MS 39759 USA.

N. Niu and W. Wang are with the Department of Electrical Engineering and
Computing Systems, University of Cincinnati, Cincinnati, OH, 45221 USA.

J.-R. C. Cheng is with the Information Technology Laboratory, U.S. Army
Engineer Research and Development Center, Vicksburg, MS 39180 USA.

L. Li is with the Department of Information Technology and Decision
Sciences, Old Dominion University, Norfolk, VA 23529 USA.

X. Cao is with the School of Management, University of Science and
Technology of China, Hefei 230026, China (e-mail: caoxf312@126.com).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCYB.2015.2420316

estimation literature. For instance, given estimates of devel-
opment effort in person-hours and software size in function
points, an optimal group size can be obtained by regression
analysis or Bayesian inference [7]. To balance multiple and
often competing objectives, search-based optimization tech-
niques are recently used to assess staffing needs in the presence
of schedule fragmentation and communication overhead [8].!
These approaches assist project managers in determining
development team size, matching developer skills, arranging
organizational structures, and making other important resource
allocation decisions.

By contrast, open source software (OSS) projects rely
largely on community participation, and have no formally
preassigned effort estimation or control structure. Developers
in these projects are grouped organically? and dynamically.
Research shows that large, successful, and long-lived OSS
projects are self-organizing in that developer subgroups spon-
taneously arise and such groupings manifest strongly in
technical collaborations related to software change tasks [10].
Each change task, whether carried out individually or col-
lectively, is aimed at fulfilling some specific goal, e.g., fix a
bug, add a functional capability, or enhance a quality attribute.
Because these tasks are crucial cogs in the development pro-
cess machine, how they are performed will have a significant
impact on the success of the software project [11].

The information-intensive nature of software change tasks
was made evident by Ko er al. [12] who showed devel-
opers spend much time searching, relating, and collecting
relevant information necessary for eventually implementing a
solution. Their work was among the first to frame software
change as an information foraging problem. Pirolli’s informa-
tion foraging theory [13] uses our animal ancestors’ “built-in”
food-foraging mechanisms [14] to understand human infor-
mation seeking and gathering in the vastness of the Web. By
modeling software developer as predator and relevant infor-
mation as prey, researchers were able to better understand
developer’s behavior in debugging, requirements tracing, and
other information-intensive activities [15]-[19], and further
suggest tool enhancements in a principled manner [20].

lBrooks, in his seminal work The Mythical Man-Month [9], noted there is
no simple linear relationship between the number of developers and the engi-
neering time required for a project. This is eloquently stated in Brooks’s law:
“Adding manpower to a late software project makes it later.” Di Penta et al. [8]
showed that the impact of Brooks’s law on project staffing is subtle and could
be contained.

2By organically, we mean not externally forced but internally developed.

2168-2267 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.


mailto:caoxf312@126.com
http://ieeexplore.ieee.org
http://www.ieee.org/publications_standards/publications/rights/index.html

BHOWMIK et al.: OPTIMAL GROUP SIZE FOR SOFTWARE CHANGE TASKS: A SOCIAL INFORMATION FORAGING PERSPECTIVE

While the current studies confirm foraging theory’s applica-
bility and demonstrate its usefulness in software engineering,
the focus has been predominantly on tasks performed by a
solo developer. Many OSS change tasks, however, are accom-
plished as the result of collective action, in which a group of
developers engage in social exchanges of information to make
joint contributions. Pirolli [21] proposed the basics of social
information foraging theory where he presented mathemati-
cal models to predict, among other phenomena, the effect of
group size on individual member’s rate of gain.

In this paper, we extend developers’ solo information for-
aging toward their foraging in groups. We adapt Pirolli’s
models [21] in the context of OSS change tasks. Each task’s
discussion and resolution, which we mine from the project’s
issue tracking system, give rise to a patch of information that
yields some amount of utility for one or more foragers (devel-
opers). We distinguish the tasks done solitarily from those
achieved by collectives, and then identify optimal group size
based on the foraging-theoretic predictions [21]. The theoreti-
cal characterizations allow us to formulate specific hypotheses
regarding the individual rewards of cooperation, as well as the
self-organizing aspect of evolving OSS projects. We test our
hypotheses by using the data collected from two successful
OSS projects: 1) Firefox and 2) Mylyn.

The contributions of this paper lie in the novel perspective
that links software developers’ rational behaviors [15]-[19]
together with their social information foraging. This paper is
among the biologically inspired approaches to tackling cyber-
netic challenges [22]-[24]. Our vision in this paper is to
transform foraging theory’s ecological validity and predictive
accuracy [13], [14] to establish a robust grounding for study-
ing a wide range of software engineering events and activities.
We articulate this vision by illuminating our work’s potential
impact on two research fronts: social coding [25] and recom-
mendation systems [26]. In what follows, we survey related
work in Section II. We then present our research method and
hypotheses in Section III, and describe the empirical analy-
sis results in Section IV. The implications of this paper are
discussed in Section V, and finally, Section VI concludes this

paper.

II. BACKGROUND AND RELATED WORK

This paper builds on the foraging-theoretic relation between
the size of a group and the group member’s rate of gain [21].
As software change task is our primary concern, we cor-
respond rate of gain to productivity which helps to assess
developers’ gain of useful information to their tasks per unit
time. This section begins with the preliminaries of social infor-
mation foraging, and then reviews the software engineering
literature related to group size and productivity.

A. Information Foraging Theory

Pirolli developed information foraging theory as an
ecological-evolutionary approach to understanding users’
information seeking on the Web [13]. The general idea is that
we can scientifically study human and technological adapta-
tions to the flux of information in the social environment in

1785

Forager’s search

N

Patch 1

%

Patch 2

%

Within-patch
search time (¢j)

Between-patch
search time (Z3)

Fig. 1. Tllustration of foraging in a patchy environment.

the same way as biological adaptations to the flux of energy
in the physical environment.

Information foraging, then, is derived from optimal forag-
ing theory in biology, which analyzes the adaptive value of
food-foraging strategies [14]. Optimality here refers to the
strategy that maximizes the gain per unit time of foraging.
Fig. 1 illustrates the elementary constructs by presenting a
hypothetical bird’s foraging in an environment that consists
of berry patches. The forager must expend some amount of
between-patch time (7p) arriving at a patch, and ty denotes
the within-patch foraging time. Thus the rate of gain is

G
R= (1)

g tiw

where G represents the expected net gain. By mapping the con-
structs to Web navigation (e.g., each webpage is considered
as an information patch) and applying the core mathematics
like (1), Pirolli modeled an optimal Web user’s behavior [13].
This provides remarkable insights into issues like link selec-
tion and decision to leave a webpage. As a result, information
foraging theory has become very useful as a practical tool for
website design and evaluation [27].

Inspired by human’s adaptive interaction with informa-
tion on the Web, researchers began to apply foraging the-
ory in software engineering. Notably, the pioneering work
by Lawrance et al. [15], [16] showed encouraging results
matching foraging theory’s predictions with real developers’
behaviors in debugging. Other studies (including our own)
widened the theory’s scope of applicability from requirements
and architecture to refactoring and reuse [17]-[20]. Common
to all the studies is the key role played by cues. Cues, such as
call dependencies and lexical similarities in the code base, are
signposts that exist only in the environment [16]. Meanwhile
the cues can be annotated, decorated, or otherwise brought to
attention for the predator (i.e., software developer) to improve
the foraging efficiency [20].

So far, foraging theory has mainly focused on information
seeking by the solitary developer [15]-[20]. However, today’s
software (especially OSS) is rarely developed by soloists but
is the result of collective efforts. Drawing on the quantitative
theories of cooperative problem solving [28] and group for-
aging [29], Pirolli extended information foraging to the social
level [21]. The key assumption is that cues are exchanged in
social information foraging regarding the likely location of



1786

useful information. Apart from the cues perceived in the envi-
ronment, foragers can benefit from the hints shared by group
members (e.g., where to find what information) so as to better
achieve their individual goals.

Although there are positive effects of social foraging, for-
aging groups do not become arbitrarily large, suggesting that
there exist interference costs (e.g., communication overhead
in large software projects [8], [9]) that at some point out-
weigh the advantages of further increments in the group size.
In OSS development, the study by Hong er al. [30] mined
Mozilla’s change history from 2000 to 2009, and showed the
number of active developers was stable over time. Similar
phenomena can be empirically observed in Wikipedia whose
creation and maintenance, like OSS projects, depend largely on
social participation. It was shown that the number of editors
actively contributing to Wikipedia had plateaued [31]. Note
that we study group size at the task level in this paper, not at
project [31] or subcommunity [30] levels.

The cost-performance tradeoff of group foraging can be for-
malized as follows [21]. Let us assume that the individual
forager’s time to process an information patch in a group of
n foragers is: 7(n) = an®, where 0 < ¢ < 1 is a rate param-
eter and a is the time to forage for a patch when n = 1.
The expected gain for each group member is updated to be
G/n. If A denotes the individual search rate, then the group
rate is n - A(n). The interference time can be modeled as
t; = 1/[n - A(n)] [29]. Furthermore, let A(H) denote the rate
of finding valuable information patches with H distinct hints.
Then the expected time for n foragers to encounter a valuable
patch is tg = A(H)/[n-A(n)]. Finally, when n predators forage
simultaneously, the patch is exhausted in ty = t(n)/[n- A(n)]
time units. We may now cast group foraging as a variation of
the conventional model presented in (1). Hence, the rate of
gain for the individual member of the group is

. G/n _ G/n
n-A(n) n-a(n) n-a(n)
rn) -G

= T o (2)
+ AH) 4 1(n)

The conceptual illustration of (2) is presented in Fig. 2.
Using group size as an approximation of hint diversity
(n = H), one can see a basic lognormal distribution with the
peak value n* that theoretically defines the optimal group size.
Compared to the rate of return for solitary foraging R(1, 1),
the group of size n* best manifests the power of cooperation
as the potential for every member to find useful information,
thereby to reach their individual goals, is maximized.

In sum, foraging theory stems from the assumption that all
organisms (including humans) are ecologically rational and
adapt to the environments in which they operate [13], [14].
Applying the theory in software engineering has been partic-
ularly fruitful in understanding how solo developer performs
information-intensive tasks. Extending the theory to the social
level not only coherently connects actions and interactions
among developers, but also quantitatively characterizes the
foraging-theoretic limit on individual performance imposed by
group size.

IEEE TRANSACTIONS ON CYBERNETICS, VOL. 46, NO. 8, AUGUST 2016

R(n, H) Social foraging, R(n, H)
g 5
=3
75 52 Solo foraging,
S
.% P : R(1,1)
Esg | Fm-mFr=-==-=--°7 Sl
-4

n* " Group Size H

Fig. 2. Lognormal distribution of (2) adopted from [21]. Assuming n = H,
the peak value of R(n, H) gives rise to the optimal group size n*. The dashed
horizontal baseline, R(1, 1), shows the solo forager’s rate of gain.

B. Group Size

Group size plays an important role in software develop-
ment. Some methods explicitly prescribe its value range. For
example, the agile practices best suit colocated teams of about
50 people or fewer [32], and the team software process is
designed for use with teams of 2 to 20 members [33].

Problems arise if the development team is too small or too
large. Small teams may not be equipped with the diverse exper-
tise required to solve complex tasks [7]. Moreover, a small
team can lead to a heavy bias in coding and testing, which
incurs a high maintenance cost. Microsoft, for instance, used
a strategy of employing small teams of star developers and
found that the strategy, when confronted with the maintenance
of large mass-marketed applications, did not work well [34].
On the other hand, developers in larger teams can become less
motivated and productive, encounter more conflicts and coor-
dination difficulties, and experience increased risks of social
loafing and free riding [6], [9], [35], [36].

Optimal group size, thus, has attracted much software
engineering research attention. As early as 1978, Putnam’s
definition considered group size to be optimal if it allows
the developers to achieve the maximum productivity with
shortest schedule and lowest cost without affecting the final
outcome [37]. Various approaches have been presented to fore-
cast the number of developers a proprietary software project
should have. These approaches fall into four categories.

1) Empirical: Putnam sampled 491 projects and con-
cluded that productivity is higher for smaller teams
with an optimal group size of 3-5 staffs [37]. The
rule of thumb—teams of nine or more are signif-
icantly less productive than smaller teams—defines
another empirical threshold which is supported by stud-
ies like [35] and [38].

2) Analytical: Methods in this category assume certain
functional forms in order to establish a relation-
ship between group size and other project variables.
Examples include an opening hyperbola model [39],
approximating the Cobb-Douglas production func-
tion [40]: development effort = A - (software size)? -
(group size)“, where A and b are parameters that
take positive values, and ¢ is a nonnegative constant
exponent.

3) Probabilistic: Causal models are often built by using
supervised machine learning techniques like Bayesian
networks [41]. Although such models are suscepti-
ble to overfitting, they allow probability bounds to



BHOWMIK et al.: OPTIMAL GROUP SIZE FOR SOFTWARE CHANGE TASKS: A SOCIAL INFORMATION FORAGING PERSPECTIVE

be established and integrated into posterior estimates.
For instance, the forecasted effort for the experi-
mental dataset in [41] was 8.28 person-months with
94% chance that the actual effort would be less than
20 person-months.

4) Search-Based: These approaches employ metaheuris-
tic techniques to find (near) optimal solutions related
to group size. Abdel-Hamid [42] developed a system
dynamics model for staffing estimation, and applied the
model in NASA’s DE-A project to analyze the deci-
sion of allocating up to eight people in one team.
Antoniol et al. [43] exploited queuing simulation along
with multiobjective optimization, and found that 46 was
the optimal staffing level for a large maintenance project.

Several points are worth noting. First, hybrid estimation
method exists [7]. Second, while the majority of studies con-
firmed the effect of group size on software development effort,
Smith et al. [44] showed the effect was not always statisti-
cally significant. Finally, optimality does not mean sticking
to the same group size over the entire project lifespan. In
fact, search-based approaches [8], [42], [43] provide dynamic
restaffing capabilities so that managers can better allocate
project resources at different stages of the software life cycle.

Compared to formally managing staffing levels in closed-
source software development, community contributions are
the life’s blood of a successful OSS project. The sub-
group structure emerges gradually and organically based
on how developers communicate and collaborate with each
other [10], [30], [45], [46]. The case study on Mozilla showed
that the size varied greatly from one group to another [30]. As
Mozilla evolved in the 2000s, the size of the median group
fluctuated between 14 and 141 developers. What is not known
is to what extent and in which way the group size affects
individual performance. We believe social information forag-
ing provides a direct answer. This answer, in turn, can shed
light on the self-organizing aspect of successful OSS projects,
as well as developers’ rational behaviors in the autonomous
social groups.

In sum, managing the group size in proprietary software
projects involves an intriguing paradox: while larger teams
clearly invest more human capital, smaller ones seem to
produce better teamwork. Although traditional methods in
software effort estimation are less suitable for studying OSS
projects, the relation between group size and developer pro-
ductivity spelled out in Putnam’s early definition [37] remains
essential to our inquiry.

C. Developer Productivity

Definitions of productivity share such common elements as
efficiency, input, and output. As one example, the IEEE 1045
Standard® defines productivity in terms of the rate of output
per unit of input. For software, source code is among the most
tangible outputs, and the input unit is often based on time.
While conforming to the IEEE Standard in principle, the liter-
ature contains many productivity measures [47], e.g., number

3 http://standards.ieee.org/findstds/standard/1045-1992.html

1787

of lines of code (LOC) per person-month, number of LOC per
hour, etc.

Despite all the measures, little is known about devel-
opers’ own perceptions of productivity. Meyer et al. [48]
recently filled the gap by surveying 379 software profession-
als and observing 11 developers at work. The results indicate
that developers often reflect productivity in days. They per-
ceive their days as productive when many or big tasks are
completed. It is also emphasized that, regardless of the mea-
sure, productivity should be used to enable within-project
evolutionary analysis and retrospective improvement, rather
than to make direct comparisons across individuals or across
organizations [48].

Similar line of research has considered developers’ percep-
tions in OSS development. Dabbish et al. [25], [49] inves-
tigated productivity implications by examining how GitHub
users make social inferences based on the visible cues and sig-
nals in the environment. Among the cues, commits—software
changes submitted to the project repository—play a critical
role [49].

1) Amount of commits implies commitment, liveness, and

community attention.

2) Type of commits signals interest in different aspects of
the project.

3) Relationship between commits and comments, issues,
or other commits conveys intention behind developer
actions.

4) History of commits can be used to infer project structure,
roles, and developer expertise.

In sum, most developers tend to assess their productivity
through the tasks completed [48]. Completing OSS soft-
ware change tasks typically involves commits, which provide
important cues for making social inferences about developer’s
behavior [25], [49]. Understanding how working with others
affects one’s own productivity is precisely the focus of this

paper.

III. RESEARCH METHODOLOGY

Our overall research objective is to examine to what
extent the optimal group size of social information foraging
[see (2) and Fig. 2] holds in OSS change tasks. Compared to
such functional forms about group size as [39] and [40], (2) is
different because it does not involve software size or other
effort estimation variables that are less suited to OSS projects.
Instead, the relationship is built on human’s collective prob-
lem solving [28], and connects explicitly and directly the group
size with individual member’s performance. As our analysis
is both analytical and evolutionary, this section presents how
we map theoretical constructs to OSS project data followed
by our formulation of specific hypotheses.

A. Project Selection and Data Extraction

Despite the lack of formal mechanisms to control staffing
levels, there are OSS projects with sizable developer pools that
produce software of high quality and rich functional capa-
bilities that rivals their commercial counterparts. This paper
studies two such systems: 1) Firefox and 2) Mylyn. Both are


http://standards.ieee.org/findstds/standard/1045-1992.html

1788

TABLE I
INFORMATION ON THE DATA GATHERED FOR THE SUBJECT PROJECTS

| Firefox Mylyn
Domain Web browsing Task management
Source mozilla.org/firefox eclipse.org/mylyn
Programming Language C/C++, JavaScript Java
# of Source Code Files 1968 (C/C++) 2321
Analysis Begin Date 2004-07-06 2006-12-05
Analysis End Date 2011-06-20 2011-02-28
# of Unique Developer IDs 2569 149
# of Completed Tasks 2878 1898
# of Commits 18538 4908

Bug 253046 - Missin gin Installer,

Status: RESOLVED FIXED Reported: 2004-07-25 19:52 PDT by Doron Rosenberg

Whiteboard: [h tch] ready to land ified- 208 POT (Hi
iteboal [have patch] ready to land Modifiet w&/

Status RESOLVED

Doron Rosenberg (IBM) 2004-07-25 19:52:22 PDT
L .
Resolution | FIXED

2004-09-24 08:06:29

This bug is for the missing plugin instaly
being done. I'll post
the current code tomorrow for the aviary

Last Resolved

When is the UI fre

(1 Robert Accettul

Here's another thought:
s Patch to be checked in (416118, p
Just some thoughts. 2004-08-16 10:31 POT, Doron Rosenberg (IBM)

. wrong plugln icon (66.01 kB, image/jpeg)
Then collectively they could be updat], . o, ... . Kurt Schultz (supernova_00)
removed from a common - e
interface.
in.

for 1.0?

Attachments

‘cettura]  2004-07-27 09:¢
Addmscs review (eedbaci (34.81 KB, patch)

, Doron Rosenbe

The upgrade part is what wmng plugmlmn (66.03 KB, image/jpeg)

, Kurt Schultz (supernova_00)

Fig. 3. Sample completed task of Firefox—some contents are omitted, trun-
cated, and rearranged. [_thsk’s status. [_thsk’s opening (reported) time.
[tdsk’s closing (last resolved) time. [_cbmments. [_cbmmits.

stable and successful in their respective domains. Each has
undergone a number of major release cycles and is still under
active development. Table I provides some general project
information, as well as the data collected for our analysis.

We have selected projects that vary in their governance
structure [10] and task? triage process [50]. Firefox is a
foundation project and follows a volunteer-based triage pro-
cess. Mylyn, though started in a monarchy way as part of
Mik Kersten’s Ph.D. thesis, gradually evolves to a commu-
nity centering around the open source implementation of the
task-focused interface. For Mylyn, determining the relevance
and priority of each submitted issue is developer-based. With
the variety in these different dimensions, our intention is to
ameliorate some of the threats to external validity.

For each project, we extract the successfully completed
tasks whose opening and closing times fall into our analy-
sis period. We then classify the tasks based on the discussion
and resolution information recorded in the project’s reposi-
tory. Fig. 3 shows an example. We define a task is solo if
only one developer is involved in the task’s whole life cycle,
i.e., from task reporting, through commenting and commit-
ting, to its final resolution. Otherwise, the task is social due
to developers’ interaction. Fig. 3 illustrates a social task’s col-
lective problem solving where multiple developers exchange

4We use “task” “issue,” and “bug” interchangeably in this paper to refer
to the software change tracked in systems like concurrent versioning system
and Bugzilla.

IEEE TRANSACTIONS ON CYBERNETICS, VOL. 46, NO. 8, AUGUST 2016

I solo
social

2304 1061
(80%) (56%)

(a) (b)

0/0\

17013 3605
(92%) (73%)

(c) (d)

Fig. 4. Solo-social distinctions. (a) Firefox and (b) Mylyn tasks. (c) Firefox
and (d) Mylyn commits.

comments and submit commits. Fig. 4 displays solo-social pro-
portions of the collected tasks and commits. While a majority
of the activities are social, the dominance is more prominent
in Firefox than Mylyn.

To examine the effect of group size, one must determine
a unit of analysis (i.e., what counts as a group). On one end
of the spectrum, every task can single out a group. On the
other end, the entire project group can be analyzed as a whole.
We decide to create a series of developer networks and treat
each network as a social group in our analysis. The purpose
of such networks is to represent the nexus of socio-technical
relationships between developers in a software project [45].
Here, “socio-technical” refers to the connection between two
people in the context of work-related collaboration [51]. We
carefully reviewed some recent and representative approaches
to developer social network analysis. Table II lists these
approaches’ characteristics and also positions our construction
in the relevant literature.

We consider all developers in this paper rather than just the
core members with commit right [10], [30], [45]. If a person
participates in task discussions like Robert in Fig. 3- [[_we
think it is a contribution to the collective problem solving. In
addition, Robert may be able to submit commits in the future
even if his write access is not granted now. Two developers’
are connected in our network if they work on the same task
by exchanging cues—comments or commits—in their social
information foraging. The commits can be code or other files
(design, testing, etc.) like the icon image in Fig. 3- L_A time
window of three months is used to aggregate the work-related
collaborations into a single data point for our group-size analy-
sis. In choosing the three-month window, we want to balance
the ephemeral nature of collaboration [45] and the level of
stability observed in OSS project’s social structure [10] and
evolution [30].

We therefore obtain 28 developer networks (data points)
for Firefox and 17 for Mylyn with the last network of both

SWhile aliasing presents a challenge, especially for building e-mail social
networks [10], we believe its impact is minor in this paper because one devel-
oper is unlikely to use different accounts during the resolution of the same
task. We thus leave the investigation of aliasing’s influence to future work.



BHOWMIK et al.: OPTIMAL GROUP SIZE FOR SOFTWARE CHANGE TASKS: A SOCIAL INFORMATION FORAGING PERSPECTIVE

1789

TABLE 1T
SOFTWARE DEVELOPERS’ SOCIAL NETWORKS

[ Developer Network I Nodes [

Edges (n1—n2)

| Edge-Window | Studied Project(s)

Developers with

E-mail network [10] commit right

n2 replies nl’s e-mail

Apache, Ant, Python,

3 months Perl, PostgreSQL

Communication network [52] All developers

n2 reads the information
provided by nl

between builds | IBM’s Jazz

Tesseract [53] All developers

nl and n2 edit the same
source code file

user-selected

. - GNOME
time period

People and artifacts

Data based on a medium-

Codebook [54] (9 node types) befriend (18 edge types) 6 months sized Microsoft team
. nl and n2 are co-listed as con SourceForge (Sept

Collaboration network [55] All developers _tributors of the same project N/A 2009 data dump)

L Developers who con- nl and n2 work on similar SourceForge (May 2008
DPP tripartite graph [56] tribute to >7 projects | projects N/A — May 2010 data dumps)
Socio-technical network [45] Core Qevc?lopers (>50 | nl and n2 make a commit to 1 month Llpux kernel, PHP,

commits in 2 years) the same source code file Wireshark
Subcommunity evolution [30] (Ce(;rgeed;\e/?;(})}tae;s 2) nl and n2 work on the same task 6 months Mozilla
[ Our work [[ Al developers [ nI and n2 work on the same task | 3 months | Firefox, Mylyn

projects building on collaborations less than three months. If
a task spans our three-month window boundary, we classify
it according to its closing time and not its opening time. This
decision is made for accurately counting the number of suc-
cessfully completed tasks in each time window. We now can
instantiate the parameters in (2) in order to calculate the opti-
mal group size n* predicted by social information foraging
theory.

1) We map each task as an information patch in which solo
or social information foraging occurs.

2) Following Pirolli [21], we assume n = H. We further
assume the amount of within-patch information gain, G,
equals to the number of effective hints, H. Therefore,
n=H=G.

3) The group rate of finding useful information is A(n) =
MH) = 1/tpach, Where tpaen is the within-patch for-
aging time [21]. In our case, fpych = [task’s closing
time — task’s opening time] (see [, inlFig. 3).

4) To compute the patch processing time t(n) = an®, we
assign the value of a (solo foraging time) to be the aver-
age ftpych of all the solo tasks inside each time window.
The rate parameter ¢ is then calibrated to obtain the
best possible lognormal curve for R(n, H) [21]. For our
collected data, ¢ = 0.3 in both Firefox and Mylyn.

It should be emphasized that the purpose of R(n, H) is not
to estimate developer’s actual productivity, but to theoretically
determine n* (optimal group size). Our primary goal of lever-
aging the R(n, H) model (see Fig. 2) is twofold: 1) to provide
a mathematical rationale for and quantitative insight to the
key tradeoff in OSS development (i.e., developer groups do
not become arbitrarily large [30]) and 2) to allow for critical
comparisons between the theoretically predicted »n* and the
actual group size n observed empirically.

B. Hypotheses

Our first testable hypothesis concerns the degree to which
n* and n match with each other.

H;—There is no difference between n* (the optimal group
size) and n (the actual group size).

We next test the foraging-theoretic relation between group
size and individual group member’s rate of information gain.
As mentioned earlier, we assess the rate of gain by developer
productivity. Based on the related literature (see Section II-C),
we measure productivity in OSS development by the number
of commits per day divided by the number of tasks performed
on that day. For example, if on a particular day, Task; is
done collectively by Ana (three commits) and Bob (five com-
mits), Task, by Ana (five commits) and Chris (one commit),
Tasksz done individually by Ana (three commits), Tasks by
Chris (two commits), and Tasks also by Chris (four commits),
then the productivity of Anagglo, ANagecial, BObsocial, Chrissolos
and Chrisgociat is 3/1 = 3, B+5)/2 = 4, 5/1 = 5,
2+4)/2 = 3, and 1/1 = 1, respectively. This measure
thus approximates a developer’s gain of useful information in
carrying out daily OSS change tasks. According to the social
information foraging model [21], we have the following.

H,—The closer the actual group size is to optimal, the more
productive the group members are.

Self-organizing has been recognized as a key for under-
standing how OSS development groups coordinate themselves
and make autonomous decisions. Bird ef al. [10] noted that
latent subcommunities emerge as the OSS project evolves.
Interestingly, Hoda et al. [57] focused on agile software
teams by showing six self-organizing roles which are implicit
and spontaneous. We posit that foraging theory offers a new
perspective on how social groups self-organize.

H3—As the OSS project evolves, the group size becomes
more optimal.

Our last hypothesis investigates developer’s solo-social
behavior changes. Such changes are important because they
directly impact productivity [58], [59]. For example, a devel-
oper may achieve individual productivity gain by reducing
social interactions [48]. However, the change should not
compromise social-level performance if the group is self-
organizing. We therefore formulate our final hypothesis as
follows.

Hy—Developer’s solo-social changes during the OSS
project’s evolution lead to productivity gain at the group level.



1790

n* Group Size n n*  Group Size n

7 7
6 6
5 5
4 4
3 3
2 2

f f t f t f | f F—— f {
15 10 5 0 5 10 159 6 3.0 3 6 9

(@) (b)

Fig. 5. Group size distribution: each bar represents the frequency of
occurrence of n* or n in [2, 7]. (a) Firefox. (b) Mylyn.

IV. EMPIRICAL ANALYSIS RESULTS

We use the data collected from Firefox and Mylyn to exam-
ine the influence of group foraging size both analytically
(H; and Hj) and evolutionarily (H3 and Hy). Our statisti-
cal inferences are not causal but correlational, as our current
interest is in exploring the novel relationships suggested by the
theory of social information foraging rather than determining
the direction of causality in the relationships.

To evaluate Hy, we perform the Mann—Whitney test [60],
a nonparametric test previously used to assess whether infor-
mation foraging theory’s predictions and developers’ actual
behaviors match with one another [15], [19]. Fig. 5 presents
descriptive statistics about optimal (n*) and actual (n) group
sizes in pyramid plots. The determination of n* is illustrated
in Fig. 6. Although the operationalizations in our current
study have certain limitations that will be discussed later in
this section, a head-to-head comparison of n* and n tests
theory’s predictions in a direct manner. As can be seen from
Fig. 5, even though n* and n in both projects fall into the
range of [2, 7], their value discrepancies are very noticeable.
The Mann—Whitney tests further confirm that the differ-
ences between n* and n are statistically significant (Firefox:
U=116.0, p < 0.01; Mylyn: U = 29.5, p < 0.01). Therefore,
H; is rejected.

We test Hp by calculating the association between
two variables: An = |n* — n| and AP. We define
AP as the absolute value of the difference of develop-
ers’ average productivity in solving social tasks and that
in solving solo tasks. Following our earlier example in
Section III-B, AP = | (Anaggcial + Bobggcial + Chrisgoeia) /3 —
(Anagolo + Chrisgolo) /2| =14 +5+1)/3 =3+ 3)/2|=
0.33. For Firefox and Mylyn, 28 and 17 pairs of (An, AP) are
collected, respectively. We then use Spearman’s rank correlation
coefficient [60], another nonparametric measure, to assess the
statistical dependence between An and AP. The tests of both
projects result in negative values of Spearman’s p at significant
levels—Firefox: p = —0.46, p < 0.05; Mylyn: p = —0.63,
p < 0.01. This indicates that the increase of AP is strongly
associated with the decrease of An. Thus, Hj is supported.

The test of H3 involves the temporal trend analysis of An.
The analysis is performed along the three-month time series.
For illustrative purposes, Fig. 6 plots the lognormal curves of
two arbitrarily chosen time windows for each project. One can
then theoretically determine n* for each time window as shown
in Fig. 6. If we assign ID numbers (#1, #2, #3, ...) to the time

IEEE TRANSACTIONS ON CYBERNETICS, VOL. 46, NO. 8, AUGUST 2016

3E-08 - 1.5E-08
i R(n, H) 3 R(n, H)
2E-08 3 1E-08 3
1E-08 | SE-09 |
| n*=6 n*=5
0 | : ! < 0 by : <
0 3 6 9 12 0 3 6 9 12
Firefox Time Window #2 Firefox Time Window #19
3E-08 1.2E-08
2E-08 R(n, H) 8E-09 /%
1E-08 4E-09 ‘
=4 i n*=6
0 — : | 0 | | | |
0 3 6 9 12 0 3 6 9 12
Mylyn Time Window #3 Mylyn Time Window #10

Fig. 6. Determining foraging-theoretic optimal group size n*. The displayed
time windows (units of analysis) are chosen arbitrarily. We measure the within-
patch foraging time tpych in minutes. This measurement unit affects only the
absolute scale of R(n, H) as the shape of the lognormal curve and the value
of n* remain unchanged.

windows, then a strong negative correlation between the time
window IDs and An provides support for Hz. The negative
correlation would indicate that An tends to decrease when ID
increases (i.e., the project evolves). However, Spearman’s tests
show positive correlations at statistically insignificant levels
(Firefox: p = 0.02, p = 0.92; Mylyn: p = 0.29, p = 0.26). To
further visualize the temporal trends, Fig. 7 depicts the value
of (n* — n) instead of |n* — n|. For Firefox, the actual group
size matches perfectly with the optimal value only once at time
window #19. In other times, n is strictly greater or less than n*.
Surprisingly, the actual group size in Mylyn is always less than
or equal to the corresponding optimal group size. We specu-
late that one possible reason might be that different projects
or project phases employ different organizational social struc-
tures [61] and hence different group formations and sizes;
testing this speculation requires future research. Nevertheless,
it is clear from Fig. 7 that n and n* do not become closer as
the project evolves. Due to this observation and Spearman’s
test results, H3 is rejected.

Compared to the quantitative analyses of the above hypothe-
ses, Hy is assessed qualitatively mainly because we could not
find systematic and reliable methods in the literature for detect-
ing developer’s solo-social behavior changes. We thus use a
purposeful sampling strategy [62] by directing our attention
to such high-profile developers in the community that their
solo-social task-solving behaviors likely have an important
influence on the social groups. For Firefox, we focus on its for-
mer lead developer, Ben Goodger, who was hired by Google
in January 2005 for the Chrome project. For Mylyn, a natural
choice to us is its creator Mik Kersten. We then inspect the
software change activities of these two developers and select
the two consecutive time windows with the most noticeable
solo-social behavior changes to test Hy. Fig. 8 summarizes the
results.

1) Among all the Firefox project history that we analyzed,

Goodger performed the most number of solo and social



BHOWMIK et al.: OPTIMAL GROUP SIZE FOR SOFTWARE CHANGE TASKS: A SOCIAL INFORMATION FORAGING PERSPECTIVE

4

44 @®

4 8 12 16
(b)

Time
Window

Fig. 7. Plotting (n* — n) during project’s evolution. (a) Firefox. (b) Mylyn.
tasks in time window #7: 14 and 20, respectively. For the
next three months, his engagement in software change
tasks reduced and the nine tasks that he contributed were
all collaborations with other developers. Fig. 8(b) shows
that during this evolution, the group-aggregate produc-
tivity for solving tasks solitarily decreased whereas the
collective task solving productivity improved.

2) The trend of Kersten’s changes from Mylyn’s time win-
dow #9 to #10 is similar to Goodger’s: during the project
evolution, no further solo task was performed and the
number of social tasks was also dropped. Such indi-
vidual changes, when understood from the standpoint
of foraging in groups [see Fig. 8(d)], correlated with
social-task productivity gain and solo-task productivity
loss.

Our qualitative analyses provide initial evidence that Hy
holds. In both cases, productivity gain of social groups is
observed. While Goodger and Kersten might stop working on
tasks individually, they still keep social interactions with others
in the community. An interesting observation is that the dif-
ference between solo and social productivity becomes greater
as the project evolves. We consider this to be another facet
that indicates how developer groups self-organize, namely by
trading soloist’s performance off social capital. While both
instances follow a shift from solo to social, we must be cau-
tious about how much Hy findings can be generalized. In
other software projects, or even in different time periods of
Firefox and Mylyn that our current analysis does not cover, a
(lead) developer’s social-to-solo shift may as well lead to aver-
age productivity gain, possibly due to the high-level expertise
involved in resolving software change tasks.

The results of our empirical study can be summarized as
follows. The fact that Hy and Hjz are refuted implies that it is
not the group size per se that is important. Rather, the sup-
port for H, and Hy indicates that we shall go beyond the
optimal group size by connecting it to developer productivity,
especially in the context of software evolution [63].

A. Threats to Validity

A major limitation is our choice of using a three-month
time window to define developers’ social groups. While this

1791

Time Solo . Social o
Window | 4 tasks | # commits | # tasks | # commits I = =
#7 14 18 20 42 2
#8 0 0 9 52 Time
#7 #8 Window
(a) (b)
Time Solo . Social :
Window | 4 tasks | # commits | # tasks | # commits = 2
#9 6 10 3 3 <
#10 0 0 1 1 Time
#9 #10  Window
(©) @
Fig. 8. Solo- and social-level changes as the OSS project evolves.

(a) Goodger’s and (c) Kersten’s individual behavioral changes. (b) Firefox
and (d) Mylyn productivity changes.

operationalization refines the six-month window recommended
in [30] for understanding OSS project evolution, sensitivity
analyzes such as those conducted in [56] can help to reason
about the design decision more thoroughly. A related threat is
our reliance on discussion and commits information to detect
social links between developers. Despite the popular use of the
issue tracking data in related studies [30], [45], [52], we miss
other potential developer interactions such as private e-mails
and chats over internet relay chat channels. This affects our
identification of solo tasks more than social ones.

Another limitation relates specifically to our reliance on
qualitative analysis for testing Hy. We note that quantitative
metrics and approaches could be used. For example, an abnor-
mal return may be measured by the following steps. First,
one defines significant events in the software project that are
considered important to Hy, e.g., times when top developers
decrease their solo activities, or increase their social activities,
or both, by a certain amount. Next, compute the variable of
interest (in our case n* —n) in a period before the event (from
which one makes an expectation) and after the event (where
one computes the actual value). Finally, the abnormal return
is calculated by the difference between actual and expected,
which can be a quantitative indicator used to assess Hy. Note
that more operational insights and quantitative measures of
Hy4 could possibly be derived from Putnam’s study on social
capital [64].

The way we measure developer productivity poses a threat
to construct validity. In fact, no single productivity measure is
perceived valid unanimously by developers themselves [48]. It
is unlikely such measure will ever exist. Therefore, the num-
ber of daily commits normalized by tasks and developers that
we use in this paper should be treated only as an approxi-
mate. However, we hope the approximate, which is based on
the literature review (see Section II-C), is useful not because
of the absolute values calculated but the way it is being
used in this paper—to support correlational and evolutionary
analyzes.

While social information foraging theory asserts the rela-
tionship between group size and group member’s rate of
gain [21], it is important to note that no causal link has been
established in our empirical study. Future work is required to
determine if the optimal group size drives productivity gain



1792

or vice versa, or if they are both results of some unobserved
phenomenon.

The biggest threat is to external validity. As with most OSS
studies (see Table II), only a small number of projects could
be selected. We chose Firefox and Mylyn because they are
mature, stable, long lived, and considered successful. As men-
tioned earlier, we also tried to incorporate the variability of
these two projects’ governance structure and task triage pro-
cess. However, many other project attributes exist and we have
no evidence with respect to how much our results will be gen-
eralizable to a wider range of projects. We want to point out
that Firefox and Mylyn have been studied in prior research
(see [30], [50]), allowing the research community to integrate
our results with the findings of others.

V. DISCUSSION

Our foraging-theoretic inquiries into optimal group size
enable new ways to support software practitioners and organi-
zations. To demonstrate our work’s potential impact, we dis-
cuss in this section how our results can be applied. Specifically,
we show the improved understanding and enhanced support
derived from this paper in order to extend the frontiers of
knowledge in two software engineering areas.

A. Social Coding

For many years, software development environments have
been designed for developers to focus on their own work
without much interference. Principles like information hid-
ing [65] and mechanisms like pessimistic version control [66]
attempt to free the developer from complexities and inconsis-
tencies resulting from colleagues’ actions. Although helpful,
the isolation is not ideal for collaborative software devel-
opment. Several tools, such as Jazz [67], Palantir [68], and
Crystal [69], have arisen to answer the collaborative needs by
raising change visibility and enhancing conflict management
as software evolves.

A more radical approach is now sweeping the OSS
world and gradually working its way into corporate envi-
ronments [70]. The approach, exemplified by GitHub whose
tagline is “social coding,” aims to dramatically improve the
level of collaboration and participation among people who
build software [71]. In a nutshell, social coding fuses social
networking functionalities with flexible version control sys-
tems such as Git, Mercurial, or Bazaar [25]. On one hand,
social networking helps create a transparent work environment
that allows developers to easily review feeds, watch projects,
and follow others. On the other hand, flexible version con-
trol systems do away with the idea of a single master branch,
allowing developers to discover interesting changes, experi-
ment with them in separate forks, pull others’ changes into
their own branches, and offer changes back to the repository
owner [25].

Because of the flexibility of participation and the power of
collaboration, social coding has led to improvements in terms
of quantity and quality of work that different communities and
companies have done [71]. The level of participation can be
understood from the social information foraging perspective

IEEE TRANSACTIONS ON CYBERNETICS, VOL. 46, NO. 8, AUGUST 2016

A
Reduced collaborative costs
Al
= r N T -
= f \\ No cooperation (solo)
< ! N o — - — Baseline cooperation
f ,' . \\ qullllbl‘l'llm - = =+ Improved cooperation
) 4 \’ \  group size
-3 R N .
g ! N
[ : S
Y~ I -
| -
>
Effective Size of Group
Fig. 9. Reducing the costs of cooperation extend the tail of the rate of

returns curve, which also extends the point at which the curve crosses the
solo information foraging threshold. Consequently the equilibrium group size
is predicted to increase. The figure is adapted from Pirolli’s elementary social
information foraging model [21].

as shown in Fig. 9. In the figure, the point where cooperation
curve crosses the solo information foraging threshold gives
rise to the equilibrium group size [21]. Even though members
of the group may see their individual rates of return dimin-
ish from the optimum at n* as new members join the group,
remaining in the group is still better than solitary foraging.
Consequently, the effect of reduced collaborative costs (e.g.,
easier sharing and notification in GitHub [25]) can be linked
to the increased equilibrium group size. The quantitative pre-
diction is shown in Fig. 9, in turn, can be used to guide further
support for reducing the costs of cooperation, e.g., making the
decisions about code reviews [72] and pull requests [73] more
transparent and accessible.

B. Recommendation Systems

While social coding makes the work more visible [70], it
also makes the information overload problem more challeng-
ing. To address the challenge, the emerging recommendation
systems are ready to become part of software practitioners’
toolboxes. These systems are aimed at providing information
items estimated to be valuable for a software engineering task
in a given context, and are particularly useful in supporting
decision making when developers lack experience or cannot
consider all the data at hand [26].

Closely related to this paper are approaches recommending
who in the developer social group, including who should fix an
incoming bug [50], who should mentor OSS newcomers [74],
who should be working together [56], and who should aware-
ness be attended to [75]. When making these recommendations
and the like, how many developers to consider can be answered
via the group size model that this paper uses. This comple-
ments a set of existing recommenders by offering a theoretical
underpinning for rationalizing the size of their output.

An assumption of the elementary social information for-
aging model is that there are a finite number of discoveries
to be made in a domain, and once a particular discovery is
made it is of no additional value for others to repeat the
same discovery [21]. While we believe this holds in general
for successfully solving a software change task, special cases
may require the assumption to be adjusted. In addition, the
assumption, n = H, characterizes the case in which mem-
bers of the group contribute distinctively effective hints [21].



BHOWMIK et al.: OPTIMAL GROUP SIZE FOR SOFTWARE CHANGE TASKS: A SOCIAL INFORMATION FORAGING PERSPECTIVE

In other group foraging situations, hints may have different
weights. For example, the information shared by experts can
be estimated to bear more value and such expertise can be
identified by the quantification of experience [76], developer’s
centrality in the social network [45], degree-of-knowledge of
source code familiarity [77], or other means. In any case, the
updated assumption on n and H can be fed back into the social
information foraging model—(2) in particular—for generat-
ing recommendations which are better suited to the specific
situation.

VI. CONCLUSION

The main contributions of this paper are the evolutionary-
ecological understanding of developers’ information foraging
in social groups, the theoretical analysis of group size and its
relation to individual’s rate of gain, the empirical evaluation of
a set of hypotheses enabled by the novel perspective, and the
concrete insights of applying our research to study developers’
rational behaviors in performing a wide variety of information-
intensive tasks in software engineering.

Open source projects represent the cleanest way to group
developers and other stakeholders together that may or may not
be company-specific [71]. Understanding the important struc-
tural variable—group size—and its role in OSS development
and evolution could well hold useful lessons for how com-
mercial software organizations might be managed. Our future
work includes carrying out more empirical studies ideally with
proprietary software projects, performing sensitivity analyses
of key assumptions and decisions in this paper, and extending
the foraging-theoretic analysis to support other activities such
as productivity retrospection [48], subgroup discovery [46],
and social norm learning [36].

ACKNOWLEDGMENT

The authors would like to thank G. Bradshaw for comments
on earlier drafts of this paper.

REFERENCES

[1] W. Wang and Y. Jiang, “Community-aware task allocation for social
networked multiagent systems,” IEEE Trans. Cybern., vol. 44, no. 9,
pp. 1529-1543, Sep. 2014.

[2] B. Zhu, Z. Xu, and J. Xu, “Deriving a ranking from hesitant fuzzy
preference relations under group decision making,” IEEE Trans. Cybern.,
vol. 44, no. 8, pp. 1328-1337, Aug. 2014.

[3] T. P. Pavlic and K. M. Passino, “Distributed and cooperative task pro-
cessing: Cournot oligopolies on a graph,” IEEE Trans. Cybern., vol. 44,
no. 6, pp. 774-784, Jun. 2014.

[4] L. D. Xu and W. Viriyasitavat, “A novel architecture for requirement-
oriented participation decision in service workflows,” IEEE Trans. Ind.
Informat., vol. 10, no. 2, pp. 1478-1485, May 2014.

[5] W. He and L. D. Xu, “Integration of distributed enterprise applica-
tions: A survey,” IEEE Trans. Ind. Informat., vol. 10, no. 1, pp. 35-42,
Feb. 2014.

[6] J. D. Blackburn, G. D. Scudder, and L. N. Van Wassenhove, “Improving
speed and productivity of software development: A global survey of soft-
ware developers,” IEEE Trans. Softw. Eng., vol. 22, no. 12, pp. 875-885,
Dec. 1996.

[7]1 P. C. Pendharkar and J. A. Rodger, “Probabilistic and analytical esti-
mation of software development team size,” Int. J. Hybrid Intell. Syst.,
vol. 7, no. 2, pp. 137-153, Jun. 2010.

1793

[8] M. Di Penta, M. Harman, G. Antoniol, and F. Qureshi, “The effect
of communication overhead on software maintenance project staffing:
A search-based approach,” in Proc. Int. Conf. Softw. Maint. (ICSM),
Paris, France, Oct. 2007, pp. 315-324.

[9]1 F. P. Brooks, Jr., The Mythical Man-Month: Essays on Software
Engineering. Reading, MA, USA: Addison-Wesley, 1975.

[10] C. Bird, D. S. Pattison, R. M. D’Souza, V. Filkov, and P. Devanbu,
“Latent social structure in open source projects,” in Proc. ACM SIGSOFT
Int. Symp. Found. Softw. Eng. (FSE), Atlanta, GA, USA, Nov. 2008,
pp. 24-35.

[11] N. Niu, L. D. Xu, and Z. Bi, “Enterprise information systems
architecture—Analysis and evaluation,” IEEE Trans. Ind. Informat.,
vol. 9, no. 4, pp. 2147-2154, Nov. 2013.

[12] A.J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung, “An exploratory
study of how developers seek, relate, and collect relevant information
during software maintenance tasks,” IEEE Trans. Softw. Eng., vol. 32,
no. 12, pp. 971-987, Dec. 2006.

[13] P. Pirolli, Information Foraging Theory: Adaptive Interaction With
Information. New York, NY, USA: Oxford Univ. Press, 2007.

[14] D. W. Stephens and J. R. Krebs, Foraging Theory. Princeton, NJ, USA:
Princeton Univ. Press, 1987.

[15] J. Lawrance, R. Bellamy, and M. Burnett, “Scents in programs:
Does information foraging theory apply to program maintenance?”
in Proc. IEEE Symp. Vis. Lang. Human-Centric Comput. (VL/HCC),
Coeur d’Alene, ID, USA, Sep. 2007, pp. 15-22.

[16] J. Lawrance et al., “How programmers debug, revisited: An information
foraging theory perspective,” IEEE Trans. Softw. Eng., vol. 39, no. 2,
pp. 197-215, Feb. 2013.

[17] M. T. Su, E. Tempero, J. Hosking, and J. Grundy, “A study of archi-
tectural information foraging in software architecture documents,” in
Proc. Joint Working IEEE/IFIP Conf. Softw. Archit. (WICSA), Helsinki,
Finland, Aug. 2012, pp. 141-151.

[18] N. Niu, A. Mahmoud, and G. Bradshaw, “Information foraging as a
foundation for code navigation (NIER Track),” in Proc. Int. Conf. Softw.
Eng. (ICSE), Honolulu, HI, USA, May 2011, pp. 816-819.

[19] N. Niu, A. Mahmoud, Z. Chen, and G. Bradshaw, “Departures from
optimality: Understanding human analyst’s information foraging in
assisted requirements tracing,” in Proc. Int. Conf. Softw. Eng. (ICSE),
San Francisco, CA, USA, May 2013, pp. 572-581.

[20] S. D. Fleming et al., “An information foraging theory perspective on
tools for debugging, refactoring, and reuse tasks,” ACM Trans. Softw.
Eng. Methodol., vol. 22, no. 2, Mar. 2013, Art. ID 14.

[21] P. Pirolli, “An elementary social information foraging model,” in
Proc. Conf. Human Factors Comput. Syst. (CHI), Boston, MA, USA,
Apr. 2009, pp. 605-614.

[22] H. Qiao, Y. Li, T. Tang, and P. Wang, “Introducing memory and associ-
ation mechanism into a biologically inspired visual model,” IEEE Trans.
Cybern., vol. 44, no. 9, pp. 1485-1496, Sep. 2014.

[23] A. B. Ozgiiler and A. Yildiz, “Foraging swarms as Nash equilibria of
dynamic games,” IEEE Trans. Cybern., vol. 44, no. 6, pp. 979-987,
Jun. 2014.

[24] E. Nichols, L. McDaid, and N. H. Siddique, “Biologically inspired SNN
for robot control,” IEEE Trans. Cybern., vol. 43, no. 1, pp. 115-128,
Feb. 2013.

[25] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb, “Leveraging trans-
parency,” IEEE Softw., vol. 30, no. 1, pp. 37-43, Jan./Feb. 2013.

[26] M. P. Robillard, W. Maalej, R. J. Walker, and T. Zimmermann,
Recommendation Systems in Software Engineering. Berlin, Germany:
Springer, 2014.

[27] E.H. Chi et al., “The Bloodhound project: Automating discovery of Web
usability issues using the InfoScent simulator,” in Proc. Conf. Human
Factors Comput. Syst. (CHI), Ft. Lauderdale, FL, USA, Apr. 2003,
pp- 505-512.

[28] S. H. Clearwater, T. Hogg, and B. A. Huberman, “Cooperative
problem solving,” in Computation: The Micro and Macro View,
B. A. Huberman, Ed. Singapore: World Scientific, 1992, pp. 33-70.

[29] C. W. Clark and M. Mangel, “The evolution advantages of group
foraging,” Theor. Popul. Biol., vol. 30, no. 1, pp. 45-75, Aug. 1986.

[30] Q. Hong, S. Kim, S. C. Cheung, and C. Bird, “Understanding a
developer social network and its evolution,” in Proc. Int. Conf. Softw.
Maint. (ICSM), Williamsburg, VA, USA, Sep. 2011, pp. 323-332.

[31]7 A. Kittur, B. Suh, B. A. Pendleton, and E. H. Chi, “He says, she says:
Conflict and coordination in Wikipedia,” in Proc. Conf. Human Factors
Comput. Syst. (CHI), San Jose, CA, USA, Apr./May 2007, pp. 453—462.

[32] L. Williams and A. Cockburn, “Agile software development: It’s about
feedback and change,” IEEE Comput., vol. 36, no. 6, pp. 39-43,
Jun. 2003.



1794

[33]
[34]
[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

W. S. Humphrey, “The team software process,” Softw. Eng. Inst.,
Pittsburgh, PA, USA, Tech. Rep. CMU/SEI-2000-TR-023, Nov. 2000.
M. A. Cusumano and R. W. Selby, Microsoft Secrets. New York, NY,
USA: Free Press, 1998.

M. Hoegl, “Smaller teams—Better teamwork: How to keep project teams
small,” Bus. Horizons, vol. 48, no. 3, pp. 209-214, May/Jun. 2005.

C. Yu, M. Zhang, and F. Ren, “Collective learning for the emergence of
social norms in networked multiagent systems,” IEEE Trans. Cybern.,
vol. 44, no. 12, pp. 2342-2355, Dec. 2014.

L. H. Putnam, “A general empirical solution to the macro software siz-
ing and estimating problem,” IEEE Trans. Softw. Eng., vol. 4, no. 4,
pp. 345-361, Jul. 1978.

D. Rodriguez, M. A. Sicilia, E. Garcia, and R. Harrison, “Empirical
findings on team size and productivity in software development,”
J. Syst. Softw., vol. 85, no. 3, pp. 562-570, Mar. 2012.

M. Heritko, A. Zivkovi¢, and 1. Rozman, “An approach to optimizing
software development team size,” Inf. Process. Lett., vol. 108, no. 3,
pp. 101-106, Oct. 2008.

P. C. Pendharkar, J. A. Rodger, and G. H. Subramanian, “An empirical
study of the Cobb-Douglas production function properties of software
development effort,” Inf. Softw. Technol., vol. 50, no. 12, pp. 1181-1188,
Nov. 2008.

P. C. Pendharkar, G. H. Subramanian, and J. A. Rodger, “A probabilistic
model for predicting software development effort,” IEEE Trans. Softw.
Eng., vol. 31, no. 7, pp. 615-624, Jul. 2005.

T. K. Abdel-Hamid, “The dynamics of software project staffing: A sys-
tem dynamics based simulation approach,” IEEE Trans. Softw. Eng.,
vol. 15, no. 2, pp. 109-119, Feb. 1989.

G. Antoniol, A. Cimitile, G. A. Di Lucca, and M. Di Penta, “Assessing
staffing needs for a software maintenance project through queuing sim-
ulation,” IEEE Trans. Softw. Eng., vol. 30, no. 1, pp. 43-58, Jan. 2004.
R. K. Smith, J. E. Hale, and A. S. Parrish, “An empirical study using
task assignment patterns to improve the accuracy of software effort
estimation,” [EEE Trans. Softw. Eng., vol. 27, no. 3, pp. 264-271,
Mar. 2001.

A. Meneely and L. Williams, “Socio-technical developer networks:
Should we trust our measurements?” in Proc. Int. Conf. Softw.
Eng. (ICSE), Honolulu, HI, USA, May 2011, pp. 281-290.

J. M. Luna, J. R. Romero, C. Romero, and S. Ventura, “On the
use of genetic programming for mining comprehensible rules in sub-
group discovery,” IEEE Trans. Cybern., vol. 44, no. 12, pp. 2329-2341,
Dec. 2014.

K. Petersen, “Measuring and predicting software productivity: A system-
atic map and review,” Inf. Softw. Technol., vol. 53, no. 4, pp. 343-371,
Apr. 2011.

A. N. Meyer, T. Fritz, G. C. Murphy, and T. Zimmermann, “Software
developers’ perceptions of productivity,” in Proc. ACM SIGSOFT Int.
Symp. Found. Softw. Eng. (FSE), Hong Kong, China, Nov. 2014,
pp. 19-29.

L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb, “Social coding in
GitHub: Transparency and collaboration in an open software reposi-
tory,” in Proc. Conf. Comput. Support. Cooper. Work (CSCW), Seattle,
WA, USA, Feb. 2012, pp. 1277-1286.

J. Anvik and G. C. Murphy, “Reducing the effort of bug report triage:
Recommenders for development-oriented decisions,” ACM Trans. Softw.
Eng. Methodol., vol. 20, no. 3, pp. 1-35, Aug. 2011.

T. G. Cummings, “Self-regulating work groups: A socio-technical
synthesis,” Acad. Manage. Rev., vol. 3, no. 3, pp. 625-634, Jul. 1978.
T. Wolf, A. Schréter, D. Damian, and T. Nguyen, “Predicting build
failures using social network analysis on developer communication,”
in Proc. Int. Conf. Softw. Eng. (ICSE), Vancouver, BC, Canada,
May 2009, pp. 1-11.

A. Sarma, L. Maccherone, P. Wagstrom, and J. Herbsleb, “Tesseract:
Interactive visual exploration of socio-technical relationships in software
development,” in Proc. Int. Conf. Softw. Eng. (ICSE), Vancouver, BC,
Canada, May 2009, pp. 23-33.

A. Begel, Y. P. Khoo, and T. Zimmermann, “Codebook: Discovering
and exploiting relationships in software repositories,” in Proc. Int. Conf.
Softw. Eng. (ICSE), Cape Town, South Africa, May 2010, pp. 125-134.
D. Surian, D. Lo, and E.-P. Lim, “Mining collaboration patterns from a
large developer network,” in Proc. Working Conf. Reverse Eng. (WCRE),
Beverly, MA, USA, Oct. 2010, pp. 269-273.

D. Surian et al., “Recommending people in developers’ collaboration
network,” in Proc. Working Conf. Reverse Eng. (WCRE), Limerick,
Ireland, Oct. 2011, pp. 379-388.

(571

[58]

[59]

[60]

[61]

[62]

[63]

[64]
[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

(73]

[74]

[75]

[76]

(771

IEEE TRANSACTIONS ON CYBERNETICS, VOL. 46, NO. 8, AUGUST 2016

R. Hoda, J. Noble, and S. Marshall, “Self-organizing roles on agile
software development teams,” IEEE Trans. Softw. Eng., vol. 39, no. 3,
pp. 422-444, Mar. 2013.

C. R. B. de Souza, D. F. Redmiles, and P. Dourish, “‘Breaking the
code,” moving between private and public work in collaborative software
development,” in Proc. Conf. Support. Group Work (GROUP), Sanibel,
FL, USA, Nov. 2003, pp. 105-114.

M. Cataldo, J. D. Herbsleb, and K. M. Carley, “Socio-technical con-
gruence: A framework for assessing the impact of technical and work
dependencies on software development productivity,” in Proc. Int. Symp.
Empir. Softw. Eng. Meas. (ESEM), Kaiserslautern, Germany, Oct. 2008,
pp. 2-11.

W. J. Conover, Practical Nonparametric Statistics. New York, NY, USA:
Wiley, 1999.

D. A. Tamburri, P. Lago, and H. van Vliet, “Organizational social struc-
tures for software engineering,” ACM Comput. Surv., vol. 46, no. 1,
pp. 42-76, Oct. 2013.

C. Grbich, Qualitative Data Analysis: An Introduction. London, U.K.:
Sage, 2012.

O. Nierstrasz, “Software evolution as the key to productivity,” in Proc.
Int. Workshop Radical Innov. Softw. Syst. Eng. Future (RISSEF), Venice,
Italy, Oct. 2002, pp. 274-282.

R. D. Putnam, Bowling Alone: The Collapse and Revival of American
Community. New York, NY, USA: Simon and Schuster, 2000.

D. L. Parnas, “On the criteria to be used in decomposing systems into
modules,” Commun. ACM, vol. 15, no. 12, pp. 1053-1058, Dec. 1972.
R. Conradi and B. Westfechtel, “Version models for software configu-
ration management,” ACM Comput. Surv., vol. 30, no. 2, pp. 232-282,
Jun. 1998.

L.-T. Cheng, C. R. B. de Souza, S. Hupfer, J. F. Patterson, and
S. I. Ross, “Building collaboration into IDEs,” ACM Queue, vol. 1,
no. 9, pp. 40-50, Dec. 2003.

A. Sarma, Z. Noroozi, and A. van der Hoek, “Palantir: Raising awareness
among configuration management workspaces,” in Proc. Int. Conf. Softw.
Eng. (ICSE), Portland, OR, USA, May 2003, pp. 444-454.

Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin, “Early detection of col-
laboration conflicts and risks,” IEEE Trans. Softw. Eng., vol. 39, no. 10,
pp- 1358-1375, Oct. 2013.

R. Cross, S. P. Borgatti, and A. Parker, “Making invisible work visi-
ble: Using social network analysis to support strategic collaboration,”
California Manag. Rev., vol. 44, no. 2, pp. 25-46, 2002.

A. Begel, J. Bosch, and M.-A. Storey, “Social networking meets software
development: Perspectives from GitHub, MSDN, Stack Exchange, and
TopCoder,” IEEE Softw., vol. 30, no. 1, pp. 52-66, Jan./Feb. 2013.

0. Baysal, O. Kononenko, R. Holmes, and M. W. Godfrey, “The influ-
ence of non-technical factors on code review,” in Proc. Working Conf.
Reverse Eng. (WCRE), Koblenz, Germany, Oct. 2013, pp. 122-131.

J. Tsay, L. Dabbish, and J. Herbsleb, “Influence of social and technical
factors for evaluating contribution in GitHub,” in Proc. Int. Conf. Softw.
Eng. (ICSE), Hyderabad, India, May/Jun. 2014, pp. 356-366.

G. Canfora, M. Di Penta, R. Oliveto, and S. Panichella, “Who is going
to mentor newcomers in open source projects?” in Proc. ACM SIGSOFT
Int. Symp. Found. Softw. Eng. (FSE), Cary, NC, USA, Nov. 2012,
pp. 1-11.

C.R. B. de Souza and D. F. Redmiles, “The awareness network, to whom
should I display my actions? and, whose action should I monitor?” /EEE
Trans. Softw. Eng., vol. 37, no. 3, pp. 325-340, May/Jun. 2011.

A. Mockus and J. D. Herbsleb, “Expertise browser: A quantitative
approach to identifying expertise,” in Proc. Int. Conf. Softw. Eng. (ICSE),
Orlando, FL, USA, May 2002, pp. 503-512.

T. Fritz, J. Ou, G. C. Murphy, and E. R. Murphy-Hill, “A degree-of-
knowledge model to capture source code familiarity,” in Proc. Int. Conf.
Softw. Eng. (ICSE), Cape Town, South Africa, May 2010, pp. 385-394.

Tanmay Bhowmik (S’13) received the bache-
lor’s degree in computer science and engineer-
ing from the National Institute of Technology,
Durgapur, India, in 2007, the M.Sc. degree in
computer science and the Ph.D. degree from the
Department of Computer Science and Engineering,
Mississippi State University, Mississippi State, MS,
USA, in 2010 and 2015, respectively.

His current research interests include social
aspects in software engineering, requirements engi-
neering, software security, big data, and software

P N

engineering education.
Mr. Bhowmik is a member of ACM.



BHOWMIK et al.: OPTIMAL GROUP SIZE FOR SOFTWARE CHANGE TASKS: A SOCIAL INFORMATION FORAGING PERSPECTIVE 1795

Nan Niu (M’08-SM’13) received the B.Eng. degree
from the Beijing Institute of Technology, Beijing,
China, the M.Sc. degree from the University of
Alberta, Edmonton, AB, Canada, and the Ph.D.
degree from the University of Toronto, Toronto, ON,
Canada, all in computer science.

He is currently an Assistant Professor with
the Department of Electrical Engineering and
Computing Systems, University of Cincinnati,
Cincinnati, OH, USA. His current research interests
include software requirements engineering, informa-
tion seeking in software engineering, and human-centered computing.

Dr. Niu is a recipient of the U.S. National Science Foundation Faculty Early
Career Development (CAREER) Award.

Wentao Wang (S’15) received the B.Sc. degree
from Shanghai Maritime University, Pudong, China,
and the M.Eng. degree from the Beijing Institute of
Technology, Beijing, China. He is currently pursuing
the Ph.D. degree with the Department of Electrical
Engineering and Computing Systems, University of
Cincinnati, Cincinnati, OH, USA.

His current research interests include software
requirements engineering, information seeking in
software engineering, and information retrieval.

Jing-Ru C. Cheng received the Ph.D. degree
in computer science from Pennsylvania State
University, State College, PA, USA, in 2002.

She has been a Computer Scientist with the
U.S. Army Engineer Research and Development
Center, Vicksburg, MS, USA, since 2002. Her cur-
rent research interests include parallel algorithm
development, software tool development for scien-
tific computing, and multiscale multiphysics code
development.

Ling Li received the master’s and doctorate degrees
in production/operations and logistics from the
Ohio State University, Columbus, OH, USA, in
1994 and 1996, respectively.

She is a Professor of Production/Operations with
Old Dominion University, VA, USA.

Dr. Li has served as an Associate Editor for
the TEEE TRANSACTIONS ON INFORMATION
TECHNOLOGY IN BIOMEDICINE, the IEEE
TRANSACTIONS ON INDUSTRIAL INFORMATICS,
and other IEEE journals. She is a fellow in

Production and Inventory Management, Association for Operations
Management, Chicago, IL, USA.

Xiongfei Cao received the Ph.D. degrees in infor-
mation systems from the City University of Hong
Kong, Hong Kong, and in management science from
the University of Science and Technology of China,
Hefei, China.

He is an Associate Professor of Management
Science and Engineering with the University of
Science and Technology of China. His current
research interests include knowledge management,
IT enabled innovation, and social computing. He has
published in referred journals and conference pro-

ceedings including Information Systems Frontier, Internet Research, and the
International Conference on Information Systems.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


