
1962 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 46, NO. 9, SEPTEMBER 2016

A Clustering-Based Approach to Enriching
Code Foraging Environment

Nan Niu, Senior Member, IEEE, Xiaoyu Jin, Zhendong Niu, Jing-Ru C. Cheng, Ling Li, and Mikhail Yu Kataev

Abstract—Developers often spend valuable time navigating
and seeking relevant code in software maintenance. Currently,
there is a lack of theoretical foundations to guide tool design
and evaluation to best shape the code base to developers. This
paper contributes a unified code navigation theory in light of
the optimal food-foraging principles. We further develop a novel
framework for automatically assessing the foraging mechanisms
in the context of program investigation. We use the frame-
work to examine to what extent the clustering of software
entities affects code foraging. Our quantitative analysis of
long-lived open-source projects suggests that clustering enriches
the software environment and improves foraging efficiency. Our
qualitative inquiry reveals concrete insights into real developer’s
behavior. Our research opens the avenue toward building a new
set of ecologically valid code navigation tools.

Index Terms—Code navigation, cybernetic enrichment, forag-
ing theory, information seeking, program investigation, software
clustering.

I. INTRODUCTION

SEEKING relevant code to fulfill software maintenance
tasks has become difficult and time-consuming, especially

in a cybernetic environment where information and knowl-
edge are distributed and decentralized. Studies show that even
experienced developers have difficulty navigating around pro-
grams of very modest size [1]–[3]. The problem associated
with code navigation is presumably worse when less experi-
enced developers try to correct, enhance, or refactor unfamiliar
code, a common situation in large and long-term software
projects where team membership and responsibilities change
frequently [4].

Developers typically use an integrated development environ-
ment (IDE) to investigate source code. Although modern IDEs

Manuscript received December 29, 2014; revised March 19, 2015; accepted
March 27, 2015. Date of publication April 22, 2015; date of current ver-
sion August 16, 2016. This work was supported in part by the U.S. National
Science Foundation under Grant CCF-1238336 and Grant CCF-1350487, and
in part by the National Natural Science Foundation of China under Grant
61375053. This paper was recommended by Associate Editor L. D. Xu.

N. Niu and X. Jin are with the Department of Electrical Engineering and
Computing Systems, University of Cincinnati, Cincinnati, OH 45221 USA
(e-mail: nan.niu@uc.edu).

Z. Niu is with the School of Computer Science and Technology, Beijing
Institute of Technology, Beijing 100081, China.

J.-R. C. Cheng is with Information Technology Laboratory, U.S. Army
Engineer Research and Development Center, Vicksburg, MS 39180 USA.

L. Li is with the Department of Information Technology and Decision
Sciences, Old Dominion University, Norfolk, VA 23529 USA.

M. Y. Kataev is with the Department of Control Systems, Tomsk State
University of Control Systems and Radioelectronics, Tomsk 634050, Russia.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCYB.2015.2419811

provide some code navigation facilities, the support is far from
satisfactory. For example, Eclipse’s navigational tools caused
significant overhead: developers spent, on average, 35% of
their time on software maintenance tasks simply navigating
through the code [2]. In another study, 76% of all code naviga-
tions using Eclipse referred back to locations that had already
been visited, and most repeated navigations were arguably
wasted interactions [5]. Simply put, using current tool support
often causes the developers to become distracted, disoriented,
and altogether lost during code navigation [4].

Code navigation can be supported in a wide variety of
ways, ranging from basic textual queries and cross-reference
searches (e.g., for all the callers of a method) to advanced
tools that take advantage of the ever-growing quantities and
types of software development data. Examples of advanced
techniques include: 1) historical analysis (e.g., searchable
project memory [4] and association rule mining of version
histories [6]); 2) static analysis (e.g., semantic retrieval [7]
and topology analysis of structural dependencies [8], [9]);
and 3) dynamic analysis (e.g., execution slices [10] and
dynamic configuration [11]). The rich collection of code
navigation tools is not surprising when we consider the
developers’ diverse information needs that must be answered
during software change tasks [12]. In fact, many approaches
have leveraged more than one data source to maximize the
efficiency of developers in different program investigation
situations [13]. For instance, Mylyn [14] models a task con-
text by monitoring a developer’s activity (historical analysis)
and extracting the structural relationships of program artifacts
(static analysis).

While the development of code navigation tools has a sub-
stantial history, there has been surprisingly little work on
gaining fundamental understandings of the factors affecting
code navigation. The lack of a theoretical foundation has led
to isolated and fragmented views of the field, and sometimes
even divergent results. For example, developers who made a
plan to attain maintenance goals and stuck to the plan were
observed to be more successful [15], but none of the devel-
opers (regardless of success) recorded any plan or hypothesis
in another program investigation study [3]. This shows serious
limitation of descriptive models derived from specific observa-
tions. Thus, there is a critical need for the software engineering
community to gain a unified and coherent understanding of the
fundamental mechanisms that underlie the developers’ code
navigation behavior.

One theory that attracts much attention lately [2], [16]–[19]
is information foraging theory, which uses our animal

2168-2267 c© 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:nan.niu@uc.edu
http://ieeexplore.ieee.org
http://www.ieee.org/publications_standards/publications/rights/index.html

NIU et al.: CLUSTERING-BASED APPROACH TO ENRICHING CODE FORAGING ENVIRONMENT 1963

ancestors’ “built-in” food-foraging mechanisms [20] to under-
stand human information seeking and gathering in the vast-
ness of the Web [21]. Foraging theory stems from the
assumption that people (indeed, all organisms) are ecologi-
cally rational and adapt to the environments in which they
operate [20], [21], and thus has great potential of offering a
unified account for developers’ seeking relevant code during
software maintenance. In an earlier vision paper, we related
foraging theory’s tenets to code navigation and described
some preliminary results that illuminate how the optimal for-
aging mechanisms appear to work as developers navigate
toward their maintenance goals [22]. This paper is among
the biologically inspired approaches to tackling cybernetic
challenges [23]–[25].

In this paper, we present an in-depth study to investigate
enrichment [21], a core mechanism for increasing foraging
efficiency through manipulating resources in the environment.
Our aim is to assess to what extent software (the informa-
tion environment) can be rearranged to facilitate developers’
(foragers’) navigation. To answer the research question, we
focus on software clustering by which enrichment can be done
automatically. This paper tests the foraging principles in two
ways. First, we perform a quantitative analysis to determine
how an optimal forager’s code navigation is affected by the
organization (clustering) of software. In a second phase, we
conduct a detailed qualitative analysis of the interaction traces
recorded during programming sessions to gain insights into
the real developer’s behavior.

The novelties of this paper lie in the development of a
framework for automatically assessing the optimal foraging
principles in the context of cybernetic program investigation.
The framework provides not only a theoretical foundation
for understanding developers’ information seeking in light
of the adaptiveness of human behavior, but also a practical
means of comparing and evaluating code navigation tools. In
what follows, we present background information on forag-
ing theory and software clustering in cybernetics (Section II).
We then detail our research methodology in Section III.
Sections IV and V describe the quantitative and qualitative
evaluations, respectively. The implications of this paper are
discussed in Section VI, and finally, Section VII concludes
this paper.

II. BACKGROUND AND RELATED WORK

A. Optimal Foraging Theory

Animals adapt, among other reasons, to increase their rate of
energy intake. To do this they evolve different methods: a wolf
hunts for prey, but a spider builds a web and allows the prey to
come to it. Optimal foraging theory is developed in biology for
analyzing the adaptive value of food-foraging strategies [20].
Optimality here refers to the strategy that maximizes the gain
per unit cost. Central to optimal food foraging are the patch
model and the diet model.

The patch model deals with predictions of the amount of
time an organism would forage within a patch before leaving
for another patch. Fig. 1(a) illustrates the model by presenting
a hypothetical bird foraging in an environment that consists

Fig. 1. (a) Illustration of patchy environment, where a hypothetical bird
forages in patches containing berry clusters. (b) Charnov’s marginal value
theorem [20] states that the rate-maximizing time to spend in patch, t∗, occurs
when the slope of the within-patch gain function g(tW) is equal to the average
rate of gain, which is the slope of the tangent line R∗.

of patches of berry clusters. The forager must expend some
amount of between-patch time (tB) arriving at the next patch.
Once in a patch, the forager faces the decision of keeping
within-patch foraging (tW) or leaving to seek a new patch.
As the forager gains energy, the amount of food diminishes
or depletes. In such cases, there will be a point at which the
expected future gains from foraging within a current patch
diminish to the point that they are less than the expected
gains that could be made by leaving for a new one. Fig. 1(b)
shows Charnov’s marginal value theorem [20], which math-
ematically models an optimal forager’s time allocation. In
Fig. 1(b), g(tW) represents a decelerating expected net gain
function. The amount of energy gained per unit time of forag-
ing is R = g(tW)/(tB+tW). Thus, the rate-maximizing time, t∗,
occurs when the derivative of g(tW) is equal to the slope of
the tangent line R∗.

The diet model deals with the tradeoffs when a predator
forages in a habitat that contains a variety of prey. If a preda-
tor’s diet is too narrow (e.g., it eats only a few types of prey),
it will spend all of its time searching. If the predator’s diet
is too broad (e.g., it eats every type that encountered), then
it will pursue too much unprofitable prey. Optimal diet selec-
tion follows two principles. The profitability principle states
that the prey is predicted to be ignored if its profitability,
π = g/tW , is less than the expected rate of gain, R, of contin-
uing search for other types of prey. The prevalence principle
states that increases in higher profitability prey’s prevalence
(i.e., encounter rate), λ = 1/tB, make it optimal to be more
selective.

In a nutshell, the simple rule in optimal foraging the-
ory is: “do not expend more energy finding the food
than the food provides.” Animals (including humans) have
evolved some very sophisticated and fascinating food-seeking
mechanisms. Optimal foraging theory has been proven to
be productive and resilient in addressing food-searching
behavior in the field and the laboratory, whereby the ade-
quacy of the tenets (e.g., the patch model and the diet
model) is tested to account for the evolution of given
structures or behavioral traits [20]. Therefore, optimal for-
aging theory has effectively unified many isolated stud-
ies that would otherwise not be linked in a meaningful
way [20].

1964 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 46, NO. 9, SEPTEMBER 2016

Fig. 2. Foraging-theoretic code navigation model depicted in Bachman
notation, a variant entity-relationship diagram [28]. Boxes, arrows, and
ovals represent entities, relationships, and attributes, respectively. This model
represents a substantial refinement of our earlier work [22].

B. Foraging Theory Applied to Web and Code Navigation

Humans seeking information adopt various strategies, some-
times with striking parallels to those of animal foragers. The
wolf-prey strategy bears some resemblance to classic infor-
mation retrieval [26], and the spider-web strategy is like
information filtering [1]. Pirolli [21] developed information
foraging theory by laying out the basic analogies between
food foraging and information seeking: predator (human in
need of information) forages for prey (the useful informa-
tion) along patches of resources and decides rationally on a
diet (what information to consume and what to ignore). The
theory assumes that humans are well adapted to the exces-
sive information in the world around them, and that they
have evolved strategies to efficiently find information rele-
vant to their needs. Pirolli [21] has successfully applied the
core mathematics of optimal foraging theory to study human
behavior during information-intensive tasks like Web naviga-
tion. As a result, information foraging theory has become
extremely useful as a practical tool for website design and
evaluation [27].

Recently, information foraging theory has been applied to
code navigation. Ko et al. [2] were among the first to relate
foraging theory to developers’ seeking relevant code in soft-
ware maintenance; however, their study was exploratory and
speculative. Lawrance et al. [16]–[18] recently pioneered the
application of information foraging theory to debugging. They
viewed developer as predator and bug-fix as prey, and pre-
sented encouraging results that matched theory’s predictions
with real developers’ navigations. Building on these efforts,
we teased out a set of constructs and assumptions of a code
foraging model [22], as delineated in Fig. 2.

Fig. 2 shows that developers who investigate source code
operate in two environments. The task environment is cou-
pled with a goal, problem, or task that drives human behavior,
whereas the information environment structures developers’
interactions with the content. A forager’s navigation is cal-
culated according to information scent, a sense of value and
cost of accessing a resource (e.g., an information item or a
patch of items) based on perceptual cues [21]. For instance,
information scent during debugging can be computed by com-
bining: 1) a spreading activation over the link topology [8] that

represents human goal memory in the task environment and
2) an interword correlation (e.g., tf-idf [26] between bug report
and source code) used to approximate developer’s conception
of word synonymy in the information environment [16].

The succinct set of intuitive constructs presented in Fig. 2
reflects foraging theory’s parsimony, which further contributes
to a unified account for code navigation. For example, the con-
cept of “patches” could explain why developers collectively
tend to visit files in clusters, a clue that historical analysis tools
(see [4]) rely upon. The theory also suggests why “scent,” as
per textual similarity in static analysis tools like [7], could be a
navigation predictor. Finally, a foraging-theoretic explanation
of the success of such dynamic analysis tools as [10] may be
that distilling the runtime semantics makes it easier to form a
“hypothesis.”

In summary, foraging theory has the merit of unifying a
great variety of code navigation phenomena [22]. A promi-
nent feature of the model in Fig. 2 is that developers’ behavior
and their environments co-evolve, each shaping the other in
important ways. While developers’ adaptation to the flux of
information has recently been explored [18], little is known
about how the information environment can be best shaped
to developers. This paper addresses the gap by investigat-
ing source code clustering, an automated enrichment method
through which the information resources are rearranged to
potentially improve foraging efficiency.

C. Software Clustering

Many researchers have attempted to automatically organize
a large software system’s structure into smaller, more manage-
able subsystems, giving rise to the research area of software
clustering.1 Clustering approaches have also played important
roles in different aspects of cybernetics [29]–[34]. Specifically
related to this paper are source code clustering techniques that
facilitate program comprehension and identification of loca-
tions related to a software change. Most of these techniques
employ hierarchical clustering in which few arbitrary decisions
are involved [35]. Fig. 3 shows the basic steps of hierarchical
clustering. Table I lists how the update rule (step 3b in Fig. 3)
is defined in some well-studied algorithms [35].

Maqbool and Babri [35] reviewed the most commonly used
hierarchical clustering approaches in the context of software
subsystem recovery and modularization. They show that the
Jaccard coefficient is one of the best similarity measures
(step 2 in Fig. 3) for software clustering. They also point out
that there is unlikely to be a clear winner among the many dif-
ferent clustering algorithms, e.g., the complete linkage (CL)
algorithm produces more cohesive clusters than the single link-
age (SL) algorithm, but the stability of CL is worse than that
of SL. Such complementarity is viewed as a strength of clus-
tering in that alternative views of a software system can be
automatically generated [35].

Earlier work by Tzerpos and Holt [36] realized the
primary goal of software clustering should be helping
developers to understand the software system, rather than

1Approaches that cluster the entire software are described here; those
clustering only the system’s evolving parts are discussed in Section IV-A.

NIU et al.: CLUSTERING-BASED APPROACH TO ENRICHING CODE FORAGING ENVIRONMENT 1965

Fig. 3. Hierarchical clustering steps.

TABLE I
UPDATE RULE DEFINED IN WELL-STUDIED ALGORITHMS

maximizing the value of some metric like high-cohesion or
low-coupling. They developed algorithm for comprehension-
driven clustering (ACDC), based on the patterns (i.e., familiar
subsystem structures) frequently appeared in manual decom-
positions of large-scale software systems. A key contribution
is bounded cardinality that ensures a reasonable cluster size
to ease comprehension; thus, each resulting cluster of ACDC
contains between 5 and 20 entities [36].

More recently, Scanniello and Marcus [37] presented clus-
tering support for finding locations in source code where
changes are needed to address a modification request.
Structural dependencies (e.g., direct calls) are used to cluster
software entities, and lexical similarities (e.g., tf-idf between
change request and source code) are used to rank the enti-
ties within a cluster. Such a combination of structural and
textual information has also been exploited by contemporary
clustering approaches, such as [38]–[42].

III. RESEARCH METHODOLOGY

The overall goal of this research is to assess “to what extent
can software clustering affect developers’ code foraging? ”
This section describes our framework for analyzing the inter-
play between code foragers and their software environment.
We start by refining our general research goal with specific
questions concerned with the cluster-patch analysis.

A. Central Hypothesis

The patch model, one of foraging theory’s most basic
tenets, suggests a locality in which within-patch distances are
smaller than between-patch distances [21]. This establishes
a natural correspondence between a “patch” of resources
(e.g., information items) and a “cluster” of data objects
(e.g., software entities). Researchers have supported the patch
model’s premise by showing that developers’ navigation
was concentrated in only a small fraction of source code

Fig. 4. In comparison to some baseline patchy environment (a), environ-
ment (b) is richer because the patches themselves are more profitable. Such
an enrichment effect is illustrated in (c) in light of Charnov’s marginal value
theorem [20]. After enrichment, an optimal forager can leave a patch earlier
(t ∗

b < t ∗
a) with more gain (gb(tW) > ga(tW)), i.e., can achieve an increased

rate of gain.

patches [16] and that within-patch navigations were easier
(and thus followed more) than between-patch navigations [22].
All the studies so far have mapped an information patch to
an existing organization of source code, though at different
levels: class [16], package (group of classes) [18], [22], and
method (member of a class) [17]. While this creates flexi-
bility, it is surprising to note that no current work has yet
leveraged clustering methods to shape software to developers
(code navigators) for a possibly more favorable arrangement
of the information environment.

Our central hypothesis is that the way software entities
are grouped (clustered) can affect the profitability of infor-
mation patches, which in turn can shape the way developers
navigate the code base. Fig. 4 illustrates the hypothesis that
clustering more relevant entities in a patch increases forag-
ing efficiency. From an information retrieval perspective, mean
average precision (MAP) [26] can estimate patch profitability,
but it provides only a static view of the information environ-
ment. To complement this, we use measures that are more
directly related to developers’ searching behavior. Next, we
introduce such measures based on the rational analysis of
optimal information foraging.

B. Rational Analysis

Anderson’s rational analysis [43] is built upon the principle
of rationality, which assumes that human behavior is optimally
adapted to the structure and dynamics of the environment.
Applied to code navigation, the principle implies that optimal
developers will make the best possible navigational choices,
given the information the environment makes available to them
at each moment [18].

Foraging in a cluster-patch can be characterized by a cumu-
lative gain function g(t) that indicates how much information
value is acquired over time t. In this paper, the information
value is defined by relevant code. The proportion of relevant
code (software entities) in a cluster is the precision of that
cluster: P = NR/NT , where NR is the number of relevant enti-
ties and NT is the total number of entities in the cluster. The
rate of encounter with relevant code while scanning through
a list is: λP = P/ts, where ts is the time it takes to scan and
judge the relevance of an information item (software entity).
Let Ts and Th be the total time spent searching and exploit-
ing (handling relevant items), respectively. The total number
of items encountered while searching is: λP · Ts. The time

1966 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 46, NO. 9, SEPTEMBER 2016

Fig. 5. (a) Cluster-patch containing six ranked information items: three rel-
evant (marked with “

√
”) and three irrelevant (“✗”). (b) Cumulative gain,

g(t), obtained at each time step, t ∈ [1, 6], when foraging in patch (a):
tB = ts = th = 1 (time unit); slope of R, the line passing through the origin
(0, 0) and (t, g(t)), indicates the marginal value. (c) According to Charnov’s
theorem [20], the maximal rate of gain is achieved at the tangency point:
t∗ = 3, and an optimal forager will leave patch (a) at tleave = 4 when a
decrease of the derivative (instantaneous slope) of the gain function occurs.

to handle a relevant item is: th = Th/(λP · Ts). Considering
these factors in the calculation of the cumulative gain function,
we have

g(t) = t ·
(

λP · Ts

Ts + Th

)
= t ·

(
λP · Ts

Ts + th · λP · Ts

)

= t ·
(

λP

1 + th · λP

)
= t ·

(NR
NT ·ts

1 + th · NR
NT · ts

)

= NR · t

NT · ts + NR · th
. (1)

Fig. 5(a) illustrates the rational analysis with a patch of six
ranked items. We assume the cost of between-patch search,
tB (see Fig. 1), and within-patch scanning (ts) and handling
(th) to be one time unit, i.e., tB = ts = th = 1.2 Following (1),
Fig. 5(b) details forager’s cumulative gain at each time step.
The gain function is further plotted in Fig. 5(c) where the
optimal time to leave the patch is marked with ★. Formally,
tleave = �t∗� + 1, where t∗ is the rate-maximizing time
defined in Charnov’s marginal value theorem [20]. We use
two measures to assess foraging efficiency.

1) Missed Diet: Proportion of relevant items not navigated
to the total number of relevant items.

2) Navigational Overhead: Proportion of navigated items
which are irrelevant.

For the example shown in Fig. 5, the set of all relevant items
is: {item2, item3, item6}, and the items that an optimal for-
ager navigates are: {item1, item2, item3, item4}. Therefore, the
missed diet is: (|{item6}|)/(|{item2, item3, item6}|) = 1/3 =
33%, and the navigational overhead is: (|{item1, item4}|)/
(|{item1, item2, item3, item4}|) = 2/4 = 50%.

IV. QUANTITATIVE ANALYSIS

The objective of our quantitative analysis is to rigorously
assess software clustering’s impact on code navigation.

A. Relevance Determination

Relevance in this paper [as illustrated by “
√

” in Fig. 5(a)]
refers to source code that should be navigated together during
a software change task. We devise a surrogate measure of

2Section V sheds light on parameter values from the real developer.

relevance by mining the co-change relationship over a software
project’s revision history. The intuition is that software entities
frequently and consistently changed together in the past are
worth considering (navigating) jointly for addressing future
modification requests.

Co-changed entities can be identified by various data min-
ing techniques, e.g., association rule mining [6]. Among the
clustering-based approaches, Beyer and Noack [44] focused
on change localization so that different clusters can evolve
independently, Hassan and Holt [45] used the co-change infor-
mation to ensure software changes are correctly propagated,
and Robillard and Dagenais [46] clustered the change sets to
support program investigation. These approaches all require a
large history of changes as input, and the output involves only
the evolving parts of the system.

To automatically determine relevance, we adapt CCVisu,
a tool that reads software change history and computes clus-
ters of co-changed files [44]. Empirical evaluation shows
CCVisu’s clustering results conform largely with the authorita-
tive decomposition prepared manually by experts. This makes
CCVisu a reliable source of evolutionary clusters [47] when
expert opinions are unavailable. In devising the relevance
measure, our overarching goal is accuracy, i.e., we want the
obtained co-change relationship to be as accurate as possible.
To that end, we apply the following steps.

1) Skip the first 200 change sets, a strategy used
in [45] and [46] to discard unstabilized modification
records.

2) Run CCVisu on only the successfully closed modifica-
tion records to eliminate noisy input’s effect.

3) Keep only the “most frequently changed” 3 files in
CCVisu’s results because the ones changed less often
can sometimes be clustered incorrectly [44].

4) Remove the files that do not appear in the version
being clustered and make sure that the resulting clusters
conform with known authoritative views.

B. Project Selection

Systems are selected among the long-lived projects with
extensive change histories. Having authoritative views of the
system decomposition is only an optional inclusion criterion.
We use theoretical sampling [48] to achieve diversity and com-
parability. Diversity is incorporated along such dimensions as
problem domain, programming language, and change reposi-
tory. Comparability is facilitated by considering systems of the
same family. Table II shows the selected projects: Ant and Ivy
are from the Apache family, Firefox is written primarily in
C/C++ and JavaScript, and Mylyn uses an online issue tracking
system (Bugzilla). We perform clustering only to software’s
latest release. Table II lists the number of source code files to
be clustered for each project.

Table II also reports the projects’ characteristics related to
our CCVisu analysis. The “successfully closed change sets”
column gives CCVisu’s input. The output uncovers the co-
change relationship among the “changed files.” To ensure
accuracy of such relationship, we employ two heuristics to

3Section IV-B presents heuristics for the most frequently changed files.

NIU et al.: CLUSTERING-BASED APPROACH TO ENRICHING CODE FORAGING ENVIRONMENT 1967

TABLE II
CHARACTERISTICS OF SELECTED PROJECTS

post-process CCVisu’s output by keeping only the most fre-
quently changed files. The first takes the form of the “80/20
rule” because we find that the distributions of change fre-
quency of files follow a power law [49], i.e., 20% of the files
are changed 80% of the time. The second heuristic is derived
from our work on using entropy to determine information val-
ues [50], where we find that one standard deviation (σ) above
the mean (μ) represents a threshold for significance. Thus, for
the current analysis, let 〈 f1, f2, . . . , fn〉 be the list of all the
changed files sorted by the descending order of change fre-
quency, i.e., Freq(f1) ≥ Freq(f2) ≥ · · · ≥ Freq(fn), we take
〈f1, . . . , fm〉 to be the most frequently changed files, where
m = min(20% · n, p) and p ∈ [1, n] such that (Freq(fp) ≥
μFreq + σFreq) ∧ (∀ q ≥ p , Freq(fq) < μFreq + σFreq). The
last two columns of Table II list the number of most frequently
changed files, and the number of co-change clusters into which
CCVisu groups the most frequently changed files.

Among the four selected projects, we are aware of a known
authoritative decomposition for Firefox [51]. Consistent with
our expectation, the eight CCVisu clusters accurately reflect
how the 148 files are authoritatively grouped. This increases
our confidence in CCVisu’s reliability of clustering a project’s
most frequently changed files. Therefore, relevance in our
analysis is determined by CCVisu clusters without further
manual adjustment.

C. Experimental Setup

The independent variable in this paper is software cluster-
ing, which has five values: 1) ACDC (comprehension driven);
2) SL; 3) CL; 4) weighted combined (WC); and 5) package
based (PACK). ACDC is chosen because it is one of the few
clustering methods to support developers’ program compre-
hension [36]. We adopt ACDC’s implementation from [52]
and enable all its patterns (body-header, subgraph-dominator,
and orphan-adoption) when executing it on the projects listed
in Table II.

The SL, CL, and WC are chosen because they are well-
known algorithms underlying many software architecture
recovery techniques [35]. We use the Jaccard similarity mea-
sure to implement these hierarchical clustering algorithms and
specify the exit criteria (see Fig. 3) based on ACDC’s bounded
cardinality (i.e., each resulting cluster should contain [5, 20]
entities) [36]. Entities are clustered at the file level since
this paper deals with large systems with hundreds and thou-
sands of source code files (see Table II). Similar to [35],
formal features—inherits, calls, and references—are used to
determine a similarity between software entities.

TABLE III
NUMBER OF CLUSTERS k, THE AVERAGE CLUSTER SIZE |C|, AND THE

MoJo DISTANCE TO THE PACKAGE-BASED BASELINE CLUSTERING

The baseline method considered in this paper is PACK,
which leverages the package/directory structure to cluster
source code files. In implementing PACK, our aim is to mimic
the grouping that modern IDEs “package explorer” provides to
the developer. While restricting [5, 20] files per cluster seems a
reasonable approximation of package explorer’s size, we also
attempt to preserve the file hierarchy by organizing the files
based on a depth-first search scheme.

Table III summarizes the clustering results. Due to the incor-
poration of bounded cardinality [36], all the clustering methods
tend to produce relatively uniformly sized clusters. This is a
nice property when considering usability of the clusters for
supporting comprehension-driven tasks [53] such as code nav-
igation. In order to compare the clustering results, we use
the MoJo distance measure [54]. MoJo measures the distance
between two decompositions of the same software system
by computing the number of Move and Join operations to
transform one to the other. Intuitively, the smaller the MoJo
distance, the closer the two clustering results. Table III lists
the MoJo distance to the result of PACK, the package-based
baseline decomposition. The average pairwise MoJo distance
is 539.16 among the five clustering methods performed on each
of the four subject software systems. We believe this distance
can be attributed to the different features used to determine
source code files’ similarity during clustering: PACK relies
solely on the directory structure, ACDC employs the subsys-
tem patterns, and the hierarchical clustering algorithms, SL,
CL, and WC, exploit static dependencies in distinct manners.

Having produced software clusters, we are left with the task
of ranking the entities within a cluster in order to perform
the optimal foraging analysis (see Fig. 5). In an attempt to
select and weight features for improving clustering results,
Andritsos and Tzerpos [55] reported that the tf-idf scheme

1968 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 46, NO. 9, SEPTEMBER 2016

TABLE IV
RESULTS OF SOFTWARE CLUSTERING’S EFFECT ON CODE NAVIGATION

commonly used in text retrieval [26] is best suited for software
clustering. We, therefore, use tf-idf as a basis for determining
the ranking inside a cluster; this is also in line with the recent
work on clustering support for static concept location [37].
In particular, we apply our source code indexing tool [56] to
convert each file to a vector in the corpus. We then treat each
authoritative (i.e., CCVisu co-change) cluster as a query, and
use the tf-idf score to rank the entities inside a cluster-patch.
Note that the selected projects have multiple authoritative
clusters (queries), as shown in Table II. This allows for the
computation of mean average precision introduced next.

D. Results

As discussed in Section III, we use three dependent vari-
ables to assess clustering’s effect on code navigation: MAP,
missed diet, and navigational overhead. All three are ratio
measures that range from 0 to 1. In this paper, each CCVisu
co-change (co-navigation) relationship represents a unit of
analysis for the software project. Table IV reports the anal-
ysis results. Descriptive statistics are given in terms of
(mean ± standard deviation). The best results are highlighted
by rectangular boxes.

To answer the question, “Does software clustering enrich
code navigation environment?” we perform repeated measures
analysis of variance (ANOVA) and planned comparison tests
for the means. These tests are based on an assumption that
the population is normally distributed. The law of large num-
bers states that if the population sample is sufficiently large
(e.g., more than 50), then the central limit theorem applies
even if the population is not normally distributed [49]. In
this paper, even the smallest project (Ivy) offers 60 indepen-
dent observations, therefore, the central limit theorem applies
and the above mentioned tests have statistical significance. In
Table IV, inferential statistics are given by ANOVA results.
The results are displayed in dark background if they are
statistically significant at α < 0.01 level and in gray otherwise.

1) MAP estimates an information environment’s overall
profitability since it measures “the quality across the
recall levels” [26]. Intuitively, the higher the MAP, the
closer the true positives (relevant code) are to the top of

the information patches (source code clusters). Table IV
shows that the WC algorithm gives the highest MAP
for all the projects except for Firefox. The MAP val-
ues of PACK are the lowest across all the projects.
The result suggests software clustering based on more
advanced features (e.g., static dependencies and subsys-
tem patterns) than only the package/directory structure
is likely to improve patch profitability of the information
environment.

2) Missed diet evaluates how much relevant code an opti-
mal forager fails to attend to. It quantifies omission
errors. According to Table IV, ACDC and WC result
in the minimum missed diet, but the difference is sig-
nificant only for the smallest project (Ivy). It is therefore
interesting to note that no matter how the software
entities are clustered (rearranged), an optimal forager
will likely miss similar amounts of relevant code when
navigating large software projects.

3) Navigational overhead assesses an optimal forager’s
effort expended in investigating irrelevant code. It quan-
tifies commission errors. Table IV reveals that the
least overhead is experienced when foraging in the
patches generated by WC and ACDC. ANOVA planned
comparisons show that the baseline method (PACK)
causes significantly more navigational overhead than the
ACDC, SL, CL, and WC clustering methods for all the
projects.

It is important to point out here that missed diet and navi-
gational overhead are novel metrics that hinge on the optimal
forager’s behavior; to be exact, tleave determined by Charnov’s
theorem (see Fig. 5). In another word, they are not simply the
complements of recall and precision commonly used in infor-
mation retrieval [26], but are defined based on Anderson’s
rational analysis [43]. While MAP is traditionally an informa-
tion retrieval metric, its use of estimating patch profitability is
new. In fact, we recently updated profitability calculation by
combining precision and MAP together [19].

The results presented above are concerned with all the clus-
ters containing relevant code. In practice, developers follow
only the best code navigation choices [18]. Such selectivity,
therefore, reflects the task specificity of code navigation, and is

NIU et al.: CLUSTERING-BASED APPROACH TO ENRICHING CODE FORAGING ENVIRONMENT 1969

Fig. 6. Most profitable patch analysis: x-axis represents time (t) and y-axis represents the cumulative gain function (g(t)).

also consistent with foraging theory’s prediction that unprof-
itable patches will be ignored by an optimal forager [20]. For
this reason, Fig. 6 plots the cumulative gain over 14 time steps,
the largest common cluster size of the projects’ most prof-
itable patches. The plots offer further insight into the findings.
For example, PACK’s nearly linear accelerating rate indicates
the amount of relevant code does not diminish as foraging
progresses. This causes the forager to leave PACK’s patch
late (i.e., large tleave value)—the main reason contributing to
PACK’s large navigational overhead.

A practical issue here is that the oracle of determining infor-
mation item’s relevance is known a priori in our quantitative
analysis. In nonexperimental settings, the profitability mea-
sures (oracles) may not be directly computed based on the
external quality of an information patch. To ameliorate this
situation, our recent work has shown that patch cohesion—one
of the internal quality indicators—can serve as the perceived
profitability to offer much practical value [19].

In summary, our quantitative analysis suggests that, com-
pared to a basic organization of software entities (PACK),
clustering does improve patch profitability and foraging effi-
ciency. Although no single clustering method is the best for all
the projects by all the measures, WC appears to perform con-
sistently well when examined for all the patches (see Table IV)
as well as for the most profitable ones (see Fig. 6). We
recommend WC as a starting point (or a new baseline) for
practitioners and tool builders interested in using clustering to
enrich code navigation environment.

E. Threats to Validity

As is the case for most controlled experiments, our quan-
titative assessment of software clustering’s impact on code
navigation is performed in a restricted and synthetic context.
We discuss here some of the most important factors that must
be considered when interpreting the results.

The construct validity [48] of our analysis can be affected
by the use of CCVisu to operationally measure “relevant code
navigated together.” In the absence of detailed programming
interaction traces, mining a long-lived project’s change repos-
itory provides a robust and objective way to evaluate code
navigation approaches. It should be noted that our restric-
tive gauge choice based on the most frequently changed code
grossly underestimates the performance of the software clus-
tering methods, because developers may find less frequently
changed or even unchanged code “relevant” for carrying out
software change tasks. While this should have little effect on

the comparisons, caution must be taken in interpreting the
absolute values of the results.

We believe the main strength of our experimental design
is its high internal validity [48]: soundness of the relation-
ship between independent and dependent variables. Because
all the factors potentially affecting both structural (MAP) and
behavioral (missed diet and navigational overhead) measures
are under our direct control, any significant difference must
be caused by the different clustering methods employed.

The results of our analysis may not generalize to other
software projects—a threat to the external validity [48]. Our
chosen systems are all open-source projects due to the avail-
ability of their revision repositories. However, these are not
necessarily representative of all systems and, in particular, pro-
prietary software products are likely to exhibit different char-
acteristics. We also note that some well-established software
clustering methods (e.g., BorderFlow [37] and Bunch [57])4

are not studied and that our studied methods cluster source
code files by using only static features. Such decisions are
intentional because the BorderFlow and Bunch algorithms are
nondeterministic and using only static features allows incom-
plete or unexecutable legacy programs to be analyzed. Thus, it
is not clear how the results might generalize to other software
clustering approaches.

It is worth stressing at this point that we have made a
few simplifying assumptions in our quantitative analysis, most
notably that it takes one time unit to scan and handle a soft-
ware entity. In practice, there may be considerable variation
in searching time. The analysis described in the next section
sheds light on the impact and the potential update of this
important assumption.

V. QUALITATIVE ANALYSIS

The results of Section IV provide an objective and pre-
cise assessment of the degree to which an optimal forager
and the environment co-evolve. However, the behavior of
real developers often departs from that of the optimal for-
ager. We complement the quantitative analysis by conducting
a qualitative study of developers’ actual behavior.

The objective of our qualitative analysis is to understand
the evolution of a developer’s code navigation. We focus on
the scanning time (ts) and the handling time (th) since we
have made a simplifying assumption about them in Section IV,
namely, ts = th = 1 (time unit). In our current qualitative

4LIMBO (scaLable InforMation BOttleneck algorithm [55], another estab-
lished method, behaves the same as WC [35].

1970 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 46, NO. 9, SEPTEMBER 2016

Fig. 7. (a) Selected enhancement tasks successfully completed by the same Mylyn developer at three different stages. (b) Source code files sought during
the three selected programming sessions reported in (a). Every session involves a sequence of files (boxes). Time proceeds left to right. Color of the boxes
represents distinct files. Box length indicates how long the file operation is. Fully shaded box means the file is viewed but not edited. Stripe-shaded box shows
the file is both viewed and edited. Due to space limit, we show the developer’s behavior only for the session’s first 1.5 and last 0.5 h.

Fig. 8. (a) Characterizing the ts and th values. The value of the bar represents the mean and the thin vertical line at the top of the bar represents the standard
error of the mean. (b)–(d) Updating the most profitable patch analysis (see Fig. 6) by applying the mean values of ts and th reported in (a) to the different
stages: (ts = 7.7, th = 5.6) applied to EARLY, (ts = 7.3, th = 4.4) applied to MIDDLE, and (ts = 6.6, th = 2.4) applied to RECENT.

study, ts and th refer to the amount of time a source code file is
viewed and edited, respectively. We take advantage of Mylyn’s
detailed interaction traces of over 4000 programming sessions.
We use purposive sampling [48] to select three enhancement
tasks performed successfully by the same developer but at
different stages of the developer’s interaction with the project.
We label these stages as “EARLY,” “MIDDLE,” and “RECENT.”

Fig. 7(a) provides the basic information of the selected
tasks. The developer (Frank) is a key Mylyn contributor who
has completed many enhancement tasks. Although the number
of edited files is comparable among the tasks, the navigational
overhead decreases from EARLY to RECENT. In carrying out
a RECENT task, for example, the developer views only rel-
evant code with no navigational overhead. Fig. 7(b) details
developer interaction. Note that, after inspecting some random
samples of Mylyn programming sessions, we treat the inter-
actions whose elapsed time is less than 5 s or greater than
30 min as outliers and remove them from Mylyn’s raw inter-
action log. It is reported that a Java developer estimates that an
average cycle takes 31 min [58]. Fig. 7(b) visualizations can
be understood in the context of developers’ editing behavior:
a recent study shows that developers tend not to “edit-first,”
but seem to “edit-throughout,” or “edit-last,” when performing
enhancement tasks [59].

We use a 30-day window to approximate the developer’s
searching time at different stages. Specifically, we collect all
the successful enhancements made by Frank 15 days before
and after the selected task’s commit date [see Fig. 7(a)]. From
this collection, we compute the average ts and th values for
each stage. Fig. 8(a) shows the results, where the average
time spent editing a file (th) is reduced markedly. Surprisingly,
the viewing time’s decrease is not nearly at the same rate.
Although preliminary, the finding illuminates that one essential

complexity of code navigation lies in seeking relevant code
rather than handling the actual modification. Once the relevant
code is found, the productivity of making software changes
can be expected to increase as the developer becomes more
familiar with the system.

Identifying the real developer’s searching time allows
us to refine the rational analysis. Here, instead of assum-
ing ts = th = 1, Equation (1) can now be instantiated with
Fig. 8(a) stage-specific (ts, th) value pairs. In addition to this
change, other updates from our quantitative analysis presented
in Section IV are included in the following.

1) Relevance is determined not by CCVisu’s output but by
the co-changed files committed by the developer.

2) Software clustering is performed not on Mylyn’s latest
release but on the three versions upon which the selected
tasks are performed [see Fig. 7(a)].

3) The tf-idf score is calculated not against an entire author-
itative cluster’s indices but against the feature request of
the actual enhancement task.

Fig. 8(b)–(d) show the refined results of the most prof-
itable patch analysis. These plots depict the developer’s actual
behavior, as well as the performance of the baseline (PACK)
and our recommended new baseline (WC) clustering meth-
ods. The PACK and WC curves show the gains predicted by
optimal foraging theory when the developer navigates through
the most profitable cluster-patch generated by PACK and WC.
The number of plotted time steps is 20 since it is the upper
bound of cluster size in this paper.

In accordance with our quantitative analysis results, WC
performs better than PACK in all stages. It is encouraging
to realize the developer’s EARLY code navigation is close to
WC’s prediction [Fig. 8(b)], demonstrating the usefulness of the
best navigation choices recommended by software clustering.

NIU et al.: CLUSTERING-BASED APPROACH TO ENRICHING CODE FORAGING ENVIRONMENT 1971

It is even more encouraging to realize the developer’s RECENT

departure from WC’s prediction [Fig. 8(d)], suggesting an
improved gain is possible via the enrichment of the code nav-
igation environment. In Fig. 8(c), the real developer promptly
outperforms the theory’s prediction of the optimal forager’s
search in both clustering environments, illustrating a situation
where automated support offers limited help.

In summary, our qualitative analysis provides initial evi-
dence that developers become adapted to their code navigation
environment, and that it is possible for better assisting them to
evolve the strategies to maximize the gains of relevant code
per unit cost. Our qualitative inquiry is best viewed as an
exploratory case study [48] of discovering the evolutionary
aspects of real developer’s behavior and feeding those aspects
back into the rational analysis of developer’s code naviga-
tion. The results are subject to theoretical rather than statistical
generalizations. Nevertheless, due to our purposive sampling,
much remains to be explored, e.g., what is the impact of the
task type (enhancement, bug fixing, and refactoring)? The task
difficulty, priority, and severity? The editing habit? The unsuc-
cessfully completed tasks? And the interactions lasting less
than 5 s or more than 30 min?

VI. IMPLICATIONS FOR THEORY AND TOOL SUPPORT

Research on code navigation has resulted in some ad hoc
tools without any theoretical basis, along with some descriptive
models derived from specific observations of developer behav-
ior. These approaches have produced only modest improve-
ments, and led to rather isolated efforts that tackle only a
few phenomena and that have little theoretical content in
common with the work of others. We believe information
foraging—an evolutionary-ecological theory studying human’s
adaptive interaction with information—has great potential to
unify the field of code navigation [22]. The appeal for our
development of a unified theory (see Fig. 2) is that a single
set of mechanisms can both account for all the descriptive
models and lead to principled ways to increase practical tool
support for software developers.

Earlier theories of programmer behavior (see [60], [61]) rely
primarily on such “in-the-head” constructs as mental models
to account for code navigation. Later theories (see [2], [18])
shifts from largely in-the-head program comprehension toward
“in-the-environment” cognition. Rational analysis [43] holds
the key to understanding programmer navigation without ref-
erence to complex mental states. The basic idea is that the
constraints of the environment place important shaping limits
on the rationality that is possible. This paper sheds light on
such bounded rationality [62] by providing a concrete com-
putational model for understanding the machinery underlying
code navigation.

Building on foraging theory’s success of explaining how
people seek relevant information on the Web [21], researchers
have designed practical tools to help website creators and
users [27]. In a similar vein, our unified theory can guide
the design and evaluation of code navigation tools. As an
exemplar, this paper leverages foraging theory’s mathemat-
ical model to automatically evaluate enrichment methods.

This evaluation framework can not only compare software
clustering methods, but also assess a broad spectrum of code
rearrangement tools, such as Weta [3], Code Bubbles [5], and
the like. Moreover, our empirical studies have suggested new
insights into designing better navigation support. For example,
to reduce the “missed diet” (i.e., relevant code developers fail
to attend to), the tool can spotlight the scent (e.g., salient or
task-relevant features) of a resource and increase higher prof-
itability prey’s “prevalence” (λ = 1/tB). Finally, it is crucial
for tool builders and evaluators to consider the adaptiveness
of developer behavior and to revisit and even update the key
assumptions (e.g., the ts and th values in this paper).

VII. CONCLUSION

The main contributions of this paper are the evolutionary-
ecological understanding of the fundamental mechanisms
underlying developers’ code navigation behavior, the devel-
opment of a novel framework for automatically assessing
the optimal foraging principles in the context of source
code investigation, the empirical evaluation of clustering-based
enrichment methods, the concrete insights of real devel-
oper’s navigation, and the avenues opened up for software
researchers, practitioners, and tool creators.

Information foraging is about understanding and improv-
ing the interplay of people and their information environ-
ments [21]. The application of foraging theory in software
engineering has focused predominantly on enabling developers
to best shape themselves to the software and task environ-
ments [16]–[18]. In this paper, we have tried to make a
start at reversing the foraging-theoretic thinking in software
engineering—exploiting clustering to enable the environments
to be best shaped to the developers. It is hoped this line of
research will give us a new set of ecologically valid tools to
improve developers’ code navigation.

ACKNOWLEDGMENT

The authors would like to thank G. Bradshaw, A. Mahmoud,
T. Bhowmik, and S. Reddivari for comments on earlier drafts
of this paper.

REFERENCES

[1] R. DeLine, A. Khella, M. Czerwinski, and G. Robertson, “Towards
understanding programs through wear-based filtering,” in Proc. ACM
Symp. Softw. Vis. (SOFTVIS), St. Louis, MO, USA, May 2005,
pp. 183–192.

[2] A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung, “An exploratory
study of how developers seek, relate, and collect relevant information
during software maintenance tasks,” IEEE Trans. Softw. Eng., vol. 32,
no. 12, pp. 971–987, Dec. 2006.

[3] K. D. Sherwood, “Path exploration during code navigation,” Master’s
thesis, Dept. Comput. Sci., Univ. Brit. Columbia, Vancouver, BC,
Canada, 2008.

[4] R. DeLine, M. Czerwinski, and G. Robertson, “Easing program com-
prehension by sharing navigation data,” in Proc. IEEE Symp. Vis.
Lang. Human-Centric Comput. (VL/HCC), Dallas, TX, USA, Sep. 2005,
pp. 241–248.

[5] A. Bragdon et al., “Code Bubbles: A working set-based interface for
code understanding and maintenance,” in Proc. Conf. Human Factors
Comput. Syst. (CHI), Atlanta, GA, USA, Apr. 2010, pp. 2503–2512.

[6] T. Zimmermann, P. Weissgerber, S. Diehl, and A. Zeller, “Mining ver-
sion histories to guide software changes,” IEEE Trans. Softw. Eng.,
vol. 31, no. 6, pp. 429–445, Jun. 2005.

1972 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 46, NO. 9, SEPTEMBER 2016

[7] A. Mahmoud, N. Niu, and S. Xu, “A semantic relatedness approach for
traceability link recovery,” in Proc. Int. Conf. Program Compre. (ICPC),
Passau, Germany, Jun. 2012, pp. 183–192.

[8] M. P. Robillard, “Topology analysis of software dependencies,” ACM
Trans. Softw. Eng. Methodol., vol. 17, no. 4, pp. 1–36, Aug. 2008.

[9] N. Niu, J. Savolainen, T. Bhowmik, A. Mahmoud, and S. Reddivari,
“A framework for examining topical locality in object-oriented soft-
ware,” in Proc. IEEE Comput. Softw. Appl. Conf. (COMPSAC), Izmir,
Turkey, Jul. 2012, pp. 219–224.

[10] W. E. Wong, S. S. Gokhale, J. R. Horgan, and K. S. Trivedi, “Locating
program features using execution slices,” in Proc. IEEE Symp. Appl.
Spec. Syst. Softw. Eng. Technol. (ASSET), Richardson, TX, USA,
Mar. 1999, pp. 194–203.

[11] F. Tao et al., “Concept, principle and application of dynamic configura-
tion for intelligent algorithms,” IEEE Syst. J., vol. 8, no. 1, pp. 28–42,
Mar. 2014.

[12] J. Sillito, G. C. Murphy, and K. D. Volder, “Questions programmers ask
during software evolution tasks,” in Proc. ACM SIGSOFT Int. Symp.
Found. Softw. Eng. (FSE), Portland, OR, USA, Nov. 2006, pp. 23–33.

[13] L. Ke, Q. Zhang, and R. Battiti, “Hybridization of decomposition and
local search for multiobjective optimization,” IEEE Trans. Cybern.,
vol. 44, no. 10, pp. 1808–1820, Oct. 2014.

[14] M. Kersten and G. C. Murphy, “Using task context to improve pro-
grammer productivity,” in Proc. ACM SIGSOFT Int. Symp. Found. Softw.
Eng. (FSE), Portland, OR, USA, Nov. 2006, pp. 1–11.

[15] M. P. Robillard, W. Coelho, and G. C. Murphy, “How effective devel-
opers investigate source code: An exploratory study,” IEEE Trans.
Softw. Eng., vol. 30, no. 12, pp. 889–903, Dec. 2004.

[16] J. Lawrance, R. Bellamy, M. Burnett, and K. Rector, “Using informa-
tion scent to model the dynamic foraging behavior of programmers in
maintenance tasks,” in Proc. Conf. Human Factors Comput. Syst. (CHI),
Florence, Italy, Apr. 2008, pp. 1323–1332.

[17] J. Lawrance, M. Burnett, R. Bellamy, C. Bogart, and C. Swart, “Reactive
information foraging for evolving goals,” in Proc. Conf. Human Factors
Comput. Syst. (CHI), Atlanta, GA, USA, Apr. 2010, pp. 25–34.

[18] J. Lawrance et al., “How programmers debug, revisited: An information
foraging theory perspective,” IEEE Trans. Softw. Eng., vol. 39, no. 2,
pp. 197–215, Feb. 2013.

[19] N. Niu, A. Mahmoud, Z. Chen, and G. Bradshaw, “Departures from
optimality: Understanding human analyst’s information foraging in
assisted requirements tracing,” in Proc. Int. Conf. Softw. Eng. (ICSE),
San Francisco, CA, USA, May 2013, pp. 572–581.

[20] D. W. Stephens and J. R. Krebs, Foraging Theory. Princeton, NJ, USA:
Princeton Univ. Press, 1986.

[21] P. Pirolli, Information Foraging Theory: Adaptive Interaction With
Information. New York, NY, USA: Oxford Univ. Press, 2007.

[22] N. Niu, A. Mahmoud, and G. Bradshaw, “Information foraging as a
foundation for code navigation (NIER Track),” in Proc. Int. Conf. Softw.
Eng. (ICSE), Honolulu, HI, USA, May 2011, pp. 816–819.

[23] H. Qiao, Y. Li, T. Tang, and P. Wang, “Introducing memory and associ-
ation mechanism into a biologically inspired visual model,” IEEE Trans.
Cybern., vol. 44, no. 9, pp. 1485–1496, Sep. 2014.

[24] A. B. Özgüler and A. Yildiz, “Foraging swarms as Nash equilibria of
dynamic games,” IEEE Trans. Cybern., vol. 44, no. 6, pp. 979–987,
Jun. 2014.

[25] E. Nichols, L. McDaid, and N. H. Siddique, “Biologically inspired SNN
for robot control,” IEEE Trans. Cybern., vol. 43, no. 1, pp. 115–128,
Feb. 2013.

[26] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to
Information Retrieval. Cambridge, MA, USA: Cambridge Univ. Press,
2008.

[27] E. H. Chi et al., “The bloodhound project: Automating discovery of Web
usability issues using the InfoScent simulator,” in Proc. Conf. Human
Factors Comput. Syst. (CHI), Ft. Lauderdale, FL, USA, Apr. 2003,
pp. 505–512.

[28] C. W. Bachman and R. G. Ross, “Toward a more complete reference
model of computer-based information systems,” Comput. Stand., vol. 6,
no. 5, pp. 331–343, Nov. 1982.

[29] X. Xu, Z. Huang, D. Graves, and W. Pedrycz, “A clustering-based graph
Laplacian framework for value function approximation in reinforce-
ment learning,” IEEE Trans. Cybern., vol. 44, no. 12, pp. 2613–2625,
Dec. 2014.

[30] R. D. Baruah and P. P. Angelov, “DEC: Dynamically evolving clustering
and its application to structure identification of evolving fuzzy models,”
IEEE Trans. Cybern., vol. 44, no. 9, pp. 1619–1631, Sep. 2014.

[31] W. Gao, G. G. Yen, and S. Liu, “A cluster-based differential evolution
with self-adaptive strategy for multimodal optimization,” IEEE Trans.
Cybern., vol. 44, no. 8, pp. 1314–1327, Aug. 2014.

[32] C. M. Fernandes, A. M. Mora, J. J. Merelo, and A. C. Rosa, “KANTS:
A stigmergic ant algorithm for cluster analysis and swarm art,” IEEE
Trans. Cybern., vol. 44, no. 6, pp. 843–856, Jun. 2014.

[33] U. Halder, S. Das, and D. Maity, “A cluster-based differential evo-
lution algorithm with external archive for optimization in dynamic
environments,” IEEE Trans. Cybern., vol. 43, no. 3, pp. 881–897,
Jun. 2013.

[34] H. Su et al., “Decentralized adaptive pinning control for cluster synchro-
nization of complex dynamical networks,” IEEE Trans. Cybern., vol. 43,
no. 1, pp. 394–399, Feb. 2013.

[35] O. Maqbool and H. A. Babri, “Hierarchical clustering for software archi-
tecture recovery,” IEEE Trans. Softw. Eng., vol. 33, no. 11, pp. 759–780,
Nov. 2007.

[36] V. Tzerpos and R. C. Holt, “ADCD: An algorithm for comprehension-
driven clustering,” in Proc. Working Conf. Reverse Eng. (WCRE),
Brisbane, QLD, Australia, Nov. 2000, pp. 258–267.

[37] G. Scanniello and A. Marcus, “Clustering support for static concept
location in source code,” in Proc. Int. Conf. Program Compre. (ICPC),
Kingston, ON, Canada, Jun. 2011, pp. 1–10.

[38] N. Niu and A. Mahmoud, “Enhancing candidate link generation for
requirements tracing: The cluster hypothesis revisited,” in Proc. Int.
Require. Eng. Conf. (RE), Chicago, IL, USA, Sep. 2012, pp. 81–90.

[39] N. Niu, L. D. Xu, and Z. Bi, “Enterprise information systems
architecture—Analysis and evaluation,” IEEE Trans. Ind. Informat.,
vol. 9, no. 4, pp. 2147–2154, Nov. 2013.

[40] W. Viriyasitavat, L. D. Xu, and W. Viriyasitavat, “Compliance checking
for requirement-oriented service workflow interoperations,” IEEE Trans.
Ind. Informat., vol. 10, no. 2, pp. 1469–1477, May 2014.

[41] N. Niu, L. D. Xu, J.-R. C. Cheng, and Z. Niu, “Analysis of architec-
turally significant requirements for enterprise systems,” IEEE Syst. J.,
vol. 8, no. 3, pp. 850–857, Sep. 2014.

[42] T. Bhowmik, N. Niu, A. Mahmoud, and J. Savolainen, “Automated
support for combinational creativity in requirements engineering,” in
Proc. Int. Require. Eng. Conf. (RE), Karlskrona, Sweden, Aug. 2014,
pp. 243–252.

[43] J. R. Anderson, The Adaptive Character of Thought. Hillsdale, NJ, USA:
Lawrence Erlbaum Assoc., 1990.

[44] D. Beyer and A. Noack, “Clustering software artifacts based on frequent
common changes,” in Proc. Int. Workshop Program Compre. (IWPC),
St. Louis, MO, USA, May 2005, pp. 259–268.

[45] A. E. Hassan and R. C. Holt, “Replaying development history to assess
the effectiveness of change propagation tools,” Empir. Softw. Eng.,
vol. 11, no. 3, pp. 335–367, Sep. 2006.

[46] M. P. Robillard and B. Dagenais, “Recommending change clusters to
support software investigation: An empirical study,” J. Softw. Maint.
Evol. Res. Pract., vol. 22, no. 3, pp. 143–164, Apr. 2010.

[47] A. Mahmoud and N. Niu, “Evaluating software clustering algorithms
in the context of program comprehension,” in Proc. Int. Conf. Program
Compre. (ICPC), San Francisco, CA, USA, May 2013, pp. 162–171.

[48] R. K. Yin, Case Study Research: Design and Methods. Thousand Oaks,
CA, USA: Sage, 2003.

[49] R. M. Sirkin, Statistics for the Social Sciences. Thousand Oaks, CA,
USA: Sage, 2005.

[50] N. Niu and S. Easterbrook, “Extracting and modeling product line func-
tional requirements,” in Proc. Int. Require. Eng. Conf. (RE), Barcelona,
Spain, Sep. 2008, pp. 155–164.

[51] C. Xiao, “Using dynamic analysis to cluster large software systems,”
Master’s thesis, Dept. Comput. Sci., York Univ., Toronto, ON, Canada,
2004.

[52] (Apr. 15, 2015). Software Clustering Wiki. [Online]. Available:
http://wiki.cse.yorku.ca/project/cluster/start

[53] C. Duan and J. Cleland-Huang, “Clustering support for automated trac-
ing,” in Proc. Int. Conf. Autom. Softw. Eng. (ASE), Atlanta, GA, USA,
Nov. 2007, pp. 244–253.

[54] Z. Wen and V. Tzerpos, “An optimal algorithm for MoJo distance,” in
Proc. Int. Workshop Program Compre. (IWPC), Portland, OR, USA,
May 2003, pp. 227–235.

[55] P. Andritsos and V. Tzerpos, “Information-theoretic software clustering,”
IEEE Trans. Softw. Eng., vol. 31, no. 2, pp. 150–165, Feb. 2005.

[56] A. Mahmoud and N. Niu, “Source code indexing for automated trac-
ing,” in Proc. Int. Workshop Trace. Emerg. Forms Softw. Eng. (TEFSE),
Honolulu, HI, USA, May 2011, pp. 3–9.

http://wiki.cse.yorku.ca/project/cluster/start

NIU et al.: CLUSTERING-BASED APPROACH TO ENRICHING CODE FORAGING ENVIRONMENT 1973

[57] B. S. Mitchell and S. Mancoridis, “On the automatic modularization
of software systems using the Bunch tool,” IEEE Trans. Softw. Eng.,
vol. 32, no. 3, pp. 193–208, Mar. 2006.

[58] J. Brandt, P. J. Guo, J. Lewenstein, M. Dontcheva, and S. R. Klemmer,
“Opportunistic programming: Writing code to prototype, ideate, and
discover,” IEEE Softw., vol. 26, no. 5, pp. 18–24, Sep. 2009.

[59] A. T. T. Ying and M. P. Robillard, “The influence of the task on program-
mer behaviour,” in Proc. Int. Conf. Program Compre. (ICPC), Kingston,
ON, Canada, Jun. 2011, pp. 31–40.

[60] R. E. Brooks, “Towards a theory of the cognitive processes in com-
puter programming,” Int. J. Human Comput. Studies, vol. 51, no. 2,
pp. 197–211, Aug. 1999.

[61] M.-A. D. Storey, F. D. Fracchia, and H. A. Müller, “Cognitive design
elements to support the construction of a mental model during software
exploration,” J. Syst. Softw., vol. 44, no. 3, pp. 171–185, Jan. 1999.

[62] H. A. Simon, The Sciences of the Artificial. Cambridge, MA, USA:
MIT Press, 1981.

Nan Niu (M’08–SM’13) received the B.Eng. degree
from the Beijing Institute of Technology, Beijing,
China, the M.Sc. degree from the University of
Alberta, Edmonton, AB, Canada, and the Ph.D.
degree from the University of Toronto, Toronto, ON,
Canada, all in computer science.

He is currently an Assistant Professor with
the Department of Electrical Engineering and
Computing Systems, University of Cincinnati,
Cincinnati, OH, USA. His current research interests
include software requirements engineering, informa-

tion seeking in software engineering, and human-centered computing.
Dr. Niu is a recipient of the U.S. National Science Foundation Faculty Early

Career Development (CAREER) Award.

Xiaoyu Jin received the B.Eng. degree
from the Beijing University of Posts and
Telecommunications, Beijing, China. He is currently
pursuing the Ph.D. degree with the Department
of Electrical Engineering and Computing Systems,
University of Cincinnati, Cincinnati, OH, USA.
His current research interests include software
discovery, information retrieval, and data mining.

Zhendong Niu received the Ph.D. degree in
computer science from the Beijing Institute of
Technology, Beijing, China, in 1995.

He was a Post-Doctoral Researcher with the
University of Pittsburgh, Pittsburgh, PA, USA, from
1996 to 1998, a Research/Adjunct Faculty Member
with Carnegie Mellon University, Pittsburgh, from
1999 to 2004, and a Joint Research Professor with
Information School, University of Pittsburgh, in
2006. He is a Professor and the Deputy Dean with
the School of Computer Science and Technology,

Beijing Institute of Technology. His current research interests include informa-
tional retrieval, software architecture, digital libraries, and Web-based learning
techniques.

Dr. Niu is a recipient of the IBM Faculty Innovation Award in 2005 and
the New Century Excellent Talents in University of Ministry of Education of
China in 2006.

Jing-Ru C. Cheng received the Ph.D. degree
in computer science from Pennsylvania State
University, State College, PA, USA, in 2002.

She has been a Computer Scientist with the
U.S. Army Engineer Research and Development
Center, Vicksburg, MS, USA, since 2002. Her cur-
rent research interests include parallel algorithm
development, software tool development for scien-
tific computing, and multiscale multiphysics code
development.

Ling Li received the master’s and doctorate degrees
in production/operations and logistics from the
Ohio State University, Columbus, OH, USA, in
1994 and 1996, respectively.

She is a Professor of Production/Operations with
Old Dominion University, Norfolk, VA, USA.

Dr. Li has served as an Associate Editor for
the IEEE TRANSACTIONS ON INFORMATION

TECHNOLOGY IN BIOMEDICINE, the IEEE
TRANSACTIONS ON INDUSTRIAL INFORMATICS,
and other IEEE journals. She is a fellow in

Production and Inventory Management, Association for Operations
Management, Chicago, IL, USA.

Mikhail Yu Kataev received the M.S. degree in
radio-physics engineering from the Tomsk State
University, Tomsk, Russia, the Ph.D. degree in
specialty optics from the Institute of Atmospheric
Optics SB RAS, Tomsk, and the Dr.Sci. degree
in specialty mathematical modeling, numerical
methods and complexes of programs from the
Tomsk State University of Control Systems and
Radioelectronics (TUSUR), Tomsk, in 1984, 1993,
and 2002, respectively.

He is currently a Professor with the Department
Control Systems, TUSUR, and has been the Director of the Education Science
Center since 2004. Since 2009, he has been the Vice Chief of the Chair
Automated Control Systems. He is a Corresponding Member of the Russian
Education Academy, Siberian Brunch. His current research interests include
software engineering, numerical algorithms, parallel programming in atmo-
sphere optics, and business process. He has published over 180 scientific
papers and books in the field of solving forward and inverse tasks, recognition,
and ill-posed.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

