
Unit Tests of Scientific Software: A Study
on SWMM

Zedong Peng, Xuanyi Lin, and Nan Niu(B)

Department of Electrical Engineering and Computer Science (EECS),
University of Cincinnati, Cincinnati, OH 45221, USA
{pengzd,linx7}@mail.uc.edu, nan.niu@uc.edu

Abstract. Testing helps assure software quality by executing program
and uncovering bugs. Scientific software developers often find it challeng-
ing to carry out systematic and automated testing due to reasons like
inherent model uncertainties and complex floating point computations.
We report in this paper a manual analysis of the unit tests written by
the developers of the Storm Water Management Model (SWMM). The
results show that the 1,458 SWMM tests have a 54.0% code coverage and
a 82.4% user manual coverage. We also observe a “getter-setter-getter”
testing pattern from the SWMM unit tests. Based on these results, we
offer insights to improve test development and coverage.

Keywords: Scientific software · Unit testing · Test oracle · User
manual · Test coverage · Storm Water Management Model (SWMM)

1 Introduction

Scientific software is commonly developed by scientists and engineers to bet-
ter understand or make predictions about real world phenomena. Without such
software, it would be difficult or impossible for many researchers to do their
work. Scientific software includes both software for end-user researchers (e.g.,
climate scientists and hydrologists) and software that provides infrastructure
support (e.g., message passing and scheduling). Because scientific software needs
to produce trustworthy results and function properly in mission-critical situa-
tions, rigorous software engineering practices shall be adopted to assure software
qualities.

Testing, which is important for assessing software qualities, has been
employed extensively in business/IT software. However, developers of scientific
software have found it more difficult to apply some of the traditional software
testing techniques [14]. One chief challenge is the lack of the test oracle. An
oracle in software testing refers to the mechanism for checking whether the pro-
gram under test produces the expected output when executed using a set of test
cases [2]. Many testing techniques—especially unit testing commonly carried out
in business/IT software development projects—require a suitable oracle to set

c© Springer Nature Switzerland AG 2020
V. V. Krzhizhanovskaya et al. (Eds.): ICCS 2020, LNCS 12143, pp. 413–427, 2020.
https://doi.org/10.1007/978-3-030-50436-6_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50436-6_30&domain=pdf
https://doi.org/10.1007/978-3-030-50436-6_30

414 Z. Peng et al.

up the expectation with which the actual implementation (e.g., sorting inventory
items or calculating tax returns) can be compared.

Researchers have therefore proposed different approaches to overcoming the
lack of oracle in scientific software testing. For example, a pseudo oracle—an
independently developed program that fulfills the same specification as the pro-
gram under test—has been used in numerical simulation and climate model
testing [10,11]. A pseudo oracle makes the assumption that independently devel-
oped reference models will not result in the same failures; however, Brilliant
et al. [5] reported instances of N -version programming that violated this assump-
tion. Mayer [22] tested image processing applications with statistical oracles by
checking the statistical characteristics of test results; yet a statistical oracle can-
not decide whether a single test case has passed or failed.

Single test cases are commonly used in unit testing to verify individual pro-
gram modules, each of which encapsulates some coherent computation (e.g., a
procedure, a function, or a method). Although pseudo and statistical oracles are
proposed in the research literature, their adoptions seem isolated among scientific
software developers. Our ongoing collaborations with the U.S. Environmental
Protection Agency’s Storm Water Management Model (SWMM) team suggests
limited applicability of N -version programming, and hence pseudo oracle espe-
cially at the unit testing levels, due to the constrained software development
resources. More importantly, the SWMM team has been developing tests, unit
tests and other kinds, throughout the project’s more than four decades his-
tory [32]. To comply with the recent movements toward improving public access
to data [31], these tests are released, sometimes together with the source code of
SWMM, in GitHub and other repositories. However, little is known about the
characteristics of the SWMM tests.

To shorten the knowledge gap, we report in this paper the tests that are
publicly available for the SWMM software. We provide a detailed look at who
wrote how many tests in what environments, and further analyze the coverage
of the unit tests from two angles: how much they correspond to the user manual
and to the codebase. The contributions of our work lie in the qualitative charac-
terization and quantitative examination of the tests written and released by the
scientific software developers themselves in the context of SWMM. Our results
clearly show that oracle does exist in scientific software testing, and our coverage
analysis reveals concrete ways to improve testing. In what follows, we provide
background information and introduce SWMM in Sect. 2. Section 3 presents our
search of SWMM tests, Sect. 4 analyzes the test coverage, and finally, Sect. 5
draws some concluding remarks and outlines future work.

2 Background

2.1 Oracle Problem in Testing Scientific Software

Testing is a mainstream approach toward software quality, and involves examin-
ing the behavior of a system in order to discover potential faults. Given an input

Unit Tests of Scientific Software: A Study on SWMM 415

for the system under test, the oracle problem refers to the challenge of distin-
guishing the corresponding desired, correct behavior from observed, potentially
incorrect behavior [2]. The oracle of desired and correct behavior of scientific
software, however, can be difficult to obtain or may not be readily available.
Kanewala and Bieman [14] listed five reasons.

• Some scientific software is written to find answers that are previously
unknown; a case in point is the program computing a large graph’s short-
est path of any arbitrary pair of nodes.

• It is difficult to determine the correct output for software written to test
scientific theory that involves complex calculations, e.g., the large, complex
simulations are developed to understand climate change [10].

• Due to the inherent uncertainties in models, some scientific programs do not
give a single correct answer for a given set of inputs.

• Requirements are unclear or uncertain up-front due to the exploratory nature
of the software [15,24].

• Choosing suitable tolerances for an oracle when testing numerical programs
is difficult due to the involvement of complex floating point computations.

Barr et al. [2] showed that test oracles could be explicitly specified or implic-
itly derived. In scientific software testing, an emerging technique to alleviate
the oracle problem is metamorphic testing [14,30]. For example, Ding and col-
leagues [8] tested an open-source light scattering simulation performing discrete
dipole approximation. Rather than testing the software on each and every input
of a diffraction image, Ding et al. systematically (or metamorphically) changed
the input (e.g., changing the image orientation) and then compared whether
the software would meet the expected relation (e.g., scatter and textual pattern
should stay the same at any orientation).

While we proposed hierarchical and exploratory ways of conducting meta-
morphic testing for scientific software [17,18], our work is similar to that of
Ding et al.’s [8] by gearing toward the entire application instead of checking the
software at the unit testing level. This is surprising given that one of the most
prevalent stereotypes of metamorphic testing [30] is the trigonometry function,
i.e., sin(x) = sin(π – x), which is targeted at an individual computational unit.
Unit tests are especially useful for guarding the developers against programming
mistakes and for localizing the errors when they occur. Thus, we are interested
in the unit tests written and released by the scientific software developers them-
selves, and for our current work, the focus is on SWMM.

2.2 Storm Water Management Model (SWMM)

The Storm Water Management Model (SWMM) [32], created by the U.S. Envi-
ronmental Protection Agency (EPA), is a dynamic rainfall-runoff simulation
model that computes runoff quantity and quality from primarily urban areas.
The development of SWMM began in 1971 and since then the software has
undergone several major upgrades.

416 Z. Peng et al.

T
a
b
le

1
.
S
W

M
M

te
st

s
in

si
x

re
p
o
si

to
ri

es
.

S
o
u
rc
e

A
u
th

o
r
(#

;
R
o
le
)

#
o
f
T
es
ts

T
y
p
e

M
et
h
o
d

L
a
n
g
u
a
g
e

S
W

M
M

V
er
si
o
n

h
tt
p
s:
/
/
g
it
h
u
b
.c
o
m
/
m
ic
h
a
el
tr
y
b
y
/

sw
m
m
-n

rt
es
ts
/
tr
ee
/
m
a
st
er
/
p
u
b
li
c/

u
p
d
a
te

v
5
1
1
1

(N
/
A
;
N
/
A
)

8
N
u
m
er
ic
a
l
re
g
re
ss
io
n
te
st
in
g

n
u
m
p
y
.a
ll
cl
o
se

P
y
th

o
n
,
js
o
n

5
.1
.1
1

h
tt
p
s:
/
/
g
it
h
u
b
.c
o
m
/

O
p
en

W
a
te
rA

n
a
ly
ti
cs
/
S
to
rm

w
a
te
r-

M
a
n
a
g
em

en
t-
M
o
d
el
/
tr
ee
/
fe
a
tu

re
-

2
d
fl
o
o
d
/
te
st
s/
sw

m
m
-n

rt
es
ts
u
it
e/

b
en

ch
m
a
rk
/
sw

m
m
-5
1
1
2

(N
/
A
;
N
/
A
)

2
7

5
.1
.1
2

h
tt
p
s:
/
/
g
it
h
u
b
.c
o
m
/
U
S
E
P
A
/

S
to
rm

w
a
te
r-
M
a
n
a
g
em

en
t-
M
o
d
el
/

tr
ee
/
d
ev

el
o
p
/
to
o
ls
/
n
rt
es
t-
sw

m
m
/

n
rt
es
t
sw

m
m

(1
;
E
P
A

d
ev

el
o
p
er
)

2
5
.1
.1
2

h
tt
p
s:
/
/
d
ri
v
e.
g
o
o
g
le
.c
o
m
/
d
ri
v
e/

fo
ld
er
s/
1
6
g
Im

G
S
J
V
7
iy
g
X
3
7
P
-

X
iR

S
4
W

cB
K
–
Y
Iz
v
T

(1
;
E
P
A

d
ev

el
o
p
er
)

5
8

5
.1
.1
3

h
tt
p
s:
/
/
g
it
h
u
b
.c
o
m
/
m
ic
h
a
el
tr
y
b
y
/

sw
m
m
-n

rt
es
ts
/
tr
ee
/
m
a
st
er
/
p
u
b
li
c

(1
;
E
P
A

d
ev

el
o
p
er
)

5
2

5
.1
.1
3

h
tt
p
s:
/
/
g
it
h
u
b
.c
o
m
/

O
p
en

W
a
te
rA

n
a
ly
ti
cs
/
S
to
rm

w
a
te
r-

M
a
n
a
g
em

en
t-
M
o
d
el
/
tr
ee
/
d
ev

el
o
p
/

te
st
s

(3
+
;
E
P
A

d
ev

el
o
p
er
)
1
,4
5
8

U
n
it

te
st
in
g

b
o
o
st

te
st

C
+
+

5
.1
.1
3

https://github.com/michaeltryby/swmm-nrtests/tree/master/public/update_v5111
https://github.com/michaeltryby/swmm-nrtests/tree/master/public/update_v5111
https://github.com/michaeltryby/swmm-nrtests/tree/master/public/update_v5111
https://github.com/OpenWaterAnalytics/Stormwater-Management-Model/tree/feature-2dflood/tests/swmm-nrtestsuite/benchmark/swmm-5112
https://github.com/OpenWaterAnalytics/Stormwater-Management-Model/tree/feature-2dflood/tests/swmm-nrtestsuite/benchmark/swmm-5112
https://github.com/OpenWaterAnalytics/Stormwater-Management-Model/tree/feature-2dflood/tests/swmm-nrtestsuite/benchmark/swmm-5112
https://github.com/OpenWaterAnalytics/Stormwater-Management-Model/tree/feature-2dflood/tests/swmm-nrtestsuite/benchmark/swmm-5112
https://github.com/OpenWaterAnalytics/Stormwater-Management-Model/tree/feature-2dflood/tests/swmm-nrtestsuite/benchmark/swmm-5112
https://github.com/USEPA/Stormwater-Management-Model/tree/develop/tools/nrtest-swmm/nrtest_swmm
https://github.com/USEPA/Stormwater-Management-Model/tree/develop/tools/nrtest-swmm/nrtest_swmm
https://github.com/USEPA/Stormwater-Management-Model/tree/develop/tools/nrtest-swmm/nrtest_swmm
https://github.com/USEPA/Stormwater-Management-Model/tree/develop/tools/nrtest-swmm/nrtest_swmm
https://github.com/michaeltryby/swmm-nrtests/tree/master/public
https://github.com/michaeltryby/swmm-nrtests/tree/master/public
https://github.com/OpenWaterAnalytics/Stormwater-Management-Model/tree/develop/tests
https://github.com/OpenWaterAnalytics/Stormwater-Management-Model/tree/develop/tests
https://github.com/OpenWaterAnalytics/Stormwater-Management-Model/tree/develop/tests
https://github.com/OpenWaterAnalytics/Stormwater-Management-Model/tree/develop/tests

Unit Tests of Scientific Software: A Study on SWMM 417

Fig. 1. SWMM running as a Windows application (top) and the computational engine
of SWMM running as a console application (bottom).

The most current implementation of the model is version 5.1.13 which was
released in 2018. It has modernized both the model’s structure and its user inter-
face (UI). The top of Fig. 1 shows a screenshot of SWMM running as a Windows
application. The two main parts of SWMM are the computational engine written
inC/C++with about 45,500 lines of code, and theUIwritten usingEmbarcadero’s
Delphi.XE2. Note that the computational engine can be compiled either as a DLL
under Windows or as a stand-alone console application under both Windows and
Linux. The bottom of Fig. 1 shows that running SWMM in the command line takes
three parameters: the input, report, and output files.

418 Z. Peng et al.

The users of SWMM include hydrologists, engineers, and water resources
management specialists who are interested in the planning, analysis, and design
related to storm water runoff, combined and sanitary sewers, and other drainage
systems in urban areas. Thousands of studies worldwide have been carried out by
using SWMM, such as predicting the combined sewer overflow in the Metropoli-
tan Sewer District of Greater Cincinnati [12], modeling the hydrologic perfor-
mance of green roofs in Wroc�law, Poland [6], and simulating a combined drainage
network located in the center of Athens, Greece [16].

Despite the global adoptions of SWMM, the software development and main-
tenance remain largely local to the EPA. Our collaborations with the SWMM
team involve the creation of a connector allowing for the automated parame-
ter calibration [13], and through developing this software solution, we recognize
the importance of testing in assuring quality and contribute hierarchical and
exploratory methods of metamorphic testing [17,18]. In addition, we release our
metamorphic tests in the connector’s GitHub repository [19], promoting the open
access to data and research results [31]. For similar purposes, we realize that the
SWMM team has released their own tests in publicly accessible repositories.
Understanding these tests is precisely the objective of our study.

3 Identification and Characterization of SWMM Tests

We performed a survey analysis of the SWMM tests released in publicly acces-
sible repositories. Our search was informed by the SWMM team members and
also involved using known test repositories to find additional ones (snowballing).
Table 1 lists the six repositories that we identified, as well as the characteristics
of the testing data. The “source” column shows that five repositories are based
on GitHub, indicating the adoption of this kind of social coding environments
among scientific software developers; however, one source is hosted on Google
Drive by an EPA developer, showing that not all tests are embedded or merged
in the (GitHub) code branches. Although we cannot claim the completeness of
the sources, it is clear that searching only the code repositories like GitHub will
result in only partial testing data.

Table 1 shows that three test sets are contributed by individual developers
whereas one test set is jointly developed by more than three people. For the other
two test sets, we are not certain about the number of authors and their roles,
though other GitHub pages may provide inferrable information. The tests that
we found can be classified in two categories: numerical regression testing and unit
testing. Table 1 also shows that EPA developers adopt Python’s numpy.allclose()
function to write regression tests. The numpy.allclose() function is used to find
if two arrays are element-wise equal within a tolerance, and for SWMM, this
type of “allclose” checks whether the output from the newly released code is
consistent with that from the previously working code. For regression testing,
we count each SWMM input as a test, i.e., a single unit for different code versions
to check “allclose”. In total, there are 147 regression tests in five repositories.

Unit Tests of Scientific Software: A Study on SWMM 419

In contrast, unit testing does not compare different versions of SWMM but
focuses on the specific computations of the software. One source of Table 1 con-
tains 1,458 tests written by a group of EPA developers by using the boost envi-
ronment [7]. In particular, libboost test (version 1.5.4) is used in SWMM, and
Boost.Test provides both the interfaces for writing and organizing tests and the
controls of their executions. Figure 2 uses a snippet of test toolkitapi lid.cpp to
explain the three different granularities of SWMM unit tests. At the fine-grained
level are the assertions, e.g., line #334 of Fig. 2 asserts “error == ERR NONE”.
The value of “error” is obtained from line #333. As shown in Fig. 2, we define
a test in our study to be one instance that triggers SWMM execution and the
associated assertions with that triggering. In Fig. 2, three tests are shown. A
group of tests forms a test case, e.g., lines #311–616 encapsulate many tests into
one BOOST FIXTURE TEST CASE. Finally, each file corresponds to a test suite
containing one or more test cases. Table 2 lists the seven test suites, and the
number of test cases and tests per suite. Averagely speaking, each test suite has
8.7 test cases, and each test case has 23.9 tests.

4 Coverage of SWMM Unit Tests

Having characterized who developed how many SWMM tests in what environ-
ments, we turn our attention to the unit tests for quantitative analysis. Our
rationales are threefold: (1) a large proportion (1,4581,605 = 91%) of the tests that

Fig. 2. Illustration of SWMM tests and test cases written in the boost environment.

420 Z. Peng et al.

we found are unit tests (2) the tests are intended for the most recent release of
SWMM (version 5.1.13), and (3) unit testing requires oracle to be specified which
will provide valuable insights into how scientific software developers themselves
define test oracles.

Table 2. Test suites, test cases, and tests.

Test suite Test case Test

test output.cpp 14 59

test swmm.cpp 11 11

test toolkitapi.cpp 12 128

test toolkitapi gage.cpp 1 11

test toolkitapi lid.cpp 17 679

test toolkitapi lid results.cpp 5 555

test toolkitapi pollut.cpp 1 15

Σ 61 1,458

When unit tests are considered, coverage is an important criterion. This is
because a program with high test coverage, measured as a percentage, has had
more of its source code executed during testing, which suggests it has a lower
chance of containing undetected software bugs compared to a program with low
test coverage [4]. Practices that lead to higher testing coverage have therefore
received much attention. For example, test-driven development (TDD) [23] advo-
cates test-first over the traditional test-last approach, and the studies by Bhat
and Nagappan [3] show that the block coverage reached to 79–88% at unit test
level in projects employing TDD. While Bhat and Nagappan’s studies were car-
ried out at Microsoft, some scientific software demands even higher levels of test
coverage. Notably, the European Cooperation for Space Standardization requires
a 100% test coverage at software unit level, and Prause et al. [27] collected expe-
rience from a space software project’s developers who stated that 100% coverage
is unusual and brings in new risks. Nevertheless, the space software developers
acknowledged that 100% coverage is sometimes necessary. Our work analyzes
the coverage of SWMM unit tests not only from the source code perspective,
but also from the viewpoint of the user manual. Compared to business/IT soft-
ware, scientific software tends to release authoritative and updated user manual
intended for the software system’s proper operation. The rest of this section
reports the 1,458 unit tests’ coverage and discusses our study’s limitations.

4.1 SWMM User Manual Coverage

We manually mapped the SWMM unit tests to its version 5.1 user manual [29],
and for validation and replication purposes, we share all our analysis data in the
institutional digital preservation site Scholar@UC [26]. The 353-page user man-
ual contains 12 chapters and 5 appendices. Our analysis shows that 14, or 82.4%

Unit Tests of Scientific Software: A Study on SWMM 421

(1417), are covered by at least one of the 1,458 unit tests. Figure 3 shows the distri-
butions of the unit tests over the 14 user manual chapters/appendices. Because
one unit test may correspond to many chapters/appendices, the test total of
Fig. 3 is 3,236. The uncovered chapters are: “Printing and Copying” (Chapter
10), “Using Add-In Tools” (Chapter 12), and “Error and Warning Messages”
(Appendix E). The error and warning messages are descriptive in nature, and
printing, copying, and add-in tools require the devices and/or services exter-
nal to SWMM. Due to these reasons, it is understandable that no unit tests
correspond to these chapters/appendices.

Fig. 3. (a) Mapping unit tests to user manual chapters/appendices, and (b) Explaining
the “Others” part of (a).

Figure 3(a) shows that the unit tests predominantly cover “SWMM’s Con-
ceptual Model” (Chapter 3) and “Specialized Property Editors” (Appendix C).
The same percentage, 38.4%, of these two parts is not accidental to us. In fact,
they share the same subset of the unit tests except for one. We present a detailed
look at these parts in Fig. 4. Chapter 3 describes not only the configuration of
the SWMM objects (e.g., conduits, pumps, storage units, etc.) but also the LID
(low impact development) controls that SWMM allows engineers and planners to
represent combinations of green infrastructure practices and to determine their
effectiveness in managing runoff. The units presented in §3.2 (“Visual Objects”),
§3.3 (“Non-Visual Objects”), and §3.4 (“Computational Methods”) thus repre-
sent some of the core computations of SWMM. Consequently, unit tests are
written for the computations except for the “Introduction” (§3.1) overviewing
the Atmosphere, Land Surface, Groundwater, and Transport compartments of
SWMM. Surprisingly, more tests are written for the non-visual objects than

422 Z. Peng et al.

Fig. 4. (a) Breakdowns of unit tests into Chapter 3 (“SWMM’s Conceptual Model”)
of the user manual, and (b) Breakdowns of unit tests into Appendix C (“Specialized
Property Editors”) of the user manual.

the visual objects, as shown in Fig. 4(a). The visual objects (rain gages, sub-
catchments, junction nodes, outfall nodes, etc.) are those that can be arranged
together to represent a stormwater drainage system, whereas non-visual objects
(climatology, transects, pollutants, control rules, etc.) are used to describe addi-
tional characteristics and processes within a study area. One reason might be the
physical, visual objects (§3.2) are typically combined, making unit tests (e.g.,
single tests per visual object) difficult to construct.

The non-visual objects (§3.3), on the other hand, express attributes of, or the
rules controlling, the physical objects, which makes unit tests easier to construct.
For example, two of the multiple-condition orifice gate controls are RULE R2A:
“IF NODE 23 DEPTH > 12 AND LINK 165 FLOW > 100 THEN ORIFICE R55
SETTING = 0.5” and RULE R2B: “IF NODE 23 DEPTH > 12 AND LINK 165
FLOW > 200 THEN ORIFICE R55 SETTING = 1.0”. For units like RULE R2A
and RULE R2B, tests could be written to check whether the orifice setting is
correct under different node and link configurations. Under these circumstances,
the test oracles are known and are given in the user manual (e.g., orifice setting
specified in the control rules).

During our manual mappings of the unit tests, we realize the interconnection
of the user manual chapters/appendices. One example mentioned earlier is the
connection between Chapter 3 and Appendix C. It turns out that such intercon-
nections are not one-to-one, i.e., Appendix C connects to not only Chapter 3 but
also to other chapters. In Fig. 4(b), we annotate the interconnections grounded
in the SWMM unit tests. For instance, §3.2, §3.3, and §3.4 are linked to §C.10
(“Initial Buildup Editor”), §C.11 (“Land Use Editor”), §C.13 (“LID Control
Editor”), and §C.15 (“LID Usage Editor”), indicating the important role of LID
plays in SWMM. Although only a very small number of unit tests connects §9.3
(“Time Series Results”) with §C.18 (“Time Pattern Editor”) and §C.19 (“Time
Series Editor”), we posit more tests of this core time-series computation could
be developed in a similar way as LID tests (e.g., by using the boost environment

Unit Tests of Scientific Software: A Study on SWMM 423

illustrated in Fig. 2). A more general speculation that we draw from our analysis
is that if some core computation has weak links with the scientific software sys-
tem’s parameters and properties (e.g., Appendix C of the SWMM user manual),
then developing unit tests for that computation may require other environments
and frameworks like CppTest or CPPUnit; investigating these hypotheses is part
of our future research collaborations with the EPA’s SWMM team.

4.2 SWMM Codebase Coverage

There are a number of coverage measures commonly used for test-codebase anal-
ysis, e.g., Prause et al. [27] compared statement coverage to branch coverage in a
space software project and showed that branch coverage tended to be lower if not
monitored but could be improved in conjunction with statement coverage with-
out much additional effort. For our analysis, we manually mapped the 1,458 unit
tests to SWMM’s computational engine (about 45,500 lines of code written in
C/C++). Like the test-to-user-manual data, we also share our test-to-codebase
analysis data in Scholar@UC [26]. At the code file level, the coverage of the 1,458
SWMM unit tests is 54.0%. In line with our user manual analysis results, the
code corresponding to the greatest number of unit tests involves runoff and LID,
including toposort.c, treatment.c, and runoff.c.

Different from our user manual analysis where we speculated that control
rules, such as RULE R2A and RULE R2B, would be among the subjects of
unit testing, the actual tests have a strong tendency toward getters and set-
ters. This is illustrated in Fig. 2. Interestingly, we also observe a pattern of
“getter-setter-getter” in the tests. In Fig. 2, the test of lines #330–332 first gets
swmm getLidCParam, ensures that there is no error in getting the parameter
value (line #331), and compares the value with the oracle (line #332). A minor
change is made in the next test where the new “&db value” is set to be 100, fol-
lowed by checking if this instance of parameter setter is successful (line #334).
The last test in the “getter-setter-getter” sequence immediately gets and checks
the parameter value (lines #335–337). Our analysis confirms many instances of
this “getter-setter-getter” pattern among the 1,458 unit tests.

It is clear that oracle exists in SWMM unit tests, and as far as the “getter-
setter-getter” testing pattern is concerned, two kinds of oracle apply: whether
the code crashes (e.g., lines #331, #334, and #336 of Fig. 2) and if the param-
eter value is close to pre-defined or pre-set value (e.g., lines #332 and #337 of
Fig. 2). One advantage of “getter-setter-getter” testing lies in the redundancy of
setting a value followed immediately by getting and checking that value, e.g.,
swmm setLidCParam with 100 and then instantly checking swmm getLidCParam
against 100. As redundancy improves reliability, this practice also helps with the
follow-up getter’s test automation. However, a disadvantage here is the selection
of the parameter values. In Fig. 2, for example, the oracle of 6 (line #332) may
be drawn from SWMM input and/or observational data, but the selection of 100
seems random to us. As a result, the test coverage is low from the parameter
value selection perspective, which can limit the bug detection power of the tests.

424 Z. Peng et al.

A post from the SWMM user forum [1] provides a concrete situation of soft-
ware failure related to specific parameter values. In this post, the user reported
that: “The surface depth never even reaches 300 mm in the LID report file” after
explicitly setting the parameters of the LID unit (specifically, “storage depth of
surface layer” = 300 mm) to achieve the effect [1]. The reply from an EPA devel-
oper suggested a solution by changing: “either the infiltration conductivity or
the permeability of the Surface, Soil or Pavement layers”. Although these layers
are part of “LID Controls”, and even have their descriptions in §3.3.14 of the
SWMM user manual [29], the testing coverage does not seem to reach “stor-
age depth of surface layer” = 300 mm under different value combinations of the
Surface, Soil or Pavement layers. We believe the test coverage can be improved
when the design of unit tests builds more directly upon the SWMM user manual
and when the parameter value selection alters more automatically than currently
written in a relatively fixed fashion.

4.3 Threats to Validity

We discuss some of the important aspects of our study that one shall take into
account when interpreting our findings. A threat to construct validity is how
we define tests. Our work focuses on SWMM unit tests written in the boost
environment, as illustrated in Fig. 2. While our units of analysis—tests, test
cases, and test suites—are consistent with what boost defines and how the test
developers apply boost, the core construct of “tests” may differ if boost evolves
or the SWMM developers adopt other test development environments. Within
boost itself, for instance, BOOST AUTO TEST CASE may require different ways
to define and count tests than BOOST FIXTURE TEST CASE shown in Fig. 2.

An internal validity threat is our manual mapping of the 1,458 SWMM unit
tests to the user manual and to the codebase. Due to the lack of traceability
information [25,34,35] from the SWMM project, our manual effort is necessary in
order to understand the coverage of the unit tests. Our current mapping strategy
is driven mainly by keywords, i.e., we matched keywords from the tests with
the user manual contents and with the functionalities implemented in the code
(procedure signatures and header comments). Two researchers independently
performed the manual mappings of a randomly chosen 200 tests and achieved
a high level of inter-rater agreement (Cohen’s κ = 0.77). We attributed this to
the comprehensive documentation of SWMM tests, user manual, and code. The
disagreements of the researchers were resolved in a joint meeting, and three
researchers performed the mappings for the remaining tests.

Several factors affect our study’s external validity. Our results may not gener-
alize to other kinds of SWMM testing (numerical regression tests in particular),
to the tests shared internally among the SWMM developers, and to other sci-
entific software with different size, complexity, purposes, and testing practices.
As for conclusion validity and reliability, we believe we would obtain the same
results if we repeated the study. In fact, we publish all our analysis data in our
institution’s digital preservation repository [26] to facilitate reproducibility, cross
validation, and future expansions.

Unit Tests of Scientific Software: A Study on SWMM 425

5 Conclusions

Testing is one of the cornerstones of modern software engineering [9]. Scien-
tific software developers, however, face the oracle challenge when performing
testing [14]. In this paper, we report our analysis of the unit tests written and
released by the EPA’s SWMM developers. For the 1,458 SWMM unit tests that
we identified, the file-level code coverage is 54.0% and the user-manual cov-
erage is 82.4%. Our results show that oracle does exist in at least two levels:
whether the code crashes and if the returned value of a computational unit is
close to the expectation. In addition to relying on historical data to define the
test oracle [17,18], our study uncovers a new “getter-setter-getter” testing pat-
tern, which helps alleviate the oracle problem by setting a parameter value and
then immediately getting and checking it. This practice, though innovative, can
be further improved by incorporating the user manual in developing tests and
by automating parameter value selection to increase coverage.

Our future work will therefore explore these dimensions while investigating
SWMM’s numerical regression tests that we identified. While the 82.4% user
manual coverage seems high, the 54.0% file-level code coverage begs the question
as to whether our current analysis misses some code/functionality that is not
user-facing. We will expand our analysis to address this question. We also plan
to develop automated tools [20,21,28] for test coverage analysis, and will build
initial tooling [33] on the basis of keyword matching drawn from our current
operational insights. Our goal is to better support scientists in improving testing
practices and software quality.

Acknowledgments. We thank the EPA SWMM team, especially Michelle Simon,
Colleen Barr, and Michael Tryby, for the research collaborations. This work is partially
supported by the U.S. National Science Foundation (Award CCF-1350487).

References

1. Adei, B., Dickinson, R., Rossman, L.A.: Some observations on LID out-
put. https://www.openswmm.org/Topic/4214/some-observations-on-lid-output.
Accessed April 2020

2. Barr, E.T., Harman, M., McMinn, P., Shahbaz, M., Yoo, S.: The oracle problem
in software testing: a survey. IEEE Trans. Software Eng. 41(5), 507–525 (2015)

3. Bhat, T., Nagappan, N.: Evaluating the efficacy of test-driven development: indus-
trial case studies. In: International Symposium on Empirical Software Engineering,
pp. 356–363 (2006)

4. Brader, L., Hilliker, H., Wills, A.C.: Chapter 2 Unit Testing: Testing the Inside.
Testing for Continuous Delivery with Visual Studio 2012, Microsoft Patterns &
Practices (2013)

5. Brilliant, S.S., Knight, J.C., Leveson, N.G.: Analysis of faults in an N-version
software experiment. IEEE Trans. Software Eng. 16(2), 238–247 (1990)

6. Burszta-Adamiak, E., Mrowiec, M.: Modelling of green roofs’ hydrologic perfor-
mance using EPA’s SWMM. Water Sci. Technol. 68(1), 36–42 (2013)

https://www.openswmm.org/Topic/4214/some-observations-on-lid-output

426 Z. Peng et al.

7. Dawes, B., Abrahams, D.: Boost C++ libraries. https://www.boost.org. Accessed
April 2020

8. Ding, J., Zhang, D., Hu, X.-H.: An application of metamorphic testing for testing
scientific software. In International Workshop on Metamorphic Testing, pp. 37–43
(2016)

9. Dubois, P.F.: Testing scientific programs. Comput. Sci. Eng. 14(4), 69–73 (2012)
10. Easterbrook, S., Johns, T.C.: Engineering the software for understanding climate

change. Comput. Sci. Eng. 11(6), 65–74 (2009)
11. Farrell, P.E., Piggott, M.D., Gorman, G.J., Ham, D.A., Wilson, C.R., Bond, T.M.:

Automated continuous verification for numerical simulation. Geosci. Model Dev.
4(2), 435–449 (2011)

12. Gudaparthi, H., Johnson, R., Challa, H., Niu, N.: Deep learning for smart sewer sys-
tems: assessing nonfunctional requirements. In: International Conference on Soft-
ware Engineering (SE in Society Track) (2020)

13. Kamble, S., Jin, X., Niu, N., Simon, M.: A novel coupling pattern in computa-
tional science and engineering software. In International Workshop on Software
Engineering for Science, pp. 9–12 (2017)

14. Kanewala, U., Bieman, J.M.: Testing scientific software: a systematic literature
review. Inf. Software Technol. 56(10), 1219–1232 (2014)

15. Khatwani, C., Jin, X., Niu, N., Koshoffer, A., Newman, L., Savolainen, J.: Advanc-
ing viewpoint merging in requirements engineering: a theoretical replication and
explanatory study. Requirements Eng. 22(3), 317–338 (2017). https://doi.org/10.
1007/s00766-017-0271-0

16. Kourtis, I.M., Kopsiaftis, G., Bellos, V., Tsihrintzis, V.A.: Calibration and valida-
tion of SWMM model in two urban catchments in Athens, Greece. In: International
Conference on Environmental Science and Technology (2017)

17. Lin, X., Simon, M., Niu, N.: Exploratory metamorphic testing for scientific soft-
ware. Comput. Sci. Eng. 22(2), 78–87 (2020)

18. Lin, X., Simon, M., Niu, N.: Hierarchical metamorphic relations for testing scien-
tific software. In: International Workshop on Software Engineering for Science, pp.
1–8 (2018)

19. Lin, X., Simon, M., Niu, N.: Releasing scientific software in GitHub: a case study on
SWMM2PEST. In: International Workshop on Software Engineering for Science,
pp. 47–50 (2019)

20. Mahmoud, A., Niu, N.: Supporting requirements to code traceability through refac-
toring. Requirements Eng. 19(3), 309–329 (2013). https://doi.org/10.1007/s00766-
013-0197-0

21. Mahmoud, A., Niu, N.: TraCter: a tool for candidate traceability link clustering.
In: International Requirements Engineering Conference, pp. 335–336 (2011)

22. Mayer, J.: On testing image processing applications with statistical methods. In:
Software Engineering, pp. 69–78 (2005)

23. Niu, N., Brinkkemper, S., Franch, X., Partanen, J., Savolainen, J.: Requirements
engineering and continuous deployment. IEEE Softw. 35(2), 86–90 (2018)

24. Niu, N., Koshoffer, A., Newman, L., Khatwani, C., Samarasinghe, C., Savolainen,
J.: Advancing repeated research in requirements engineering: a theoretical replica-
tion of viewpoint merging. In: International Requirements Engineering Conference,
pp. 186–195 (2016)

25. Niu, N., Wang, W., Gupta, A.: Gray links in the use of requirements traceability.
In: International Symposium on Foundations of Software Engineering, pp. 384–395
(2016)

https://www.boost.org
https://doi.org/10.1007/s00766-017-0271-0
https://doi.org/10.1007/s00766-017-0271-0
https://doi.org/10.1007/s00766-013-0197-0
https://doi.org/10.1007/s00766-013-0197-0

Unit Tests of Scientific Software: A Study on SWMM 427

26. Peng, Z., Lin, X., Niu, N.: Data of SWMM Unit Tests. http://dx.doi.org/10.7945/
zpdh-7a44. Accessed April 2020

27. Prause, C.R., Werner, J., Hornig, K., Bosecker, S., Kuhrmann, M.: Is 100% test
coverage a reasonable requirement? Lessons learned from a space software project.
In: Felderer, M., Méndez Fernández, D., Turhan, B., Kalinowski, M., Sarro, F.,
Winkler, D. (eds.) PROFES 2017. LNCS, vol. 10611, pp. 351–367. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-69926-4 25

28. Reddivari, S., Chen, Z., Niu, N.: ReCVisu: a tool for clustering-based visual explo-
ration of requirements. In: International Requirements Engineering Conference,
pp. 327–328 (2012)

29. Rossman, L.A.: Storm Water Management Model User’s Manual Version
5.1. https://www.epa.gov/sites/production/files/2019-02/documents/epaswmm5
1 manual master 8-2-15.pdf. Accessed April 2020

30. Segura, S., Fraser, G., Sánchez, A.B., Cortés, A.R.: A survey on metamorphic
testing. IEEE Trans. Software Eng. 42(9), 805–824 (2016)

31. Sheehan, J.: Federally funded research results are becoming more open and
accessible. https://digital.gov/2016/10/28/federally-funded-research-results-are-
becoming-more-open-and-accessible/. Accessed April 2020

32. United States Environmental Protection Agency. Storm Water Management Model
(SWMM). https://www.epa.gov/water-research/storm-water-management-
model-swmm. Accessed April 2020

33. Wang, W., Gupta, A., Niu, N., Xu, L.D., Cheng, J.-R.C., Niu, Z.: Automatically
tracing dependability requirements via term-based relevance feedback. IEEE Trans.
Ind. Inf. 14(1), 342–349 (2018)

34. Wang, W., et al.: Complementarity in requirements tracing. IEEE Trans. Cybern.
50(4), 1395–1404 (2020)

35. Wang, W., Niu, N., Liu, H., Wu, Y.: Tagging in assisted tracing. In: International
Symposium on Software and Systems Traceability, pp. 8–14 (2015)

http://dx.doi.org/10.7945/zpdh-7a44
http://dx.doi.org/10.7945/zpdh-7a44
https://doi.org/10.1007/978-3-319-69926-4_25
https://www.epa.gov/sites/production/files/2019-02/documents/epaswmm5_1_manual_master_8-2-15.pdf
https://www.epa.gov/sites/production/files/2019-02/documents/epaswmm5_1_manual_master_8-2-15.pdf
https://digital.gov/2016/10/28/federally-funded-research-results-are-becoming-more-open-and-accessible/
https://digital.gov/2016/10/28/federally-funded-research-results-are-becoming-more-open-and-accessible/
https://www.epa.gov/water-research/storm-water-management-model-swmm
https://www.epa.gov/water-research/storm-water-management-model-swmm

	Unit Tests of Scientific Software: A Study on SWMM
	1 Introduction
	2 Background
	2.1 Oracle Problem in Testing Scientific Software
	2.2 Storm Water Management Model (SWMM)

	3 Identification and Characterization of SWMM Tests
	4 Coverage of SWMM Unit Tests
	4.1 SWMM User Manual Coverage
	4.2 SWMM Codebase Coverage
	4.3 Threats to Validity

	5 Conclusions
	References

