
RE 2013

Supporting requirements to code traceability through refactoring

Anas Mahmoud • Nan Niu

Received: 26 July 2013 / Accepted: 11 December 2013 / Published online: 23 December 2013

� Springer-Verlag London 2013

Abstract In this paper, we hypothesize that the distorted

traceability tracks of a software system can be systemati-

cally re-established through refactoring, a set of behavior-

preserving transformations for keeping the system quality

under control during evolution. To test our hypothesis, we

conduct an experimental analysis using three requirements-

to-code datasets from various application domains. Our

objective is to assess the impact of various refactoring

methods on the performance of automated tracing tools

based on information retrieval. Results show that renaming

inconsistently named code identifiers, using RENAME IDEN-

TIFIER refactoring, often leads to improvements in trace-

ability. In contrast, removing code clones, using EXTRACT

METHOD (XM) refactoring, is found to be detrimental. In

addition, results show that moving misplaced code frag-

ments, using MOVE METHOD refactoring, has no significant

impact on trace link retrieval. We further evaluate RENAME

IDENTIFIER refactoring by comparing its performance with

other strategies often used to overcome the vocabulary

mismatch problem in software artifacts. In addition, we

propose and evaluate various techniques to mitigate the

negative impact of XM refactoring. An effective trace-

ability sign analysis is also conducted to quantify the effect

of these refactoring methods on the vocabulary structure of

software systems.

Keywords Information retrieval � Traceability �
Refactoring

1 Introduction

Modern traceability tools employ information retrieval (IR)

methods for automated support [20, 24, 48]. Such methods

aim to match a query of keywords with a set of artifacts in

the software repository and rank the retrieved artifacts

based on how relevant they are to the query using a pre-

defined similarity measure. The main assumption is that a

coherent vocabulary structure, derived from the system’s

application domain, has been used throughout the system’s

life cycle [41, 43]. This vocabulary structure is embedded

in the nonformal features of source code, or the attributes

of the code that do not have an influence on the function-

ality of the system (e.g., variables and methods names,

code comments, and messages) [2], and the textual content

of software artifacts (e.g., requirements and design docu-

ments). Therefore, artifacts with similar vocabulary prob-

ably share several concepts, so they are likely candidates to

be traced from one another [4]. However, as projects

evolve, new and inconsistent terminology gradually finds

its way into the system [58], causing topically related

system artifacts to exhibit a large degree of variance in

their contents [3, 33]. This phenomena is known as the

vocabulary mismatch problem and is regarded as one of the

principal causes of declining accuracy in retrieval engines

[23].

A suggested solution for the vocabulary mismatch

problem is to systematically recover the decaying vocab-

ulary structure of the system through refactoring. Refac-

toring refers to a set of behavior-preserving transformations

that improve the quality of a software system without

changing its external behavior [78]. These transformations

act on the internal structure of software artifacts, including

the nonformal and organizational features in the system,

leaving the system’s functionality intact [36]. Refactoring

A. Mahmoud (&) � N. Niu

Department of Computer Science and Engineering,

Mississippi State University, Mississippi State, MS 39762, USA

e-mail: amm560@msstate.edu

N. Niu

e-mail: niu@cse.msstate.edu

123

Requirements Eng (2014) 19:309–329

DOI 10.1007/s00766-013-0197-0



is now being advocated as an essential step in software

development. For example, in agile methods, refactoring

has already been integrated as a regular practice in the

software’s life cycle [71]. In addition, refactoring tools,

which support a large variety of programming languages,

have been integrated into most popular integrated devel-

opment environments (IDEs), targeting various quality

aspects of software systems (e.g., increase maintainability,

reusability, and understandability) [14, 36, 51, 53, 63, 72,

73]. Motivated by these observations, in this paper, we

hypothesize that certain refactoring methods will help to

re-establish the system’s vocabulary structure that often

gets corrupted during evolution [58], thus improving the

retrieval capabilities of IR methods operating on that

structure.

Refactoring can take different forms affecting different

types of artifacts. Therefore, testing our research hypoth-

esis entails addressing several sub-research questions such

as: what refactoring methods improve trace retrieval

quality? What refactoring methods have more influence on

the system’s traceability? How to evaluate such influence?

How does refactoring compare with other performance

enhancement strategies in automated tracing? And how to

reverse any potential negative impact certain refactoring

methods might have on traceability? To answer these

questions, we conduct an experimental analysis using three

datasets from various application domains. Our main

objective is to explore systematic ways for enhancing the

performance of IR-based automated tracing tools.

In our previous work [63], we discovered that out of

three refactoring methods studied, including: RENAME

IDENTIFIER, EXTRACT METHOD (XM), and MOVE METHOD

(MM), only RENAME IDENTIFIER led to improvements in

traceability, while the XM refactoring, which targets code

clones in the system, was found to be detrimental. In

addition, moving misplaced code fragments, using MM

refactoring, was found to have no significant impact on the

performance. In this extension of our previous paper, we

extend our analysis from solely measuring the effect of

different refactoring methods on the tracing performance to

more thoroughly investigating the internal operation of

such methods. In particular, we first report the original

experiment which we conducted to evaluate the impact of

these three refactoring methods and then propose and

evaluate mitigating strategies for minimizing the negative

effect of method extraction on trace retrieval. Furthermore,

based on our previous findings that renaming identifiers

improves tracing results, we investigate whether it is better

to perform this task as a refactoring activity (i.e., by

modifying the code) or through a competing approach.

The rest of this paper is organized as follows. Section 2

presents a theoretical foundation of IR-based automated

tracing. Section 3 introduces refactoring and describes the

different refactoring methods used in our analysis. Section

4 describes our research methodology and experimental

design. Section 5 presents and discusses the results. Section

6 describes the study limitations. Section 7 reviews related

work. Finally, Sect. 8 concludes the paper and discusses

directions for future work.

2 IR-based automated tracing

To understand the mechanism of IR-based automated

tracing tools, we refer to the main theory underlying

IR-based trace link retrieval. In their vision paper, Gotel

and Morris [43] established an analogy between animal

tracking in the wild and requirements tracing in software

systems. This analogy is based on reformulating the con-

cepts of sign, track and trace. A sign in the wild is a

physical impact of some kind left by the animal in its

surroundings, e.g., a footprint. Figure 1a shows a contin-

uous track of footprints left by a certain mammal. The task

of the hunter is to trace animals’ tracks by following these

signs. In other words, to trace means basically to follow a

track made up of a continuous line of signs. Similarly, in

requirements tracing, a sign could be a term related to a

certain domain concept, left by a software developer or a

system engineer in a certain artifact. Figure 1c shows a

continuous track of related words from the health care

domain hPatient, Ill, Prescription, Hospitali. The task of

IR methods is to trace these terms to establish tracks in

system. These continuous tracks are known as links.

The availability of uniquely identifying marks, or signs,

is vital for the success of the tracing process. However, just

as in the wild, tracks in software systems can get discon-

tinued or distorted due to several practices related to soft-

ware evolution [32, 58]. In what follows, we identify three

<x>

<Hospital>
<Ill>

<Patient>

<Prescription>

<Hospital>
<Ill>

<Computer><Patient>

(a) (b)

(c) (d)

Fig. 1 Illustration of sign tracking. a A continuous track in the wild.

b A distorted track in the wild. c A continuous track in the system.

d A distorted track in the system

310 Requirements Eng (2014) 19:309–329

123



symptoms related to code decay that might lead to such a

problem. These symptoms include:

• Missing signs A track can get discontinued when a

concept-related term in a certain artifact is lost.

Figure 1d shows how the trace link becomes discon-

tinued when the word hPrescriptioni is changed to hxi.
This can be equivalent to a footprint being washed off

by rain in the wild (Fig. 1b).

• Misplaced signs A track can also be distorted by a

misplaced sign. For example, the word hComputeri,
which supposedly belongs to another track, is posi-

tioned in the track of Fig. 1d. In the wild, this is

equivalent to a footprint implanted by another animal

on the track of unique footprints left by the animal

being traced (e.g., Fig. 1b shows a bird’s footprint left

on the mammal’s track in Fig. 1a).

• Duplicated signs This phenomenon is caused by the

fact that some identical or similar code fragments are

replicated across the code. These fragments are known

as code clones 15. In our example, this can be

equivalent to a track branching into some other module

that contains a word similar to one of the signs of the

trace link identified in Fig. 1c. Some animals adopt this

strategy in the wild to confuse their predators by

duplicating their footprints in different directions at

different periods of time.

Our conjecture in this paper is that refactoring will help

to reverse the effect of these symptoms, thus systematically

re-establishing traceability tracks in the system.

3 Refactoring

Refactoring was initially introduced by Opdyke and John-

son [79] as a systematic means for aiding evolution and

reuse in legacy software systems. While it can be applied to

various types of artifacts, such as design and requirements,

refactoring is mostly known for affecting source code [71].

Program refactoring starts by identifying bad smells in

source code. Bad smells are ‘‘structures in the code that

suggest the possibility of refactoring’’ [36]. Once refactor-

ing has been applied, special metrics can be used to deter-

mine the effect of changes on the quality attributes of the

system, such as maintainability and understandability [90].

A comprehensive catalog of code refactoring methods

can be found at http://refactoring.com/. Refactoring can be

manual, semi, or fully automated. Manual refactoring

requires software engineers to synthesize and analyze code,

identify inappropriate or undesirable features (code

smells), suggest proper refactorings for these issues, and

perform potentially complex transformations on a large

number of entities manually. Due to the high effort asso-

ciated with such a process, the manual approach is often

described as repetitive, time-consuming, and error-prone

[69]. The semi-automated approach is what most contem-

porary IDEs implement. Under this approach, refactoring

activities are initiated by the developer. The automated

support helps to carry out the refactoring process, such as

locating entities for refactoring and reviewing refactored

results. In contrast, the fully automated approach tries to

initiate refactoring by automatically identifying bad smells

in source code and carrying out necessary transformations

automatically. However, even in fully automated tools, the

final decision whether to accept or reject the outcome of

the refactoring process is left to the human [51].

Deciding on which particular refactoring to apply to a

certain code smell can be a challenge. In fact, applying

arbitrary transformations to a program is more likely to

corrupt the design rather than improving it [78]. However,

there is no agreement on what transformations are most

beneficial and when they are best applied. In general, such

decisions should stem from the context of use, such as the

characteristics of the problem, the cost-benefit analysis, or

the goal of refactoring (e.g., improving robustness, exten-

sibility, reusability, understandability, or performance of

the system) [69, 71]. In automated tracing, the main goal of

adopting refactoring is to improve the system’s vocabulary

structure in such a way that helps IR-based tracing methods

to recover more accurate lists of candidate links. Based on

that, we define the following requirements for integrating

refactoring in the IR-based automated tracing process:

• Altering nonformal information of the system As

mentioned earlier, IR-based tracing methods exploit

nonformal information embedded in the textual content

of software artifacts 2. Therefore, for any refactoring to

have an impact on IR-based automated tracing meth-

ods, it should directly affect the system’s textual

content.

• Coverage Traceability links are often spread all over

the system, linking a large number of the system’s

artifacts through various types of traceability relations

[83]. Therefore, statistically speaking, to have a

noticeable impact on the performance, adopted refact-

orings shall affect as many software entities as possible.

• Automation Since the main goal of automated tracing

tools is to reduce the manual effort, any integrated

refactoring should allow automation to a large extent.

For any refactoring process to be considered effort-

effective, it should provide automated solutions for

code smell detection and applying code changes [35].

Automating these two steps will help to alleviate a

large portion of effort usually associated with manual

refactoring.

Requirements Eng (2014) 19:309–329 311

123

http://refactoring.com/


• Granularity level In all of our experimental datasets,

traceability links are established at class granularity

level (i.e., requirements-to-class) [48]. This limits our

analysis in this paper to refactorings that work within

the class scope (e.g., MM and XM), rather than

refactorings that affect the class structure of the system

(e.g., REMOVE CLASS or EXTRACT CLASS). Enforcing this

requirement ensures that our gold-standard remains

unchanged after applying various refactorings.

Based on these requirements, we identify three catego-

ries of refactoring that might have an impact on the per-

formance of IR-based tracing methods. These categories

include refactorings that restore, remove, and move textual

information in the system, represented by RENAME IDENTI-

FIER, XM, and MM refactorings, respectively. These par-

ticular refactoring methods have been reported to be among

the most understood and commonly used refactorings in

practice [1, 29, 73, 75]. In addition, the research on the

automation of these particular refactorings have noticeably

excelled in the past few years, producing a wide selection

of tools that support a large number of programming

environments in a scalable manner [51, 74, 81, 91].

Therefore, we select these particular refactorings as a target

of our investigation in this paper. In what follows we

describe each of these refactorings in greater detail.

3.1 Restoring information

Refactoring methods under this category target the degrading

vocabulary structure of source code [3, 58]. The main goal is

to restore the domain knowledge that often gets lost over

iterations of system evolution. In general, any refactoring that

results in adding new words to the set of the system’s

vocabulary can be classified under this category. For example,

refactorings such as ADD PARAMETER or INTRODUCE EXPLAINING

VARIABLE introduce new variables or parameters, thus poten-

tially new domain-related knowledge. However, the most

popular refactoring in this category is RENAME IDENTIFIER (RI)

[1, 29, 73, 75]. As the name implies, this transformation refers

to simply renaming an identifier (e.g., a variable, class,

structure, method, or field) to give it a more relevant name

[36]. RENAME IDENTIFIER is expected to target the Missing Sign

problem affecting traceability methods.

As mentioned earlier, to be considered in our analysis,

refactoring methods should provide support for automatic

detection of code smells they target. In our analysis, we

refer to the literature of source code abbreviations and

acronyms expansion to identify procedures for capturing

opportunities for RENAME IDENTIFIER refactoring [16, 56, 89].

In particular we apply the following procedure:

1. Identifiers are first divided into their constituent parts

for analysis [56].

2. Identifiers with\4-character length. These are usually

acronyms or abbreviations. In that case, the long form

is used. For example, the parameter HCP in our health

care system is expanded to HealthCarePersonnel. If

the identifier is less than 4 characters but it is not an

acronym nor an abbreviation, then it is renamed based

on the context.

3. Identifiers which have a special word as part of their

names. For example, the variable PnString is expanded

to PatientNameString.

4. Identifiers with generic names. For example, in our

health care system, the method’s name import is

expanded to importPatientRecords.

The main objective of this procedure is to achieve con-

sistency. During multiple iterations of software evolution,

slightly different abbreviations might be used to refer to the

same domain concept, causing a mismatch between the

vocabulary used in source code and that used in other

software artifacts [57, 58]. This phenomenon is often

described as a very occurring problem in software mainte-

nance [27, 55, 56]. The proposed procedure for renaming

identifiers tries to eliminate this inconsistency in the system

by using one consistent form, whether an abbreviation or an

extended form, to refer to the same domain concept. In our

analysis, we use the extended full-word form. Our decision

is based on the converging evidence from related literature

which indicates that, in the long run, abbreviations impact

comprehension negatively [44, 87]. In contrast, full-word

identifiers often lead to the best comprehension [21, 57]. In

addition, using the long form keeps identifiers’ names in

sync with their functionality, which results in an overall

improvement in code quality, and thus the accuracy of IR

methods working with these identifiers.

We implement our procedure to find candidates for

renaming in our datasets. Once the candidate identifiers for

renaming have been identified, the refactoring tool avail-

able in ECLIPSE 4.2.1 IDE is used to carry out the renaming

process. This will ensure that all corresponding references

in the code are updated automatically. Finally, the code is

compiled to make sure no bugs were introduced during the

process. It is important to point out that at the current stage

of the research, choosing new identifiers’ names is still a

manual task, carried out by our researchers, using keywords

available in the system’s documentation, based on their

understanding of the system’s application domain, and the

particular functionality of the identifier being renamed.

3.2 Moving information

This category of refactoring methods is concerned with

moving code entities between system modules. The goal is

to reduce coupling and increase cohesion in the system,

312 Requirements Eng (2014) 19:309–329

123



which is a desired quality attribute of object-oriented

design [39]. Refactorings under this category provide a

remedy against the Feature Envy code smell. An entity has

Feature Envy when it uses, or being used by, the features of

a class other than its own (different from where it is

declared). This may indicate that the entity is misplaced

[36].

In our experiment, we adopt MM refactoring as a rep-

resentative of this category. By moving entities to their

correct place, this particular refactoring is expected to

target the Misplaced Sign problem mentioned earlier. To

identify potentially misplaced entities, we adopt the strat-

egy proposed by Tsantalis and Chatzigeorgiou [91], in

which they introduced a novel entity placement metric to

quantify how well entities have been placed in code. This

semi-automatic strategy starts by identifying the set of the

entities each method accesses (parameters or other meth-

ods). Feature Envy code smell instances are then detected

by measuring the strength of coupling that a method has to

methods belonging to all foreign classes. The method is

then moved to the target foreign class in such a way that

ensures that the behavior of the code will be preserved.

This procedure has been implemented as an ECLIPSE plug-in

(Jdeodorant1) that identifies Feature Envy instances and

allows the user to apply the refactorings that resolve them.

However, despite of the high degree of automation, this

process can still be regarded as semi-automatic [91]. In

particular, verifying or rejecting the MM candidates sug-

gested by the tool, and making sure that moving a method

does not introduce any bugs in the system, are still manual

tasks. In our analysis, we only consider misplaced methods.

Move Attribute refactoring is excluded based on the

assumption that attributes have stronger conceptual binding

to the classes in which they are initially defined; thus, they

are less likely than methods to be misplaced [91].

3.3 Removing information

These refactorings remove redundant or unnecessary code

in the system. A popular code smell such refactorings often

handle is Duplicated Code. This code smell is usually

produced by Copy-and-Paste programming [52], and indi-

cates that the same code structure appears in more than one

place. These duplicated structures are known as code

clones and are regarded as one of the main factors for

complicating code maintenance tasks [68]. Exact dupli-

cated code structures can be detected by comparing text

[36]. However, other duplicates, where entities have been

renamed or the code is only functionally identical, need

more sophisticated techniques that work on the code

semantics rather than its lexical structure [30].

The most frequent way to handle code duplicates is XM

refactoring [67, 92]. In particular, for each of the dupli-

cated blocks of code, a method is created for that code, and

then all the duplicates are replaced with calls to the newly

extracted method. When the duplicates are scattered in

multiple classes, the new extracted method is assigned to

the class that calls it the most. By removing potentially

ambiguous duplicates, XM is expected to target the

Duplicated Sign problem of software artifacts. In our

analysis, we use the duplicated code detection (SDD)2

ECLIPSE plug-in to detect code clones. XM refactoring

available in the ECLIPSE 4.2.1 IDE is then used to refactor

candidate clones. In particular, the user selects the code

fragment to be extracted from the list of candidate clones

returned by the tool, and ECLIPSE will ask for a method

name and a class to host the newly extracted method. A

method name is selected based on the context of the code.

Once the method is created, the user is responsible for

replacing all clone instances with a call to the new method

and making sure that no bugs are introduced by this

process.

Table 1 summarizes the categories of refactoring intro-

duced in this section, including the code smells they target,

traceability problems they might impact, the tool support

available, and a summary of the manual effort required to

carry out each refactoring.

4 Methodology and research hypothesis

This section describes our research approach, including our

experimental procedure, datasets used in conducting our

experiment, and evaluation mechanisms to assess the

performance.

4.1 Datasets

Three datasets were used to conduct the experiment in this

paper including: iTrust, eTour, and WDS. Following is a

description of these datasets and their application domains:

• iTrust An open source medical application, developed

by software engineering students at North Carolina

State University (USA). It provides patients with a

means to keep up with their medical history and records

and to communicate with their doctors [70]. The dataset

(source code: v15.0, Requirements: v21) contains 314

requirements-to-code links. The links are available at

method level. To conduct our analysis, the links

granularity is abstracted to class level based on a

careful analysis of the system.

1 http://www.jdeodorant.org/. 2 http://wiki.eclipse.org/Duplicated_code_detection_tool_(SDD).

Requirements Eng (2014) 19:309–329 313

123

http://www.jdeodorant.org/
http://wiki.eclipse.org/Duplicated_code_detection_tool_(SDD)


• eTour An open source electronic tourist guide applica-

tion developed by final year Master’s students at the

University of Salerno (Italy). The dataset contains 394

requirements-to-code links that were provided with the

dataset. eTour was selected as an experimental system

because its source code contains a combination of

English and Italian words, which is considered an

extreme case of vocabulary mismatch.

• WDS A proprietary software-intensive platform that

provides technological solutions for service delivery

and workforce development in a specific region of the

United States. In order to honor confidentiality agree-

ments, we use the pseudonym WDS to refer to the

system. WDS has been deployed for almost a decade.

The system is developed in Java and the current version

has 521 source code files. For our experiment, we

devise a dataset of 229 requirements-to-code links,

linking a subset of 26 requirements to their implemen-

tation classes. These links were provided by the

system’s developers.

Table 2 shows the characteristics of each dataset. The

table shows the size of the system in terms of lines of

source code (LOC), lines of comments (COM), source and

target of traceability links, i.e., number of requirements

(No. Req.), number of code elements they link to (No. SC),

and the number of correct traceability links.

4.2 Experimental procedure

Our experimental procedure can be described as a multi-

step process as follows:

• Refactoring Initially the system is refactored using

various refactoring methods mentioned earlier. The

goal is to improve the system lexical structure before

tracing. The results of applying different refactorings

over our three experimental datasets are shown in

Table 3. The table shows the number of entities

affected by refactoring in each dataset (e.g., number

of moved or extracted methods and number of renamed

identifiers), the number of affected classes in each

system, and the number of affected classes in the gold-

standard, or classes that are part of a trace link in our

answer sets (C0).
• Indexing This process starts by extracting textual

content (e.g., comments, code identifiers, requirements

text) from input artifacts. Lexical processing is then

applied (e.g., splitting code identifiers into their con-

stituent words). Stemming is performed to reduce

words to their roots. In our analysis we use Porter

stemming algorithm [80]. The output of the process is a

compact content descriptor, or a profile, which is

usually represented as keywords components matrix or

a vector space model (VSM) [62].

• Retrieval IR methods are used to identify a set of

traceability links by matching the traceability query’s

profile with the artifacts’ profiles in the software

repository. Links with similarity scores above a certain

threshold (cutoff) value are called candidate links [48].

In our experiment, we use Vector Space Model with

TFIDF weights as our experimental baseline. VSM–

TFIDF is a popular scheme in VSM which has been

validated through numerous traceability studies as an

experimental baseline (e.g., [48, 64]). Mathematically,

Table 1 Refactorings used in our analysis

Refactoring Code smell Tracing problem Tool support Manual effort

RENAME IDENTIFIER Decaying vocabulary Missing signs ECLIPSE Verifying candidates for renaming

Selecting identifiers’ names

MOVE METHOD Feature envy Misplaced sign Jdeodorant

ECLIPSE

Verifying move-method candidates

Verifying the results

EXTRACT METHOD Code clones Duplicated signs SDD

ECLIPSE

Verifying code clone candidates

Selecting extracted method’s name

Selecting host class

Verifying the results

Table 2 Experimental datasets

Dataset Domain Contributor LOC (K) COM (K) No. req. No. SC Links

iTrust Health care North Carolina State University 20.7 9.6 50 299 314

eTour Tourism University of Salerno 17.5 7.5 58 116 394

WDS Job search Industrial partner 44.6 10.7 26 521 229

314 Requirements Eng (2014) 19:309–329

123



when using VSM, each document is represented as a set

of terms T = {t1, …, tn}. Each term ti in the set T is

assigned a weight wi. The terms in T are regarded as the

coordinate axes in an N dimensional coordinate system,

and the term weights W = {w1, …, wn} are the corre-

sponding values. Thus, if q and d are two artifacts

represented in the vector space, then their similarity is

measured as the cosine of the angle between them as

shown in (Eq. 1):

sðq; dÞ ¼
P

qi � di
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

q2
i �
P

d2
i

p ð1Þ

where qi and di are real numbers standing for the TFIDF

weight of term i in q and d, respectively. qi ¼ tfiðqÞ � idfi

and di ¼ tfiðdÞ � idfi; where tfi(q) and tfi(d) are the fre-

quencies of term i in q and d, respectively. idfi is the inverse

document frequency and is computed as idfi = log2(t/dfi),

where t is the total number of artifacts in the corpus, and dfi
is the number of artifacts in which term i occurs.

• Evaluation At this step, different evaluation measures

are used to assess the different aspects of the perfor-

mance. In what follows, we describe these measures in

greater detail.

4.3 Evaluation

Sundaram et al. [86] identified a number of primary and

secondary measures to assess the performance of different

tracing tools and techniques. These measures can be cate-

gorized into two groups as follows.

4.3.1 Quality measures

Precision (P) and Recall (R) are the standard IR measures

to assess the quality of the different traceability tools and

techniques. Recall measures coverage and is defined as the

percentage of correct links that are retrieved, and precision

measures accuracy and is defined as the percentage of

retrieved links that are correct [66]. Formally, if A is the set

of correct links and B is the set of retrieved candidate links,

then Recall and Precision can be defined as:

RðRecallÞ ¼ jA \ Bj=jAj ð2Þ
PðPrecisionÞ ¼ jA \ Bj=jBj: ð3Þ

4.3.2 Browsability measures

Browsability is the extent to which a presentation eases

the effort for the analyst to navigate the candidate trace-

ability links. For a tracing tool or a method that uses a

ranked list to present the results, it is important to not

only retrieve the correct links but also to present them

properly. Being set-based measures, precision and recall

do not sufficiently capture information about the list

browsability. To reflect such information, other measures

are usually used. Assuming h and d belong to sets of

system artifacts H ¼ fh1; . . .; hng and D ¼ fd1; . . .; dmg.
Let C be the set of true links connecting d and h; L ¼
fðd; hÞjsimðd; hÞg is a set of candidate traceability links

between d and h generated by the IR-based tracing tool,

where sim(d, h) is the similarity score between d and

h. LT is the subset of true positives (correct links) in L, a

link in this subset is described as (d, h). LF is the subset of

false positives in L, a link in this subset is described using

the notion (d0, h0). Based on these definitions, secondary

measures can be described as:

• Mean average precision (MAP) is a measure of quality

across recall levels [6]. For each query, a cutoff point

is taken after each true link in the ranked list of

candidate links. The precision is then calculated.

Correct links that were not retrieved (false negatives)

are given a precision of 0. The precision values for

each query are then averaged over all the relevant

links (true positives) in the answer set of that query

ðjCjÞ, producing average precision (AP). The mean

average precision (MAP) is calculated as the average

of AP for all queries in each dataset [88]. MAP gives

an indication of the order in which the returned

documents are presented. For instance, if two IR

methods retrieved the same number of correct links

(same recall), then the method that places more true

links toward the top of the list will have a higher

MAP. Equation 4 describes MAP, assuming the data-

set has Q traceability queries.

Table 3 Entities and classes affected by refactoring

Refactoring iTrust eTour WDS

Entities Classes C0 Entities Classes C0 Entities Classes C0

RENAME IDENTIFIER 175 113 110 85 63 57 203 174 166

MOVE METHOD 22 44 44 17 31 29 24 62 61

EXTRACT METHOD 132 201 193 45 92 88 62 102 98

Requirements Eng (2014) 19:309–329 315

123



MAP ¼ 1

jQj
XjQj

j¼1

1

jCjj
XjLTj
j

k¼1

PrecisionðLTjk
Þ ð4Þ

• DiffAR is a measure of the contrast of the list [85]. It

can be described as the difference between the average

similarity of true positives and false positives in a

ranked list. A list with higher DiffAR has a clearer

distinction between its correct and incorrect links hence

is considered superior. Equation 5 defines DiffAR.

DiffAR ¼
P
ðh;dÞ simðh; dÞ
jLT j

�
P
ðh0;d0Þ simðh0; d0Þ
jLF j

: ð5Þ

Performance of each dataset after applying a certain

refactoring, in comparison with the baseline (VSM), is

presented as a precision/recall curve over various threshold

levels (h.1, .2, …, 1i) [48]. A higher threshold level means

a larger list of candidate links, i.e., more links, are con-

sidered in the analysis. Wilcoxon signed ranks test is used

to measure the statistical significance of the results. This is

a nonparametric test that makes no assumptions about the

distribution of the data [28]. This test is applied over the

combined samples from two related samples or repeated

measurements on a single sample (before and after effect).

The IBM SPSS Statistics software package is used to

conduct the analysis. We use a = .05 to test the signifi-

cance of the results. Note that different refactorings are

applied independently, so there is no interaction effect

between them.

5 Results and discussion

This section starts by describing our analysis results. In

particular, the effect of different refactoring methods on the

performance in terms of preliminary measures (precision

and recall) and browsability measures (MAP and DiffAR)

is described. The section then proceeds by further explor-

ing the effect of each refactoring method in greater detail.

In particular, we compare the performance of methods that

have positive impact on traceability with other related

techniques in automated tracing, and explore strategies for

mitigating any potential negative impact certain refactor-

ings methods might have on the performance.

5.1 Analysis results

Figure 7 shows the recall and precision curves of our three

datasets after applying RI, MM, and XM, in comparison

with the VSM baseline. Analysis of variance over the

results is shown in Table 4. In general, the results show

that different refactorings vary in their impact on the

performance. In details, RI refactoring has the most obvi-

ous positive impact on the results, affecting the recall

significantly in all three datasets. In the iTrust dataset, both

precision and recall have improved significantly, achieving

optimal recall levels at higher thresholds. The same per-

formance is detected in the eTour dataset, in which the

improvement in the recall and the precision over the

baseline is statistically significant. In the WDS dataset, the

precision has dropped significantly with the significant

increase in the recall. This can be explained based on the

inherent trade-off between precision and recall. In this

particular dataset, even though renaming identifiers has

helped to retrieve more true positives, it also retrieved a

high number of false positives.

The results also show that MM refactoring has the least

influence on the performance. In all datasets no significant

improvement in the recall or the precision is detected. In

fact, the performance after applying this particular refac-

toring is almost equivalent to the baseline. In contrast,

statistical analysis shows that XM has resulted in a sig-

nificant increase in the precision. However, when applied,

it was no longer possible to achieve high recall; hence, the

performance lines in Fig. 7 stopped at recall of 66, 61, and

93 % in iTrust, eTour, and WDS, respectively. In general,

In terms of recall, the results show that removing redundant

textual knowledge from the system has caused a significant

drop in the number of true links, taking the recall down to

significantly lower levels in all three datasets. The spike in

the precision can be simply explained based on the inherent

trade-off between precision and recall.

In terms of browsability, statistical analysis in Table 4

shows that both RI and MM have no significant impact on

the average DiffAR. However, XM seems to be achieving

significantly better performance over the baseline. In terms

of MAP, Fig. 2 shows the superior performance of XM

over other refactorings in comparison with the baseline.

This behavior can be explained based on the fact that VSM

retrieves the smallest number of links after applying XM.

However, even with lower recall, only a few false positives

were separating true positives, with most of these true

positives located toward the top the of list, thus taking the

precision of these links to higher levels, which in turn

resulted in higher MAP values (Eq. 4).

MAP results also show the inconstant performance of RI

across the different datasets. In the iTrust, no significant

difference in the performance is detected. In contrast, in the

eTour dataset, RI achieves significantly better performance

than the baseline and significantly worse performance in

WDS. In addition, analysis results show that MM does not

have any significant impact on the MAP values, which is

actually expected based on the fact that it does not have a

significant impact on the primary performance measures.

316 Requirements Eng (2014) 19:309–329

123



In general, our results suggest that RI refactoring has the

most significant positive effect on the results, improving

the recall to significantly higher levels in all three datasets.

In contrast, XM has a significantly negative impact, taking

the recall down to significantly lower levels in all three

datasets, and MM has no clear impact on the performance.

Automated tracing methods emphasize recall over preci-

sion [48]. This argument is based on the observation that an

error of commission (false positive) is easier to deal with

than an error of omission (false negative). Based on that,

we conclude that RI refactoring has the most potential as a

performance enhancement technique for IR-based

requirements-to-code automated tracing. In what follows,

the operation of each refactoring is discussed in greater

detail.

5.2 Rename identifier effect

Our results suggest that restoring textual information has

the most positive impact on the system’s traceability. In

particular, RI refactoring targets the vocabulary mismatch

problem in software artifacts, which seems to be the most

dominant problem affecting IR-based traceability tools

[37]. In the automated tracing literature, the vocabulary

mismatch problem is often handled by using semantics. In

particular, techniques such as query expansion and the-

saurus support are often used to fill the textual gap caused

by poor coding habits [40, 48, 64]. Documents are then

matched based on their lexical attributes as well as other

semantic relations provided by such performance

enhancement techniques.

In order to gain better insights into the operation of RI,

in what follows, we compare the performance of these

related performance enhancement strategies with the per-

formance of VSM after applying RI refactoring on our

datasets.

5.2.1 Query expansion

Query expansion is a technique in which the trace query is

enriched with terms extracted from external knowledge

sources in order to bridge the textual gap in the system. To

implement query expansion, we use explicit semantic

analysis (ESA) [38, 60]. ESA is a semantic relatedness

technique that utilizes the textual content of Wikipedia to

quantify the degree to which two concepts semantically

relate to each other [38]. ESA represents the meaning of a

text in a high dimensional weighted vector of concepts

derived from Wikipedia, thus exploiting all different types

of semantic links hidden in the text. Formally, given a text

fragment T ¼ t1; . . .; tnh i, and a space of Wikipedia articles

Table 4 Wilcoxon signed ranks test results (a = .05) for primary performance measures

iTrust eTour WDS

Recall Precision Recall Precision Recall Precision

(Z, p value) (Z, p value) (Z, pvalue) (Z, p value) (Z, pvalue) (Z, p value)

Refactorings

RENAME IDENTIFIER (-2.395, \.010) (-2.803, \.005) (-2.701, \.007) (-2.803, \.005) (-2.090, \.05) (-2.803, \.005)

MOVE METHOD (-.405, .686) (-1.599, .110) (-1.753, .080) (-.663, .508) (-1.572, .116) (.000, 1.000)

EXTRACT METHOD (-2.803, \.005) (-2.803, \.005) (-2.701, \.007) (-2.803, \.005) (-2.803, \.005) (2.701, \.007)

MAP DiffAR MAP DiffAR MAP DiffAR

(Z, p value) (Z, p value) (Z, p value) (Z, p value) (Z, p value) (Z, p value)

Refactorings

RENAME IDENTIFIER (-.357, .721) (-1.732, .083) (2.380, \.010) (-1.414, .157) (-2.803, \.005) (-1.000, .317)

MOVE METHOD (-.653, .514) (.000, 1.000) (1.478, .139) (.000, 1.000) (-1.680 .093) (.000, 1.000)

EXTRACT METHOD (-2.803, \.005) (-2.842, \.005) (-2.809, \.005) (-2.803, \.005) (-2.803, \.005) (-3.051, \.005)

Fig. 2 MAP values in iTrust, eTour and WDS after applying

different refactorings (RI RENAME IDENTIFIER, MM MOVE METHOD,

XM EXTRACT METHOD)

Requirements Eng (2014) 19:309–329 317

123



C, initially, a weighted vector V is created for the text,

where each entry of the vector vi is the TFIDF weight of

the term ti in T. Using a centroid-based classifier [46], all

Wikipedia articles in C are ranked according to their rel-

evance to the text. Let kj be the strength of association of

term ti with Wikipedia article cj : cj 2 fc1; c2; . . .; cng
(where N is the total number of Wikipedia articles). The

semantic interpretation vector S for text T can be described

as a vector of length N, in which the weight of each concept

cj is defined as:

Si ¼
X

wi2T

vi � kj: ð6Þ

Entries of this vector reflect the relevance of the corre-

sponding articles to text T. The relatedness between two

texts can be calculated as the cosine between their corre-

sponding vectors. ESA, as well as similar query expansion

techniques, have been used before in automated tracing and

have shown promising results in handling the vocabulary

mismatch problem [40, 64].

5.2.2 Thesaurus support

Such techniques provide a more focused semantic support

by utilizing the synonymy relations between different terms

in the system’s corpus. To add a thesaurus support to VSM,

a domain-specific thesaurus is manually created. Such a

thesaurus contains lists of synonym pairs derived from the

project’s application domain, and provides support for

acronyms and abbreviations.

To integrate thesaurus support into our VSM baseline,

for each pair of synonyms identified (si, sj), a perceived

similarity coefficient aij can be assigned to indicate their

degree of equivalence. For each document in the corpus,

document vectors are expanded based on these synonym

pairs. A similarity coefficient of aij \ 1 is usually assigned

to distinguish a synonymy match from an exact match

where aij = 1. Similarity s(q, d) between two documents

can then be calculated as [48]:

sðq; dÞ ¼
P

qi � di þ
P
ðki;kj;aijÞ2T aijðqi � dj þ dj � qiÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

q2
i �
P

d2
i

p : ð7Þ

To approximate an acceptable value of a in Eq. 7., we

propose an optimization algorithm that is based on maxi-

mizing the recall. The algorithm starts from a = 0, grad-

ually increasing this values by .05 each time, and

monitoring the recall, looking for a values that achieve the

highest average recall. Results show that an average sim-

ilarity coefficient of a & .80 achieves acceptable results in

all three datasets.

To compare the performance of these two techniques

with RI, we trace our datasets using both VSM with

thesaurus support (VSM-T) and ESA, before applying RI

refactoring, and compare their performance with the VSM

baseline after applying RI (VSM–RI). The results are

shown in Fig. 8 and Table 5. Results show that query

expansion technique (ESA) was able to hit almost a 100 %

recall at higher threshold levels in all datasets; however,

the precision was affected negatively due to the high

number of false positives. In general, textual enrichment of

artifacts might have a positive influence on the recall,

especially retrieving some of the hard-to-trace require-

ments [40]; however, it has a significant negative impact on

the accuracy, which was reflected in the fast drop in the

precision values at higher threshold levels. In contrast, the

results show that VSM with a domain-specific thesaurus

support was able to achieve a comparable performance to

our refactoring-based approach; no statistically significant

difference in terms of precision and recall was detected in

all of our three datasets.

To demonstrate the operation of these three different

techniques, we refer to the example in Fig. 3. This figure

shows a true trace link between requirement 6.2.3, which

describes a basic forgotten password recovery functional-

ity, and the method FP_OnClick, which implements this

particular requirement. Figure 4a shows the refactored

method after applying our RI procedure described in Sect.

3.1. Figure 4b shows a snapshot of our domain-specific

thesaurus. Basically, entries were added to handle abbre-

viations and basic domain-specific synonymy relations.

Figure 4c shows the query expansion terms that have been

added after applying ESA to both ends of the trace link. In

particular, the link has been expanded with several unre-

lated terms, extracted from the general purpose knowledge

source. For example, the list of semantically related terms

for the term hforgeti from requirement 6.2.6 includes many

domain irrelevant terms such as hbury, leavei. This

explains the high noise-to-signal ratio returned by this

method, causing the retrieval of a large number of incorrect

links.

5.3 Handling code clones

A surprising observation in our analysis is that removing

redundant information from software artifacts has a nega-

tive impact on the performance of IR-based automated

tracing tools. This suggests that code clones actually serve

a positive purpose for traceability link recovery. However,

there is a conventional wisdom that code cloning is gen-

erally a bad development practice. From a refactoring

perspective, code clones are considered a code smell 8.

They significantly increase the maintenance cost and the

error proneness of the code as inconsistent changes to code

duplicates can lead to unexpected behavior. Therefore,

318 Requirements Eng (2014) 19:309–329

123



code clones have to be refactored whenever detected [54,

81].

5.3.1 Code summarization

To mitigate the impact of removing code clones on the

system traceability, we suggest a sign-preserving treatment

to reverse the negative effect of XM refactoring. Applying

this treatment, whenever a redundant code (a code clone) is

removed, appropriate comments that describe that code can

be automatically inserted to fill the textual gap left by

refactoring that particular code. This can be achieved by

utilizing automatic techniques to generate descriptions for

source code [49]. Several techniques for code labeling and

summarization have been introduced in the literature [22,

45, 49]. Next we experiment with two commonly used

techniques, at different levels of complexity, for preserving

traceability signs.

Refers to the creation of a shortened version of a com-

puter program by capturing and preserving the subject

matter of the code [49]. Summarization is often performed

with the objective of producing meaningful summaries of

source code to aid program comprehension [45]. To gen-

erate code summaries of code clones we use latent

semantic indexing (LSI) [26], a technique that is used very

often for automatically extracting summaries of natural

language. In particular, we adopt the approach proposed by

Haiduc et al. [45] to extract the most important terms in a

certain code. This approach has been shown to achieve

high correlation with human-generated summaries [45].

The process starts by indexing the source code corpus at

the method level. The cosine similarity is then computed

between the code clone’s profile and each of the terms in

the corpus in the LSI-reduced space. The corpus terms are

Table 5 Wilcoxon signed ranks test results (a = .05) for query expansion and sign-preserving techniques

iTrust eTour WDS

Recall Precision Recall Precision Recall Precision

(Z, p value) (Z, p value) (Z, p value) (Z, p value) (Z, p value) (Z, p value)

Technique

VSM-T (-.051, .959) (-1.599, .110) (-.652, .515) (-.178, .859) (-1.478, .139) (-.866, .386)

ESA (-2.490, \.05) (-2.380, \.05) (-2.803, \.005) (-2.701, \.05) (-2.842, \.005) (-3.051, \.005)

Technique

Summarization (-.357, \.005) (-2.842, \.005) (-3.051, \.005) (-2.803, \.005) (-2.803, \.005) (-2.090, \.01)

Labeling (0, 1.0) (0, 1.0) (0, 1.0) (0, 1.0) (0, 1.0) (0, 1.0)

(a)

(b)

Fig. 3 a Trace link between requirement 6.2.3. b Method

FP_OnClick

(a)

(b)

(c)

Fig. 4 Example of semantic support to overcome the vocabulary

mismatch in the trace link in Fig. 3. a Applying RENAME IDENTIFIER on

Method FP_OnClick. b Domain thesaurus support. c ESA query

expansion

Requirements Eng (2014) 19:309–329 319

123



then ranked in decreasing order based on their similarity

with the code clone. The summary is then constructed by

considering the top N terms in the ranked list.

5.3.2 Code labeling

Refers to the extraction of a set of representative words for

a certain code element. A simple code labeling can be

achieved by indexing the redundant code (removing stop-

words, splitting code identifiers into their constituent

words, and performing stemming [22]). The resulting

words are then added as comments to replace the removed

code. The term labeling stems from the fact that no human-

like meaningful descriptions are generated; instead, just

discrete words (labels) are extracted to facilitate IR. Fig-

ure 5b, c show the outcome of applying the code summa-

rization procedure and the code labeling procedure,

respectively over a code clone detected in the iTrust

dataset.

To evaluate the effectiveness of these two techniques in

preserving traceability signs, we perform missing trace-

ability sign analysis. In particular, we calculate the per-

centage of lost effective signs when removing code clones.

We define an effective sign as a term or a keyword that

contributes to a trace link (appears in both ends of the

traceability link). Figure 6 shows that the indexing-based

code labeling was actually more successful than code

summarization in preserving a large number of the original

signs lost after removing code clones. The best perfor-

mance of the code summarization technique was achieved

at (N = 7). The poor performance of code summarization

can be explained based on the fact that size of a redundant

code is not sufficient to produce meaningful summaries.

For example, often the redundant code is just a part of a

(a)

(b)

(c)

Fig. 5 Applying traceability sign preservation on a code clone. a A code clone detected in the iTrust dataset. b Comments generated by LSI-

based code summarization technique. c Comments generated by the indexing-based code summarization technique

320 Requirements Eng (2014) 19:309–329

123



method. Such code fragments usually lack significant

information that can be useful to the summarization pro-

cess. For instance, in our example in Fig. 5a, the code

clone does not include the method’s signatures, which has

been found to add a significant information value to the

generated summaries [22, 45, 84]. These findings come

actually aligned with previous observations that simple

techniques were shown to better reflect the subject matter

of the code than other more complicated techniques such as

LSI or LDA [22] (Figs. 7, 8).

To further compare the effectiveness of these tech-

niques, we integrate them into our experimental procedure

after applying XM. We then re-trace all of our experi-

mental datasets. Results are shown in Fig. 9 and Table 5.

The results show that, when the indexing-based code

labeling procedure is used, no statistically significant drop

in terms of precision or recall is detected in any of our three

datasets, i.e., the performance is unaffected by removing

the clones. In contrast, while applying the LSI-based code

summarization technique helps to preserve some of the

effective traceability signs, it still could not improve the

results significantly.

5.4 Moving information

Our results show that moving misplaced information among

the system’s modules has no significant impact on the

performance. This suggests that misplaced signs might not

be as problematic for IR-based traceability as missing or

duplicated signs. This phenomenon can be explained based

Fig. 6 Percentage of lost traceability signs in iTrust, eTour and WDS

after applying EXTRACT METHOD (XM), and after applying code

labeling and code summarization techniques (N = 7)

Fig. 7 Performance after

applying different refactorings

(RI RENAME IDENTIFIER, MM

MOVE METHOD, XM EXTRACT

METHOD)

Requirements Eng (2014) 19:309–329 321

123



on the fact that Feature Envy code smell tends to be less

dominant and more complicated to detect in software sys-

tems than other code smells such as code clones [9, 82, 91].

In fact, further analysis shows that even when a method is

moved to another class, it is often still highly referenced

(called) in its original class; thus, the track is unlikely to get

discontinued, causing MM refactoring to have no obvious

impact on the performance. However, it is important to

point out that in some cases, where a high density of mis-

leading signs were detected, MM was able to reverse that

effect, thus resulting in a slight increase in the recall,

especially in WDS and eTour, however, that improvement

was statistically insignificant.

5.5 Discussion

Our analysis has revealed that, in terms of precision and

recall, maintaining a domain-specific thesaurus can be

equivalent to applying RI refactoring. Therefore, this par-

ticular refactoring can be considered as an alternative

strategy to handle vocabulary mismatch in software arti-

facts. However, refactoring provides a more systematic

way to handle this problem. In other words, instead of

separately maintaining an external ad hoc dictionary of the

system’s vocabulary and their synonyms, this process can

be handled internally through refactoring, as an integral

part of the evolution process. As mentioned earlier, RI

refactoring is in fact the most applied refactoring in prac-

tice, and it has already been integrated in most contem-

porary IDEs [1, 29, 73, 75].

In terms of effort, as Table 1 shows, the amount of effort

required to rename identifiers can be comparable with the

external thesaurus technique. While in RI human analysts

still have to select new identifiers’ names, when building

an external thesaurus, synonym relations have to be iden-

tified manually. In addition, both methods require a suffi-

cient knowledge of the system’s application domain.

However, thesaurus-based methods often require calibrat-

ing a certain parameter (a in Eq. 7) to achieve the desired

performance levels [48], while no calibration or optimi-

zation is required when applying RI. In addition, the pro-

cedure we propose to identify renaming opportunities helps

to alleviate a considerable amount of the effort required to

identify misleading signs. In fact, the research on fully

Fig. 8 Comparing the performance of VSM after applying RENAME IDENTIFIER (VSM–RI), with VSM with thesaurus support (VSM-T) and query

expansion using explicit semantic analysis (ESA)

322 Requirements Eng (2014) 19:309–329

123



automating this process has noticeably advanced in recent

years, especially in the domain of acronyms and abbrevi-

ations expansion, opening the door for this process to be

fully automated [16, 56, 89].

Our results also show that a simple code labeling tech-

nique can fill the vocabulary gap that might result from

removing code clones in the system. In terms of effort,

code labeling techniques are fully automated, so the human

effort is minimized. However, it is important to point out

that these implanted labels (signs) are also subject to

become outdated as code evolves, thus generating mis-

leading tracks. Therefore, it is important to keep such

labels up-to-date and in sync with any changes affecting

the code segments they describe.

Finally, even though moving misplaced signs in the

system did not result in a statistically significant

improvement in the performance, such refactoring can still

have an influence on traceability, especially in safety crit-

ical systems, where losing even one critical link could be

detrimental [18]. However, unlike the renaming process,

MM is a nontrivial process, and often results in introducing

bugs in the system [75]. Therefore, a careful cost-benefit

analysis might be required to determine if performing such

transformation is worthwhile.

Our findings in this paper helped in exploring several

issues related to applying refactoring as a performance

enhancement strategy in IR-based automated tracing. In

particular, our study provides insights into developers’

actions that might have an impact on the system’s trace-

ability during evolution, and reinforced past proposals

advocating the use of consistent, and regular vocabulary in

identifiers’ names [12]. In addition, our analysis revealed

how potentially negative effects of removing code clones

could be reversed through code labeling, an option that

might be important to have in code clone refactoring tools

[10, 50].

6 Limitations

This study has several limitations that might affect the

validity of the results. Threats to external validity impact

the generalizability of results [25]. In particular, the results

of this study might not generalize beyond the underlying

experimental settings. A major threat to our external

validity comes from the datasets used in this experiment. In

particular, two of the projects were developed by students

and are likely to exhibit different characteristics from

Fig. 9 Comparing the

performance of code

summarization and code

labeling techniques in

preserving effective traceability

signs

Requirements Eng (2014) 19:309–329 323

123



industrial systems. We also note that our traceability

datasets are of medium size, which may raise some sca-

lability concerns. Nevertheless, we believe that using three

datasets from different domains, including a proprietary

software product, helps to mitigate these threats.

Another threat to the external validity might stem from

the fact that we only experimented with three refactorings.

However, the decision of using these particular refactorings

was based on careful analysis of the IR-based automated

tracing problem. In addition, these refactorings have been

reported to be the most frequently used in practice [67, 92].

Another concern is the fact that only requirements-to-

code-class traceability datasets were used. Therefore, our

findings might not necessarily apply to other types

of traceability such as requirements-to-requirements,

requirements-to-design or even different granularity levels

such as requirements-to-method. However, our decision to

experiment only with requirements-to-class datasets can be

justified based on the fact that refactoring has excelled in

source code, especially Object-Oriented code, more than

any other types of artifacts; thus, we find it appropriate at

the current stage of research to consider this particular

traceability type at this granularity level.

Other threats to the external validity might stem from

specific design decisions such as using VSM with TFIDF

weights as our experimental baseline. Refactoring might

have a different impact on other IR methods such as LSI

and ESA; thus, different results might be obtained. Also, a

threat might come from the selection of procedures and

tools used to conduct refactoring. However, we believe that

using these heavily used and freely available open source

tools helps to mitigate this threat. It also makes it possible

to independently replicate our results.

Internal validity refers to factors that might affect the

causal relations established in the experiment. A major

threat to our study’s internal validity is the level of auto-

mation used when applying different refactorings. In par-

ticular, an experimental bias might stem from the fact that

the renaming process is a subjective task carried out by the

researchers. In addition, human approval of the outcome of

the refactoring process was also required. However, as

mentioned earlier, in the current state-of-the-art in refac-

toring research and practice, human intervention is a must

[36, 71]. In fact, it can be doubtful whether refactoring can

be fully automated without any human intervention [51].

Therefore, these threats are inevitable. However, they can

be partially mitigated by automation.

In our experiment, there were minimal threats to con-

struct validity as standard IR measures, which have been

used extensively in requirements traceability research,

were used to assess the performance of different treatments

(recall, precision, MAP and DiffAR). We believe that these

two sets of measures sufficiently capture and quantify the

different aspects of methods evaluated in this study.

7 Related work

Our work in this paper can be classified under the research

categories of enhancing IR-based traceability, and man-

aging traceability in evolving software systems. The former

category is concerned with investigating strategies, beyond

the underlying retrieval mechanism, that might impact the

overall performance of IR-based automated tracing meth-

ods, while the latter is focused on strategies to mitigate the

risks of software evolution on traceability. In what follows,

we review seminal work in these domains, and briefly

describe how such work relates to, or can be distinguished

from, our work.

7.1 Performance enhancement

Huffman-Hayes et al. [47] used IR with key-phrases and

VSM with thesaurus support to recover traceability links

between requirements. The former approach associates a

list of domain-related technical terms, or key-phrases, with

the document repository, while the latter uses a supporting

synonym dictionary. Evaluating these techniques revealed

that, retrieval with key-phrases improved the recall, but the

precision declined. However, VSM with thesaurus support

improved both recall and precision. These findings come

aligned with our findings in this paper regarding the sig-

nificant impact of handling the vocabulary mismatch

problem in software artifacts. However, our approach uses

a systematic and internal approach based on refactoring to

handle this problem, rather than maintaining an ad hoc

external thesaurus.

In a more recent work by the same authors, relevance

feedback from human analysts was incorporated to

improve the outcome of IR-based tracing tools [48]. In

particular, analysts’ link classification decisions were fed

back to the tracing tool to help in regenerating more

accurate lists of candidate links. Similarly, De Lucia et al.

[23] incorporated relevance feedback in the process.

However, their approach was incremental in the sense that

multiple iterations of link generation were performed, and

analysts’ feedback was incorporated at each iteration.

Evaluating these approaches over multiple datasets showed

that using analysts’ feedback to tune the weights in the

term-by-document matrix of VSM improved the final trace

results. In our work, human feedback is also incorporated

in the process. However, instead of directly utilizing

human classification decisions, the feedback is indirectly

incorporated, before the links are generated, through

324 Requirements Eng (2014) 19:309–329

123



actions such as renaming identifiers and newly extracted

methods.

Under the same category of performance enhancement

comes the work of Cleland-Huang et al. [19], who intro-

duced three enhancement strategies to improve the per-

formance of the probabilistic network (PN) model in

automated tracing. These strategies included: hierarchical

modeling, logical clustering of artifacts, and semi-auto-

mated pruning. Results showed that these enhancement

strategies could be used effectively to improve trace

retrieval results and increase the practicality of tracing

tools. Similarly, Niu and Mahmoud [76] proposed an

approach based on the cluster hypothesis to improve the

quality of candidate link generation for requirements

tracing. The main assumption was that correct and incor-

rect links can be grouped into high-quality and low-quality

clusters, respectively. Result accuracy can thus be

enhanced by identifying and filtering out low-quality

clusters. Since the main objective of refactoring is to

enhance the internal quality of software systems, our

approach can serve as a preprocessing step for these

strategies, improving the underlying structure of the system

before applying techniques such as link clustering and

hierarchical modeling of artifacts.

In an attempt to overcome the semantic gap between

software artifacts in the system, Gibiec et al. [40] used a

web-based query expansion algorithm to trace require-

ments. Similarly, Mahmoud et al. [64] introduced semantic

relatedness as an alternative method for query expansion.

Thorough evaluation of these different methods showed

their ability to achieve higher recall levels, especially in

recovering a portion of the hard-to-trace requirements.

However, as shown in our analysis, this improvement in

the recall often comes with a significant decline in the

precision. This high ration of false positives usually results

from the noise such methods bring from consulting exter-

nal sources of knowledge for query expansion. In contrast,

our approach keeps the noise levels under control, by

providing a more focused and more localized method to

overcome the same problem.

7.2 Maintaining traceability during evolution

Cleland-Huang et al. [17] presented an event-based

approach that establishes traceability links through the use

of publish-subscribe relationships between dependent

objects in the system. When a significant change to a

certain requirement occurs, an event notification message is

published to all the subscribed dependent objects. There-

fore, ensuring that all these publish-subscribe relations

(trace links) are up-to-date or consistent during system

evolution. Our work can be distinguished from this work

based on the fact that this approach handles the change

from the requirement side of the link, while the proposed

approach in this paper handles evolution from the source

code side. Our approach is based on the observation that

code is more prone to change than requirements [11, 59].

Therefore, working on that side of the link is expected to

have more immediate effect on traceability.

Egyed [31] proposed an approach that uses observations

about the runtime behavior of the system to detect asso-

ciations among functional scenarios and their executing

code. In particular, traces are defined based on the data

flow in the form of a footprint graph. A footprint is defined

as the lines of code used while executing a scenario. Using

our approach, the code does not have to execute or even

compile, thus avoiding complications related to the runtime

behavior of the system. In addition, no test cases or usage

scenarios are needed.

Antoniol et al. [5] proposed an automatic approach to

identify class evolution discontinuities due to possible re-

factorings. The approach identifies links between classes

obtained from refactoring, and cases where traceability

links were broken due to refactoring. Our approach can be

related to this work in the sense that we propose mitigation

strategies to overcome problems that may result from

certain refactorings (XM). In addition, we also propose the

use of refactoring as a preprocessing step to enhance the

performance, rather than only dealing with the implications

of already applied refactorings.

Mäder et al. [61] proposed a rule-based traceability

approach for maintaining traceability relations during

evolutionary change. This approach revolves around the

monitoring of elementary changes that take place to UML

model elements, and updating a preexisting set of trace-

ability relations associated with such changes. This insures

that changes in the system’s structure will be reflected on

traceability, thus keeping such relations up-to-date. How-

ever, this approach is restricted to the scope of UML-based,

object-oriented (OO), software engineering. In contrast,

refactoring is not limited to structural and OO code, and no

UML models have to be generated for the system.

The approach proposed by Ben Charrada et al. [11]

tackles the problem that we tackle in this paper from a

different perspective. In particular, the authors proposed an

approach to automatically identifying outdated require-

ments by analyzing source code changes during evolution

to identify the requirements that are likely to be impacted

by the change. This approach can be complementary to our

approach. While our approach works on the decaying

vocabulary structure from the code side, their approach

works on the same problem but from the opposite side of

the traceability link (the trace query). This will accelerate

the process of bridging the textual gap in the system.

Finally, since this paper is based on Gotel and Morris’s

[43] theoretical approach of IR-based automated tracing,

Requirements Eng (2014) 19:309–329 325

123



we find it appropriate here to end our discussion with

Gotel’s latest views on the field. In their most recent

roadmap paper, Gotel et al. [42] identified a number of

challenges for implementing effective software and sys-

tems traceability. In the set of short-term goals that they

specified, they emphasized the need for researchers to

focus on mechanisms to mix and match approaches to

achieve different cost and quality profiles. The work we

presented in this paper is aligned with that goal. In par-

ticular, our objective is to add to the current incremental

effort of this domain in a way that helps to move forward

on the automated tracing roadmap.

8 Conclusions and future work

8.1 Conclusions

In this paper, we explored the effect of applying various

refactoring methods on the different performance aspects of

IR-based tracing methods. Our main hypothesis is that certain

refactorings will help to reestablish the decaying traceability

tracks of evolving software systems, thus helping IR methods

to recover more accurate lists of candidate links. To test our

research hypothesis, we examined the impact of three re-

factorings on the performance of three requirements-to-code

datasets from different application domains. In particular, we

identified three main problems associated with IR-based

automated tracing including, missing, misplaced, and dupli-

cated signs, and we suggested three refactorings to mitigate

these problems. Results showed that restoring textual infor-

mation in the system’s artifacts (RI) had a significantly posi-

tive impact on the performance. In contrast, refactorings that

remove redundant information (XM) affected the perfor-

mance negatively. The results also showed that moving

information between the system’s modules (MM) had no

noticeable impact on the performance.

Furthermore, in our analysis, we compared the perfor-

mance of RI with two other commonly used techniques for

handling the vocabulary mismatch problem in software

systems. These methods include retrieval enhancement

with thesaurus support and query expansion techniques.

We analyzed the performance of these techniques,

exploited their limitations, and demonstrated how refac-

toring could address these limitations. In addition, we

suggested a sign-preserving technique to mitigate the

negative impact of refactoring code clones on traceability.

In particular, we proposed two methods for generating

source code descriptions including code labeling and

summarization, and we analyzed and evaluated their

effectiveness in preserving traceability information.

Results showed that simple code labeling was more suc-

cessful than code summarization in preserving traceability

signs from getting lost when code clones were refactored.

Furthermore, an effective traceability sign analysis was

conducted to quantify the effect of different investigated

refactorings on the traceability tracks in our experimental

systems.

8.2 Future work

The line of work in this paper has opened several research

directions to be pursued in our future work. These direc-

tions can be described as follows:

• Refactoring In our future analysis, we are interested in

investigating the effect of other refactorings on trace-

ability. In particular, refactorings that work on the

structural information of the system (e.g., EXTRACT

CLASS [34]), and target different granularity levels, will

be investigated.

• IR methods In our future work, we are interested in

exploring the effect of refactoring on other IR methods

that are often used in automated tracing, such as (LSI)

[65] and (LDA) [7, 13]. These methods work by

exploiting hidden (latent) structures in software sys-

tems, rather than directly matching keywords in

software artifacts; thus, they might have a different

response to different refactoring methods.

• Tool support In terms of tool support, a working

prototype that implements our findings in this paper is

in order. A working prototype will allow us to conduct

long-term studies that will give us a better understand-

ing of the role of human analysts in the process [77]. In

particular, quantifying the potential effort-saving of our

approach, its usability, and scope of applicability.

• Automation As observed in our experiment, there is still a

major effort concern when it comes to refactoring.

Humans still play a major role in controlling the refactor-

ing process, starting from approving refactoring candi-

dates captured by code smell detection tools, to applying

required refactorings, and verifying the outcome of the

process. Therefore, in our future work, we will be

exploring refactoring automation strategies that can help

to alleviate some of the manual effort in the process.

Acknowledgments We would like to thank the partner company for

the generous support of our research. This work is supported in part

by the US NSF (National Science Foundation) Grant No.

CCF1238336.

References

1. Advani D, Hassoun Y, Counsell S (2005) Refactoring trends

across N versions of N Java open source systems: an empirical

study. SCSIS-Birkbeck, University of London Technical Report

326 Requirements Eng (2014) 19:309–329

123



2. Anquetil N, Fourrier C, Lethbridge T (1999) Experiments with

clustering as a software remodularization method. In: Working

conference on reverse engineering, pp 235–255

3. Anquetil N, Lethbridge T (1998) Assessing the relevance of

identifier names in a legacy software system. In: Conference of

the centre for advanced studies on collaborative research, pp 4–14

4. Antoniol G, Canfora G, Casazza G, De Lucia A, Merlo E (2002)

Recovering traceability links between code and documentation.

IEEE Trans Softw Eng 28:970–983

5. Antoniol G, Di Penta M, Merlo E (2004) An automatic approach

to identify class evolution discontinuities. In: International

workshop on principles of software evolution, pp 31–40

6. Aslam J, Yilmaz E, Pavlu V (2005) A geometric interpretation of

r-precision and its correlation with average precision. In: Annual

international ACM SIGIR conference on research and develop-

ment in information retrieval, pp 573–574

7. Asuncion H, Asuncion A, Taylor R (2010) Software traceability

with topic modeling. In: International conference on software

engineering, pp 95–104

8. Aversano L, Cerulo L, Di Penta M (2010) How clones are

maintained: an empirical study. In: European conference on

software maintenance and reengineering, pp 81–90

9. Baker B (1995) On finding duplication and near-duplication in

large software systems. In: Working conference on reverse

engineering, pp 86–95

10. Baxter I, Yahin A, Moura L, Sant’Anna M, Bier L (1998) Clone

detection using abstract syntax trees. In: ICSM, pp 368–377

11. Ben Charrada E, Koziolek A, Glinz M (2012) Identifying out-

dated requirements based on source code changes. In: Interna-

tional requirements engineering conference, pp 61 –70

12. Binkley D, Lawrie D, Maex S, Morrell C (2009) Identifier length

and limited programmer memory. Sci Comput Program

74(7):430–445

13. Blei D, Ng A, Jordan MI (2003) Allocation. J Mach Learn Res

3:993–1022

14. Bourquin F, Keller R (2007) High-impact refactoring based on

architecture violations. In: European conference on software

maintenance and reengineering, pp 149–158

15. Bruntink M, Van Deursen A, Van Engelen R, Tourwé T (2005)

On the use of clone detection for identifying crosscutting concern

coden. IEEE Trans Softw Eng 31:804–818

16. Caprile B, Tonella P (2000) Restructuring program identifier

names. In: International conference on software maintenance,

pp 97–107

17. Cleland-Huang J, Chang C, Christensen M (2003) Event-based

traceability for managing evolutionary change. IEEE Trans Softw

Eng 29(9):796–810

18. Cleland-Huang J, Heimdahl M, Huffman-Hayes J, Lutz R, Mäder

P (2012) Trace queries for safety requirements in high assurance

systems. In: International conference on requirements engineer-

ing: foundation for software quality, pp 179–193

19. Cleland-Huang J, Settimi R, Duan C, Zou X (2005) Utilizing

supporting evidence to improve dynamic requirements trace-

ability. In: International conference on requirements engineering,

pp 135–144

20. Cleland-Huang J, Settimi R, Romanova E (2007) Best practices

for automated traceability. Computer 40(6):27–35

21. David K (2003) Selected papers on computer languages. In: CSLI

lecture notes, vol 139. Center for the Study of Language and

Information

22. De Lucia A, Di Penta M, Oliveto R, Panichella A, Panichelle S

(2012) Using IR methods for labeling source code artifacts: Is it

worthwhile? In: International conference on program compre-

hension, pp 193–202

23. De Lucia A, Oliveto R, Sgueglia P (2006) Incremental approach

and user feedbacks: a silver bullet for traceability recovery. In:

International conference on software maintenance, pp 299–309

24. De Lucia A, Oliveto R, Tortora G (2009) Assessing IR-based

traceability recovery tools through controlled experiments. Empir

Softw Eng 14(1):57–92

25. Dean A, Voss D (1999) Design and analysis of experiments.

Springer, New York

26. Deerwester S, Dumais S, Furnas G, Landauer T, Harshman R

(1990) Indexing by latent semantic analysis. J Am Soc Inf Sci

41(6):391–407

27. Deissenböck F, Pizka M (2005) Concise and consistent naming.

In: International workshop on program comprehension,

pp 97–106

28. Demšar J (2006) Statistical comparisons of classifiers over mul-

tiple data sets. J Mach Learn Res 7:1–30

29. Dig D, Johnson R (2005) The role of refactorings in API evo-

lution. In: International conference on software maintenance,

pp 389–398

30. DualaEkoko E, Robillard M (2010) Clone region descriptors:

representing and tracking duplication in source code. ACM Trans

Softw Eng Methodol 20(1):1–31

31. Egyed A (2003) A scenario-driven approach to trace dependency

analysis. IEEE Trans Softw Eng 9(2):116–132

32. Eick S, Graves T, Karr A, Marron J, Mockus A (1998) Does code

decay? Assessing the evidence from change management data.

IEEE Trans Softw Eng 27(1):1–12

33. Feilkas M, Ratiu D, Jurgens E (2009) The loss of architectural

knowledge during system evolution: an industrial case study. In:

International conference on program comprehension, pp 188–197

34. Fokaefs M, Tsantalis N, Stroulia E, Chatzigeorgiou A (2012)

Identification and application of extract class refactorings in

object-oriented systems. J Syst Softw 85(10):2241–2260

35. Fontanaa F, Braionea P, Zanonia M (2011) Automatic detection

of bad smells in code: an experimental assessment. J Object

Technol 11(2):1–8

36. Fowler M (1999) Refactoring: improving the design of existing

code. Addison–Wesley, Reading

37. Furnas G, Deerwester S, Dumais S, Landauer T, Xarshman R,

Streeter L, Lochbaum K (1988) Information retrieval using a

singular value decomposition model of latent semantic structure.

In: Annual international ACM SIGIR conference on research and

development in information retrieval, pp 465–480

38. Gabrilovich E, Markovitch S (2007) Computing semantic relat-

edness using wikipedia-based explicit semantic analysis. In:

international joint conference on artificial intelligence,

pp 1606–1611

39. Gamma E, Helm R, Johnson R, Vlissides J (1995) Design pat-

terns: elements of reusable object-oriented software. Addison-

Wesley, Reading

40. Gibiec M, Czauderna A, Cleland-Huang J (2010) Towards min-

ing replacement queries for hard-to-retrieve traces. In: Interna-

tional conference on automated software engineering,

pp 245–254

41. Giulio A, Caprile B, PotrichA Tonella P (2000) Design-code

traceability for object-oriented systems. Ann Softw Eng

9(1–4):35–58

42. Gotel O, Cleland-Huang J, Huffman-Hayes J, Zisman A, Egyed

A, Grünbacher P, Antoniol G (2012) The quest for ubiquity: a

roadmap for software and systems traceability research. In:

international conference on requirements engineering, pp 71–80

43. Gotel O, Morris S (2011) Out of the labyrinth: leveraging other

disciplines for requirements traceability. In: IEEE international

requirements engineering conference, pp 121–130

Requirements Eng (2014) 19:309–329 327

123



44. Guerrouj L (2013) Normalizing source code vocabulary to sup-

port program comprehension and software quality. In: Interna-

tional conference on software engineering, pp 1385–1388

45. Haiduc S, Aponte J, Moreno L, Marcus A (2010) On the use of

automated text summarization techniques for summarizing source

code. In: Working conference on reverse engineering, pp 35–44

46. Han E, Karypis G (2000) Centroid-based document classification:

analysis and experimental results. In: European conference on

principles of data mining and knowledge discovery, pp 424–431

47. Huffman-Hayes J, Dekhtyar A, Osborne (2003) J Improving

requirements tracing via information retrieval. In: International

conference on requirements engineering, pp 138–147

48. Huffman-Hayes J, Dekhtyar A, Sundaram S (2006) Advancing

candidate link generation for requirements tracing: the study of

methods. IEEE Trans Softw Eng 32(1):4–19

49. Jones K (2007) Automatic summarising: the state of the art. Inf

Process Manag 43(6):1449–1481

50. Kamiya T, Kusumoto S, Inoue K (2002) CCFinder: a multilin-

guistic token-based code clone detection system for large scale

source code. IEEE Trans Softw Eng 28(7):654–670

51. Katić M, Fertalj K (2009) Towards an appropriate software

refactoring tool support. In: WSEAS international conference on

applied computer science, pp 140–145

52. Kim M, Bergman L, Lau T, Notkin D (2004) An ethnographic

study of copy and paste programming practices in OOPL. In:

International symposium on empirical software engineering,

pp 83–92

53. Kolb R, Muthig D, Patzke T, Yamauchi K (2006) Refactoring a

legacy component for reuse in a software product line: a case

study: practice articles. J Softw Maint Evol 18(2):109–132

54. Koschke R, Falke R, Frenzel P (2006) Clone detection using

abstract syntax suffix trees. In: Working conference on reverse

engineering, pp 253–262

55. Laitinen K (1996) Estimating understandability of software

documents. SIGSOFT Softw Eng Notes 21(4):81–92

56. Lawrie D, Binkley D, Morrell C (2010) Normalizing source code

vocabulary. In: Working conference on reverse engineering,

pp 3–12

57. Lawrie D, Feild H, Binkley D (2007) Extracting meaning from

abbreviated identifiers. In: International working conference on

source code analysis and manipulation, pp 213–222

58. Lehman M (1984) On understanding laws, evolution, and con-

servation in the large-program life cycle. J Syst Softw

1(3):213–221

59. Lethbridge T, Singer J, Forward A (2003) How software engi-

neers use documentation: the state of the practice. IEEE Softw

20(6):35–39

60. Luo J, Meng B, Liu M, Tu X, Zhang K (2012) Query expansion

using explicit semantic analysis. In: International conference on

internet multimedia computing and service, pp 123–126

61. Mäder P, Gotel O, Philippow I (2008) Rule-based maintenance of

post-requirements traceability relations. In: International

requirements engineering conference, pp 23–32

62. Mahmoud A, Niu N (2011) Source code indexing for automated

tracing. In: International workshop on traceability in emerging

forms of software engineering, pp 3–9

63. Mahmoud A, Niu N (2013) Supporting requirements traceability

through refactoring. In: International requirements engineering

conference, pp 32–41

64. Mahmoud A, Niu N, Xu S (2012) A semantic relatedness

approach for traceability link recovery. In: International confer-

ence on program comprehension, pp 183–192

65. Maletic J, Marcus A (2000) Using latent semantic analysis to

identify similarities in source code to support program under-

standing. In: International conference on tools with artificial

intelligence, pp 46–53

66. Manning C, Raghavan P, Schtze H (2008) Introduction to

information retrieval. Cambridge University Press, Cambridge

67. Mäntylä M, Lassenius C (2006) Drivers for software refactoring

decisions. In: International symposium on empirical software

engineering, pp 297–306

68. Mayrand J, Leblanc C, Merlo E (1996) Experiment on the

automatic detection of function clones in a software system using

metrics. In: International conference on software maintenance,

pp 244–253

69. Mealy E, Carrington D, Strooper P, Wyeth P (2007) Improving

usability of software refactoring tools. In: Australian software

engineering conference, pp 307–318

70. Meneely A, Smith B, Williams L (2012) iTrust electronic health

care system: a case study, chap. software and systems traceabil-

ity. Springer, New York

71. Mens T, Tourwé T (2004) A survey of software refactoring. IEEE

Trans Softw Eng 30(2):126–139

72. Moser R, Sillitti A, Abrahamsson P, Succi G (2006) Does

refactoring improve reusability? In: International conference on

reuse of off-the-shelf components, pp 287–297

73. Murphy G, Kersten M, Findlater L (2006) How are java software

developers using the eclipse IDE. IEEE Softw 23(4):76–83

74. Murphy-Hill E, Black AP (2008) Breaking the barriers to suc-

cessful refactoring: observations and tools for extract method. In:

ICSE, pp 421–430

75. Murphy-Hill E, Parnin C, Black AP (2009) How we refactor and

how we know it. In: International conference on software engi-

neering, pp 287–297

76. Niu N, Mahmoud A (2012) Enhancing candidate link generation

for requirements tracing: the cluster hypothesis revisited. In: IEEE

International requirements engineering conference, pp 81–90

77. Niu N, Mahmoud A, Chen Z, Bradshaw G (2013) Departures

from optimality: understanding human analysts information for-

aging in assisted requirements tracing. In: International confer-

ence on software engineering, pp 572–581

78. Opdyke W (1992) Refactoring object-oriented frameworks.

Doctoral thesis, Department of Computer Science, University of

Illinois at Urbana-Champaign

79. Opdyke W, Johnson R (1990) Refactoring: an aid in designing

application frameworks and evolving object-oriented systems. In:

Symposium on object-oriented programming emphasizing prac-

tical applications

80. Porter M (1997) An algorithm for suffix stripping. In: Readings in

information retrieval. Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA, pp 313–316

81. Roy C, Cordy J (2007) A survey on software clone detection

research. Technical report 541. School of Computing TR

2007-541, Queens University

82. Roy C, Cordy J (2008) An empirical study of function clones in

open source software. In: Working conference on reverse engi-

neering, pp 81–90

83. Spanoudakis G, Zisman A (2004) Software traceability: a road-

map. Handb Softw Eng Knowl Eng 3:395–428

84. Sridhara G, Hill E, Muppaneni D, Pollock L, Vijay-Shanker K

(2010) Towards automatically generating summary comments for

java methods. In: International conference on automated software

engineering, pp 43–52

85. Sultanov H, Huffman-Hayes J, Kong W (2011) Application of

swarm techniques to requirements tracing. Requir Eng J

16(3):209–226

86. Sundaram S, Huffman-Hayes J, Dekhtyar A, Holbrook E (2010)

Assessing traceability of software engineering artifacts. Requir

Eng J 15(3):313–335

87. Takang A, Grubb P, Macredie R (1996) The effects of comments

and identifier names on program comprehensibility: an experi-

mental investigation. J Program Lang 4(3):143–167

328 Requirements Eng (2014) 19:309–329

123



88. Teufel S (2007) An overview of evaluation methods in TREC ad

hoc information retrieval and TREC question answering. In:

Dybkjaer L, Hemsen H, Minker W (eds) Evaluation of text and

speech systems. Springer, Netherlands, pp 163–186

89. Thies A, Roth C (2010) Recommending rename refactorings. In:

International workshop on recommendation systems for software

engineering, pp 1–5

90. Tourwé T, Mens T (2003) Identifying refactoring opportunities

using logic meta programming. In: European conference on

software maintenance and reengineering, pp 91–100

91. Tsantalis N, Chatzigeorgiou A (2009) Identification of move

method refactoring opportunities. IEEE Trans Softw Eng

35(3):347–367

92. Wilking D, Kahn U, Kowalewski S (2007) An empirical evalu-

ation of refactoring. e-Inf Softw Eng J 1(1):44–60

Requirements Eng (2014) 19:309–329 329

123


	Supporting requirements to code traceability through refactoring
	Abstract
	Introduction
	IR-based automated tracing
	Refactoring
	Restoring information
	Moving information
	Removing information

	Methodology and research hypothesis
	Datasets
	Experimental procedure
	Evaluation
	Quality measures
	Browsability measures


	Results and discussion
	Analysis results
	Rename identifier effect
	Query expansion
	Thesaurus support

	Handling code clones
	Code summarization
	Code labeling

	Moving information
	Discussion

	Limitations
	Related work
	Performance enhancement
	Maintaining traceability during evolution

	Conclusions and future work
	Conclusions
	Future work

	Acknowledgments
	References


