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Abstract—Requirements terminology defines and unifies key
specialized and/or technical concepts of the software system,
which is significant for understanding the application domain
in requirements engineering (RE). However, manual terminology
extraction from natural language requirements is laborious and
expensive, especially with large scale requirements specifications.
In this paper, we aim to employ natural language processing
(NLP) techniques and machine learning (ML) algorithms to
automatically extract and rank the requirements terms to support
high-level feature modeling. To this end, we propose an automatic
framework composed of noun phrase identification technique
for requirements terms extraction and TextRank combined with
semantic similarity for terms ranking. The final ranked terms
are organized as a hierarchy, which can be used to help name
elements when performing feature modeling. In the quantitative
evaluation, our extraction method performs better than three
baseline methods in recall with comparable precision. Moreover,
our adapted TextRank algorithm can rank more relevant terms
at the top positions in terms of average precision compared
with most baselines. An illustrative example on the smart home
domain further shows the usefulness of our framework in
aiding elements naming during feature modeling. The research
results suggest that proper adoption and adaption of NLP and
ML techniques according to the characteristics of specific RE
task could provide automation support for problem domain
understanding.

Index Terms—terminology extraction, TextRank, text mining,
requirements analysis, feature modeling

I. INTRODUCTION

Terminology refers to a group of single-word and/or multi-

word expressions that are given specific meanings within a

specialized domain. The first step to understand and model a

knowledge domain is to build a vocabulary of domain-relevant

terms which are the linguistic surface manifestation of domain

concepts. Requirements terminology helps the stakeholders

share a common understanding of the key concepts within

the problem domain, thus mitigating misinterpretation and

promoting communication among them [1]. Once constructed,

requirements terminology can be further used to enhance

many other requirements elaboration activities, such as feature

request extraction [2; 3], abstraction identification [4], and

feature modeling [5].

This paper is supported by Hangzhou Normal University Scientific Research
Staring Foundation (Grant No.4135C50220204073), the Open Project of
Zhejiang Key Laboratory of Film and Television Media Technology Research
(Grant No.CM2021003), and the National Natural Science Foundation of
China (Grant No.61873080).

Natural language has been the most common notation for

expressing requirements in the industrial practice [6]. Improve-

ments and advances in natural language processing (NLP)

technologies have motivated researchers to explore a range

of NLP techniques for various requirements engineering (RE)

tasks [7], which leads to the emerging and growing of the re-

search area natural language processing for requirements engi-

neering (NLP4RE). Requirements terms indicating significant

domain concepts have proved to be fundamental for informing

analysts’ extracting requirements-related knowledge [8] and

understanding the problem domain [9].

Terminology extraction aims to automatically extract rele-

vant terms from a given corpus to support a variety of appli-

cations relying on document meaning. Though widely studied,

existing terminology extraction methods are mostly designed

and evaluated based on scientific documents corpus [10], e.g.,

research papers. These methods, when directly applied to

software requirements, may yield poor results due to the fact

that they are not tailored to requirements specifications. The

best practice in RE [11] recommends determining require-

ments terms when the system requirements are being elicited.

However, from a cost-effectiveness standpoint in industrial

projects, requirements terms may be extracted after the fact,
i.e., when the requirements have sufficiently stabilized [12].

Requirements terminology extraction is a time-consuming

and expensive task, especially for large-scale requirements

specifications. The existing requirements terminology extrac-

tion work mainly focuses on extracting a flat list of expressions

from the requirements documents. When the results list is

large, manually filtering noise is cost-ineffective. Furthermore,

The flat term list alone without any explicit structure can

only provide fragmented information on the problem domain,

limiting the potential of requirements terminology as an aid

to many specific problem domain understanding tasks, e.g.,

feature modeling.

Our goal is to accurately extract requirements terms from

textual requirements specifications, and ranking more relevant

and also more abstract ones in the top positions to support

easily selecting suitable elements’ names when performing

feature modeling.

To this end, we propose an automatic framework for ex-

tracting and ranking requirements terms based on noun phrase

identification and an adaptation of TextRank separately. The

output is a ranked list of requirements terms with a hierarchical
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structure which can inform analysts in feature modeling.
To evaluate our proposed framework, we specifically inves-

tigate three research questions:

• RQ1: How effectively does our noun phrase identification
method extract requirements terms compared with base-
lines for requirements terminology extraction and general
terminology extraction?

• RQ2: How effectively does our adaption of TextRank rank
more relevant terms in the top positions compared with
other TextRank variants?

• RQ3: How to use the ranked term list produced by our
adaptation of TextRank to help the construction of feature
models?

Through RQ1 and RQ2, we want to compare the perfor-

mance of our extraction and ranking methods with the existing

requirements terminology extraction methods and some popu-

lar terminology ranking methods based on TextRank. Through

RQ3, we attempt to identify the potential usage of the ranked

term list produce by our method in feature modeling.
In summary, we make the following contributions:

1) Design a noun phrase identification based method for

extracting requirements terms, which performs better

than three baselines in recall while not sacrificing too

much precision.

2) Adapt the unsupervised graph-based algorithm TextRank

with terms as nodes and semantic similarity as edge

weights for ranking the extracted requirements terms

to make more relevant ones in the top position, which

performs better than most baselines (except for one) in

terms of average precision.

3) Construct an illustrative feature model in smart home

domain to demonstrate that the ranked terms with an

implicit hierarchy structure produced by our adaption

of TextRank can provide assistance in feature modeling,

e.g., helping easily select suitable names for elements

from the ranked term list.

The rest of this article is structured as follows: Section II

presents the overview of our framework followed by detailing

the methods employed in requirements terminology extraction

and ranking modules. Section III describes the experimen-

tal settings including dataset, ground truth, baselines, and

evaluation measures. Section IV analyzes and discusses the

quantitative and qualitative experiment results to answer the

research questions. Section V discusses threats to validity.

Section VI compares our study with related work and Section

VII concludes the paper with several valuable future extension

avenues.

II. AUTOMATIC REQUIREMENTS TERMINOLOGY

EXTRACTION AND RANKING FRAMEWORK

In this section, we start with briefly introducing the whole

framework followed by elaborating two automated compo-

nents in detail, i.e., terminology extraction and ranking.
Figure 1 displays the overall pipeline of our proposed

feature modeling oriented requirements terminology extraction

and ranking framework.

• Input: the input is textural requirements with each

requirement statement expressed in a single sentence.

Three example input requirements sentences with terms

highlighted in bold blue font are shown in Figure 2, which

will act as running examples in the rest of this section.

• Terminology extraction: this module is responsible for

identifying continuous text fragments as requirements

terms after the requirements sentences are syntactically

processed. The output of terminology extraction module

is a flat list of identified requirements terms that can

be compared with ground truth, if existing, or manually

investigated by human analysts to estimate the extraction

performance.

• Terms ranking: this module implements our adapted

TextRank algorithm to rank the relevant and more abstract

terms at the top positions so as to reduce the human noise

filtering efforts and aid the feature modeling procedure.

• Feature modeling: The ranked requirements term list

output by the previous module combined with the original

requirements statements could inform the analysts an

overview of the problem domain in general. Furthermore,

analysts can employ feature model or its variants to build

high-level models for the system under consideration with

top ranked terms denoting various model elements, e.g.,

software features, system context.

A. Requirements Terminology Extraction Based on Noun
Phrase Identification

A noun phrase (NP) is a phrase that has a noun or pronoun

as its head or performs the same grammatical function as a

noun [13]. The most common NP in English are compounds

(e.g., “pet owner”) and adjective noun phrases (e.g., “smart

home”). In NLP, automatic term extraction approaches typi-

cally make use of linguistic processors (e.g., part of speech

tagging, n-gram sequences) to extract syntactically plausible

noun phrases as terminological candidates [10].

NP has been proved to be accounting for 99% of the

technical terms [14]. In RE, NP also plays a significant role

in identifying important artifacts, such as software features [2;

15], abstractions [4], input/output variables [16], and various

domain model elements [17]. Therefore, we focus only on

NPs in the requirements sentences for extracting requirements

terms, which include single-word nouns and multi-word noun

phrases.

For identifying NPs, we rely on constituency parsing, which

aims to extract a constituency-based parse tree from a sentence

that represents its syntactic structure according to a phrase

structure grammar. Compared with lexical analysis, e.g., POS

tagging and n-gram sequences, syntactic parsing considers

more contextual information and the whole sentence structure,

making it have the potential to identify NPs more accurately.

In addition, NLP community has made considerable strides

in English constituency parsing recently1. There are several

well known NLP tools implementing the state of the art

1http://nlpprogress.com/english/constituency parsing.html
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Fig. 1. Feature modeling oriented requirements terminology extraction and ranking framework

Req1: As a pet owner, I want my smart home to let
me know when the dog uses the doggy door, so that
I can keep track of the pets whereabouts.
Req2: As a home owner, I want my smart home to
turn on yard lights when motion is detected so that
break-ins can be avoided.
Req3: As a home occupant, I want my smart home
to learn my lighting habits and continue to use them
when I am away so that intruders are deterred.

Fig. 2. Three example input requirements
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Fig. 3. Constituency parsing tree of Req2 fragment in Figure 2

constituency parsing algorithms, from which we select the

widely used and free open-source library spaCy2. Figure 3

shows the constituency parsing tree of a fragment of Req2 in

Figure 2 due to the limitation of space.

Algorithm 1 details the procedure of identifying NP com-

bined with post-processing heuristic rules for extracting re-

quirements terms. The main idea of Algorithm 1 is parsing re-

2https://spacy.io/

quirements statements sentence-by-sentence syntactically and

then selecting the continuous text segments as candidate

requirements terms which are then processed by two types

of heuristic rules to obtain the final requirements terms list.

Algorithm 1 Requirements Terms Extraction Based on NP

identification
Input: requirements statements Sr

Output: A flat list of requirements terms L
1: Initialize L = []
2: for each rraw ∈ Sr do
3: r = Spell Check(rraw)
4: parsing tree Tr = Constituency Parsing(r)
5: for each NP ∈ Tr do
6: if word length(NP ) < 2 then
7: continue

8: else
9: w list = []

10: for each word ∈ NP do
11: if word ∈ STOPLIST then
12: continue

13: else
14: w list include word
15: end if
16: end for
17: if length(w list) �= 0 then
18: term = concatenate word ∈ w list
19: L include Lemmatization(term)
20: end if
21: end if
22: end for
23: end for

Each requirements statement is checked with respect to

spelling error and corrected (if has) with pyspellchecker tool3

to ensure the constituency parsing performance. In order to

reduce noisy terms, we apply two types of heuristic rules

to filtering the candidate terms. The first rule is excluding

NP containing less than 2 characters. For example, in Req2

of Figure 2, “I” is filtered while “motion” is remained. The

second one is removing stopwords from the candidate NP and

concatenating the remaining words in order. For instance, “a

home owner” in Req2 of Figure 2 is transformed to “home

3https://github.com/barrust/pyspellchecker
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owner” after applying the second rule. The STOPLIST
contains not only general English stopwords provided by

NLTK4 but also a few manually selected domain stopwords

(e.g., numeral, punctuation, possessive wh-pronoun), which

have been proved to be effective in cleaning textual require-

ments [2; 3]. After post-processing, lemmatization is applied

to each word in the candidate requirements terms to reduce

redundancy.

B. Requirements Terms Ranking with Adapted TextRank

Since the extraction result list is flat and unordered, human

efforts are still needed to filter noisy terms and organize

the terms to support certain RE tasks. In our research, we

surmise that terms with a hierarchical structure may inform

the hierarchy of a feature tree and the naming of elements

when building feature models.

In this work, we mainly focus on feature modeling with the

extracted requirements terms. In order to reduce human noise

filtering efforts, we adopt the well-known text rank algorithm

TextRank and its prevalent variants to rank more relevant

terms in the top positions. We further adapt the TextRank

with concept similarity to make more relevant and also more

abstract (high-level) requirements terms come near the top of

the ranked list so as to inform feature modeling.

TextRank is an unsupervised graph-based ranking model

and has been widely used in various NLP applications for

ranking text units. We adopt TextRank to rank requirements

terms for two considerations. On the one hand, it has been

proved to be effective in ranking text units in different

granularity across various text domains. On the other hand,

TextRank is unsupervised without manually labeled training

data, which needs less human supervision and is beneficial to

the generality of our proposed framework.

In the remaining of this subsection, we will briefly introduce

the basic principle of TextRank followed by how we adapt it

to ranking requirements terms according to the characteristics

of feature models.

To enable the application of TextRank to natural language

text, a graph has to be built for representing the text. Formally,

let G = (V,E) be a directed graph with the set of vertices

V and set of edges E, where E is a subset of V × V . Each

vertex Vi ∈ V denotes a text unit, e.g., a word or a sentence,

and each edge connecting vertices Vi and Vj denotes some

type of meaningful relationship between those two text units,

e.g., distance, similarity. For a given vertex Vi, let In(Vi) be

the set of vertices that point to it, and let Out(Vi) be the set

of vertices that Vi points to. The score of vertex Vi is defined

as follow:

S(Vi) = (1− d) + d ∗
∑

Vj∈In(Vi)

wji∑
Vk∈Out(Vj)

wjk
S(Vj) (1)

In equation (1), S(Vi) denotes the score of node Vi, wij

is the edge weight indicating the strength of the connection

4https://www.nltk.org/

between two vertices Vi and Vj . d is a damping factor usually

set to 0.85 [18], which has the role of integrating into the

model the probability of jumping from a given vertex to

another random vertex in the graph.

Complying with the steps of applying graph-based ranking

algorithms to natural language texts suggested by [19], we

adapt TextRank to rank the extracted requirements terms as

Algorithm 2:

Algorithm 2 Requirements Terms Ranking Based on Text-

Rank
Input: A flat list of extracted requirements terms L
Output: A ranked list of extracted requirements terms Lr

1: Initialize: vertices set V = {}, edges set E = {}, weights

set W = {}
2: Build word set Sw for term list L
3: for each wordi ∈ Sw do
4: V include wordi
5: for each wordj ∈ Sw\{wi} do
6: edge weight wij = Similarity(wordi, wordj)
7: if wij > threshold θ then
8: E include edgeij
9: W include weightij

10: end if
11: end for
12: end for
13: Build undirected weighted word graph G = (V,E,W )
14: Optimize the node socre in equation (1) with random walk

algorithm

15: for each term ∈ L do
16: Score(term) = average the scores of words in term
17: end for
18: Return Lr via sorting term ∈ L by Score(term) in

descending order

Algorithm 2 mainly involves four steps:

1) Determine vertices (lines 3 - 4): words composing

of requirements terms are identified as the basic text

units and are added as vertices in the graph. Taking the

extracted terms in Req2 of Figure 2 as an example, the

word lemmas “home”, “owner”, “smart”, “yard”, “light”,

“motion”, and “break-in” act as nodes in the graph.

2) Draw edges between vertices (lines 5 - 13): semantic

similarity is used to connect text units and draw edges

between vertices in the graph. Edges are undirected,

in which case the out-degree of a vertex is equal to

the in-degree of the vertex. Similarity scores are used

to indicate edge weights. For the semantic similarity,

we employ pretrained embedding [20] based vector

similarity and WordNet based concept similarity [21],

which take advantage of a priori information from large-

scale text corpora as well as lexical and knowledge

bases. So far, a weighted and undirected word graph

has been built.

3) Optimize iteratively (line 14): starting from arbitrary

values assigned to each node in the graph, the compu-
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tation iterates until convergence using a random walk

algorithm derived from PageRank [18]. Notice that the

final values obtained after TextRank runs to completion

are not affected by the choice of the initial value,

only the number of iterations to convergence may be

different [19].

4) Score requirements terms (line 15 - 18): requirements

terms are scored followed by being sorted in descending

order with respect to their scores. The score of each

requirements term is computed by averaging the scores

of words in that term.

In the above procedure, step 2 and step 4 are our innovative

designs to achieve our goal of making relevant and more

abstract requirements terms rank in the top positions.

In what follows, we firstly explain the rationale of using

semantic similarity as edge weights to make more relevant

terms rank in top positions (step 2). Then we elaborate how

WordNet based concept similarity can potentially make words

denoting more abstract concepts obtain higher scores (step

2). Finally, we introduce the rationale of scoring multi-word

requirements terms by averaging the words’ scores (step 4).

In step 2, for the relation connecting word vertices, we

employ word semantic similarity other than the commonly

used co-occurrence [10]. The rationale behind this selection

is that co-occurrence relation prefers scoring frequent words

higher [19] while words with low frequency would warrant

a precise definition for the requirements terms containing

them [12]. Therefore, relying on co-occurrence or frequency

may underestimate some important requirements terms with

low socres caused by the infrequent but informative words

in them, which may lower their ranking and thus need more

human efforts to find them.

Furthermore, in step 2, we try WordNet-based conceptual

semantic similarity to denote edge weights so as to make

abstract requirements terms have a higher ranking than those

specific ones. This edge weight design is mainly stemming

from the fact that feature model is a hierarchical diagram

that visually depicts the features of a solution in groups of

increasing levels of detail.

WordNet5 is a large lexical database of English. Nouns,

verbs, adjectives and adverbs are grouped into sets of cogni-

tive synonyms (synsets), each expressing a distinct concept.

Synsets are arranged into hierarchies. The most frequently

encoded relation among synsets is the super-subordinate rela-

tion (i.e., IS-A relation), which links more general synsets to

increasingly specific ones. WordNet based similarity methods

usually rely on the structure of the semantic network with the

shortest path length between concepts in the hierarchy as an

important consideration [22].

Under the setting of using WordNet-based concept similarity

to denote edge weights in TextRank, more abstract words tend

to obtain higher scores due to their higher similarity with other

concrete words and the scoring mechanism of TextRank. For

example, in Figure 4, “person” acts like a hyperonymy of other

5https://wordnet.princeton.edu/

Fig. 4. Example edge weights between word vertices in TextRank

three more concrete related words and has links with higher

weights denoted by WordNet-based similarity scores. Accord-

ing to the socring mechanism underlying TextRank [19], when

one vertex links to another one, it is basically casting a vote

for that other vertex. The link weight reflects the importance

of that vote. The higher the number of important votes that

are cast for a vertex, the higher the importance of the vertex.

Therefore, “person” would obtain a higher score than the other

three related words after the TextRank runs to completion.

Besides indicating link importance, link weight could also be

used to determine if a link should be established between two

vertices by being compared with a pre-defined threshold, e.g.,

θ in Algorithm 2. If the threshold is set to 0.4, there will be

only two edges left in the word graph in Figure 4.

In step 4, we score a term by averaging the scores of words

in it as follow:

Score(T ) =
1

|{w|w ∈ T}|
∑

w∈T

1

rw
× S(w) (2)

where T is a requirements term, w is a word in T , S(w) and rw
are the score and ranking of word w from TextRank seperately.

When scoring the requirements terms, we consider the name

characteristic of elements in feature models. As levels of de-

tails increase, the element nodes in feature models usually are

attached with not only more specific but also probably longer

names to describe the sub-features more precisely. For terms

describing similar domain concepts, the longer requirements

terms typically contain some modifiers and concrete words.

Those words tend to have lower scores since they usually

have fewer higher weights with other word vertices (i.e., fewer

important votes from other vertices) in TextRank’s word graph.

Therefore, after averaging the scores of words in a term as

equation (2), longer terms with more modifier and specific

words tend to have lower scores. In particular, the word score

S(w) is weighted by the reciprocal of its ranking. This design

aims to make similar terms with different abstraction levels

appear in close positions of the ranking list, which is similar
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to clustering. As the link weight threshold increases, the word

graph might become a non-complete graph where some word

nodes would become isolated vertices. Those isolated vertices

would not have a ranking and would be assigned a small score

(e.g., the reciprocal of the size of vocabulary, 1
|Sword| ) since

they do not involve the TextRank’s optimization. When scoring

terms containing isolated words with formula (2), the scores

of those isolated words would not be weighted. Consequently,

the scores of similar terms with different abstraction levels

would not differ too much.

For instance, in smart home domain, terms “control”, “re-

mote control”, and “remote control opener” describe hier-

achical domain concepts, their scores and rankings would be

descending, because the modifier and specific words “remote”

and “opener” are very likely to obtain lower scores than the

more abstract word “control” under the scoring mechanism

of TextRank. After averaging word scores, the longer and

more concrete term would have a lower score than the shorter

and more abstract one. But words “remote” and “opener”

might further be isolated nodes whose scores would not be

weighted in equation (2), thus those three terms’ scores and

their rankings would not differ too much. Therefore, those

three terms would appear in close positions in the ranking

list.

III. EXPERIMENTAL SETTINGS

In this section, we introduce the dataset, ground truth,

baselines, evaluation measures, and two types of semantic

similarity used in step 2 of the terms ranking module.

For dataset, we select smart home requirements [23; 24]

created by 300 workers on Amazon Mechanical Turk platform

for two reasons. Firstly, the dataset is publicly available6. Sec-

ondly, ground truth on requirements terms has been provided

by previous work [25; 26] for a subset of the dataset (the

first 100 requirements), which facilitates the evaluation and

comparison between our method and other baselines. There

are 2966 requirements in total with each requirement being

expressed as a user story as in Figure 2.

For ground truth, [25] and [26] annotate different re-

quirements terms for the same first 100 requirements of the

above dataset. We compare our extraction method and YAKE

with Hybrid1 [25] and Hybrid2 [26] on the corresponding

ground truth separately. The main difference between those

two ground truth is that [25] annotated requirements terms in

the role part of user stories (i.e., the As a ..., part in Figure 2)

while [26] did not. When evaluating different ranking methods

by counting the number of relevant ones in top positions, we

select the ground truth provided by [25] due to the fact that

the role part usually indicates a system’s various end users

that are essential to understand the problem domain and the

human-system interaction process.

For requirements terms extraction baselines, we select two

types of methods as follows:

6https://crowdre.github.io/murukannaiah-smarthome-requirements-dataset/

• Hybrid1: an approach combining linguistic processing

and statistical filtering for extracting and reducing re-

quirements terms [25].

• Hybrid2: an approach combining text chunking and se-

mantic filtering based on word embeddings for extracting

and reducing requirements terms [26].

• YAKE: an unsupervised general term extraction method

which rests on statistical text features extracted from

single documents [27]. We integrate the requirements

from which terms are extracted as a single document by

concatenation and use it as the input of this method.

The first two hybrid methods are both specially designed to

extract requirements terms from large scale requirements. The

third method is a state of the art for general terminology

extraction.

For requirements terms ranking baselines, we select four

terms ranking baselines derived from TextRank as follows:

• TextRank-original: the original TextRank which is pro-

posed by [19] and was used to rank keywords or sen-

tences constituting extractive summaries.

• SingleRank: a variant of TextRank which incorporates

weights to edges with word co-occurrence statistics [28].

• PositionRank: a variant of TextRank which tries to

capture frequent phrases considering the word-word co-

occurrences and their corresponding position in the

text [29]. As word position in the full document is an

important consideration of this method, we randomly

shuffle the test requirements statements to generate 100

documents as input and report the average results of the

100 experiments.

• MultipartiteRank: a variant of TextRank which repre-

sents term candidates and topics in a multipartite graph

and exploits their mutually reinforcing relationship to

improve candidate ranking [30].

The last three baseline methods are all extensions of TextRank

and are used to rank keywords in information retrieval. They

incorporate different types of information to TextRank, such

as statistical, positional, word co-occurrence, and topical in-

formation.

For evaluation measures, we select the commonly used

precision, recall, and F1-score to evaluate the performance

of terms extraction. For quantitatively evaluating the ranking

quality, we select Average Precision (AP) [31] which takes

the ordering of a particular returned list of terms into account.

Higher AP means that there are more relevant terms at the top

of the returned list. The AP of a returned list is defined as

follows:

AP =

∑|L|
r=1 P (r) · rel(r)

|LR| (3)

where |L| is the number of items in the list, |LR| is the number

of relevant items, P (r) is the precision when the returned list

is treated as containing only its first r items, and rel(r) equals

1 if the rth item of the list is in the answer set and 0 otherwise.
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For semantic similarity, we select the pre-trained GloVe

word embeddings7 for vectorizing words and the cosine

similarity for measuring word similarity. For computing the

WordNet-based similarity, we select the wpath [21] method,

which weights the shortest path length between concepts

in WordNet using information content computed based on

knowledge graphs and outperforms other concept similarity

methods on well known word similarity datasets. For the

implementation of the wpath method, we employ the sematch

toolkit8 provided by the original paper.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

To answer the research questions, we firstly report and

discuss the experiment results of requirements terms extraction

and ranking. Then we conduct qualitative analysis of the

ranked term lists produced by different ranking methods.

Finally, we build an illustrative feature model in the smart

home domain to further demonstrate the potential usage of our

ranking method in aiding feature modeling. All experimental

materials (data and codes) are publicly available9.

A. Requirements Terminology Extraction

RQ1: How effectively does our noun phrase identification
method extract requirements terms compared with baselines
for requirements terminology extraction and general terminol-
ogy extraction?

Hybrid1 [25] and Hybrid2 [26] separately manually labeled

250 oracle requirements terms for the same first 100 require-

ments in the smart home dataset. Table I and Table II show

the comparison results between our NP method and other

baselines on these two different oracles. Main results drawn

from the tables and explanations are summarized as follows:

• Our NP method performs better than YAKE consistently

with respect to the two oracles. For either of the two

oracles, YAKE yields the worst results in terms of the

three accuracy measures. This undesirable result can be

attributed to the fact that general-purpose NLP tools are

not suitable for directly applying on RE tasks without

being adapted according to the goal and characteristic of

the underlying task [7; 12].

• Compared with other baselines, our method extracts the

most number of relevant requirements terms, achieving

the highest recalls, 82.8% and 80.40% on the two oracles

respectively. Nearly 20 extra relevant terms are returned

by our method than the two hybrid methods due to

our fewer filtering heuristics. Our heuristics only filter

the obviously inappropriate noun phrases that are too

short or only include stopwords. YAKE employs n-grams

as candidate terms without further lexical and syntactic

analysis leading to the lowest recalls, less than 50% on

the two oracles.

• The cost of our method’s high recall is sacrificing partial

precision compared with two hybrid baselines since our

7https://nlp.stanford.edu/projects/glove/
8https://gsi-upm.github.io/sematch/
9https://figshare.com/s/9002ed3093971325a438

TABLE I
REQUIREMENTS TERMS EXTRACTION RESULTS ON ORACLE1

Method Total Relevant Precision Recall F1
NP (Ours) 288 207 71.88% 82.80% 76.95%
Hybrid1 255 187 73.33% 74.80% 74.06%
YAKE 250 107 42.80% 42.80% 42.80%

TABLE II
REQUIREMENTS TERMS EXTRACTION RESULTS ON ORACLE2

Method Total Relevant Precision Recall F1
NP (Ours) 271 201 74.17% 80.40% 77.16%
Hybrid2 218 183 83.94% 73.20% 78.21%
YAKE 250 102 40.80% 40.80% 40.80%

method returns the most number of terms (see the Total

column). Though there is a little loss on oracle1, larger

precision loss occurs on oracle2 where Hybrid2 only

returns 218 (<250) terms limiting its recall upper bound

being 87.2% (218/250). However, for requirements terms

extraction, recall is more important than precision. Find-

ing the omitted terms from raw requirements documents

needs much more efforts than excluding some noisy terms

from the returned list.

• Taking both precision and recall into account, our method

outperforms Hybrid1 and YAKE while is comparable to

Hybrid2 in F1 score. Moreover, our method is more light-

weight than those two hybrid methods. In addition to

NLP processing, Hybrid1 and Hybrid2 also need domain-

specific reference corpus (the whole requirements dataset

including the unlabeled ones and Wikipedia crawling

corpus separately) to construct complex statistical and

semantic filters. In contrast, our extraction method only

relies on constituency parsing and simple filtering heuris-

tics, increasing its generality and portability potentially.

Answer to RQ1: based on our initial experimentation,
our method outperforms the general terminology extraction
baselines in precision and recall. Compared with other re-
quirements terms extraction baselines, our method achieves a
higher recall without sacrificing much precision.

B. Requirements Terms Ranking

RQ2: How effectively does our adaption of TextRank rank
more relevant terms in the top positions compared with other
TextRank variants?

With a flat list of extracted requirements terms at hand, we

go a step further to rank them. Ranking relevant terms at the

top of the list would substantially reduce the analysts’ noise

filtering efforts. We thus quantitatively evaluate the ranking

quality of our adaption of TextRank and other TextRank

variants.

The input of terms ranking methods is the returned require-

ments terms list by our NP identification method. To evaluate

the ranking quality, we select oracle terms provided by [25]

as ground truth (i.e., Oracle1), which includes requirements

terms in the role part of user stories. As there are totally
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TABLE III
TERMS RANKING COMPARISON RESULTS BETWEEN ORIGINAL

TEXTRANK AND OUR ADAPTED TEXTRANK

Method Relevant Recall AP
TextRank-original 166 66.40% 65.75%

TextRank-embedding (Ours) 178 71.20% 59.13%
TextRank-wpath (Ours) 185 74.00% 70.23%

Note: AP denotes average precision defined by formula (3).

250 requirements terms in Oracle1, we compute the recall and

average precision for the first 250 terms returned by each rank

method.

TextRank-embedding and TextRank-wpath denote our adap-

tion of TextRank as shown in Algorithm 2. The only difference

of these two methods is the edge weights in the word graph,

where word embedding cosine similarity and WordNet based

concept similarity are employed separately.

Table III shows the terms ranking comparison results

between original TextRank and our two adapted TextRank

methods. Generally, TextRank-wpath outperforms the orig-

inal TextRank and TextRank-embedding in terms of recall

and average precision. Specifically, TextRank-wpath achieves

a recall of 74% (7.6% more than TextRank-original) and

an average precision of 70% (4.25% more than TextRank-

original) demonstrating that our adaption of TextRank is

effective in ranking more relevant terms in the front positions.

Though obtaining a recall increase (4.6%) compared with the

original TextRank, TextRank-embedding loses more (6.75%)

in average precision, causing its lower ranking quality.

It should be noticed that the results of our two methods

in Table III are produced with complete graphs. In other

words, there is an edge between every two distinct words in

the graph built in Algorithm 2. As noted in Subsection II-B,

pre-defined similarity threshold can be selected to determine

whether drawing an edge between two words so as to build

an incomplete graph. For example, if the threshold is set to

0.5, only the similarity score is more than 0.5 between two

words, an edge is drawn to connect those two words with the

similarity score being the edge weight.

For both of our two ranking methods, we experimentally

select the best similarity threshold with the changing step as

0.1. The recall and AP of TextRank-embedding and TextRank-

wpath along with different similarity thresholds are shown in

Figure 5 and Figure 6 respectively. When selecting the best

threshold, we prefer to ensure a high recall firstly and then

pursue an AP as high as possible. As can be seen from Figure 5

and Figure 6, the recalls of both methods are relatively stable.

With the threshold increasing, AP of both methods shows

an upward trend in general. Consequently, 0.6 is selected for

both TextRank-embedding and TextRank-wpath to balance the

recall and AP.

After fine-tuning the similarity thresholds, we further com-

pare our methods with other TextRank variants which use the

best settings stated in the original papers. The comparison re-

sults are shown in Table IV. Our TextRank-wpath achieves the

highest recall of 74% with the similarity threshold being 0.0

Fig. 5. Ranking quality of TextRank-embedding along with different simi-
larity thresholds

Fig. 6. Ranking quality of TextRank-wpath along with different similarity
thresholds

or 0.6. It is worth noting that TextRank-wpath with complete

graph setting (i.e., threshold = 0.0) is one of four methods

achieving an AP higher than 0.7. This means that TextRank-

wpath can produce competitive ranking results even without

any fine-tuning. Compared with other TextRank variants, both

of our methods achieve a relatively higher recall. The recalls

of other variants are all less than 70% while both our two

methods with or without fine-tuning obtain a recall higher than

70%. Among the four methods with AP exceeding 0.7, Multi-

partiteRank achieves the highest AP of 75.85% while the other

three methods are all our adaptions of TextRank. Although

MultipartiteRank gains 3.4% improvement than TextRank-

wpath in AP, it loses more (4.8%) in recall.

Answer to RQ2: our TextRank-wapth method outperforms
most TextRank variants in ranking more relevant terms in
the top positions except for MultipartiteRank. Our TextRank-
embedding can also return competitive ranking results with a
proper similarity threshold.

C. Qualitative Analysis of Different Term Rank Lists

RQ3: How to use the ranked term list produced by our
adaptation of TextRank to help the construction of feature
models?
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TABLE IV
TERMS RANKING COMPARISON RESULTS BETWEEN THREE TEXTRANK

VARIANTS AND OUR ADAPTED TEXTRANK

Method Relevant Recall AP
TextRank-original 166 66.40% 65.75%

TextRank-embedding0.0 (Ours) 178 71.20% 59.13%
TextRank-wpath0.0 (Ours) 185 74.00% 70.23%

TextRank-embedding0.6 (Ours) 180 72.00% 71.68%
TextRank-wpath0.6 (Ours) 185 74.00% 72.45%

MultipartiteRank 173 69.20% 75.85%
SingleRank 169 67.60% 67.68%

PositionRank 168 67.20% 66.48%

Note: (1) the number subscripts in our methods’ names denote the
similarity thresholds used in building word graphs; (2) AP denotes
average precision defined by formula (3).

To qualitatively analyze ranking results, Table V lists the

top 20 terms returned by different ranking methods with bold

ones being in the Oracle. The results in Table V are basically

consistent with those in Table IV when only considering the

number of relevant terms.

When analyzing the content characteristics of those different

term lists further, some meaningful insights can be drawn. The

terms returned by TextRank-original and SingleRank are too

homogeneous with most terms including the highly frequent

words “smart” and “home”. These results are attributed to the

fact that co-occurrence and frequency are essential factors in

constructing edge weights in those two methods. Most terms

returned by TextRank-embedding and TextRank-wpath are

short due to the average operation in the term scoring equation.

For TextRank-embedding, the number of relevant terms in top

20 is the least which is in accord with its lower AP in Table IV.

Though considering topic information when building the word

graph, the terms returned by MultipartiteRank are dispersed

without obvious structure.

In contrast, for similar domain concepts, TextRank-wpath

could rank more abstract terms in the front of those more

concrete ones, which is similar to the hierarchy structure of

feature models. As can be seen in the TextRank-wpath column

of Table V, the top 4 terms summarize several fundamental

elements of the smart home requirements. The first one is

system user with different roles, such as home owner, pet
owner, music fan etc. The term “person” is a generalization

of those roles in concept. As most functions of smart home

focus on intelligent control via various smart devices, e.g.,

smart window cleaner to clean windows automatically, smart
coffee machine controllable from mobile to prepare coffee in
the morning. The term “control” summarizes the key point

of various smart features while the term “device” generalizes

various specific tools implementing those smart features. More

specific terms related to the above ones are all ranked be-

hind, e.g., “health conscious person”, “smart device”, “remote

control”, “remote control opener”. The more concrete term

“room” is also ranked behind the more general one “place”.

Furthermore, most of the relevant terms appearing in the

TextRank-original column and SingleRank column are more

specific instances of “person” and “smart device”. TextRank-

wpath does not generate very specific terms in the top 20 list

due to its application of conceptual similarity and the average

operation in the term scoring equation.

In summary, the qualitative comparison of different term

rank lists shows that the content characteristics stem from

different settings of ranking methods. Requirements analysts

could pick the suitable ranking method in line with the task

at hand. For instance, the result of MultipartiteRank could be

further clustered for building requirements glossary due to its

higher average precision. The result of TextRank-wpath could

provide some useful insights on feature modeling due to its

implicit hierarchy structure.

For further exploring the practical usefulness of the

TextRank-wpath ranked list in feature modeling, we build an

illustrative feature model for the smart home domain.

Specifically, we apply the extended context-aware feature

modeling (eCFM) [32] to model the smart home domain.

Because a smart home usually employs dynamically adaptable

software (DAS) that uses sensor devices to identify context

changes in the home and can activate or deactivate home

automation features such as temperature control. eCFM is

chosen for its ability to create a correct and expressive model

for developing DAS.

The third author is responsible for building the eCFM of

smart home application via analyzing the first 100 require-

ments and being provided with the ranked term list returned by

TextRank-wpath. The third author is a postgraduate majoring

in software engineering and not involved in the terms extrac-

tion and ranking work. After feature modeling, we interview

the third author and query if the provided term list was helpful

in feature modeling and how it facilitated the process. The

feedback is that the top ranked terms gave some insights on

determining the high-level elements of the feature diagram

and the names of hierarchical features could be easily selected

from the ranked list.

Figure 7 displays the eCFM built for smart home appli-

cation, where the highlighted nodes are not present in the

top 250 term list returned by TextRank-wpath. There are

five main parts in this eCFM: functional requirements (left

part), variability information specified as feature relationships

(e.g., mandatory, optional), context information (right part),

adaptation rules specified as dependencies among features and

context (e.g., require, exclude), and users interacting with the

system and context. As can be seen from Figure 7, functional

features, context, and system users are all expressed in a

hierarchical tree structure with increasing detailed description

from roots to leaf nodes, which is similar to the implicit

hierarchy structure contained in the TextRank-wpath result

term list.

Answer to RQ3: the term list of our TextRank-wpath has
an implicit hierarchy structure that is similar to the hierarchy
structure of feature models and could potentially facilitate
the name selection of hierarchical elements during feature
modeling.
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TABLE V
TOP 20 REQUIREMENTS TERMS RETURNED BY DIFFERENT RANKING ALGORITHMS

Rank TextRank-original TextRank-embedding TextRank-wpath MultipartiteRank SingleRank
1 smart home need person smart home smart home
2 smart carbon monoxide detector heating activity parent home occupant
3 smart window cleaner thing device pet owner home owner
4 smart breakfast appliance kitchen item control night full home sport experience
5 smart touchscreen tv smartphone health conscious person room home door
6 smart coffee machine heater area window fan home resident
7 full home sport experience room case home home turn
8 integrate smart electronic day work home owner home
9 smart appliance sound smart device door smart carbon monoxide detector

10 home owner well overall health issue plant smart window cleaner
11 smart device kid young child movement music smart breakfast appliance
12 smart feature specific sound key long day smart touchscreen tv
13 smart thermostat oven remote control video feed smart coffee machine
14 smart shower certain light picture time integrate smart electronic
15 smart lock child family mood smart device
16 etc . home resident well light house remote control opener tv fan smart appliance
17 home door door place person smart shower
18 home occupant long day room comfort smart thermostat
19 automate music system good way add measure alarm smart lock
20 music fan house light work smart feature

Fig. 7. The eCFM for smart home application
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V. THREATS TO VALIDITY

A threat to construct validity is that there are two require-

ments terms ground truth sets provided by previous work under

different considerations. To reduce the influence on evaluation,

we compare our extraction method with other baselines on the

two different ground truth separately. Another threat is that

our assessment of the helpfulness of ranked terms on feature

modeling is mainly qualitative with an illustrative feature

model manually built on a relatively small set of crowd-elicited

requirements. The crowd-elicited user stories are not coming

from real industrial settings, which need to be further refined

for creating a more practical feature model. Those intrinsic

characteristics of the experiment data might have an impact

on the reliability of our conclusions.

We believe the internal validity is high in that the factors

potentially affecting the performance of term extraction and

ranking are under our direct control. The only hyper parameter

is the similarity threshold used to build the word graph and

its influence on ranking quality has been analyzed in detail

in Section IV-B. Another factor worth noting is that we

only use the first 100 requirements other than all to model

the smart home domain. The requirements in the crowd RE

dataset are independent among each other and the first 100

requirements cover the four main application domains of

the dataset (i.e., energy, entertainment, health, and safety).

Therefore, the feature model built based on this requirements

subset can be reasonably used to investigate the usefulness of

our ranked term list.

A threat to external validity is that our evaluation results

may not generalize to other subject systems or other domains.

It is valuable to explore more software applications beyond

smart home in real industry context.

VI. RELATED WORK

NLP techniques and ML algorithms have been widely used

in a series of RE activities through mining various software

repositories and artifacts [7; 33]. Our work in this paper is

related to research topics on both NLP and RE.

The NLP and ML methods used in our framework are firstly

related to the terminology extraction research in the NLP

community. Inspired by the two-phase pipeline (extraction and

ranking) commonly adopted by unsupervised keywords identi-

fication methods [10], we design our requirements terminology

extraction and ranking modules based on the characteristics of

requirements statements. Specifically, we employ constituency

parsing based NP identification for terminology extraction

motivated by early exploration on linguistic properties of tech-

nical terminology [14; 34]. Because TextRank is unsupervised

and has been widely proved to be effective in ranking text [35–

38], we adapt it to rank requirements terms for supporting

problem domain understanding and feature modeling.

For RE task, we select domain feature modeling inspired by

[9] where statistical language engineering techniques are em-

ployed to analyze ethnographic fieldnotes for supporting early

domain understanding with class diagrams. Much research

effort has been made to provide automated [39], visual [40;

41], and collaborative [42] support for building various RE

models, e.g., variability models [43; 44] and software product

line feature models [45; 46]. What differs our work from them

is that our extraction and ranking framework can also be easily

tuned to support other settings other than feature modeling as

discussed in Section IV-C.

In contrast to existing requirements term extraction work by

[25] and [26], our work not only extracts a flat list of terms

from requirements documents but also goes a step further

to rank terms for reducing noise filtering efforts and aiding

analysts in feature modeling. Besides, our extraction module

does not rely on large scale domain specific corpora like

[25] and [26], making it more general and lightweight. What

contrasts our work from the work by [12] is that we focus on

problem domain understanding and feature modeling instead

of constructing a formal glossary that includes definitions,

synonyms, related terms, and example usages.

VII. CONCLUSION

In this paper, we have proposed an automated require-

ments terminology extraction and ranking framework built on

syntactic analysis and an unsupervised graph-based ranking

algorithm. Empirical results demonstrate the effectiveness of

our automated framework, and an illustrative example on the

smart home domain shows the usefulness of our ranked term

list in assisting feature modeling.

There are several valuable avenues to extend our work in

the future. Hierarchical agglomerative clustering could be in-

tegrated into TextRank to generate a more explicit hierarchical

structure of terms. Other concept similarity, e.g., knowledge

graph based similarity could be explored for improving the

terms ranking quality. Finally, other NLP techniques like

semantic analysis, relation extraction could be employed to

identify the relationships and constraints in feature models.
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Alı́pio Jorge, Célia Nunes, and Adam Jatowt. Yake!

keyword extraction from single documents using multiple

local features. Information Sciences, 509:257–289, 2020.

[28] Xiaojun Wan and Jianguo Xiao. Single document

keyphrase extraction using neighborhood knowledge. In

AAAI, volume 8, pages 855–860, 2008.

[29] Corina Florescu and Cornelia Caragea. Positionrank:

An unsupervised approach to keyphrase extraction from

scholarly documents. In Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1105–1115, 2017.

[30] Florian Boudin. Unsupervised keyphrase extraction with

multipartite graphs. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Association

62

Authorized licensed use limited to: University of Cincinnati. Downloaded on August 15,2023 at 12:37:51 UTC from IEEE Xplore.  Restrictions apply. 



for Computational Linguistics: Human Language Tech-
nologies, Volume 2 (Short Papers), pages 667–672, 2018.
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