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Abstract—During software evolution, developers often receive
new requirements expressed as feature requests. To implement
the requested features, developers have to perform necessary
modifications (refactorings) to prepare for new adaptation that
accommodates the new requirements. Software refactoring is
a well-known technique that has been extensively used to im-
prove software quality such as maintainability and extensibility.
However, it is often challenging to determine which kind of
refactorings should be applied. Consequently, several approaches
based on various heuristics have been proposed to recommend
refactorings. However, there is still lack of automated support
to recommend refactorings given a feature request. To this end,
in this paper, we propose a novel approach that recommends
refactorings based on the history of the previously requested
features and applied refactorings. First, we exploit the state-
of-the-art refactoring detection tools to identify the previous
refactorings applied to implement the past feature requests.
Second, we train a machine classifier with the history data of the
feature requests and refactorings applied on the commits that
implemented the corresponding feature requests. The machine
classifier is then used to predict refactorings for new feature
requests. We evaluate the proposed approach on the dataset
of 43 open source Java projects and the results suggest that
the proposed approach can accurately recommend refactorings
(average precision 73%).

Index Terms—Feature Requests, Machine Learning, Refactor-
ings Recommendation, Software Refactoring.

I. INTRODUCTION

Software systems continuously change and evolve to adapt

new requirements and accommodate new components. Change

of requirements is inevitable as the business and stakeholder

demands continuously evolve. As a result, software systems

constantly need to be maintained in order to continue sat-

isfying their intended objectives. During software evolution,

developers often receive new requirements expressed as fea-

ture requests. To implement the requested features, developers

often perform necessary modifications (refactorings) to prepare

their systems to accommodate the new requirements [1].

Software refactoring is a well-known technique that has been

extensively used to improve software quality by applying

changes on internal structure that do not alter its external

behaviors [2].

Soares et al. [3] state that refactorings are most commonly

applied for a particular reason such as implementing a feature

*Corresponding author: Hui Liu (liuhui08@bit.edu.cn)

or bug fixing, than in the dedicated refactoring sessions aiming

at evolving the software design. The recently conducted empir-

ical study to determine the motivation behind refactoring found

that refactoring activity is mainly motivated by the changes

in the requirements and much less by code smell resolution

[4]. Moreover, Silva et al. [4] suggest that there is a need

for the refactoring recommendation systems to recommend

suitable solutions to facilitate maintenance tasks especially the

implementation of the feature or bug fix requests.

Usually, in order to improve the next releases of software,

developers of most software systems, particularly open source

projects, allow users to report the issues (i.e., new feature and

bug fix requests). The common and dominant way to track

and manage the reported issues is the use of issue tracking

systems e.g JIRA [5], Bugzilla [6], and GitHub Issue Tracker

[7]. Issue trackers allow for discussing a feature request,

assigning request to developers, and tracking the status of

the request [8]. Given the requirements expressed in such

feature requests, developers often need to locate the source

code that should be modified to allow the implementation

of the requested feature. As a result, several techniques have

been proposed to leverage feature requests to allow locating

(e.g., based on requirements traceability and text similarity)

and recommending software entities (e.g., API methods) that

can be used to implement the feature [1], [9], [10]. However,

to the best of our knowledge, there is still lack of automated

support to recommend refactorings during the implementation

of feature requests.

To this end, in this paper we propose a machine-learning-

based approach that recommends refactorings based on the

history of the previously requested features and applied refac-

torings. The proposed approach learns from the training dataset

associated with a set of applications and can be used to suggest

refactorings for feature requests associated with other appli-

cations (or new feature requests associated with the training

applications). Our approach involves two classification tasks:

first a binary classification that suggests whether refactoring

is needed or not for a given feature request, and then a

multi-label classification that suggests the type of refactoring.

Notably, the proposed approach suggests refactoring classes

only and it does not point to the locations in the codebase

for the recommended refactoring. In practice, it could be

integrated with other approaches/tools that could suggest such
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locations, and thus makes complete refactoring suggestions.

The proposed approach also helps developers pick up proper

refactoring tools by suggesting refactoring classes.

The past feature requests and their associated commits

(from which refactorings are detected) are retrieved from

the corresponding issue trackers and software repositories

respectively. Normally, each feature request can be linked to

the corresponding source code commits to identify the types of

refactorings applied on such commits. The previously applied

refactorings are recovered from the corresponding software

repositories by using the state-of-the-art refactoring detection

tools, e.g., Ref-Finder [11], RefactoringCrawler
[12], RefDiff [13], and RMINER [14].

The proposed approach is evaluated on the dataset of 43
open source Java projects altogether consisting of 13, 550
commits from GitHub repository and 13, 367 feature requests

from JIRA issue tracker. The evaluation results suggest that,

the proposed approach can accurately recommend refactorings

and attain an average precision of 73%.

The major contributions of this paper include:

(1) A new automated approach to recommend refactoring

solutions given a feature request based on the history of the

previous feature requests and applied refactorings from a set

of applications. Such applications could be different from the

one where refactorings are recommended.

(2) Evaluation results of the proposed approach on the

refactorings and feature requests history data suggest that

the proposed approach can accurately recommend refactorings

given a new feature request.

The rest of the paper is organized as follows. In Section

II we review the work related with our research. Section

III presents our recommendation approach. We evaluate the

proposed approach and discuss threats to validity of our results

in Section IV. We finally conclude our paper and state the

future work in Section V.

II. RELATED WORK

Software development and maintenance activities often in-

volve changing the internal structure of the software systems

without affecting their observable behaviours. Such kind of

source code transformation is called refactoring [2], [15]. Soft-

ware refactoring aims at remedying software design flaws and

improving software quality, especially reusability, maintain-

ability, and extensibility [16]. Consequently, refactoring makes

the source code easier to maintain, understand and adapt to

new requirements [17]. Refactoring has long been practiced as

a technique to resolve design flaws in source code commonly

known as code smells. Detecting code smells and applying rel-

evant refactorings especially in large and non-trivial software

systems is often challenging [18]. Consequently, extensive

research has been devoted to develop tools and techniques

to automatically detect code smells, recommend refactorings,

and apply them. Such tools as JDeodorant [19], iPlasma [20]

and DECOR [21], make software refactoring efficient and less

error-prone. Refactoring recommendation aims at facilitating

developers in identifying refactoring opportunities (i.e., code

smells), selecting and executing optimal refactorings promptly.

Refactoring recommendation systems should be tailored to

address the real needs of software developers and help to

effectively promote the practice of refactoring by recommend-

ing refactoring solutions that facilitate maintenance-oriented

tasks [4]. Among the key techniques that have been used

in recommending refactorings include source code metrics

[22], [23], software change history [24], [25], search-based

approaches [26], [27], requirements traceability [1], [28] and

machine learning techniques [17], [29]. However, to the best

of our knowledge there is still lack of automated support

to recommend refactoring solutions based on past feature

requests. Historical data is essential in producing quality

code to evolve software systems [30]. Next, we review some

research related to our work.

Our work is inspired by the earlier work proposed by

Niu et al. [1]. The authors in [1] proposed a traceability-

based refactoring recommendation approach to ensure that the

requested requirements are fully implemented. Their approach

leverages requirements traceability between the requirements

under development and the implementing source code to

accurately locate where the software should be refactored.

To determine what types of refactorings should be applied,

the authors developed a new scheme that examines the re-

quirements semantics as they relate to the implementation,

and then semantic characterization is leveraged to detect code

smells that may hinder the fulfillment of the requirements.

Consequently, refactorings are recommended to resolve the

identified code smells. The key difference of the approach

in [1] with our proposed approach is on how to recommend

refactoring solutions, though both approaches rely on feature

requests (requirements) to recommend refactorings. The pro-

posed approach leverages previous feature requests and their

associated applied refactorings to predict refactorings for the

implementation of the current feature request, whereas Niu

et al. [1] only work with current feature request as input and

recommend refactorings that ensure full implementation of the

requested feature. Moreover, the proposed technique in [1]

is based on manual analysis of requirements action themes

which are consequently used to recommend refactoring. Ac-

tion theme refers to the intended action (e.g., Add, Enhance,

Remove) to be taken to implement a feature such as enhancing

a quality attribute. Manual analysis is often tedious and error-

prone. Our work implements an automated recommendation

approach.

Nyamawe et al. [28] proposed a refactoring recommen-

dation approach which is based on requirements traceability

and source code metrics. The approach in [28] leverages

the traceability between requirements and source code to

determine how best source code elements can be arranged

and consequently recommend refactorings that will lead to

improved traceability and source code metrics e.g., cohesion

and coupling. Traceability has a great role to play in delivering

a quality software. An empirical study conducted by Rempel et
al. [31] suggests that, requirements traceability completeness

greatly decreases the expected rate of defects in the developed
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software. Both approaches in [1] and [28] do not take into

consideration the past applied refactorings during their recom-

mendation process. Moreover, the proposed approach differs

from [28] in that the former is learning based whereas the

latter is not.

In line with facilitating developers during maintenance task

especially when implementing feature requests, Thung et al.
[9] proposed an approach to recommend API methods given

a feature request. Their approach takes as input the textual

description of a new feature request and recommends methods

from API library that a developer can use to implement

a feature. The proposed approach learns from the training

dataset of the past resolved or closed feature requests and

changes made to a software system recorded in issue trackers

and software repositories respectively. Then, the past similar

feature requests are retrieved along with the relevant methods

used to implement them. The approach then learns a rank-

ing function and consequently recommends the potential and

relevant library methods to the developer. This approach is

different from ours in the sense that, based on feature request

they recommend API methods to the developer, whereas the

proposed approach recommends refactoring solutions.

Moreover, machine learning techniques have demonstrated

promising contribution in the field of software refactoring.

Several approaches have been proposed to leverage machine

learning to detect refactoring opportunities and recommend

refactorings. For example, Liu et al. [29] recently proposed a

deep learning based approach for feature envy code smell de-

tection. Their approach trains a neural network based classifier

with the training samples (generated automatically) consisting

of the methods with or without feature envy. The classifier

outputs whether the input method from a given class envies

another class. Furthermore, the resulting neural network is

used to predict whether a method should be moved to any

of the identified class. In addition, Xu et al. [17] proposed a

machine learning based approach that learns a probabilistic

model to recommend Extract Method refactorings. The

proposed approach extracts structural and functional features

from software repositories which encode the concepts of

complexity, coupling, and cohesion. Based on these features

the approach learns to extract appropriate code fragments from

a source of a given method. The proposed approach called

GEMS is developed as an Eclipse plug-in for Java programs. Xu

et al. [17] contend that, usually human involvement is required

in identifying true refactorings which often leads to the use of

small-sized datasets for efficiency. However, to allow working

on large datasets and ensure correct recommendations, the de-

ployment of machine learning based approaches is inevitable.

These approaches differ from our proposed approach as they

do not use feature requests in their recommendation.

III. APPROACH

The framework of the proposed approach is analyzed in Fig.

1. First, we extract the feature requests from the issue tracker

and their corresponding commits from a software repository.

Second, by using the state-of-the-art refactoring detection tools

Fig. 1. Refactoring Recommendation Approach.

we recover refactorings applied in the retrieved commits. Next,

we apply the preprocessing on the retrieved feature requests.

Finally, we train the machine-learning-based classifier which

is then used to predict refactorings for a new feature request.

In the following we elaborate each of these steps in detail.

A. Feature Requests and Commits Extraction

Software users are usually allowed to request for the new

feature or enhancement of the existing feature by submitting a

feature request. A feature request often requires some new

source code to implement the requirements that cannot be

satisfied by the current codebase. Generally, a feature request

contains several data fields including: unique request ID,

summary, description, resolution, etc. This study is concerned

with the data fields which are listed in Table I.

The feature requests for each of the subject applications that

have been addressed to completion (i.e., marked as “Closed”

or “Resolved”) are retrieved from the issue tracker. The

details (ID, Summary, and Description) of the retrieved feature

requests which are generally the free-form texts are stored

for further processing. Then, the repository of each subject

application (comprising of several commits) is cloned from

GIT repository to a local computer by using Eclipse. To speed

up the process of detecting refactorings the repositories of the

subject applications were first cloned to a local machine rather

than being cloned during the refactoring detection process.

Next, by using GIT bash commands [32] we retrieve all

commits identifiers of the commits that contain in their log

messages the specified feature request identifiers of the feature

requests we retrieved earlier. Finally, at this stage for each

feature request fr from the set of all feature requests FR is

such that:

fr =< frID, summary, description, commitID > (1)

where frID represents a unique feature request identifier,

summary is the title of a feature request, description is
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the detailed description of a feature request and commitID
is the unique identifier of a commit used to implement a

feature request. The identified commits are then inputted in

the next step to detect the applied refactorings. Note that, all

commits associated with a given feature request are retrieved

in order to identify all types of refactorings applied for such

feature request. That means a one-to-many association be-

tween feature requests and commits is taken into consideration.

However, in this study we only focus on the cases where the

links between the feature requests and commits are known

explicitly. In the future the state-of-the-art techniques can be

leveraged to generate missing links. For example, recently,

Rath et al. [33] proposed a machine-learning based approach

that trains a classifier to identify the missing issue tags in

commit messages and consequently generate the missing links.

B. Detection of Refactorings

To detect refactorings applied in the commits we leveraged

the state-of-the-art refactoring detection tools (RefDiff and

RMINER). RefDiff is an automated approach introduced by

Silva and Valente [13] to detect refactorings applied between

two source code revisions archived in GIT repository. The tool

uses the combination of heuristics based on static analysis

and code similarity to detect 13 common refactoring types.

Moreover, RMINER is a novel technique recently proposed

by Tsantatlis et al. [14] to mine refactorings from software

repositories. RMINER runs an AST-based statement match-

ing algorithm to detect 15 representative refactoring types.

These tools are selected because they can easily be used

as Eclipse plugins and proved to be effective in detecting

applied refactorings by comparing subsequent versions of the

program. The text file with the list of all commits identified

in the previous step is inputted to the refactoring detection

tool. For each commitID the tool detects refactorings applied

and then outputs the txt file with the list of commitID and

the associated refactorings. If the inputted commitID is not

returned in the output file, then such commit is considered

not to have any refactorings. At the end of this step for each

feature request fr from the set of all feature requests FR is

such that:

fr =< frID, summary, description, commitID, ref >
(2)

where ref represents the set of refactorings detected in a

commit. Note that, if no refactorings are detected then the

value of ref is set to null.

C. Text Pre-Processing

Text pre-processing is the key step which involves the

cleaning and preparing the data for classification, which

consequently improves the classification performance [34].

We leveraged text preprocessing techniques to transform the

feature requests (which are written in natural languages) into

a form suitable for textual analysis by using Python Natural

Language Processing Toolkit (NLTK) [35]. The texts which

are considered here are those from the summary and descrip-

tion fields of the feature requests. The applied NLP techniques

TABLE I
DATA FIELDS OF A FEATURE REQUEST.

Attribute Description

ID a number which uniquely identifies a feature request

Summary the summary or title of a request

Description the detailed description of a request

Status the current status of a request

Resolution the implementation status of a request

include tokenization, stop word removal, and lemmatization.

First, tokenization involves breaking up a document into a lists

of individual words (i.e., tokens). In this step some characters

such as numbers and punctuation are excluded as they do not

contain any useful information. Second, stop word removal

is applied, the common and frequently used words such as

“a”, “an”, “the”, “in”, and “is” are eliminated as they do

not carry any useful information and just introduce noise to

NLP activities. Finally, lemmatization is applied to convert

the words as they appear in the document back into their

common base form. This base form is usually referred to as

Lemma. This process reduces the number of tokens and hence

the complexity of NLP activities. In this study we use Porter’s

stemming [36] which implements suffix stripping algorithm for

lemmatization. Porter’s stemmer has been extensively used in

various software engineering researches [10], [37].

D. Vector Space Model

Vector space model is the representation of a set of doc-

uments as vectors in a common vector space [38]. In this

step, the preprocessed feature requests are converted into a

feature vector space model which represents the bag of words

extracted from feature requests as a vector of weights. The

weight of a word represents its importance in a document. To

quantify how important a word is to a document in a corpus

the term frequency (TF) and inverse document frequency (IDF)

are often used. We therefore use TF-IDF to represent features

in a feature vector. Suppose in our corpus D we have a term

t and a document fr, then Term Frequency TF (t, fr) defines

the number of times the term t appears in a document fr,

whereas Document Frequency DF (t,D) defines the number

of documents in the corpus that contain the term t. Here, a

corpus refers to the collection of all feature requests, whereas a

document and term refer to a single feature request (fr) and a

word (i.e., a token) respectively. Note that, Inverse Document

Frequency (IDF) is the reciprocal of the Document Frequency

(DF). Therefore, TF-IDF computes the weight w of a term t
in a document fr from corpus D as follows:

IDF (t,D) =
1

DF (t,D)
(3)

wt,fr,D = TF (t, fr)× IDF (t,D) (4)

The higher the value of the weight, the more important

the term is and has higher discriminating power between

documents.
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E. Training and Recommendation

The feature vectors obtained in the previous step are then

subject to the classifiers for training and prediction (i.e.,

recommending refactorings). The proposed approach lever-

ages the Logistic Regression (LR), Multinomial Naı̈ve Bayes

(MNB), Support Vector Machine (SVM), and Random Forest

(RF) classifiers. The classifiers have been implemented by a

well-known machine learning library based on python called

scikit-learn [39]. We have specifically selected such machine

learning algorithms because they are widely used and have

shown to be effective in text classification [40], [41]. We

generally model our text classification problem such that, we

have a description fr ∈ FR of a feature request, where

FR is the feature requests space; and a fixed set of classes

R = {r1, r2, ..., rm}. In our case here, classes are also referred

to as labels or refactorings. Suppose we have a training set T
of labeled feature requests (fr, r), where (fr, r) ∈ FR × R.

Our goal is to train a classifier or a classification function

f that maps feature requests to classes (i.e., recommending

refactorings): f : FR→ R.

To boost the training and recommendation performance,

our approach involves two classification tasks, i.e., binary and

multi-label classification. In the following we describe these

two tasks in details.

• Binary classification, at this first stage the classifier is

trained to determine whether refactoring is needed or

not. The input to the classifier is the feature requests

that required refactoring and those which did not require

refactoring. Then, the classifier categorizes a feature

request fr into a class c as function f such that:

c = f(fr), c ∈ {0, 1}, fr ∈ FR (5)

where c represents the classification result: 0 implies a

feature request fr does not require refactoring whereas

1 implies that refactoring is needed.

Consequently, the feature requests which are identified to

need refactoring will save as input to the next stage to

identify the types of refactorings required.

• Multi-label classification, after identifying the feature

requests that require refactoring, the multi-label classi-

fication is performed to predict the specific types of

refactorings which are required. Multi-label classifiers are

leveraged because a given feature request may involve

more than one type of refactoring. To train the classifier,

past feature requests (i.e., those identified to need refac-

toring) and the applied refactorings will save as input.

Consequently, the classifier categorizes a feature request

fr into a class c as function f such that:

c = f(fr), c ⊆ R, fr ∈ FR (6)

where c is the set of one or more refactorings.

Therefore, the classifiers are generally trained to determine

whether refactoring is required, if yes then they should predict

(i.e., recommend) the types of refactorings required for the

unseen feature requests.

IV. EVALUATION

In this section we present the evaluation of the pro-

posed approach which we refer to as FR-Refactor (Feature-

request-based refactoring). To evaluate the performance of

FR-Refactor in predicting the need for refactoring and rec-

ommending required refactoring types, we compared it with

the state-of-the-art approach proposed by Niu et al. [1]. In

the following, we first highlight the research questions that

this study is addressing. We then describe the dataset used in

our experiments. Next, the process and metrics used as the

basis of our evaluation are described. Finally, we present and

analyse the experimental results and conclude the section by

highlighting the threats to validity of our results.

A. Research Questions

The evaluation investigates the following research questions:

• RQ1: How accurate are different machine learning clas-

sifiers in predicting the need for refactoring?

• RQ2: How accurate are different machine learning clas-

sifiers in recommending required refactorings?

• RQ3: How accurate is FR-Refactor in predicting the need

for refactoring compared to the state-of-the-art baseline

approach?

• RQ4: How accurate is FR-Refactor in recommending

required refactorings compared to the state-of-the-art

baseline approach?

• RQ5: Can the proposed approach still obtain good results

on applications that are different from those involved in

the training?

The research questions RQ1 and RQ2 respectively concern

the performance evaluation of different machine learning al-

gorithms in identifying whether refactoring is needed or not

and in identifying which refactoring type is needed. RQ3
investigates the performance of FR-Refactor in predicting

if a given feature request would demand refactoring. To

answer RQ3 we compare FR-Refactor to the traceability-

enabled approach proposed by Niu et al. [1] which is based

on manual analysis of requirements semantics to recommend

refactorings. We selected this approach because, to the best

of our knowledge, it is the only existing approach which

is based on requirements to drive refactoring. The research

question RQ4 evaluates the accuracy of FR-Refactor com-

pared against the baseline approach [1] in recommending

refactorings. The accuracy of recommendation is essential in

providing useful (true positives) refactorings to the developers

rather than overloading developers with irrelevant refactorings.

RQ5 investigates how the proposed approach works when it

is applied to new applications that are different from those

involved in the training.

B. Dataset

We note that there exist a few publicly available and man-

ually validated datasets of refactorings mined from software

repositories [13], [14], [42]. However, these oracles contain

few representative refactorings and feature requests. For exam-

ple, the evaluation oracles used in [13] and [14] consist of 448
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TABLE II
THE DISTRIBUTION OF FEATURE REQUESTS (FR) AND COMMITS (COM.) IN OUR DATASET.

Project FR COM. Project FR COM. Project FR COM. Project FR COM.

Accumulo 474 479 Drill 446 451 Lens 172 176 Stanbol 154 157

Archiva 193 198 Flink 555 562 Ode 102 106 Storm 302 305

Aries 314 319 Geronimo 38 44 Oodt 26 26 Struts 2 214 219

Atlas 70 74 Giraph 252 254 PDFBox 482 489 Synapse 79 82

Axis2-Java 204 208 Gora 31 34 Pivot 185 189 Systemml 34 36

Beam 295 298 Groovy 385 389 Sentry 87 89 Tajo 444 451

Bookkeeper 132 132 Hbase 1389 1396 Sling 2369 2387 Tapestry-5 381 385

Calcite 74 77 Impala 178 182 Spring-Datamongo 261 264 Velocity 56 58

Carbondata 226 230 Jclouds 122 127 Spring-Integration 517 523 Wicket 237 242

Cayenne 390 393 Jena 202 209 Spring-ROO 797 800 Zookeeper 80 80

Curator 24 26 Kafka 307 314 Spring-Security 87 90

TOTAL: Projects: 43, Feature Requests: 13, 367, Commits: 13, 550

and 3, 188 known refactoring operations respectively. In addi-

tion to that, not all refactorings in such oracles are associated

with the implementation of feature requests. Therefore, to at-

tain the reasonable amount of feature requests and refactorings

to effectively train our classifiers, we exploit RefDiff and

RMINER which were recently validated manually and used in

creating an oracle of refactorings proposed by Tsantatlis et al.
[14]. The tools are publicly available and effective in detecting

applied refactorings by comparing subsequent versions of the

program.

Table II highlights the distribution of the feature requests

and commits of the subject applications used in building our

dataset. First, we extracted the feature requests (Request ID,

Summary, and Description fields) of the subject applications

from JIRA issue tracker which have been addressed to comple-

tion (i.e., marked as “Closed” or “Resolved”). JIRA explicitly

links the feature requests to their corresponding commits in a

repository through request ID. Second, we retrieved the rele-

vant commits from the repository that was used to implement

the retrieved feature requests. We only selected Java open

source projects from GitHub repository whose commits explic-

itly specify in their log messages the issue (i.e feature request

identifier) which is addressed. Thus our selection contains a

reliable link between a feature request in an issue tracker and

the corresponding commit in a software repository. Third, the

retrieved commits were subject to the refactoring detection

tools to recover the applied refactorings. Finally, we created

a dataset of 43 open source Java projects altogether consist-

ing of 13, 550 commits from GitHub repository and 13, 367
feature requests from JIRA issue tracker. Out of 13, 367
feature requests, a total of 7, 943 (59% = 7, 943/13, 367)

feature requests are associated with one or more refactor-

ings, whereas the remaining 41% (= 5, 424/13, 367) of the

feature requests do not have any refactoring. The feature

requests and their associated refactorings used are available

online at http://doi.org/10.5281/zenodo.3335978. Such subject

applications were selected because they cover a wide-range of

domains, publicly available, developed by different developers,

TABLE III
THE DISTRIBUTION OF REFACTORINGS IN OUR DATASET.

Refactorings Number Refactorings Number

Extract Interface 141 Move Method 1441

Extract Method 4225 Pull Up Attribute 186

Extract Superclass 132 Pull Up Method 255

Inline Method 784 Push Down Attribute 102

Move And Rename Class 268 Push Down Method 112

Move Attribute 957 Rename Class 801

Move Class 784 Rename Method 2940

Total 13,128

and have long evolution history. Consequently, it is likely that

they will have varieties of feature requests and refactorings.

Further, Table III highlights the distribution of refactoring

types in our dataset.

C. Process and Metrics

The training and prediction involve two steps. First, we train

the classifiers to predict whether the given feature requests

would require refactoring or not. Second, for the feature re-

quests identified to require refactoring, we train the classifiers

to predict the refactoring types. To evaluate the classifiers for

predicting whether refactoring is required or not (i.e., binary

classification), we use the traditional accuracy, precision, re-

call, and F-measure metrics. Further, since each feature request

can be associated with one or more refactorings, we cast our

refactoring recommendation problem as the multi-label clas-

sification problem. In multi-label classification each example

can be associated with several labels simultaneously, hence

its performance evaluation is much more complicated than in

the traditional single-label classification [43]. To evaluate the

performance of the multi-label classifiers we leveraged the

common and widely used metrics including hamming loss,

hamming score, and subset accuracy [43]–[45].

To answer the research questions (RQ1-RQ4), we conduct

10-fold cross validation where the collected data (as specified

in the preceding section) are randomly partitioned into ten
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TABLE IV
CLASSIFIERS’ PERFORMANCE FOR PREDICTING THE NEED FOR

REFACTORING (%).

Classifier Accuracy Precision Recall F-measure

SVM 64.13 69.49 71.22 70.32

MNB 65.40 66.36 85.32 74.63

LR 65.35 69.30 75.35 72.16

RF 63.59 69.16 70.59 69.79

subsets. On each fold of the evaluation, one subset is employed

as testing data whereas others are taken as training data.

Suppose FR = {fr1, fr2, ..., frm} denotes the feature

requests space, and R = {r1, r2, ..., rn} denotes the refactoring

space with possible n different types of refactorings. The task

of multi-label learning is to train a classifier with an evaluation

dataset D = {(fri, ri)|1 ≤ i ≤ m}, where ri ⊆ R is the set

of refactorings associated with a feature request fri. For any

unseen feature request fri ∈ FR, the classifier H predicts

H(fri) ⊆ R denoted as zi as the set of possible refactorings

for a feature request fri.

• Hamming loss, computes the fraction of labels (refactor-

ings) incorrectly predicted, i.e., a relevant refactoring is

missed or an irrelevant refactoring is predicted. Hamming

loss is formally defined as:

HammingLoss(H) =
1

|D|
|D|∑

i=1

|ziΔri|
|R| (7)

where Δ stands for the symmetric difference between the two

sets (i.e., the set of predicted refactorings and the set of true

refactorings for the feature request f i). Note that, as the value

of the metric closes to 0 the better the classifier’s performance.

• Hamming score, symmetrically computes how close the

set of the predicted refactorings (zi) is to the true set

of refactorings (ri) for the given feature request f i. Note

that, the larger the value of the metric (with optimal value

of 1) the better the classifier’s performance. Hamming

score can be formally defined as:

HammingScore(H) =
|ri ∩ zi|
|ri ∪ zi| (8)

• Subset accuracy, measures the fraction of examples

classified correctly, i.e., the predicted set of refactorings

(zi) is similar to the true set of refactorings (ri) for

the given feature request f i. Subset accuracy can be

intuitively considered as the traditional accuracy metric

[43]. It is formally defined as:

SubsetAccuracy(H) =
1

|D|
|D|∑

i=1

zi = ri (9)

where zi = ri returns 1 if the two sets are identical or 0
otherwise. Note that, the larger the value of the metric (with

optimal value of 1) the better the classifier’s performance.

Fig. 2. Performance of the Classifiers in Predicting Refactoring.

D. RQ1: Performance of Different Classifiers in Identifying
the Need for Refactoring

Table IV highlights the effectiveness of the employed classi-

fiers in predicting whether refactoring is required to implement

a given feature request. Note that, the best recorded results

for each metric is highlighted in bold. From the table, it is

observed that the precision of predicting whether refactor-

ing would be required ranges between 66.36% and 69.49%.

Therefore, on average of up to 68.58% the need for refac-

toring can be accurately predicted. Furthermore, the results

generally suggest that, on average, MNB and LR classifiers

outweigh all other classifiers. MNB classifier achieved an

F-measure of 74.63% and an accuracy of 65.40%, whereas,

LR classifier achieved an F-measure of 72.16% and can

accurately predict the need for refactoring (average precision

69.30%). In addition to that, Fig. 2 compares the performance

of the classifiers in terms of accuracy, precision, recall, and

F-measure in ten-fold cross validation. As depicted in Fig. 2,

it is evident that there is no significant difference in classifiers’

individual performance across different folds. Note that, our

binary classification problem involves classifying texts which

assigns feature request to different classes (i.e., refactoring

or non-refactoring) based on the words features present in

the document. In this case Naı̈ve Bayes classifier performed

better than other classifiers. Naı̈ve Bayes classifier is the

widely used generative classifier that can easily accommodate

any domain-specific knowledge and also performs better with

hierarchical classification scenario [40]. MNB has shown to

be effective in binary text classification in various studies

including enhancement requests approval prediction [41] and

spam emails detection [46]. Because the evaluation results sug-

gest that MNB works best in predicting whether refactoring is

required to implement a given feature request (noted as binary

classification), MNB would be used in the rest of the paper

for the binary classification.
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TABLE V
CLASSIFIERS’ PERFORMANCE FOR REFACTORINGS RECOMMENDATION

(%).

Classifier Subset accuracy Hamming score Hamming loss

SVM 70.75 70.85 0.027

MNB 14.98 15.05 0.062

LR 43.86 43.86 0.043

E. RQ2: Performance of Different Classifiers in Recommend-
ing Refactorings

As pointed out earlier, the refactorings recommendation

is cast here as a multi-label classification problem, hence

Table V depicts the results in terms of subset accuracy,

hamming score, and hamming loss which are widely used

metrics for evaluating multi-label classifiers. We only selected

three representative classifiers (SVM, MNB, and LR) because

they can adapt popular learning techniques and directly work

on multi-label data without transforming multi-label learning

problem into other classification problems such as single-

label or binary classification [43], [47]. Note that, the best

recorded results for each metric is highlighted in bold. As

shown in Table V, the results indicate that SVM classifier

outperforms MNB and LR by the difference of 56%(=
70.75% − 14.98%) and 27%(= 70.75% − 43.86%) in terms

of subset accuracy respectively. Subset accuracy (also called

classification accuracy) returns the percentage of instances

where the set of labels (i.e., refactorings) predicted by the

classifier is exactly the same with their corresponding truth set

[47]. Therefore, the results suggest that the needed refactorings

can be accurately recommended on up to 71% accuracy.

Moreover, compared to other classifiers, SVM achieved the

lowest value (i.e., 0.027) on hamming loss which identifies to

what extent the classifier predicts the irrelevant refactorings

and omits relevant refactorings. This metric is normalized

between 0 and 1. The value of the metric closes to 0 indicates

better performance of the classification. Furthermore, Table

VI presents the performance of SVM classifier in recom-

mending individual refactorings. The results generally suggest

that, the classifier achieves an average precision of 73% in

recommending refactorings. However, in some few cases (e.g.,

Push Down Method) the classifier achieved a recall and F-

measure below 50%. This can be justified by the fact that

some of the refactorings, including Push Down Method, are

very few in the dataset which can consequently affect their

prediction. In future we will consider balancing the dataset to

include enough number of each refactoring type. From these

findings, we therefore conclude that the proposed approach is

accurate in recommending refactorings.

We note that, SVM performed better than other classifiers

in refactorings recommendation. SVM often performs better

due to the following reasons. First, high dimensional input

space texts produce a lot of features which consequently

lead to a very large feature spaces. SVM employs overfit-

ting protection and has the ability to learn which can be

independent from the dimensionality of the feature space.

TABLE VI
RESULTS FOR INDIVIDUAL REFACTORINGS RECOMMENDATION.

Refactoring type Precision Recall F-measure
Extract Interface 0.63 0.58 0.61

Extract Method 0.66 0.74 0.70

Extract Superclass 0.85 0.43 0.58

Inline Method 0.83 0.38 0.52

Move And Rename Class 0.89 0.54 0.67

Move Attribute 0.86 0.34 0.49

Move Class 0.79 0.42 0.55

Move Method 0.82 0.42 0.56

Pull Up Attribute 0.69 0.60 0.64

Pull Up Method 0.67 0.42 0.52

Push Down Attribute 0.84 0.38 0.52

Push Down Method 0.83 0.33 0.47

Rename Class 0.72 0.39 0.50

Rename Method 0.65 0.51 0.58

Micro avg 0.71 0.52 0.60

Macro avg 0.77 0.46 0.56

Weighted avg 0.73 0.52 0.59

Second, few irrelevant features, in text classification irrelevant

features are very few and therefore a classifier should be

able to combine several features (i.e., dense concept). Third,

sparsity of document vectors, usually each document contains

a document vector with a lot of entries which are zeros.

SVM based classifiers have shown to be effective in handling

problems with sparse instances and dense concepts. Based on

these facts, SVM is shown to be effective for text classification

and well recognized to be accurate [44].

Because the evaluation results suggest that SVM works

best in suggesting refactoring classes (noted as multi-label

classification), SVM would be used in the rest of the paper

for the multi-label classification.

F. RQ3: FR-Refactor vs State-of-the-art Baseline Approach in
Predicting the Need for Refactoring

To evaluate the performance of FR-Refactor in predict-

ing the need for refactoring, we compared it (based on

MNB) with the state-of-the-art approach proposed by Niu

et al. [1]. As depicted in Fig. 3, FR-Refactor (based on

MNB classifier) significantly outperforms the state-of-the-art

approach. We note that, FR-Refactor improves F-measure

by 32.8%(74.6% − 41.8%), and attains better performance

in terms of recall (85.3%) because of its ability to learn

from past feature requests and predict accordingly, compared

to the state-of-the-art approach which attains lower recall

(32.1%). In addition to that, FR-Refactor improves accuracy

and precision by 19% and 6.6% respectively. The results

lead us to the conclusion that, FR-Refactor can accurately

predict the need for refactoring. Whereas the baseline approach

may fail to explicitly identify the requirements semantics and

consequently predict the need for refactoring, FR-Refactor

194



Fig. 3. Performance in Predicting the Necessity of Refactoring.

leverages past history to predict the need for refactoring of

a new feature request. For example, the baseline approach

failed to identify if a feature request CAY-1350:“Implement
memorized sorting of modeler columns” will need refactoring.

However, FR-Refactor predicted the need for refactoring for

such feature request. This feature request suggests for addi-

tional functionality that would allow users to sort items in the

table and their preferences should be memorized. Analysis on

the history data revealed that, the feature request CAY-1350
for the additional functionality is similar to past features

like (CAY-1251:“Memorize user-selected column widths in
preferences”) and the later feature request (CAY-1350) is

an improvement request related to (CAY-1251). Moreover,

the two feature requests were implemented in two different

commits but the same type of refactoring (i.e., Extract Method)

was applied.

G. RQ4: FR-Refactor vs State-of-the-art Baseline Approach
in Recommending Refactorings

Fig. 4 compares the performance of FR-Refactor (based

on SVM classifier) against the state-of-the-art approach [1] in

recommending refactorings. Generally, the results suggest that,

on average FR-Refactor outperforms the baseline approach in

accurately recommending refactorings. We observe that FR-
Refactor can accurately recommend relevant refactorings with

an average precision of 73% which is equivalent to an im-

provement of precision by 52%(73%−21%) compared against

the baseline approach. Furthermore, FR-Refactor significantly

improves recall and F-measure by 24%(52% − 28%) and

35%(59%− 24%) respectively.

We note that, FR-Refactor achieves better results than

the baseline approach. The baseline approach only relies on

the predefined requirements semantics and also ignores the

possibility that a given feature request may also belong to

different categories of requirements semantics. Consequently,

the approach may miss out some relevant refactorings. For

example, consider the following part of a feature request.

“Simplify SDK API interfaces. Current SDK API interfaces
are not simpler and don’t follow builder pattern. If new
features are added, it will become more complex”. This feature

request suggests for enhancing the quality attributes that will

Fig. 4. Performance in Refactorings Recommendation.

lead to the reduction of interface complexity. One way of

getting rid of complexity is to allow for separation of concerns

and reduce unneeded code. FR-Refactor recommended the

following refactorings. First, a Rename Method and Extract
Method refactorings. The later refactoring is recommended

to decompose long and complex methods. Second, an Inline
Method refactoring for the calls instances of unneeded meth-

ods. Ideally, Inline Method refactoring involves replacing calls

to the method with its content and delete the method itself. On

the other hand, the baseline approach (based on its scheme)

only recommended Substitute Algorithm refactoring to allevi-

ate Long Method flaw which is considered to cause complexity.

Furthermore, consider the following part of another feature

request. “Improve broadcast table cache. Currently, broadcast
implementation keep a tuples on scan operator and It creates
a duplicated table cache in memory”. This feature request

highlights the problem of duplicated feature. The proposed

refactorings are Extract Method, Move Method, and Rename
Class. The Extract Method refactoring is applied to remove

code duplication, whereas Move Method refactoring to move

a method to class which is more functionally related to it.

In addition, Rename Class is applied to rename the class

from which a method was removed to properly reflect its

responsibility. In this case, the baseline approach failed to

explicitly uncover the requirement‘s action theme of such

feature request and hence was unable to identify the required

refactorings.

H. RQ5: Cross Project Evaluation

In the preceding evaluation, we take all dataset from dif-

ferent applications as a whole, and conduct 10-fold evaluation

on the resulting dataset. To answer RQ5, in this section we

conduct cross project evaluation. We use 40 subject applica-

tions for the evaluation, and divide them into 10 groups (each

contains 4 applications). On the 10 groups of data, we conduct

10-fold evaluation where testing projects are different from

training projects.

Evaluation results suggest that the proposed approach works

well even if the testing projects are different from training

projects. Its precision, recall and F-measure on binary classi-

fication are 65%, 73%, and 68.8%, respectively. Its precision,

195



recall, and F-measure on multi-label classification are 77%,

50%, and 55.4%, respectively. Comparing such results against

those in Section IV-F and Section IV-G, we conclude that

the proposed approach still obtains good results when testing

projects are different from training projects.

I. Threats to Validity

A threat to construct validity is concerned with the imple-

mentation of the approach. The major threat relates to the

correctness of the recovered refactorings. That is because the

leveraged refactorings detection tools are not 100% on both

recall and precision. The inaccuracy of the refactorings oracle

may be accelerated by the fact that the refactoring detection

tools may be unable to detect all of the past applied refactor-

ings. Moreover, the tools may suggest irrelevant or incorrect

refactorings (false positives) and may miss out some true

refactorings (false negatives). Consequently, that may threaten

the accuracy of the refactorings oracle. However, to reduce

the threat we checked the dataset for possible errors, but still

there could be some errors slipped in unnoticed. That would

be due to the lack of the systems knowledge as the process did

not involve original developers. Finding original developers is

challenging considering the number of the subject applications

and some of them have long development history. Threats

to external validity is concerned with the generalizability of

the proposed approach. To address this threat, in this study

we have considered several feature requests from varied 43
Java open source projects and 14 common refactoring types.

To further reduce this threat, in future we plan to work on

more feature requests and leverage other refactorings detection

tools to enhance the recommendation of a wide range of

refactoring types. Finally, the internal threats may stem from

the classification models that we leveraged in our approach.

The classifiers have been implemented by the well-known

python-based library for machine learning called scikit-learn.

V. CONCLUSION AND FUTURE WORK

During software evolution, developers often receive feature

requests that demand for the implementation of the new feature

or extension of an existing feature. To implement the requested

features, developers usually apply refactorings to make their

systems adapt to the new requirements. However, deciding

what refactorings to apply is often challenging and there is

still lack of automated support to recommend refactorings

given a feature request. In this paper we propose a machine-

learning-based approach to recommend refactorings based on

the history of previous feature requests and applied refactor-

ings. The proposed approach learns from the training dataset

associated with a set of applications and can be used to

suggest refactorings for feature requests associated with other

applications or that associated with the training applications.

The proposed approach is evaluated on the dataset of 43 open

source Java projects altogether consisting of 13, 550 commits

from GitHub repository and 13, 367 feature requests from

JIRA issue tracker and their associated refactorings recovered

by using the state-of-the-art refactoring detection tools. The

experimental results suggest that, the proposed approach can

accurately recommend refactorings and attains an average

precision of 73%.

Although the proposed approach suggests refactoring

classes only and does not point to the classes involved in

the refactoring, the proposed approach is helpful to imple-

ment feature request. To carry out software refactoring, we

should know both ‘what’ (refactoring classes) and ‘where’

(where the refactoring should be applied). Consequently, the

baseline approach proposed by Niu et al. [1] suggests both

‘where’ and ‘what’. However, the proposed approach suggests

‘what’ only. One of its potential practical usefulness is to

replace/improve the second part of the baseline approach [1]

(that suggests refactoring classes) because the evaluation re-

sults suggest that it is more accurate than the baseline ap-

proach in suggesting refactoring classes. The two approaches

working together could suggest both ‘what’ and ‘where’ to

developers. The proposed approach may also be integrated

with other approaches/tools that could suggest ‘where’. It is

interesting in future to investigate how change impact analysis

approaches [48] may help to identify which specific source

code entity (e.g., class or method) should be refactored. An-

other potential practical usefulness of the proposed approach

is to help developers pick up proper refactoring tools. Existing

study [49] suggests that it is often up to developers to pick

up the proper tools to identify different classes of refactoring

opportunities, e.g., GEMS [17] for extract method refactoring

opportunities, and JMove [50] for move method refactoring

opportunities. Suggesting refactoring classes (by the proposed

approach) may significantly facilitate the selection. The third

potential practical usefulness of the proposed approach is to

prioritize the implementation of different features. Because

different categories of refactorings may interference with each

other [49], knowing the required refactoring classes of differ-

ent features help in deciding the order of refactoring classes

and hence deciding the order of implementing features.

Our future research plan in this direction includes the

following. First, it would be interesting to investigate how to

locate where recommended refactorings should be conducted

by mining the feature requests and analyzing the related source

code. Second, we would investigate how to improve our

approach by leveraging word embedding and deep learning

techniques. Finally, although the experimental results suggest

that the proposed approach is accurate, we plan in the future

to conduct a qualitative evaluation that will involve the actual

application of the approach by developers. Human evaluators

will further reveal the applicability and usefulness of the

approach.
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