
The Role of Environment Assertions in
Requirements-Based Testing

Tanmay Bhowmik∗, Surendra Raju Chekuri∗, Anh Quoc Do∗, Wentao Wang†, and Nan Niu†
∗ Department of Computer Science and Engineering, Mississippi State University, USA

† Department of Electrical Engineering & Computer Science, University of Cincinnati, USA

tbhowmik@cse.msstate.edu, src463@msstate.edu, aqd14@msstate.edu, wang2wt@mail.uc.edu, nan.niu@uc.edu

Abstract—Software developers dedicate a major portion of
their development effort towards testing and quality assurance
(QA) activities, especially during and around the implementation
phase. Nevertheless, we continue to see an alarmingly increasing
trend in the cost and consequences of software failure. In an
attempt to mitigate such loss and address software issues at a
much earlier stage, researchers have recently emphasized on the
successful coordination of requirements engineering and testing.
In addition, the notion of requirements-based testing (RBT) has
also emerged with a focus on checking the correctness, com-
pleteness, unambiguity, and logical consistency of requirements.
One seminal work points out that requirements reside in the
environment which is comprised of certain problem domain
phenomena. Environmental assertions, which connect some of
these phenomena in the indicative mood, play a key role in
deciding whether a software solution is acceptable. Despite that
requirements are located in the environment, little is known about
if and how the environment assertions would impact testing and
QA activities. In order to address this gap, we present a detailed
empirical study, with 114 developers, on the prominence of
environment assertions in RBT. Although the results suggest that
paying attention to correct, complete, and useful environment
assertions has a positive impact on RBT, developers often face
difficulty in formulating good assertions from scratch. Our work,
to that end, illuminates the potential usefulness of automated
support in generating environment assertions.

Index Terms—environment assertions; requirements-based
testing; requirements engineering and testing; requirements en-
gineering

I. INTRODUCTION

As software systems have become ubiquitous in the mod-

ern society, people’s constant reliance on them in daily life

requires these systems to meet expectations of continuously

improved quality and reliability [1]. In order to deliver quality

software, developers dedicate a major portion of their de-

velopment effort towards testing and quality assurance (QA)

activities, especially during and around the implementation

phase of the software development life cycle (SDLC) [2]. Nev-

ertheless, we continue to see an alarmingly increasing trend

in the cost and consequences of software failure. According

to the fifth edition of Software Fail Watch by Tricentis [3],

software failures cost our economy US$1.7 trillion in 2017

(up from US$1.1 trillion in 2016), affecting 3.6 billion people

and causing more than 268 years in downtime. Such numbers

are an extraordinary reminder of the necessity of improved

software testing in every industry and the far-reaching impacts

of software failure [3].

There is a consensus in the software community that faults

discovered later in SDLC have higher negative impacts and

are more expensive to fix than those discovered early [4].

In an attempt to address software issues at a much earlier

stage, researchers have recently emphasized on the successful

coordination of requirements engineering and testing [5], [6].

Along this line, studies propose model-based techniques to

verify and validate requirements [7], [8], investigate automated

support to generate test cases from requirements [9]–[13], and

suggest approaches to keep requirements and test documents

aligned [14], [15]. In addition, the notion of requirements-

based testing (RBT) [16] has also emerged, which is a type

of black-box testing [1] with a focus on checking the correct-

ness, completeness, unambiguity, and logical consistency of

requirements [17], [18].

In his foundational work, Jackson conceptualizes the notion

of the environment and the machine with certain phenom-

ena and indicates that requirements are located in the envi-

ronment [19]. This environment is characterized by certain

assertions comprised of conditions or properties over the

phenomena in the environment. As Jackson points out — a

large number of software issues stem from faulty reasoning or

approximations about the environment [19]. In other words,

limited or no consideration of environment assertions may

cause an inadequate analysis of the task in hand, leading

to various software issues. Although prior research intro-

duced a formal requirements model for the software black-

box behavior along with the assertions in a complex process

control system [20], the objectives were writing requirements

specifications to be readable and reviewable by application

experts. In other words, the investment in constructing one

state-based model that includes all of the needed information

and no more is considered to pay off in terms of discovering

more requirements-level errors [20]. However, little is known

whether a less perfect domain model impacts the discovery of

software errors.

In order to address this gap, we present a detailed empirical

investigation on the prominence of environment assertions

in requirements engineering and testing. In particular, we

examine how environment assertions influence developers’

RBT activities and outcomes of such a testing process. To

that end, we conduct an empirical study with 114 developers

performing RBT on iTrust [21], a Java-based medical records

software system, where the experimental group and the control

75

2019 IEEE 27th International Requirements Engineering Conference (RE)

2332-6441/19/$31.00 ©2019 IEEE
DOI 10.1109/RE.2019.00019

Students

intruders system
admins

log-in
interface

passwords
usernames

encryption
algorithms

password
filesmemory

management

Phenomena machine
cannot observe

(private to environment)

Shared
Phenomena

Problem Domain (Environment) Machine Domain

Phenomena private
to machine

Fig. 1: The environment and the machine for a hypothetical

authentication scenario (adapted from [22]).

group carry out their activities with and without explicitly

considering environment assertions, respectively. The results

suggest that paying attention to quality environment assertions,

i.e., assertions that are correct, complete, and useful, has

a positive impact on RBT in terms of the quality of test

cases and test outcomes. However, our study also reveals that

developers often face difficulty in formulating good assertions

from scratch. In this paper, unless otherwise mentioned, we

use the term developers to indicate stakeholders participating

in the development process and conducting testing activities.

The contributions of this work lie in carrying out an

empirical study on the significance of Jackson’s [19] concep-

tualization of the environment and the machine in the context

of testing and QA activities. In addition, we demonstrate a

practical application of environment assertions in RBT and

illuminate the potential usefulness of an automated support

to help developers generate environment assertions. In what

follows, we present background information on the meaning

of requirements and RBT in Section II. We then detail the

empirical study and analyze the results in Section III. Further

explanation of the results and some additional insights from

our study are presented in Section IV. Section V discusses

validity threats to the work, and finally, Section VI concludes

the paper.

II. BACKGROUND AND RELATED WORK

A. The Environment and the Machine

Jackson first conceptualized the software world using the

notion of the environment and the machine defined by certain

phenomena [19]. In one of the foundational papers in RE [22],

he teased out the meaning of requirements by distinguishing

two domains: the problem domain, later denoted as the en-

vironment [19], and the machine domain. Understanding the

problem domain helps to identify constraints that define the

range of conditions within which the system may operate.

The i∗ framework [23], for example, supports problem domain

modeling by focusing on the discovery of the system actors’

intentionality in terms of their goals and the delegation of

responsibility between actors that permit their goals to be

fulfilled. Using i∗, the “as-is” business processes and the roles,

goals, and priorities of the actors within the organization can

be modeled. Such domain models form the foundation from

which alternative solutions can be explored and the system

requirements can be formulated.

Jackson points out that the environment is characterized

by certain assertions comprised of conditions or properties

over the phenomena in the environment, whereas the machine

domain is private to the intended software and the computing

devices in which the software operates [22]. To that end,

as Jackson defines, environment assertions are phenomena

in the environment that are true whether or not we ever

build the proposed system [19], and requirements need to be

expressed in terms of relationships among such environment

assertions [22].

Fig. 1 demonstrates Jackson’s conceptualization through a

hypothetical “authorized access to lab machines” scenario. In

this context, some environment phenomena, including students

and intruders, are exclusively private to the environment. Simi-

larly, phenomena such as encryption algorithms and password

files are private to the machine. Besides, some phenomena,

e.g., usernames and passwords, are shared with and observ-

able to the machine. According to Jackson [19], [22], both

requirements (R) and environment assertions (E) reside in the

environment where the former “express conditions over the

phenomena of the environment that we wish to make true by

installing the machine”, and the latter “express the conditions

over the phenomena of the environment that we know to

be true irrespective of the properties and behavior of the

machine”. Jackson [22] further indicates that the specifications

(S) are restricted requirements expressed solely based on the

shared phenomena. Building upon such notions of R, E , and

S, Jackson formulates the famous entailment relationship in

RE [19]:

E , S � R (1)

In other words, if the environment holds the assertions we

claim, and the machine behaves according to the specifica-

tions, then satisfaction of the requirements, i.e., the software

behaving in a correct and expected manner, can be carried out.

In sum, Jackson pointed out that requirements are, in fact,

conditions over the right events and states of the environment

and the correctness of software depends on correctness of the

environment which can ultimately be established through the

accuracy and completeness of environment assertions [19]. For

example, in Fig. 1, a requirement R may be: “allow only

active students to log into the lab computer”. According to

Jackson [19], R is in the optative mood, expressing a wish.

The environment assertion E , on the other hand, is in the

indicative mood, expressing what is claimed to be a known

truth. Here, a relevant E may be: “a teaching assistant is an

active student.” Given this E and the specification S of “correct

<username, password> pair leads to a successful log in”, a

teaching assistant shall be granted access to the lab computer.

In the above example, other environment assertions may be

relevant, e.g., “a person would not share his or her <username,

password> with others”, “system admin is not a malicious

user”, etc. In practice, identifying domain terms such as “stu-

dent”, “teaching assistant”, and “<username, password>” can

76

Fig. 2: The RBT process flow (adapted from [18]).

help the formulation of environment assertions, and Sawyer

et al. [24] showed how combinations of lexical and shallow

semantic analysis techniques could automatically recognize

domain terms and nondomain terms.

Our research shares the objective of Leveson and her

colleagues [20], [25], [26] to construct an accurate and com-

plete set of environment assertions. Different from using a

state-based formal modeling approach [20], [25], [26], we

made no initial investment of developing environment as-

sertions because we are interested in applications not only

in safety-critical domains. Unlike the objective of supporting

application experts (e.g., airframe manufacturers) to discover

requirements-level errors by Leveson et al. [20], [25], [26],

our goal is to support developers and testers to detect soft-

ware errors stemmed from faulty or incomplete environment

assertions.

B. Requirements-Based Testing (RBT)

In order to deliver high quality software on time, research in

recent years has stressed on proper alignment of requirements

engineering and testing activities [6], and has proposed several

avenues to attain such alignment. For example, Aoki and

Matsuuara [7] have introduced a method, leveraging model

checking and Common Criteria security knowledge, to verify
security requirements specified in Unified Modeling Language

(UML). Following the growing complexity of model-based

requirements validation for real-time systems, Zhou et al. [8]

have suggested an observer-based lightweight technique to val-
idate both functional and non-functional requirements written

in a formal specification language.

In order to support testing activities based on requirements,

researchers have also proposed several tools and techniques.

Almohammad et al. [9] have presented an automated tool to

generate test cases from requirements for different coverage

criteria. Freudenstein and colleagues [10] have developed

Specmate to partly automate the design of test cases from

requirements. Singi et al. [11] have advocated the notion of

visual requirements for digital applications and presented a

graph-model based approach to automatically generate test

cases from those requirements. Further automated supports

are also proposed for activities, such as abstract test case

generation from requirements model [12] and development of

model-based test cases from requirements descriptions [13],

[27].

In an attempt to keep requirements and test documents

aligned, researchers have also introduced several approaches,

such as automated generation of test guidance [14], and the

roadmap view for quality requirements and test results [15].

In the literature, we also identify the emerging notion of

RBT, which, in our opinion, can promote further alignment

between RE and testing activities. As indicated by Skoković

and Skoković [18], the RBT process addresses two major

aspects: validation of requirements, and designing a necessary

and sufficient set of test cases from a black-box perspective.

Unlike traditional testing activities, RBT does not assume that

the requirements in hand are correct and complete. Rather,

it drives out ambiguity and drives down the level of details

through a process involving four major sets of activities (cf.

Fig. 2) [28], which are discussed next.

Requirements quality evaluation: This is one of the core

components of RBT that stands out from other traditional

testing techniques. The activities along this line include val-

idation of requirements against business objectives [18], i.e.,

evaluating how useful a requirement is for the intended system

and to what extent it is adaptive to task constraints. In addition,

assuming a domain expert’s role, the test engineers need to

conduct an initial ambiguity review and domain expert review

to verify the correctness, completeness, ambiguity, and logical

consistency of the requirements. Let “the lab machine shall be

accessible only to authorized personnel” be a requirement in

our hypothetical scenario (cf. Section II-A). Quality evaluation

activities, especially in light of environment assertions, may

unveil potential issues, e.g., ambiguity with the phrase “autho-

rized personnel”, and help clarify expected system behavior for

77

less obvious personnel, including custodians and electricians.
Test case design: This includes structuring/formalizing

requirements and designing logical test cases. The former

involves expressing a requirement as a flow of activities

that naturally depicts precedence dependency between actions.

The latter indicates writing logical steps for the test that

captures granular level functionality of the requirement. In

our continuing example, “access to the lab machine shall be

granted only after the user provides valid credentials, e.g.,

valid username and password pair” could be considered as a

restructured requirement. On the other hand, a logical test case

could be: identify a couple of valid and invalid credentials,

e.g., username, password pairs → type in credentials, both

valid and invalid → if the credential is valid, access granted;

if invalid, access denied with an error message.
Test case review: In order to further assure quality, the test

cases are reviewed by different stakeholders, including domain

experts, requirements authors, developers, and test experts.

Here, the idea is to conduct review from these different

perspectives, not necessarily by different personnel, in order to

identify and rectify any inconsistency between the test cases

and respective artifacts developed by different stakeholders.
Test execution: Lastly, the activities for this part involve

execution of test cases following the logical steps teased out

during test case design and documenting the test outcomes,

i.e., the execution passes or fails the test with trace information

to reproduce failure, if any. In addition, RBT also emphasizes

on describing further improvement of the requirement with

justification, if applicable.
It should be noted that current literature does not identify

the importance of environment assertions for RBT activities in

an explicit manner. In our opinion, however, such assertions

should be crucial in this context as they constitute the much

needed knowledge for domain experts and other stakeholders

to carry out quality evaluations. An objective of our work, to

that end, is to examine this assumption.

III. EMPIRICAL STUDY

A. Research Questions
A major objective of this work is to empirically investi-

gate Jackson’s indication that limited or no consideration of

environment assertions may lead to inadequate development

activities, thereby resulting in software issues [19]. To that

end, we pick RBT as a development activity and investigate:

Central research question: How do environment

assertions influence developers’ RBT activities and

the outcomes of such a process?

The reasons behind considering RBT include: i) It is a black-

box testing technique, thereby does not require knowledge

about the internal structure of the source code, and ii) RBT’s

focus on improving requirements quality provides an oppor-

tunity to address software issues at an earlier stage making it

aligned with the philosophy of requirements engineering and

testing. Although RBT involves four major sets of activities

(cf. Section II-B), in order to keep our study within a manage-

able scale, we particularly focus on two of those kinds, namely,

test case design and test execution. The rationale behind this

choice is threefold. First, in this study, we choose requirements

from a real-world and mature open-source software (OSS)

system named iTrust [21], and expect that its requirements and

use cases are already well-defined. Second, given the limited

availability of original requirements’ authors and program-

mers, it would be impractical to incorporate test case review

by such stakeholders. Finally, we posit, test case design and

execution activities, especially test outcome analysis and fur-

ther improvement recommendations for requirements, demand

some skills of a domain expert, thereby providing us a clear

idea about environment assertions’ role in RBT.

Based on the rationale stated above, we first want to

examine if the consideration of environment assertions has

any impact on the quality of test cases designed during RBT

activities. To that end, we ask the research question: RQ1 –

Do environment assertions lead to better test cases during
RBT activities?

As indicated earlier, we are also interested in exploring the

role of environment assertions in test execution outcomes, in

particular, on the likelihood of recommending further improve-

ments for requirements. Thus our second research question is:

RQ2 – Do environment assertions lead to a higher likelihood
of suggesting improvements for requirements?

Furthermore, if environment assertions indeed have an im-

pact on the RBT activities, it is logical to speculate that

the quality of the assertions may play a part in the overall

execution outcomes. Thereby, we ask the following research

question: RQ3 – How does the quality of environment
assertions influence the quality of suggested improvements?
In what follows, we discuss our subject system and study setup

to address these research questions.

B. Subject System

As mentioned earlier, we consider iTrust as the subject sys-

tem in this study. It is a security-critical Java medical records

software system [21], which is an open source application orig-

inally developed by the software engineering students at North

Carolina State University. It provides patients with a means to

keep up with their medical records history and to communicate

with their doctors [21]. Over several years, iTrust has been

a subject system of numerous software engineering research

efforts [29]–[31] providing critical insights on important topics

including traceability and vulnerability discovery. In our study,

we use version 23 of iTrust which includes 112,987 lines of

code and 784 Java source files.

C. Study Setup

In this study, we need developers to have some knowledge

regarding environment assertions and, to some extent, RBT. As

these topics are not usually covered, to a considerable extent,

by any regular software engineering course to our knowledge,

we suspect that regular software developers, in general, may

not be familiar with these ideas in an explicite manner. To that

end, our study setup involves three major phases, including

training potential participants, conducting experiment, and

78

evaluating participants’ work-products. In what follows, we

detail our activities along these lines.

Training potential participants: As our potential study

participants, we consider students enrolled in a split-level (i.e.,

a course that includes both graduate and undergraduate stu-

dents) software engineering course at two different universities

in North America. In order to train the students with the

concepts of environment assertions and RBT, the instructors

dedicate two 75-minute classes, one for each topic. These

classes are delivered in a week towards the beginning of

a semester, each containing a 30- to 35-minute lecture on

the theoretical concepts with the remaining spent on in-class

exercise and practice-problems. In order to facilitate further

practice, the students individually work on an additional

assignment, designed on these topics, in a lab class in the

following week.

To maintain consistency, the two instructors coordinate with

each other very closely and run their respective classes in a

synchronized manner. They deliver the same lecture materials,

same in-class exercise and practice-problems, and the same

lab-assignments to make sure that the students develop an

anticipated minimum level of proficiency in these topics. In

an attempt to ensure that the potential participants are familiar

with medical records software systems, during another week

later in the semester, each of them researches this domain

online and individually submits a domain analysis report.

Experimental design: In this work, we follow a ran-

domized two-group posttest-only design [32]. During a week

towards the end of the semester, we recruit 114 participants,

includes 31 graduate students (both MS and PhD admits) and

83 senior-level undergraduate students, from the courses stated

above. These participants are either from computer science

or software engineering major, with some majoring in both,

and with a median of 3.5 years of software development

experience. The experience we count here includes full- or

part-time software development jobs, internships, freelance

development activities, and the year-long computer science or

software engineering capstone projects where the participants

developed software for real-world customers. We form an

experimental group (Gexp) and a control group (Gcnt) by

randomly assigning the recruits, where each group has 57

participants. Note that we also make confidentiality agreement

with the participants and, after the semester officially ends,

we obtain their consent about using the work for scientific

research.

During the study, each participant is provided with a docu-

ment that contains the title, description, and detailed use case

of an iTrust requirement “Schedule Appointments” (cf. Fig. 3).

As the use case suggests, this requirement can be decomposed

into several smaller units, such as patient requesting appoint-

ment and LHCP reviewing appointment request. The partici-

pants are asked to break down the requirement into a number

of smaller units they find appropriate and work on as many

units as possible in 1 hour. Each participant works individually

on a lab machine that has iTrust deployed using Eclipse IDE.

For each unit, a participant in the experimental group writes

Fig. 3: “Schedule Appointments” use case.

a brief description of the unit in concern, brainstorms and

notes down some environment assertions relevant to the unit,

writes the test cases, executes them by running iTrust, and

writes the test outcomes and possible improvements for the

unit (if she can think of any). A control group participant,

on the other hand, conducts all these activities except she is

not instructed to think of environment assertions at any stage.

The participants are also asked to justify their test outcomes.

After all the participants turn in their documents, we follow a

double-blind peer review strategy to evaluate their work, which

is discussed next.

Evaluation: We randomly assign each participant two docu-

ments created by two other participants in the same group for a

double-blind review. Note that our participants received train-

ing on different review techniques in a prerequisite software

engineering course. The participants evaluate the quality of the

improvement recommendations, as well as the environment

assertions in case of the experimental group, for clarity–

unambiguous and provides an appropriate level of detail [33],

correctness–accurately reflects conventional knowledge and a

good fit for the system, and usefulness–provide value or utility

to the requirement [33]. In doing so, they assign ratings at a

5-point Likert scale: 1=very low, 2=low, 3=medium, 4=high,

5=very high and provide a justification of the ratings. At the

end, the experimental group participants share their thoughts

on RBT with environment assertions.

D. Results and Analysis

RQ1 – Do environment assertions lead to better test
cases during RBT activities? As the main objective of

software testing is to uncover defects [34], we operationalize

the notion of a “better test case” as the one that ultimately

79

Fig. 4: Participants identifying defects and improvements.

uncovers more defects for the system being tested. In other

words, while testing a certain functionality f, a test case T1 is

better than test case T2 if f fails T1 but not T2. Accordingly,

in order to answer RQ1, we examine the test cases written by

each participant in Gexp and Gcnt and count the cases that

iTrust ultimately fails, i.e., the number of defects detected

by each participant. Fig. 4 summarizes our findings along

this line. On an average, a participant in Gexp reports 0.98

defects (ranging from 0 to 4), which is higher than that of a

participant in Gcnt (avg. 0.67, ranging from 0 to 2). In Gexp,

33 (i.e., 57.9%) participants identify one or more defects which

is higher than Gcnt (30 or 52.6% participants detecting 1 or

more). In addition, 19 participants in Gexp find two or more

defects whereas only 8 participants in Gcnt find those many

defects.

We further conduct Mann-Whitney-Wilcoxon test [35], [36],

which is a non-parametric equivalent of the t-test [37], to

statistically examine the difference between our two groups

along this line. We use R [38], a popular software package

for statistical computing, to perform this test. We find a W
value of 1374 with p-value = 0.1287, which apparently does

not indicate any statistically significant difference between

Gexp and Gcnt at α = 0.05. In sum, although the earlier

stated descriptive statistics provide evidence, to some degree,

that assertions may lead to better test cases during RBT
activities, sophisticated statistical tests yet do not show a

significant difference. The discussion section sheds some light

along this line. It is worth mentioning that some of the

control group participants identify a single common defect

about appointment request. Further post-hoc analysis uncovers

additional explanation of this finding in terms of environment

assertions, which is discussed in Section IV.

RQ2 – Do environment assertions lead to a higher
likelihood of suggesting improvements for requirements?
In order to answer this research question, we shift our attention

to the number of improvements proposed by each participant

in both Gexp and Gcnt. We find that a Gexp participant, on

an average, makes 0.79 improvement recommendations for the

requirement “Schedule Appointments”, whereas, in case of a

Gcnt participant, the average is lower (0.65). For both the

groups, the number of recommendations from a participant

ranges from 0 to 4. As many as 30 (i.e., 52.6%) participants

Fig. 5: Quality ratings: Improvements Vs Assertions.

in Gexp make one or more improvement recommendations,

which is higher compared to Gcnt where only 23 (or 40.4%)

participants make any recommendation.

A Mann-Whitney-Wilcoxon test [35], [36] on the number

of improvement recommendations by the participants in each

group barely suggests a statistically significant difference

between Gexp and Gcnt at α = 0.05 (W = 1436, p-value
= 0.09414). Similar to what we have noticed for RQ1, here,

again we find descriptive statistics favorable for an implica-

tion that an explicit consideration of environment assertions
during RBT may lead to a higher likelihood of recommend-
ing improvements. Mann-Whitney-Wilcoxon test provides a

promising p-value (below 0.1), however, it narrowly falls short

of exhibiting significant statistical evidence at α=0.05 level of

significance. Section IV provides additional insights along this

line.

RQ3 – How does the quality of environment assertions
influence the quality of suggested improvements? In order

to answer this research question, we need to analyze both the

quality of the environment assertions and the suggested im-

provements and examine if there exists an association between

these qualities. To that end, we analyze the data collected

during the evaluation phase (cf. Section III-C), in particular

the peer-review ratings for the test documents from Gexp

that include specific improvement suggestions (30 out of 57,

i.e. 53% Gexp participants recommended improvements). Our

objective is to investigate if there is a correlation between the

quality ratings (i.e. correctness, completeness, and usefulness)

for environment assertions and corresponding improvement

suggestions made by a participant. For each of such test

documents, we obtain the average ratings for the assertions

and suggestions and calculate Spearman’s rank-order correla-

tion, also known as Spearman’s ρ, which is a nonparametric

measure of the strength and direction of association between

two variables measured on at least an ordinal scale [37]. The

results suggest a statistically significant positive correlation

between the ratings (ρ = 0.54, p < 0.00001) with moderate

strength [39].

80

Fig. 6: Sample outcomes of the participants’ RBT activities.

Fig. 5 provides a radar chart presenting the relation between

quality attributes correctness, completeness, and usefulness for

assertions and improvement suggestions. We notice that the

granular level attributes also display positive associations. For

example, if the average rating for correctness of environment

assertions is high, so is for the corresponding improvement

suggestions. Ratings for completeness and usefulness also ex-

hibit similar trends. Such observations further substantiate the

result from Spearman’s correlation analysis. In other words,

getting the average of these attributes apparently does not lead

to losing valuable information. Based on these findings, we

conclude that the quality of environment assertions positively
influences the quality of suggested improvements. That is, a

developer with better environment assertions in her disposal

is more likely to make correct, complete, and useful improve-

ment suggestions.

Based on the results and analysis presented so far, we notice

that our empirical study provides some preliminary evidence

supporting the hypothesis: “high quality” environment asser-

tions indeed positively influence developers’ RBT activities

and the outcomes of such a process. Although we lack enough

statistical evidence in some cases, we expect that a closer look

into the collected data will provide further explanation of our

results and help us gain additional insights about the role of

environment assertions in RBT activities.

IV. DISCUSSION

Fig. 6 presents some sample outcomes of the RBT activities

conducted by our participants. As mentioned in the preceding

section, apart from Likert scale ratings, our participants also

provide explanations to justify their ratings and share their

opinions on the use of environment assertions in RBT. In order

to obtain some additional insights about the initial results of

our research questions, we conduct further analysis on such

qualitative data. In this section, we detail some of our findings

along with supporting anecdotal evidence from the post-hoc

analysis where part of the discussion is anchored around the

information presented in Fig. 6.

A. Implicit Environment Assertions Play a Part

As we pointed out earlier, the majority of the participants

commonly detected a defect with the implementation of

iTrust’s appointment request, which is:

iTrust allows a patient to submit an appointment

request for a past date and time which it should not.

In fact, 22 (i.e., about 39%) Gcnt participants uncovered a sin-

gle defect, which is predominantly the one mentioned above.

After examining the explanations written by the participants,

we obtain an interesting insight along this line. Although

the wording of the explanation varies from participant to

participant, the common theme we observe is as follows.

Scheduling an appointment by design implies that

we are going to set an appointment for a future time.

It is one of the basics of scheduling appointment.

iTrust allows the patient to successfully submit a

request for a past date and time.

In other words, the participants indicated that whenever we

try to schedule an appointment with someone, regardless the

purpose, a “valid time” for the actual appointment should be

in the “future”, i.e., sometime after the scheduling activity has

taken place. Thereby, a basic condition over the phenomena in

the problem domain (i.e., the environment) of an appointment

scheduling scenario would be, “An appointment can only

be scheduled for a future time.” This is, by definition, an

environment assertion, since it remains true even if we never

build iTrust or any other system of its kind. Note that not all

participants detected this defect. Those who did, actually wrote

81

this as an environment assertion (in case of Gexp) or provided

the above explanation (mostly in case of Gcnt). Those who

did not, apparently took the correctness along this course as

granted, only included test cases with future dates and times,

and largely focused on the “conflicting schedule” scenario.

Although not as prevalent as the aforementioned “appoint-

ment at a past date and time” issue, other relatively common

defects with the appointment request feature mentioned by our

participants include:

iTrust allows a patient to make appointments with

multiple doctors for different reasons at the same

time.

In case of the Gexp participants who identified this defect, we

note that they mentioned an environment assertion that mostly

reads, “multiple appointments should not have overlaps”. Out

of the 8 Gcnt participants who detected more than 1 issue, 5

explicitly included this in their list of defects and gave some

additional explanations. One of those participants provide the

following argument.

Someone can not physically meet multiple people in

different places at the same time. I did hear about

something called a medical board where multiple

doctors work together to handle a critical patient. I

do not think that is a kind of appointment a patient

herself makes using a system like iTrust. I believe

the critical care unit or emergency room doctors

form such a board as needed.

Clearly, the theme of this explanation falls in line with the

assertion mentioned in the preceding paragraph. Similar to

the “appointment at a past date and time” case discussed

earlier, the participants who did not pay attention to the time

overlap related issues of scheduling and appointment missed

to incorporate this aspect into their test cases.

This analysis helps us gain valuable insights about envi-

ronment assertions and testing. First, explicit consideration

of environment assertions may help us avoid subtle mistakes

while designing relevant test cases. Second, even if we do not

concretely spell out an environment assertion, the knowledge

about it residing in our minds may still play a part in doing

the tests right (as it happened for those Gcnt participants). In

this paper, we name this “implicit environment assertion”.

B. The Quality of Environment Assertions Matters

Our data suggest that an explicit consideration of environ-

ment assertions alone may not be sufficient for a developer to

obtain effective outcomes from RBT activities. This is indeed

an implication of the results we obtained for RQ3 suggest-

ing better quality environment assertions lead to better RBT

outcomes. Consequently, low quality assertions, i.e., incorrect,

incomplete, or not directly relevant to the requirement under

consideration, may not have a positive effect on the testing

activities and outcomes. In what follows, we substantiate this

observation through some examples from our study.

In Fig. 6, we observe some low quality environment asser-

tions, such as “A patient has an iTrust account”, “An LHCP has

Fig. 7: Number of units completed: Control Vs Experimental.

internet access”, “A patient suffers from health issues”, etc.,

that are not necessarily incorrect or incomplete, but are of little

direct use for testing a schedule appointment functionality.

Such assertions may often cause distraction in RBT activities

and, the process may not produce any useful outcome at the

end. As the following justification for the assertion ratings

from a peer-reviewer points out:

I am rating these assertions very low. Don’t know

how they can be relevant to appointment re-

quest/approval functionality. The document spends

much time designing test cases for patient/LHCP

log-in activities. Those are basic user activities irre-

spective of what functionality you use. No surprise

these activities do not identify a critical defect with

request appointment.

Quality assertions, e.g., “An appointment can only be

scheduled for a future time”, be that explicitly written or

implicit in the developer’s mind, apparently lead to appropriate

test cases. They help detect critical defects, such as “The

system allows an appointment request to be submitted for

a past date and/or time”, and further guide improvement

recommendations, including “The calendar in the appointment

request form should show the past dates as inactive so that a

patient may not select such a date for an appointment” (cf.

Fig. 6). For similar reasons, although the results for RQ2

indicate higher likelihood of suggesting improvements when

assertions are under specific consideration, a few suggestions

from Gexp received slightly lower quality ratings (avg. 4.22)

compared to Gcnt (avg. 4.29). These findings suggest that not

just the assertions but their quality matters. In our opinion, this

is one of the reasons behind the absence of sufficient statistical

evidence for the answers of the first two research questions (cf.

Section III-D).

C. Writing Assertions from Scratch is Challenging and Time
Consuming

One important aspect we should reiterate is that a Gexp par-

ticipant explicitly wrote down some environment assertions,

whereas a Gcnt participant did not. Formulating environment

assertions should require some critical thinking, call for knowl-

edge about the requirement in concern, and certainly take

additional time. In fact, during the evaluation phase of our

82

study, each Gexp participant unequivocally pointed out this

tedious nature of writing assertions. In our opinion, this aspect

might have played a role behind our results.

As mentioned in Section III-C, the “Schedule Appoint-

ments” requirement for iTrust could be broken down into

smaller units and each participant had exactly one hour to

complete the task. Fig. 7 shows a comparison between the two

groups with respect to the number of units the participants

tested. We find that Gcnt participants complete more units

(avg. 3.85, ranging from 2 to 8) compared to Gexp (avg. 3.28,

ranging from 2 to 5). Since we did not specifically define

the scope of a unit and the participants had the liberty to

decompose the requirement the way they found appropriate,

we note that just a comparison of the number of tested units

may not convey the true picture. To that end, we manually

analyze each document and identify those with testing ac-

tivities covering the whole requirement. We notice that 26

Gcnt participants (45.6%) covered the complete requirement,

whereas the numbers are lower in case of Gexp (11, i.e., 19.3%

participants covered the full requirement).

During peer evaluation, we also asked the experimental

group participants to share their thoughts on writing en-

vironment assertions while conducting the RBT activities.

The common themes we notice in their responses include:

i) writing environment assertions is possibly helpful but it

takes time; ii) capturing the assertions from scratch demands

critical thinking; and iii) in order to help the testing process,

it is important to think of assertions that are aligned with the

requirement being tested. The following comment from a Gexp

participant corroborates our observation.

I think writing environment assertions is not easy. It

takes more time for sure, also some deeper knowl-

edge and understanding of the requirement and the

software. I found them helpful to do my tests but

it took some energy. You need to keep it right you

know... The document I just reviewed did not do a

good job on that. The tests are not good either. Wish

we had more time. Some pointers to think about the

assertions would also help.

Based on these findings, we believe the strictly imposed time

constraint might have played a role behind the shortage of

statistical evidence in cases of RQ1 and RQ2.

Not to our surprise, every Gexp participant complained

about the time constraint of just 1 hour, given that the

requirement contained multiple use case steps. As one of the

Gexp participants pointed out, “This is not a small use case.

Given that we need to write some assertions and then move

on with testing, I think 1 hour time is unfair”. Furthermore,

all these participants unanimously agreed that some additional

information to start the environment assertions would help.

In fact, 17 participants in the experimental group further

speculated the prospect of an automated support along this

line. One of those participants made a comment:

I think some of the information we need for asser-

tions is out there somewhere... maybe in the SRS

or in some other documents. Why don’t we write

some script that goes through them and gives us

more clues?

We believe our participant has a point. As Cleland-

Huang [40] indicated, modern software engineers have access

to documents describing almost every conceivable human

knowledge. Such documents come in the form of online

product catalogs providing rich feature descriptions, sample

requirements, feature models, database schemas, high-level

designs [40], current requirements, and stakeholder com-

ments [41], [42], among others. Information contained in

those documents is potentially a rich source of knowledge

for both existing and novel software systems. In addition,

we posit that the combination of lexical and shallow analysis

techniques presented by Sawyer et al. [24] could be utilized

to automatically extract environment phenomena from such

textual documents. In sum, we believe, the aforementioned

information and techniques could be leveraged to help capture

additional knowledge about the requirements and their envi-

ronment in an automated manner. Inspired by this intriguing

idea, in our future work, we plan to concentrate on developing

such an automated support.

V. THREATS TO VALIDITY

Construct validity concerns establishing correct opera-

tional measures for the concepts being studied [43]. The main

constructs in this work include the quality of assertions, test

cases, and test outcomes (e.g., improvement suggestions) in

RBT. We train our participants along this line through multiple

lectures, assignments, and laboratory activities throughout a

semester. In order to capture quality, we follow a well-

established Likert scale rating for further granular level at-

tributes: correctness, completeness, and usefulness. In ad-

dition, we observe corroborating evidence for our findings

uncovered through further qualitative analysis (cf. Section IV).

To that end, we believe that our work holds construct validity

along this line.

Internal validity establishes the accuracy of conclusions

drawn upon cause and effect [32]. We follow a randomized

two-group posttest-only design [32], which is common for

experiments of this nature. We draw our conclusions based

on both qualitative and quantitative analyses augmented with

relevant statistical tests. We believe, these approaches provide

additional validity to our conclusions. However, a confounding

factor we identify as “implicit environment assertions” might

have created some bias in our study, especially for RQ1 and

RQ2, which is discussed in Section IV. Nevertheless, we

believe this aspect does not affect the overall findings for our

central research question addressed in Section III.

External validity concerns establishing the domain to

which a study’s finding can be generalized [43]. Although we

conduct our study by selecting one software from the health

care domain, the meaning of environment assertions, i.e, prop-

erties in the environment that are true even if we never build

the proposed system [22], is the same for any software domain.

Therefore, we are confident about the external validity of our

83

findings and we expect that a different subject system will lead

to similar conclusions. A limitation of our work, however, is

that we select well implemented (probably due to the maturity

of iTrust) requirements for RBT that uncovers limited defects

and improvement suggestions. If another requirement of iTrust

(presumably a newer one) or a requirement of a less mature

system (i.e., a software under development but not released)

is used, the results may differ.

Reliability of a study suggests that the operations can

be repeated with the same results [43]. Our studies involve

student participants which could pose some reliability issues.

Research, however, indicates that students and professionals

are not that different in performing certain software engineer-

ing experiments, including requirements analysis tasks [44].

Therefore, we believe the findings of this research are reliable.

VI. CONCLUSION

In this paper, we first report an empirical investigation on

the significance of Jackson’s conceptualization of the environ-

ment and the machine [19]. In particular, we examine how

environment assertions influence developers’ RBT activities

and find preliminary evidence that paying attention to quality

assertions (that are correct, complete, and useful to the task

at hand) has a positive impact on such activities. Our study

also uncovers the fact that formulating quality assertions from

scratch is often challenging and improper assertions may rather

hinder the overall objective of testing and QA activities.

With an aim to address the aforementioned issues, in our

future work, we will investigate the possibility of developing

an automated support to help capture environment assertions

in a comprehensive manner. In particular, we plan to leverage

existing software knowledge freely available over online re-

sources, and utilize lexical and semantic analysis techniques

to provide additional ideas that can help developers formulate

quality assertions. If successful, such a support will assist

developers in conducting a variety of software engineering

activities, including requirements based testing and domain

analysis.

ACKNOWLEDGMENT

Our sincere gratitude to Ms. Mona Assaran for helping us

in running the experiment. This research is partially supported

by U.S. National Science Foundation (NSF) Award CCF-

1350487.

REFERENCES

[1] J. Tian, Software quality engineering: testing, quality assurance, and
quantifiable improvement. John Wiley & Sons, 2005.

[2] M. Tuteja and G. Dubey, “A research study on importance of testing and
quality assurance in software development life cycle (SDLC) models,”
International Journal of Soft Computing and Engineering (IJSCE),
vol. 2, no. 3, pp. 251–257, 2012.

[3] Tricentis, “Software fail watch: 5th edition,” https://goo.gl/WzXcBe, last
accessed: March 2019.

[4] B. W. Boehm, Software engineering economics. Prentice-hall Engle-
wood Cliffs (NJ), 1981, vol. 197.

[5] “Message from the chairs,” in 2014 IEEE 1st International Workshop
on Requirements Engineering and Testing (RET), 2014, pp. iii–iv.

[6] J. Larsson and M. Borg, “Revisiting the challenges in aligning RE and
V&V: Experiences from the public sector,” in 2014 IEEE 1st Inter-
national Workshop on Requirements Engineering and Testing (RET).
IEEE, 2014, pp. 4–11.

[7] Y. Aoki and S. Matsuura, “Verifying security requirements using model
checking technique for uml-based requirements specification,” in 2014
IEEE 1st International Workshop on Requirements Engineering and
Testing (RET). IEEE, 2014, pp. 18–25.

[8] J. Zhou, Y. Lu, and K. Lundqvist, “The observer-based technique for
requirements validation in embedded real-time systems,” in 2014 IEEE
1st International Workshop on Requirements Engineering and Testing
(RET). IEEE, 2014, pp. 47–54.

[9] A. Almohammad, J. F. Ferreira, A. Mendes, and P. White, “Reqcap:
Hierarchical requirements modeling and test generation for industrial
control systems,” in 2017 IEEE 25th International Requirements Engi-
neering Conference Workshops (REW). IEEE, 2017, pp. 351–358.

[10] D. Freudenstein, M. Junker, J. Radduenz, S. Eder, and B. Hauptmann,
“Automated test-design from requirements-the specmate tool,” in 2018
IEEE/ACM 5th International Workshop on Requirements Engineering
and Testing (RET). IEEE, 2018, pp. 5–8.

[11] K. Singi, V. Kaulgud, and D. Era, “Visual requirements specification
and automated test generation for digital applications,” in Proceedings
of the Second International Workshop on Requirements Engineering and
Testing, 2015, pp. 37–40.

[12] M. F. Granda, N. Condori-Fernández, T. E. Vos, and O. Pastor, “Towards
the automated generation of abstract test cases from requirements
models,” in 2014 IEEE 1st International Workshop on Requirements
Engineering and Testing (RET). IEEE, 2014, pp. 39–46.

[13] V. A. de Santiago Junior and N. L. Vijaykumar, “Generating model-
based test cases from natural language requirements for space applica-
tion software,” Software Quality Journal, vol. 20, no. 1, pp. 77–143,
2012.

[14] S. Hotomski, E. B. Charrada, and M. Glinz, “Aligning requirements and
acceptance tests via automatically generated guidance,” in 2017 IEEE
25th International Requirements Engineering Conference Workshops
(REW). IEEE, 2017, pp. 339–342.

[15] R. B. Svensson and B. Regnell, “Aligning quality requirements and test
results with quper’s roadmap view for improved high-level decision-
making,” in 2015 IEEE/ACM 2nd International Workshop on Require-
ments Engineering and Testing. IEEE, 2015, pp. 1–4.

[16] J. Bowman, “Requirements based software testing method,” Apr. 20
2004, uS Patent 6,725,399.

[17] M. W. Whalen, A. Rajan, M. P. Heimdahl, and S. P. Miller, “Coverage
metrics for requirements-based testing,” in Proceedings of the 2006
International Symposium on Software Testing and Analysis, 2006, pp.
25–36.

[18] P. Skoković and M. Rakić-Skoković, “Requirements-based testing pro-
cess in practice,” International Journal of Industrial Engineering and
Management (IJIEM), vol. 1, no. 4, pp. 155–161, 2010.

[19] M. Jackson, “The meaning of requirements,” Annals of Software Engi-
neering, vol. 3, no. 1, pp. 5–21, 1997.

[20] N. G. Leveson, M. P. E. Heimdahl, H. Hildreth, and J. D. Reese, “Re-
quirements specification for process-control systems,” IEEE transactions
on software engineering, no. 9, pp. 684–707, 1994.

[21] iTrust, “iTrust: Role-based healthcare,” https://152.46.18.254/doku.php,
last accessed: March 2019.

[22] M. Jackson, “Problems and requirements [software development],” in
Proceedings of the International Symposium on Requirements Engineer-
ing. IEEE, 1995, pp. 2–8.

[23] E. S. Yu, “Towards modelling and reasoning support for early-phase
requirements engineering,” in Proceedings of the IEEE International
Requirements Engineering Conference (RE). IEEE, 1997, pp. 226–
235.

[24] P. Sawyer, P. Rayson, and K. Cosh, “Shallow knowledge as an aid
to deep understanding in early phase requirements engineering,” IEEE
Transactions on Software Engineering, vol. 31, no. 11, pp. 969–981,
2005.

[25] M. P. Heimdahl and N. G. Leveson, “Completeness and consistency
analysis of state-based requirements,” in 1995 17th International Con-
ference on Software Engineering, 1995, pp. 3–3.

[26] M. P. E. Heimdahl and N. G. Leveson, “Completeness and consistency
in hierarchical state-based requirements,” IEEE transactions on Software
Engineering, vol. 22, no. 6, pp. 363–377, 1996.

84

[27] E. Sarmiento, J. C. S. do Prado Leite, and E. Almentero, “C&l:
Generating model based test cases from natural language requirements
descriptions,” in 2014 IEEE 1st International Workshop on Requirements
Engineering and Testing (RET). IEEE, 2014, pp. 32–38.

[28] G. E. Mogyorodi, “What is requirements-based testing?” Crosstalk: The
Journal of Defense Software Engineering, vol. 16, no. 3, p. 12, 2003.

[29] J. Smith, B. Johnson, E. Murphy-Hill, B. Chu, and H. R. Lipford,
“Questions developers ask while diagnosing potential security vulnera-
bilities with static analysis,” in Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering (ESEC/FSE), August-September
2015, pp. 248–259.

[30] W. Zogaan, P. Sharma, M. Mirahkorli, and V. Arnaoudova, “Datasets
from fifteen years of automated requirements traceability research:
Current state, characteristics, and quality,” in Proceedings of the 25th
International Requirements Engineering Conference (RE). IEEE, Sept
2017, pp. 110–121.

[31] A. Mahmoud and N. Niu, “On the role of semantics in automated
requirements tracing,” Requirements Engineering, vol. 20, no. 3, pp.
281–300, 2015.

[32] P. C. Cozby and S. C. Bates, Methods in Behavioral Research, 2012.
[33] P. K. Murukannaiah, N. Ajmeri, and M. P. Singh, “Acquiring creative re-

quirements from the crowd: Understanding the influences of personality
and creative potential in crowd re,” in Proceedings of the International
Conference on Requirements Engineering (RE), 2016, pp. 176–185.

[34] S. P. F. Fabbri, M. E. Delamaro, J. C. Maldonado, and P. C. Masiero,
“Mutation analysis testing for finite state machines,” in Proceedings of
1994 IEEE International Symposium on Software Reliability Engineer-
ing, 1994, pp. 220–229.

[35] H. B. Mann and D. R. Whitney, “On a test of whether one of two
random variables is stochastically larger than the other,” The annals of
mathematical statistics, pp. 50–60, 1947.

[36] F. Wilcoxon, “Individual comparisons by ranking methods,” Biometrics
bulletin, vol. 1, no. 6, pp. 80–83, 1945.

[37] A. Agresti and M. Kateri, Categorical data analysis. Springer, 2011.
[38] Tricentis, “Software fail watch: 5th edition,” https://goo.gl/WzXcBe, last

accessed: March 2019.
[39] J. Hauke and T. Kossowski, “Comparison of values of pearson’s and

spearman’s correlation coefficients on the same sets of data,” Quaes-
tiones geographicae, vol. 30, no. 2, pp. 87–93, 2011.

[40] J. Cleland-Huang, “Mining domain knowledge [requirements],” IEEE
Software, vol. 32, no. 3, pp. 16–19, 2015.

[41] T. Bhowmik, N. Niu, A. Mahmoud, and J. Savolainen, “Automated
support for combinational creativity in requirements engineering,” in
Proceedings of the International Requirements Engineering Conference
(RE), 2014, pp. 243–252.

[42] T. Bhowmik, N. Niu, J. Savolainen, and A. Mahmoud, “Leveraging topic
modeling and part-of-speech tagging to support combinational creativity
in requirements engineering,” Requirements Engineering, vol. 20, no. 3,
pp. 253–280, 2015.

[43] R. K. Yin, Case study research: Design and methods. SAGE Publica-
tions, 2008, vol. 5.

[44] D. Falessi, N. Juristo, C. Wohlin, B. Turhan, J. Münch, A. Jedlitschka,
and M. Oivo, “Empirical software engineering experts on the use of
students and professionals in experiments,” Empirical Software Engi-
neering, vol. 23, no. 1, pp. 452–489, 2018.

85

