
SysML Modeling Mistakes and Their Impacts on
Requirements

Mounifah Alenazi∗, Nan Niu∗, and Juha Savolainen†
∗ Department of Electrical Engineering and Computer Science, University of Cincinnati, USA

† Global Software and Control R&D, Danfoss Drives A/S, Denmark

alenazmh@mail.uc.edu, nan.niu@uc.edu, juha.savolainen@danfoss.com

Abstract—The Systems Modeling Language (SysML) repre-
sents a significant and increasing segment of industrial support
for building critical systems. Because modeling is a human-
centric activity, mistakes are unavoidable. Although there exist
several software defect classifications, little is known about the
mistakes pertaining to SysML modeling and the implications
of those mistakes in model-driven requirements engineering. In
this paper, we report a systematic mapping through which 42
SysML modeling mistakes are identified from 19 primary studies.
With an emphasis on the evidence of industrial relevance, we
further uncover that, despite some mistakes hurt requirements
satisfaction, others help make the requirements more complete
and the specifications more precise. Our work sheds light on
understanding the scope of the SysML mistakes and checking
requirements fulfillment in the face of the mistakes.

Index Terms—Systems Modeling Language (SysML), modeling
mistakes, model defects, evidence-based software engineering.

I. INTRODUCTION

Unlike in traditional software development where the soft-

ware (or more exclusively, the working code) is the main

artifact, in model-driven development (MDD) the main artifact

is a model or a set of models. These models encapsulate

the modeler’s knowledge and views of the subject system, so

that the stakeholder concerns can be managed throughout the

development life cycle. For systems engineering applications

involving interdisciplinary teams to design, build, and evolve

complex systems like railway controls and autonomous vehi-

cles, Systems Modeling Language (SysML) [1] has become

a de facto choice. Such a choice allows for structural and

behavioral representations of the system, and for reasoning

about the extent to which the requirements are met [2].

Because modeling is a human activity, mistakes are un-

avoidable. SysML modeling mistakes can occur for many

reasons: human errors during the modeling process, lack of

language support at the meta-model level, insufficient or overly

constrained tooling, and so on. Orthogonal to the mistake

sources, the consequences are typically defects manifested

in the models themselves. Since these models are the main

artifacts of MDD, understanding the defects is imperative.

One kind of understandings is to classify the defects. To this

end, prior work has contributed several classification schemes

to help distinguish the defect types, characterize the inherent

attributes, and inform the resolution strategies. These schemes

include the IEEE 1044-2009 standard for software anoma-

lies [3], Chillarege’s classification for in-process measure-

ments [4], and Grady’s software failure for root-cause anal-

ysis [5]. However, existing classifications are not concerned

with models in the MDD context, let alone SysML models. In

the absence of this knowledge, Briand and his colleagues [6]

proposed a defect seeding strategy specific to SysML and

further seeded four defect types in their study: incorrect

association navigation of a block definition diagram, incorrect

association multiplicity of a block definition diagram, incorrect

operation ordering of an activity diagram, and incorrect effect

on transitions of a state machine diagram. Admittedly, the

seeding strategy and the actual defects were based on the

researchers’ subjective opinions and experience [6].

A different kind of understandings, influenced by the

paradigm of evidence-based software engineering [7], focuses

on systematic literature review or mapping. The goal is not

necessarily creating new classifications but collecting evidence

of the state-of-the-art, so that the trends of a given field can be

depicted and the knowledge gaps can be identified. To that end,

Granda et al. [8] reported a closely related study in MDD by

concentrating on the defects in UML-based conceptual models.

A set of 28 articles was selected to serve as the primary studies

of their systematic literature mapping. The mapping results

indicated a tendency of reporting only “incorrect” defects

(80%) rather than “missing” (8%) or “unnecessary” (12%)

ones. The work of Granda et al. [8] also pointed out the

need to develop more mature defect detection mechanisms

beyond static methods (e.g., manual or automated inspections,

checking consistency rules, and checking OCL constraints).

In this paper, we present a systematic literature mapping

of SysML modeling defects to fill the gap elucidated in [6].

Our objective is to collect evidence to not only understand

the defects in SysML models presented in the contemporary

literature, but to do so with an explicit emphasis on practice,

real-world relevance, and industrial readiness. For example,

we adopt a hierarchy from our earlier literature review [9] to

assess the evidence level of all the selected primary studies.

This hierarchy ranges from “no evidence” and “evidence

obtained from working out toy examples” on the weaker end to

“evidence obtained from industrial case studies” and “evidence

obtained from industrial practice” on the stronger end. It is on

the basis of these practitioner-oriented criteria that we conduct

our survey and analyze the results. Moreover, we discuss

the implications of our findings to model-driven requirements

engineering, shedding light on the way ahead.

SysML Diagram

Structure
Diagram

Behavior
Diagram

Use Case
Diagram

Activity
Diagram

Internal Block
Diagram

Block Definition
Diagram

Sequence
Diagram

State Machine
Diagram

Parametric
Diagram

Requirement
Diagram

Modified from UML 2

New diagram type

Package Diagram

Same as UML 2

Fig. 1. SysML diagrams and their relationships with UML 2 (adapted from [10]).

The remainder of the paper is organized as follows. Sec-

tion II provides the background of SysML and reviews related

work on defect classifications. Section III explains our litera-

ture mapping’s study design. Section IV analyzes the results in

terms of the SysML modeling mistakes, and further discusses

how those mistakes link to requirements. Section V presents

concluding remarks.

II. BACKGROUND AND RELATED WORK

SysML, first adopted by the Object Management Group

(OMG) in 2006, is a visual modeling language designed

to provide simple but powerful constructs for modeling a

wide range of systems engineering problems [1]. It supports

the specification, analysis, design, verification and validation

of complex systems that include components for hardware,

software, data, personnel, procedures, and facilities. SysML

extends UML 2, which tends to be software-centric. It reuses

seven of UML 2’s fourteen diagrams, and adds two new

diagrams (requirement and parametric diagrams) for a total

of nine diagram types. Figure 1 shows these diagrams, which

cover four main perspectives of systems modeling:

• Behavior: The behavior diagrams include the use case di-

agram, activity diagram, sequence diagram, and state ma-

chine diagram. A use case diagram provides a high-level

description of functionality that is achieved through user

interactions with systems or system parts. The activity

diagram represents the flow of data and control between

activities. A sequence diagram represents the interaction

between collaborating constituencies of a system. The

state machine diagram describes the state transitions and

actions that a system or its parts perform in response to

events.

• Structure: The system structure can be represented by

block definition diagram which describes the hierarchy

of system, subsystems, and all the system elements. The

structure can also be shown in internal block diagram

which depicts system parts, ports, and connectors. Finally,

the package diagram is used to organize the dependencies

between the components that make up the system.

• Parametric: The parametric diagram represents con-

straints on system property values such as performance,

reliability, and mass properties. It serves as a means

to integrate the specification and design models with

engineering analysis models.

• Requirements: The requirement diagram captures re-

quirements hierarchies and the derivation, satisfaction,

verification, and refinement relationships. The relation-

ships provide the capability to relate requirements to

one another and to trace requirements to system design

models and test cases.

Compared to UML 2, a couple of SysML features offers

advantages for systems engineers [11]: (1) SysML reduces the

bias of UML toward software since SysML’s semantics are

more flexible and expressive. In particular, UML classes are

replaced with blocks in SysML. A block is a modular unit of

structure in SysML that is used to define physical entities (e.g.,

system, system component part, external systems, or items

that flow through the system), as well as conceptual entities

or logical abstractions. (2) The built-in requirement diagram

allows for natural language requirements to be modeled and

traced throughout the system’s life cycle.

Across the life span of a system, especially a software-

intensive system, defects can appear at different stages and

in different forms. Several defect classifications have been

proposed in the software engineering literature and are sum-

marized in Table I. While the IEEE 1044-2009 standard [3]

focuses on the source code and the orthogonal defect clas-

sification [4] focuses on the code change, the other schemes

listed in Table I are mainly concerned with early phases of

TABLE I
SOFTWARE DEFECT CLASSIFICATIONS

IEEE 1044 Orthogonal Defect HP Scheme [5] Conceptual Models [8] SysML Designs [6]STD [3] Classification [4]
main artifact source code product & process process UML diagrams SysML diagrams

(life cycle phase) (implementation) (software change) (early phases) (conceptual modeling) (systems design)
main categories unnecessary, extra, incorrect, missing, unnecessary,

incorrect(total # of leaf missing, and omission, and unclear, changed, missing, and
(4)-level categories) incorrect (5) commission (8) and better way (23) incorrect (6)

known testing vulnerability process teaching safety
usage reporting [12] discovery [13] improvement [14] UML [15] compliance [16]

defect detection and defect prevention (e.g., in requirements

engineering and design).

The main artifacts and life cycle phases also shape how the

defect classifications are used. Centered around the code, the

IEEE 1044-2009 standard is instrumental in software testing

(e.g., being an inspiration to get more structure into the

incident reporting [12]) and the orthogonal defect classification

is applied to understand what might be special about the

code defects that compromise the security of a system [13].

Although detecting the erroneous code and code change is

important, defects occur in requirements would significantly

cripple the resulting system [17]. For this reason, improving

software processes cannot afford to overlook the business and

requirements angles [14]. Learning conceptual modeling [15]

and practicing safety inspections should also pay attention to

the various defects [6, 8]. Note that the “known usage” of

Table I is based on our knowledge and is meant to illustrate

the subtleties of the classification schemes.

Despite the subtleties, the classifications themselves share

certain similarities. In most cases, “unnecessary”, “missing”,

and “incorrect” requirements, model elements, code, etc. are

considered to be defects and are further differentiated, though

the terminologies are by no means unanimous [18, 19]. One

can probably map “extra”, “omission”, and “commission”

of [4] to “unnecessary”, “missing”, and “incorrect” of [3] re-

spectively. To mitigate ambiguity, a hierarchy of sub-categories

is often formed.

In the work done by Granda and her colleagues [8], a two-

level hierarchy is presented for the UML-based conceptual

modeling defects, e.g., “unnecessary” is decomposed into

“redundant” and “extraneous”. This results in 6 leaf-level

categories as shown in Table I. As far as the SysML defects

are concerned, the strategy proposed by Briand et al. [6] leads

to four types of seeds mentioned earlier, all of which are

“incorrect” operations injected into existing designs. Questions

remain about whether other types of defects like “unnecessary”

occur in SysML models, how frequent and severe the defects

are, what kinds of models are susceptible to which mistakes,

how believable the reported evidence is, etc. These motivate

us to search the literature more systematically in order to map

the state-of-the-art.

III. MAPPING STUDY DESIGN

Before teasing out our research questions, we clarify the

terminology appeared in the relevant literature. According to

IEEE 1044-2009, an anomaly is: “Any condition that devi-

ates from expectation based on requirements specifications,

design documents, user documents, standards, etc. or from

someone’s perception or experience”, whereas a defect is: “An

imperfection or deficiency in a work product where that work

product does not meet its requirements or specifications and

needs to be either repaired or replaced” [3]. Instead of gearing

toward work product and even repair or replacement actions,

we choose the term mistake1 to incorporate the human and

social aspects in SysML modeling. For example, our intention

is to cover mistakes like error—“a human action that produces

an incorrect result” [3]—so that the cause of a defect, and

not just the defect manifested in the work product, could be

understood. The implications of the SysML modeling mistakes

are surveyed mainly from the MDD requirements engineering

perspective in our work.

Due to the broad contextual considerations such as cause

and implication, we carry out a systematic mapping study

on SysML modeling mistakes. Compared with a systematic

literature review, a mapping study follows the same process

of formulating research questions, defining literature search

criteria, determining primary studies, extracting data, and

reporting [7]. Differences include that a systematic mapping

deals with a broader research topic and its data extraction

and reporting tend to use summaries rather than techniques

like meta-analysis or narrative synthesis. Napoleão et al. [20]

highlighted quality assessment as being the only practical dif-

ference between systematic literature reviews and systematic

mapping studies. In our work, quality assessment of primary

studies emphasizes evidence strength as it relates to MDD

practitioners.

A. Research Questions

We set out to answer four research questions:

RQ1: What are the SysML modeling mistakes, their

types, and their causes?

RQ2: Which SysML diagrams are subject to the modeling

mistakes?

RQ3: What are the evidence levels of the reported SysML

modeling mistakes?

1Merriam-Webster (http://www.m-w.com/) defines mistake as: “a wrong
action or statement proceeding from faulty judgment, inadequate knowledge,
or inattention”. This explanation fits the purpose of our study.

TABLE II
PRIMARY STUDIES LISTED CHRONOLOGICALLY (YEAR OF PUBLICATION) AND THEN WITHIN THE SAME YEAR ALPHABETICALLY (FIRST AUTHOR)

ID Source DOI or Grey Literature
PS1 C. Choppy and G. Reggio, “A Method for Developing UML State Machines”, in SAC, 2009 10.1145/1529282.1529365
PS2 Y. Jarraya, et al. “On the Meaning of SysML Activity Diagrams”, in ECBS, 2009 10.1109/ECBS.2009.25
PS3 R. Karban, et al. “MBSE in Telescope Modeling”, International Systems Engineering Newsletter, 2009 10.1002/inst.200912424

PS4 C. L. Delp, “FireSAT: Model vs Documents Alone”, 2010 grey1

PS5
L. Mi and K. Ben, “A Method of Software Specification Mutation Testing Based on UML State

10.1016/j.proeng.2011.08.023
Diagram for Consistency Checking”, in CEIS, 2011

PS6
G. Reggio, et al. “ “Precise is Better Than Light” a Document Analysis Study about Quality of

10.1109/EmpiRE.2011.6046257
Business Process Models”, in EmpiRE, 2011

PS7 Z. Andrews, et al. “Model-Based Development of Fault Tolerant Systems of Systems”, in SysCon, 2013 10.1109/SysCon.2013.6549906

PS8 R. Steiner, “Common SysML Conceptual Stumbling Blocks”, in San Diego INCOSE Mini-Conference, 2013 grey2

PS9 B. K. Aichernig, et al. “Model-Based Mutation Testing of an Industrial Measurement Device”, in TAP, 2014 10.1007/978-3-319-09099-3 1

PS10
S. Ali, et al. “Does Aspect-Oriented Modeling Help Improve the Readability of UML State Machines?”,

10.1007/s10270-012-0293-5Software & Systems Modeling, 2014

PS11
É. André, et al. “Activity Diagrams Patterns for Modeling Business Processes”, Software Engineering

10.1007/978-3-319-00948-3 13Research, Management and Applications, 2009

PS12
E. A. Antonio, et al. “Verification and Validation Activities for Embedded Systems–A Feasibility Study on

10.5220/0004887302330240
a Reading Technique for SysML Models”, in ICEIS, 2014

PS13
L. Briand, et al. “Traceability and SysML Design Slices to Support Safety Inspections: A Controlled

10.1145/2559978
Experiment”, ACM Transactions on Software Engineering and Methodology, 2014

PS14 H. Kruus, et al. “Teaching Modeling in SysML/UML and Problems Encountered”, in EAEEIE, 2014 10.1109/EAEEIE.2014.6879380

PS15 Shannon (GenMyModel Community Manager), “5 Common UML Mistakes”, 2014 grey3

PS16
S. Feldmann, et al. “Towards Effective Management of Inconsistencies in Model-Based Engineering of

10.1016/j.ifacol.2015.06.200
Automated Production Systems”, in INCOM, 2015

PS17 K. Hampson, “Technical Evaluation of the Systems Modeling Language (SysML)”, in CSER, 2015 10.1016/j.procs.2015.03.054

PS18
S. Pavalkis, “MBSE in Telescope Modeling: European Extremely Large Telescope – World’s Biggest Eye

grey4
on the Sky: Tool Vendor Perspective”, in Space Symposium, 2015

PS19
H. Sun, et al. “Improving Defect Detection Ability of Derived Test Cases Based on Mutated UML Activity

10.1109/COMPSAC.2016.136
Diagrams”, in COMPSAC, 2016

grey1: https://mbse.gfse.de/documents/SpaceSystemsIW10.pdf
grey2: https://sdincose.org/wp-content/uploads/2013/11/11-Rick-Steiner-SysML-Conceptual-Stumbling-Blocks.r.04.pdf
grey3: http://blog.genmymodel.com/5-common-uml-mistakes.html
grey4: https://www.spacesymposium.org/wp-content/uploads/2017/10/S.Pavalkis 31st Space Symposium Tech Track paper.pdf

RQ4: How do the SysML modeling mistakes impact

requirements engineering in MDD practice?

It is important to note that our goal is not to devise a new

classification scheme. We thus use the 6 leaf-level categories

presented by Granda et al. [8] as a baseline: “missing”, “in-

consistent”, “incorrect”, “ambiguous”, “redundant”, and “ex-

traneous”. Meanwhile, we are open to emerging categories or

facets. It is also worth noting that RQ4 has a direct relevance

to MDD practice, and for that reason, we choose only those

studies with industrial-strength evidence (as opposed to the

weaker levels of evidence) to discuss the influences of SysML

modeling mistakes on requirements engineering.

B. Search Criteria

Our search for the primary studies was carried out in June

2019 and involved two stages: an automatic one over Elsevier’s

Scopus and a manual one including the grey literature. We

relied on Scopus due to its structured and advanced ways to

specify query. Our first attempt issued the search string:

TITLE ABS KEY ((“SysML” OR “SysML diagram” OR “SysML design” OR
“SysML model”) AND (“mistakes” OR “design mistakes” OR “design
error” OR “defect”)) AND PUBYEAR > 2006 AND PUBYEAR < 2020 AND
(LIMIT TO (DOCTYPE , “cp”) OR LIMIT TO (DOCTYPE , “ar”) OR LIMIT
TO (DOCTYPE , “ch”)) AND (LIMIT TO (LANGUAGE, “English”))

Although Scopus returned 14 papers, only one was regarded

as relevant by us. We reconsidered the query by removing the

year restrictions even though SysML was first adopted by the

OMG in 2006. We further expanded the query with the UML

diagrams reused by SysML, as well as an additional mistake

possibility of “modeling error”. The refined search string was

as follows:

TITLE ABS KEY ((“SysML” OR “SysML diagram” OR “SysML design” OR
“SysML model” OR “UML state machine” OR “UML activity diagram”)
AND (“mistakes” OR “design mistakes” OR “design error” OR
“modeling error” OR “defect”)) AND (LIMIT TO (DOCTYPE , “cp”) OR
LIMIT TO (DOCTYPE , “ar”) OR LIMIT TO (DOCTYPE , “ch”)) AND
(LIMIT TO (LANGUAGE, “English”))

This search resulted in 41 papers. Two researchers collabo-

ratively judged relevance by going through the abstract and

the content of each paper. At the end, only five papers were

relevant: PS1, PS10, PS11, PS12, and PS19 of Table II.

We then engaged in a manual search via Google Scholar to

check recursively the references and the citations of those five

relevant papers. Unlike the first stage, we included both peer-

reviewed publications and grey literature such as presentations,

white papers, and blogs. The final list consisted of 19 primary

studies as shown in Table II.

Fig. 2. SysML activity diagram reviewed in our study (Figure 13 in PS2).

C. Data Extraction

While the actual extracted data2 are presented in the next

section to answer our research questions, we describe here the

process of how we extracted data from the selected primary

studies. We used a two-phase process. First, two researchers

individually reviewed five randomly selected papers (PS13,

PS8, PS5, PS2, and PS12). The researchers followed a pre-

defined data extraction form, and then compared their results

in a two-hour meeting. The observations were that their

agreement levels were high, and consensus was established

after the meeting.

As an example of the first phase, the researchers indepen-

dently reviewed PS2 on SysML activity diagrams. In both data

extraction results, the mistake of “a join node placed after a

decision node” was recorded. Figure 2 illustrates this mistake

with PS2’s hypothetical design of the behavior corresponding

to banking operations on an automated teller machine (ATM).

The guards [g1] and [g2] denote the probability of triggering

new operations or looping back of re-performing some earlier

operations. In Figure 2, if [g1] is being evaluated twice, i.e.,

“Choose account” is performed twice, then a deadlock may

occur depending on how [g2] is evaluated. The researchers

classified this mistake as “incorrect” by following the scheme

presented by Granda et al. [8]. The other data extraction

fields of this mistake were also consistent between the two

researchers.

Building on the first phase, we randomly assigned the

remaining 14 primary studies to those researchers: 7 per

person. The final data extraction results were aggregated and

consolidated. We report these results next to answer the four

research questions of our mapping study.

IV. RESULTS AND ANALYSIS

A. Forty-Two Mistakes

Our literature mapping identifies 42 distinct mistakes. The

majority (86%) are presented in only one primary study. All

2The entire data of our study are shared in an institution-wide repository,
Scholar@UC [21], for replication and cross-validation purposes.

TABLE III
MISTAKES MENTIONED IN MORE THAN ONE PRIMARY STUDY

Mistake Description (diagram type) Mentioned
a state is subsumed by another state (state machine) PS1, PS10
a transition that comes from or leads to a wrong state

PS5, PS10
or moves with wrong conditions (state machine)

a transition is missing (state machine) PS5, PS10
a transition is subsumed by another (state machine) PS5, PS10
a state is missing (state machine) PS5, PS10
replacing a fork/join node with a control (activity) PS15, PS19

the remaining six mistakes are mentioned in two primary

studies. We list them in Table III. Although PS5 and PS10

examine consistency and readability, state machine diagram is

what both studies focus on. As a result, all the four mistakes

discussed in PS5 are also mentioned in PS10. Additionally,

PS10 covers “a state is subsumed by another state” which is

also presented in PS1: another study on state machines.

Table III shows the positive contributions of the grey litera-

ture. Specifically, “replacing a fork/join node with a control” in

the activity diagram is not only identified as an incorrectness

by the most recent work (PS19), but also recognized as a

common mistake in an earlier blog post (PS15). For the four

pieces of grey literature that we have surveyed, six mistakes

are found only in them. In another word, these six SysML

modeling mistakes would be hidden if the grey literature were

not explicitly searched or considered.

Adopting the scheme by Granda et al. [8] allows us

to classify the 42 mistakes identified. Figure 3 shows the

classification distribution. The largest proportion (“incorrect”)

accounts for 45% of the mistakes, including those listed in

Table III. In line with the findings in [8], our results confirm

that “incorrect” remains the most frequently reported mistake

type, though our proportion here (45%) is based on the

mistakes (N=42) while that of Granda et al. [8] (80%) is

based on the primary studies (N=28).

Different from the trend of 8% revealed in [8], “missing”

makes up 40% of the mistakes in our data. A closer look shows

that many instances are about what are desired but currently

“missing”. For example, PS3 points out SysML does not

differentiate intrinsics between various interfaces like logical

and mechanical. Therefore, “missing” in our results includes

not only model defects (e.g., “state machine transitions are

Fig. 3. Distribution of the 42 SysML mistake types.

Fig. 4. Observability of the 42 mistakes in SysML models.

modeled without triggers” in PS1), but also modeling deficien-

cies/weaknesses (or even feature requests) like the one pointed

out in PS3.

Four mistakes are classified as “redundant”, implying the

precision of using the leaf-level category (“redundant” or

“extraneous”) rather than the higher-level one (“unnecessary”).

For instance, in SysML activity diagram modeling, PS19

shows that it would be redundant to add a new pair of fork

and joint within an existing pair of fork and joint. Our study

uncovers two “inconsistent” mistakes. Both are discussed in

PS16 and are syntactic in nature: One is about using improper

type conversions or castings, and the other refers to using

incompatible value, data, or primitive types.

To explore the cause(s) of each identified mistake, we apply

open-ended coding without adopting any pre-existing schemes.

To our surprise, many primary studies lack the information on

this. Referring back to Figure 2, though the mistake is clearly

presented in PS2, we could not locate relevant information

about why such a mistake happened, who made it, under what

circumstances it occurred, etc. The two plausible causes that

we have identified from the primary studies are: “meta-model

limitation” and “tool limitation”. An example of the former is

SysML’s lack of support for time being a first-class element

(PS4), and that of the latter is Cameo’s MDD tool may corrupt

the model if extensive links are made (PS18).

Given that most causes remain unknown, we turn our

attention to how the mistakes manifest themselves in the

SysML models. We perform this analysis with three degrees

of observability: “directly observable” (e.g., cyclic associations

in a block definition diagram discussed in PS15), “indirectly

observable” (e.g., shifting down the fork node while lifting

up the join node in PS19’s study of activity diagrams), and

“not observable” (e.g., no timing element in block definition

diagram according to PS4). Figure 4 shows the results of our

observability analysis, where 60% of the mistakes are directly

observable, and hence can be syntactically checked, in the

SysML models. The 14% indirectly observable ones would

require semantic interpretations that are oftentimes needed

from the modelers. Unfortunately, 26% of the mistakes are

not observable in the resulting models themselves, many of

which are “meta-model limitation” and “missing” mistakes.

In another word, if there is currently no way of expressing a

certain construct in SysML (meta-model is limited), then that

construct will be missing and impossible to observe in existing

models.

In summary, 42 mistakes are identified in our mapping

study, a majority of which represents incorrectness in SysML

modeling. Broadening the mapping study to incorporate causes

of the mistakes allows us to show a nontrivial proportion of

insufficiencies reported in the literature. These insufficiencies

can further lead to new and improved features of the meta-

model or the modeling tool. Despite our explicit consider-

ation of causes, they are difficult to extract. Our updated

analysis shows that, independent of the causes, a majority of

the mistakes can be readily detected in the SysML models

syntactically.

B. Five Diagrams

Our study shows that, out of the nine model types of SysML

(cf. Figure 1), mistakes have appeared in five diagrams. From

the mostly discussed to the least discussed, these five are:

activity diagram, block definition diagram, state machine dia-

gram, requirement diagram, and internal block diagram. The

number of mistakes specifically applicable to these diagrams is

15, 11, 10, 3, and 1 respectively. The total here is 40, leaving

the following two mistakes unaccounted for:

• “extensive linking by modelers has side effects (intro-

duced by changes) as these changes can go unnoticed

and corrupt the model” (PS18), which we believe can

affect a set of interrelated SysML diagrams; and

• “an open issue about navigation to the different views of

a block (mechanical, optical, . . .)” (PS3), which is a tool

limitation affecting multiple diagram types, e.g., block

definition and internal block diagrams.

For reasons of being crosscutting [22], we exclude the above

two mistakes from our current RQ2 analysis. Figure 5 helps

visualize the modeling mistakes that the SysML diagrams are

susceptible to. In Figure 5a, “missing” appears in all the 5 di-

agrams. If “missing” suggests new modeling capabilities, then

it seems all SysML diagram types are open to improvements.

Even though “incorrect” accounts for 45% of the identified

mistakes (cf. Figure 3), they are reported to appear in only state

machine, activity, and block definition diagrams. One reason

may be that these diagrams are used more often; another might

be that they are difficult to be correctly practiced.

An interesting pattern of Figure 5b is that, in behavioral

diagrams (state machine and activity diagrams), more than

half of the mistakes are directly observable. In state machines,

this ratio is as high as 90%. Such a pattern does not hold

for structural diagrams (block definition and internal block

diagrams) or requirement diagram. The results depicted in

Figure 5 indicate that, in SysML, the way in which the system

works (or is intended to work) can be more readily checked

than the way in which the system components are arranged.

In summary, five SysML diagrams are shown to be suscep-

tible to mistakes, and our literature mapping fails to recognize

(a) (b)

Fig. 5. (a) SysML diagrams and mistake types, and (b) SysML diagrams and mistake observability. In both cases, the total number of mistakes is 40. SMD:
State Machine Diagram. AD: Activity Diagram. BDD: Block Definition Diagram. RD: Requirement Diagram. IBD: Internal Block Diagram.

any mistakes in sequence, use case, package, or parametric

diagrams. Although improvements can be made to all diagrams

(e.g., filling in the “missing”), “incorrect” practices tend to

happen when state machine, activity, and block definition

diagrams are built. Once the SysML models are built, the

mistakes in behavioral diagrams are easier to spot than those

in structural and requirement diagrams. To better understand

in what contexts (e.g., research or industry) and application

domains SysML models are developed, we next assess the

evidence level of the primary studies.

C. Seven Industrially Relevant Pieces of Evidence

Different from answering RQ1 and RQ2 where mistakes

serve as the units of analysis, we address RQ3 by treating

each primary study as our analysis unit. RQ3 is our main effort

to emphasize industrial relevance because the evidence level

reported in the literature is critical for practitioners to believe

the research findings. In our context, the strength of evidence

would directly inform the practitioners about how likely the

SysML modeling mistakes are and how much attention they

shall pay to specific mistakes.

Building on our experience in conducting systematic map-

pings and reviews [9, 23, 24], we use a hierarchy of evidence

levels to make our assessment more practical. In Table IV, we

TABLE IV
EVIDENCE LEVELS OF THE PRIMARY STUDIES

Evidence Level # of Primary Studies
No evidence 1
Evidence obtained from demonstration

3
or working out toy examples

Evidence obtained from expert opinions
5

or observations
Evidence obtained from academic studies,

3
e.g., controlled lab experiments

Evidence obtained from industrial studies,
4

e.g., causal case studies
Evidence obtained from industrial practice 3

present the evidence levels from weakest (top of the table)

to strongest (bottom of the table), along with the number

of primary studies at each level. Table IV shows that all

the primary studies, except for one, provide evidence to

contextualize the mistakes, though some are demonstrations

explaining the mistakes or word-of-mouth opinions from in-

dividual experts. Although academic studies may encompass

the rigor of executing well-controlled experiments, we favor

the evidence obtained from studying contemporary real-world

problems or systems in their industrial contexts.

Seven primary studies present the SysML modeling mis-

takes grounded in industrial-strength applications or drawn

from the actual practices. The mistakes reported in these

studies are rooted in much stronger evidence levels and are

thus more believable. The extent to which these mistakes are

applicable to other systems engineering projects depends on

many factors, including the application domains as well as

the size and complexity of the models. We therefore list the

relevant information in Table V.

The domains shown in Table V are truly interdisciplinary,

requiring expertise in not only software engineering but also

automotive, aerospace, and more [25]. Mistakes occur in

SysML models of various sizes, ranging from a couple of

dozen elements to tens of thousands of elements. This finding

suggests that mistakes do not necessarily correlate with size or

even complexity; rather, they may be due to human errors or

collaboration breakdowns. Another observation of Table V is

the crucial role that requirements play in industrial SysML

projects. In PS3 and PS4, for example, the requirements

information is explicitly presented. Next, we discuss how the

SysML modeling mistakes, especially the industrially relevant

ones, influence requirements engineering in MDD.

D. Three Impacts on Model-Driven Requirements Engineering

Building on the answers to RQ3, we address RQ4 with

an interdisciplinary system (namely an emergency response

TABLE V
MISTAKES REPORTED IN INDUSTRIALLY RELEVANT PRIMARY STUDIES

ID Mistakes Domain (model size)
hiding internal blocks also hides the nested connector

PS3 no intrinsic differentiation between various interfaces Optical Telescope (13000 model elements, 700 symbols, 150
(industrial relationship of the ports is hardly shown diagrams, 50 high level requirements, 50 control systems re-
practice) difficult to relate the different parts into the associated context quirements, refined by 150 use cases)

an open issue about navigation to the different views of a block
PS4 (indus- putting activity on internal block diagram creates separate usage Space Systems; FireSat Mission (10 stakeholder requirements,

trial practice) impossible for time to be a first-class element 12 systems requirements, 4 test requirements, 13 blocks

PS5
a transition to/from a wrong state or with wrong conditions

(industrial
a transition is missing

Control Sub-System (32 states, 45 transitions)
study)

a transition is subsumed by another
a state is missing

PS7 (indus- no external send signal action to an event or no data handling Radio System; Mobile Phone System; Emergency Response
trial study) can lead to a deadlock (not provided)
PS9 (indus-

incorrect time/signal triggers in a state machine diagram Automotive (19 states, 39 transitions)
trial study)

PS18 (indus-
extensive linking can corrupt the model [same as PS3]

trial practice)
PS19 (indus- incorrect guard condition of activity diagram’s decision node

Aircrafts (23 model elements)
trial study) input pin or output pin is missing in an activity diagram

SysML modeling mistakes

<<block>>
Braking Sys
<<block>>
Braking Sys

<<block>>
Vehicle

<<block>>
Vehicle

<<block>>
Steering Sys
<<block>>

Steering Sys

RPM=RPM+
100

{probability =0.8}

RPM=RPM-
100

RPM
update

{probability =0.2}

. . .

Requirements

Consistency
checking

Change impact
analysis

Compliance
assurance

Safety Security

A B C

Violating Refining Having no
 impact on

Reliability

. . .

Fig. 6. SysML mistakes’ impacts on requirements.

system) by focusing primarily on the mistakes listed in Ta-

ble V. In addition, the primary studies of Table V provide the

goals like “safety” and tasks like “compliance assurance” [26]

that a requirements engineer considers and performs in the

MDD context. In Figure 6, we thus adopt the i∗ graphical

notations [27] to represent these softgoals and tasks.

It is not surprising to us that one of the impacts that SysML

mistakes have is to lead the requirements to be violated (A©
of Figure 6). To illustrate the impact, we show some SysML

modeling fragments in Figure 7, and consider a high-level

requirement of the emergency response system: “For every call

received, send an emergency response unit (ERU) with correct

equipment to the correct target”. The mistakes of mixing

aggregation and composition in a block definition diagram

(1© and 2© of Figure 7a) would violate the requirement

demanding the phone system to be operated and managed by

external communication systems and not by the emergency

response system. In addition, the multiplicity mistake (3© of

Figure 7a) would violate the requirement of allowing the

emergency response system to communicate with many ERUs

each providing equipment needed for the aid, and not with

one and only one ERU.

The SysML modeling mistakes can sometimes be valuable

to requirements engineer. In Figure 7b, the mistakes of adding

control flows instead of a fork node (4©) and adding a join

node after a decision node (5©) could assist in requirements

refinement (B© of Figure 6). In particular, a synchronization

from “Divert ERU” to “Log diversion” and to the merge node

must be performed. In other words, when there is no ERU

available at the time of the rescue event and the case is

critical, the diverted ERU shall receive the rescue information

immediately. To satisfy this requirement, a fork node should be

modeled instead of the control flows. To avoid the deadlock,

the join node (5© of Figure 7b) shall be removed since it

will be waiting for an input that will never be delivered. One

refinement option is to relax the timing constraint for the

diverted ERU to receive the rescue information, e.g., requiring

there exists a next state, rather than requiring all the next states,

with tolerable rescue receiving delay. “Start rescue” event (6©
of Figure 7b) could contribute to the deadlock if there is

no external signal sent. Recognizing such a mistake helps

uncover new requirements expressing the desire of having

some external-signal-sent action in the SysML design.

Fig. 7. Illustration of SysML mistakes’ impacts on requirements.

To our surprise, a third relation suggests that some mistakes

have no impact on requirements (C© of Figure 6). The state

machine diagram of Figure 7 illustrates this. The mistake of

modeling transitions without triggers (7© of Figure 7c) would

neither violate the requirement: “call center shall generate

and manage rescue events” nor suggest new or improvement

conditions/constraints related to this requirement. One main

reason is that the modeling mistake appears outside the design

slice of the targeted requirement [6]. This is an important issue

given the increasing size and complexity of SysML models and

only a set of critical requirements (e.g., safety and security)

shall be reasoned about thoroughly to support tasks such as

compliance assurance. Understanding the scope of the SysML

modeling mistakes, combined with developing better methods

to trace critical requirements in the MDD context [28], will

be valuable for practitioners to resolve crucial mistakes while

tolerating or delaying the resolution of others [29].

V. CONCLUDING REMARKS

This paper reports our systematic mapping study of SysML

modeling mistakes and the impacts of the mistakes in model-

driven requirements engineering. Based on the 19 primary

studies, we summarize our mapping results as follows.

• Forty-two SysML modeling mistakes fall into incorrect,

missing, redundant, and inconsistent categories. While the

causes of the mistakes have not been explicitly reported

in the literature, most mistakes can be directly observed

and thus syntactically identified in the SysML models.

• Five out of nine SysML diagram types are subject to

the modeling mistakes, spanning from structure (block

definition and internal block diagrams) through require-

ment to behavior (state machine and activity diagrams).

This could indicate that these diagrams are practiced more

often and/or are difficult to be practiced correctly. In line

with the work of Granda et al. [8], more mature defect

detection mechanisms beyond static methods (e.g., man-

ual or automated inspections, checking consistency rules,

and checking OCL constraints) should be considered for

uncovering behavioral mistakes.

• Seven primary studies show higher-level evidence rooted

in industrial studies and practices. Unlike UML, SysML

mistakes are made in truly interdisciplinary systems

such as space systems and emergency response systems.

These industrially relevant studies suggest that modeling

mistakes appear no matter how large or complex the

system is, and due to the interdisciplinary nature of

systems engineering, identifying the mistakes and per-

forming root cause analysis of the mistakes would likely

involve subject domain experts and engineers with diverse

backgrounds in software, electrical, mechanical, etc.

• Three impacts on model-driven requirements engineering

come from SysML modeling mistakes, emphasizing the

recognition of requirements engineers’ critical concerns

like safety and security as well as the tasks that they

must accomplish. While certain mistakes, especially those

in the “incorrect” category, violate the requirements, not

all mistakes should be considered harmful. It turns out

that some mistakes (e.g., the “missing” ones) could lead

to new requirements to be discovered to alleviate the

omissions; yet some other mistakes (e.g., the “incon-

sistent” ones) could help overcome requirements over-

specification or under-specification. Finally, our work

calls for better ways of understanding the scope of the

modeling mistake so that their impacts on requirements

can be properly reasoned about, resolved, or tolerated.

Like all the systematic mapping studies, ours is limited

by the literature search strategies implemented. A threat to

construct validity is our formulation of search queries and

the sources of our search. We combined both automatic

and manual search in our work, and included terms such

as “defect” and “error” in the queries. Nevertheless, others

may have different views about the key construct of “SysML

modeling mistakes”, and therefore our mapping results shall

be interpreted only within the 19 primary studies that we

identified. We believe that the threats to internal validity are

minimal due to the descriptive nature of our data extraction

effort and the fact that we were not interested in creating any

new classification schemes. As far as external and conclusion

validities are concerned, we have shared the entire data of

our systematic mapping study in an institution-wide repository,

Scholar@UC [21], and would welcome replications (including

theoretical ones [30, 31]), cross-validations, and evolutions.

Our work reported here can be continued in many directions.

We are interested in learning why the four SysML mod-

els (sequence, use case, package, and parametric diagrams)

are less susceptible to mistakes: Should certain practices be

transformed to other model types, or should some diagrams

become candidates for depreciation? We also want to better

understand the causes behind the mistakes. Of special value is

the synergy with human error taxonomies like [32] as MDD

and requirements engineering are intrinsically human-centric

activities. Although our results show that mistakes happen

regardless of model size and complexity, we believe automated

tooling [33] is key for practitioners to cope with the SysML

modeling mistakes, ranging from detecting and tracing them

to resolving or tolerating them.

ACKNOWLEDGEMENT

The work is funded in part by the U.S. National Science

Foundation (CCF 1350487).

REFERENCES

[1] Object Management Group, “Systems Modeling Language (SysML),”
http://www.omgsysml.org, Last accessed: August 2019.

[2] W. Schäfer and H. Wehrheim, “The challenges of building advanced
mechatronic systems,” in International Conference on the Future of
Software Engineering (FOSE), Minneapolis, MN, USA, May 2007, pp.
72–84.

[3] IEEE Standard Board, “IEEE standard classification for software anoma-
lies,” https://standards.ieee.org/standard/1044-2009.html, Last accessed:
August 2019.

[4] R. Chillarege, Orthogonal Defect Classification. McGraw-Hill, 1996.
[5] R. B. Grady, “Software failure analysis for high-return process improve-

ment decisions,” Hewlett-Packard Journal, pp. 2:1–2:12, August 1996.
[6] L. C. Briand, D. Falessi, S. Nejati, M. Sabetzadeh, and T. Yue,

“Traceability and SysML design slices to support safety inspections:
A controlled experiment,” ACM Transactions on Software Engineering
and Methodology, vol. 23, no. 1, pp. 9:1–9:43, February 2014.

[7] B. A. Kitchenham, T. Dybå, and M. Jørgensen, “Evidence-based soft-
ware engineering,” in International Conference on Software Engineering
(ICSE), Edinburgh, UK, May 2004, pp. 273–281.

[8] M. F. Granda, N. Condori-Fernández, T. E. J. Vos, and O. Pastor, “What
do we know about the defect types detected in conceptual models?”
in International Conference on Research Challenges in Information
Science (RCIS), Athens, Greece, May 2015, pp. 88–99.

[9] V. Alves, N. Niu, C. F. Alves, and G. Valença, “Requirements en-
gineering for software product lines: A systematic literature review,”
Information & Software Technology, vol. 52, no. 8, pp. 806–820, August
2010.

[10] S. Friedenthal, A. Moore, and R. Steiner, “OMG SysML tutorial,”
https://user.eng.umd.edu/˜austin/enes489p/lecture-resources/SysML-
Friedenthal-Tutorial-INCOSE2006.pdf, Last accessed: August 2019.

[11] S. Nejati, M. Sabetzadeh, D. Falessi, L. C. Briand, and T. Coq, “A
SysML-based approach to traceability management and design slicing
in support of safety certification: Framework, tool support, and case
studies,” Information & Software Technology, vol. 54, no. 6, pp. 569–
590, June 2012.

[12] A. M. Hass, Guide to Advanced Software Testing. Artech House, 2014.

[13] P. Morrison, R. Pandita, X. Xiao, R. Chillarege, and L. Williams, “Are
vulnerabilities discovered and resolved like other defects?” Empirical
Software Engineering, vol. 23, no. 3, pp. 1381–1421, June 2018.

[14] A. Raninen, T. Toroi, H. Vainio, and J. J. Ahonen, “Defect data analysis
as input for software process improvement,” in International Conference
on Product-Focused Software Process Improvement (PROFES), Madrid,
Spain, June 2012, pp. 3–16.

[15] W. A. F. Silva, I. F. Steinmacher, and T. U. Conte, “Is it better to learn
from problems or erroneous examples?” in International Conference on
Software Engineering Education and Training (CSEE&T), Savannah,
GA, USA, November 2017, pp. 222–231.

[16] J. L. de la Vara, A. Ruiz, K. Attwood, H. Espinoza, R. K. Panesar-
Walawege, Á. López, I. del Rı́o, and T. Kelly, “Model-based specifica-
tion of safety compliance needs for critical systems: A holistic generic
metamodel,” Information & Software Technology, vol. 72, pp. 16–30,
April 2016.

[17] F. P. Brooks, The Mythical Man-Month. Addison-Wesley, 1975.
[18] N. Niu and S. Easterbrook, “Analysis of early aspects in requirements

goal models: A concept-driven approach,” Transactions on Aspect-
Oriented Software Development, vol. 3, pp. 40–72, 2007.

[19] ——, “So, you think you know others’ goals? A repertory grid study,”
IEEE Software, vol. 24, no. 2, pp. 53–61, March/April 2007.

[20] B. Napoleão, K. R. Felizardo, É. F. de Souza, and N. L. Vijaykumar,
“Practical similarities and differences between systematic literature re-
views and systematic mappings: A tertiary study,” in International Con-
ference on Software Engineering and Knowledge Engineering (SEKE),
Pittsburgh, PA, USA, July 2017, pp. 85–90.

[21] M. Alenazi, N. Niu, and J. Savolainen, “Data of SysML modeling
mistakes,” http://dx.doi.org/10.7945/sz4r-zx36, Last accessed: August
2019.

[22] N. Niu, Y. Yu, B. González-Baixauli, N. A. Ernst, J. C. S. do Prado Leite,
and J. Mylopoulos, “Aspects across software life cycle: A goal-driven
approach,” Transactions on Aspect-Oriented Software Development,
vol. 6, pp. 83–110, 2009.

[23] G. Valença, C. F. Alves, V. Alves, and N. Niu, “A systematic mapping
study on business process variability,” International Journal of Computer
Science & Information Technology, vol. 5, no. 1, pp. 1–21, February
2013.

[24] T. Vale, E. S. de Almeida, V. Alves, U. Kulesza, N. Niu, and R. de Lima,
“Software product lines traceability: A systematic mapping study,”
Information & Software Technology, vol. 84, pp. 1–18, April 2017.

[25] M. Alenazi, N. Niu, W. Wang, and B. Vogel-Heuser, “Traceability
for evolving automated production systems,” in Grand Challenges of
Traceability: The Next Ten Years (GCT), Slade, KY, USA, March-April
2017, pp. 28–30.

[26] M. Alenazi, D. Reddy, and N. Niu, “Assuring virtual PLC in the context
of SysML models,” in International Conference on Software Reuse
(ICSR), Madrid, Spain, May 2018, pp. 121–136.

[27] E. Yu, “Towards modeling and reasoning support for early-phase re-
quirements engineering,” in International Symposium on Requirements
Engineering (RE), Annapolis, MD, USA, January 1997, pp. 226–235.

[28] M. Alenazi, N. Niu, W. Wang, and A. Gupta, “Traceability for auto-
mated production systems: A position paper,” in International Model-
Driven Requirements Engineering Workshop (MoDRE), Lisbon, Portu-
gal, September 2017, pp. 51–55.

[29] N. Niu, W. Wang, and A. Gupta, “Gray links in the use of requirements
traceability,” in International Symposium on Foundations of Software
Engineering (FSE), Seattle, WA, USA, November 2016, pp. 384–395.

[30] N. Niu, A. Koshoffer, L. Newman, C. Khatwani, C. Samarasinghe, and
J. Savolainen, “Advancing repeated research in requirements engineer-
ing: A theoretical replication of viewpoint merging,” in International
Requirements Engineering Conference (RE), Beijing, China, September
2016, pp. 186–195.

[31] C. Khatwani, X. Jin, N. Niu, A. Koshoffer, L. Newman, and
J. Savolainen, “Advancing viewpoint merging in requirements engi-
neering: A theoretical replication and explanatory study,” Requirements
Engineering, vol. 22, no. 3, pp. 317–338, September 2017.

[32] V. K. Anu, W. Hu, J. C. Carver, G. S. Walia, and G. Bradshaw,
“Development of a human error taxonomy for software requirements: A
systematic literature review,” Information & Software Technology, vol.
103, pp. 112–124, November 2018.

[33] W. Wang, N. Niu, M. Alenazi, and L. D. Xu, “In-place traceability for
automated production systems: A survey of PLC and SysML tools,”
IEEE Transactions on Industrial Informatics, vol. 15, no. 6, pp. 3155–
3162, June 2019.

