
The Journal of Systems & Software 178 (2021) 110965

I
a

b

c

g
m
2
d
s

w
m
t
(
i
T
C

h
0

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

Machine learning based success prediction for crowdsourcing
software projects✩

nam Illahi a, Hui Liu a,∗, Qasim Umer a,c, Nan Niu b

School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China
Department of Electrical Engineering and Computer Science, University of Cincinnati, USA
Department of Computer Science, COMSATS University Islamabad, Vehari, Pakistan

a r t i c l e i n f o

Article history:
Received 6 January 2020
Received in revised form 13 March 2021
Accepted 27 March 2021
Available online 20 April 2021

Keywords:
Competitive crowdsourcing
Classification
Machine learning
Risk
Prediction

a b s t r a c t

Competitive Crowdsourcing Software Development is an online software development paradigm,
promises the innovative, cost effective and high quality solutions on time. However, the paradigm is
still in infancy and does not address the key challenges such as low rate of submissions and high risk of
project failure. A significant number of software projects fail to receive a satisfactory solution and end
up wasting the time and efforts of stakeholders. Therefore, the success prediction of a new software
project may help stakeholders in the project crowdsourcing decision, saving their time and efforts. To
this end, this study proposes a novel approach based on machine learning to predict the success of
a software project for crowdsourcing platforms in terms of whether the given project will reach its
completion or otherwise. First, the textual description and important attributes of software projects
from TopCoder is extracted. Next, the description is preprocessed using natural language processing
technologies. Then, keywords are identified using a modified keyword ranking algorithm and each
software project is awarded a ranking score. Every software project is modeled as a vector that is
based on the extracted attributes, its identified keywords and ranking scores. Using these vectors with
their associated solution status, a support vector machine classifier is trained to predict the success of
a given software project. Different machine learning classifiers are applied and it turns out that support
vector machine yields the highest performance on the given dataset. Finally, the proposed approach
is evaluated with history data of real software projects. The results of hold-out validation suggest that
the average precision, recall, and f-measure are up to 94.53%, 99.30% and 96.85%, respectively.

© 2021 Elsevier Inc. All rights reserved.
1. Introduction

Competitive Crowdsource Software Development (CCSD) has
ained tremendous attention in the software engineering com-
unity (Stol and Fitzgerald, 2014; Lakhani et al., 2006; Stol et al.,
018). It explores the possibility of replacing in-house software
evelopment to obtain cost-effective, innovative and high-quality
olutions on time.
CCSD depends on an open call format (Mao et al., 2015),

here clients (companies) crowdsource their software develop-
ent projects (noted as projects for short in the rest of this paper)

o CCSD platforms that arrange online competitions. The crowd
developers) participate in such competitions and present their
nnovative solutions (Fu et al., 2017) to win monetary rewards.
here are numbers of CCSD platforms e.g., TopCoder, uTest, GetA-
oder, and Taskcn (Mao et al., 2015) that arrange online software

✩ Editor: Leandro Minku.
∗ Corresponding author.

E-mail address: liuhui08@bit.edu.cn (H. Liu).
ttps://doi.org/10.1016/j.jss.2021.110965
164-1212/© 2021 Elsevier Inc. All rights reserved.
development competitions. However, TopCoder1 is the largest
and widely trusted CCSD platform.

CCSD paradigm is still at an early stage and poses some chal-
lenges that remain to be resolved (Illahi et al., 2019). One of the
biggest challenges it faces is that it compromises the success rate
of a project. Resultantly, many projects are either not completed
or fail to receive satisfactory solutions (Fitzgerald and Stol, 2015).
For instance, TopCoder has 83% task quitting rate (projects that
have registrants but do not have submitted solutions) from Jan
2014 to Jan 2015 (Yang et al., 2016). However, out of total submit-
ted solutions, 81% projects are completed whereas 19% projects
are failed due to different reasons, such as failed-screening and
failed-review. One possible reason behind this challenge is the
ecosystem of CCSD that mainly depends on the unknown, geo-
graphically distributed and uncontrolled crowds. Consequently,
CCSD paradigm provides limited visibility and control over the
progress of a project (Khanfor et al., 2017). Due to the limited
access, the clients and CCSD platforms cannot predict whether

1 www.topcoder.com.

https://doi.org/10.1016/j.jss.2021.110965
http://www.elsevier.com/locate/jss
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2021.110965&domain=pdf
mailto:liuhui08@bit.edu.cn
http://www.topcoder.com
https://doi.org/10.1016/j.jss.2021.110965

I. Illahi, H. Liu, Q. Umer et al. The Journal of Systems & Software 178 (2021) 110965

t
d
2
p
o
i
a
i
t
a
e

c
a
r
f
t
a
r
2
t
e
r
v
s

p
f
e
m
d
t

he project will be completed or not. Such occurrences cause
issatisfaction (Stol and Fitzgerald, 2014; Fitzgerald and Stol,
015) among the clients and damage the popularity of the CCSD
latforms. Therefore, an early and automatic success prediction
f projects may help CCSD platform by avoiding the screen-
ng or reviewing the potentially rejected submissions. Different
pproaches have been identified to address this challenge. For
nstance, awarding the project to the right developer, exploring
he developer’s history before granting them a particular project
nd identifying the other influencing factors (Fu et al., 2017; Mao
t al., 2015).
The detailed description of the projects has not yet been

ontemplated that are mostly described in natural language text
nd focuses some particular facets of a system, indicates some
elevant concerns. The detailed description not only explains the
unctional requirements but also shows some concerns other than
he functional requirements. Typical examples of these concerns
re reliability, security, and performance, which may also be
egarded as crosscutting concerns or early aspects (Rago et al.,
019). These concerns appear scattered in the detailed descrip-
ion. In traditional software development, analysts perform an
arly inspection to identify such keywords that denote any spu-
ious concerns. For instance, keywords like ‘‘integration’’, ‘‘ser-
ices’’ and ‘‘compatibility’’ refer to extensibility constraints for the
ystem.
To this end, we deeply explore the detailed descriptions of the

rojects and propose a machine learning based novel approach
or the success prediction of CCSD projects. The key insight is,
xtractive summarization methods can extract technical infor-
ation (keywords and their ranking scores) from the textual
escription of projects. Notably, the proposed approach classifies
he CCSD projects either as success or failure, where projects
with completed and approved submissions are labeled as success
otherwise failure. First, we extract projects from a CCSD plat-
form TopCoder and preprocess their descriptions using natural
language processing technologies. Second, we exploit and modify
a keyword ranking algorithm to identify keywords and to com-
pute their ranking scores. Third, given the extracted attributes of
each project, its identified keywords, and their ranking scores,
we present each project as a vector. Fourth, we train multi-
ple machine learning classifiers for the success prediction of a
given project. Finally, we evaluate each classifier with history
data of crowdsourced projects. The results of hold-out valida-
tion suggest that the support vector machine based classifier
outperforms other machine learning classifiers, and the aver-
age precision, recall, and f-measure are up to 94.53%, 99.30%, and
96.85%, respectively.

The main contributions of the proposed approach are twofold:

• An automated machine learning based approach is proposed
to the success prediction of a new project. To the best of our
knowledge, it is the first approach to predict the successful
completion of projects for crowdsourcing platforms.

• Evaluation results of the proposed approach suggest that the
proposed approach is accurate, and the precision, recall, and
f-measure are up to 94.53%, 99.30%, and 96.85%, respectively.

The rest of the paper is organized as follows. Section 2 dis-
cusses the research background and 3 presents the proposed
approach. Sections Section 4 describes the evaluation process and
the results of the proposed approach. Related work is in Section 5.
Threats to validity are discussed in Section 6. Finally, Section 7
concludes the paper along with future work direction.

2. Background

This section provides brief background knowledge of CCSD and
explains the CCSD process.
2

2.1. Competitive Crowdsourced Software Development (CCSD)

CCSD is derived from crowdsourcing, a term jointly coined by
Howe and Robinson in 2006 (Mao et al., 2017). CCSD is an emerg-
ing trend of outsourcing the development of software projects to
the online community that is suitably skilled yet geographically
distributed. CCSD facilitates various software development activ-
ities, starting from the requirement specification to the testing
phase (Wu et al., 2013). It has gained significant popularity with
many notable online portals like TopCoder, AppStori, and uTest,
where thousands of software developers collaborate and compete
to develop innovative software solutions (Stol et al., 2018; Hu
and Wu, 2015). However, TopCoder has become the most popular
CCSD platform having more than 1.2 billion global registered
members (Stol et al., 2018; Hu and Wu, 2015).

2.2. CCSD process

The overview of the CCSD process is shown in Fig. 1. CCSD is
an open call format where companies, who want to crowdsource
their projects, request the crowdsourcing platforms to arrange
online competitions to obtain cost-effective and innovative soft-
ware solutions. Crowdsourcing platforms post the project’s de-
scription and announce online competitions. Developers around
the world get registered for the competitions that best match
their expertise and compete to produce the best innovative soft-
ware solutions to win the monetary rewards. After developers
submit their solutions, the crowdsourcing platforms conduct a
peer review to evaluate the quality of the solutions. Only the
selected/satisfactory solutions are further evaluated to choose
the best solution. Finally, the winners are rewarded with mon-
etary rewards. Note that all projects that have zero submission
or do not have any satisfactory solution are considered to be
unsuccessful.

3. Approach

3.1. Overview

An overview of the proposed approach is presented in Fig. 2.
The input of the proposed approach is a new CCSD project. The
output is the successful prediction of a given CCSD project that is
whether the given project will receive its solution or otherwise.
The proposed approach works as follows:

• First, it collects CCSD projects from TopCoder and prepro-
cesses the requirement document of each project using nat-
ural language processing technologies.

• Second, it exploits a text ranking algorithm with some mod-
ifications that extract the keywords and their ranking scores
from each preprocessed requirement document.

• Third, it performs feature modeling using the extracted at-
tributes of each project and its features (extracted key-
words) to represent each project as a vector.

• Fourth, it trains a machine learning classifier for the success
prediction of a new project.

• Finally, it predicts the success of a new project using the
trained machine learning classifier.

The proposed approach is further detailed in the following
sections.

I. Illahi, H. Liu, Q. Umer et al. The Journal of Systems & Software 178 (2021) 110965

3

a
C
o

Fig. 1. Overview of CCSD project.
Fig. 2. Overview of the proposed approach.
.2. Illustrating example

We use the following example to illustrate how the proposed
pproach performs success prediction. It is an example of Top-
oder’s software development project (30028416). It was started
n Jun 6, 2013 and finished on Jun 15, 2013.

• Project name: ‘‘Lycoming Website Dynamic Modules Build’’.
• Start date: ‘‘Jun 06, 2013’’ is the date of the open call for the

competition of the project.
• Submission date: ‘‘Jun 15, 2013’’ is the last date of submis-

sion for the software solution.
• Detailed requirements: (a snippet from requirements) ‘‘The

Lycoming is seeking a redesign of the existing website. The
goal is to refresh the design, modernize the home page, and
focus on usability. A key focus of the site should be the sup-
port and technical publications while maintaining focus on the
main products — engines and parts. We have properly recre-
ated the new Lycoming Engines website based on DotNetNuke
Framework.’’

• Required technologies: ‘‘.NET 4.0, ASP.NET, C#, SQL Server
2008’’ are the technologies specified for developing the
project.

• Required platforms: ‘‘HTML’’ is the required platform (could
be more than one) on which the completed project would
run.

• Status: ‘‘not-completed’’ is the success status of the project
that indicates the project is successfully completed or not-
completed.

In the following sections, we describe how the proposed approach
works for the illustrating example.
3

3.3. Problem definition

A project k from a set of projects K can be formalized as in
Eq. (1)

k = ⟨d, t, p, l, r⟩ (1)

where d, t , and p are the numbers of required days, technolo-
gies, and platforms to develop k, l is the length of requirement
document, and r is the detailed requirement document of k.

For the illustrating example presented in Section 3.2, we have

ke = ⟨de, te, pe, le, re⟩ (2)

where,

• de = 9 is the number of required days. It is computed by
subtracting the start date from the submission date.

• te = 4 is the number of required technologies.
• pe = 1 is the number of required platforms.
• le = 237 is the total number of lines appeared in re.
• re = ‘‘The Lycoming is seeking a redesign of the existing website.

The goal is to refresh the design, modernize the home page,
and focus on usability. A key focus of the site should be the
support and technical publications, while maintaining focus on
the main products-engines and parts. We have properly recre-
ated the new Lycoming Engines website based on DotNetNuke
Framework. The goal of this competition is to clearly identify
all issues for the new Lycoming Website.’’ It is the snippet of
requirements of the project.

The proposed approach classifies given project k into success
or failure. The class success represents that k is completed; i.e., one
or more satisfying solutions are received. The class failure repre-
sents that k fails to receive its satisfactory solution. The success
prediction could be represented as a function f :
c = f (k) (3)

I. Illahi, H. Liu, Q. Umer et al. The Journal of Systems & Software 178 (2021) 110965

c

i

3

p
C
f
w
s
a
p

T
i

k

w

d
a

3

t
f
m

P

3

a
s
a

F

ϵ {success, failure} , k ϵ K (4)

where c is the classification result (e.g., success or failure) and f
s a categorizing function.

.4. Preprocessing

Natural language processing technologies are applied for the
reprocessing of requirement documents extracted from Top-
oder. The html tags are removed using a Python package Beauti-
ulsoup. The preprocessing techniques include tokenization, stop-
ord removal, parts-of-speech (POS) tagging, negation handling,
pelling correction, modifier word recognition, word inflection,
nd lemmatization. The following preprocessing layers are em-
loyed on the requirement document of each project.

• Tokenization: is the process of splitting text into tokens
(words). We remove special characters (e.g., punctuation
marks), decompose the text into words, and convert them
into lowercase.

• Spell Correction: textual documents may have spelling mis-
takes. Therefore, spell correction is performed to remove all
mistakes in documents.

• Stop-word removal: This layer removes those natural lan-
guage words that have either very little meaning or not
related to the structure such as and, the, a, an, and are.

• POS Tagging: A POS tag is assigned to each of the tokenized
words from requirement documents.

• Word Inflection and Lemmatization: Word inflection con-
verts the words into their singular form. For instance, the
word issues is converted into issue. Lemmatization con-
verts the words, mainly the nouns and adjectives, into their
base words. For example; lemmatization converts the word
glasses into glass.

o perform preprocessing, python natural language toolkit (NLTK)
s used. After preprocessing, a project k can be represented as
′
= ⟨d, t, p, l, ws⟩ (5)

s = ⟨w1, w2, w3,, wn⟩ (6)

where ws are the words (tokens) from the requirement document
of k after preprocessing. For the illustrating example presented in
Section 3.2, we have

k′

e = ⟨9, 237, 4, 1, lycoming, seek, . . . , website⟩ (7)

where lycoming , seek,, website are the preprocessed words
from ke.

3.5. Keywords extraction

The submission of the software solutions and their evaluation
is subject to the implementation of the required features writ-
ten in requirements documents. Recent studies (Mihalcea and
Tarau, 2004; Goldberg, 2016) suggest that machine learning tech-
niques can extract and rank keywords according to the semantic
representation of the text. Various techniques are available for ex-
tractive summarization and ranking keywords e.g., TextRank (Mi-
halcea and Tarau, 2004), RAKE (Rose et al.), IBM NLU (Vergara
et al., 2017), KEA (Witten et al., 1999), and YAKE (Campos et al.,
2018). However, YAKE yields the most accurate results in auto-
matic keyword extraction for a single document (Campos et al.,
2018). As the text used in the software projects is domain-
dependent and YAKE is domain-independent. Therefore, some
modifications are made in YAKE model to devise a new mech-
anism for identifying and ranking the keywords. The following
steps are taken to capture the characteristics of each word wi
from Eq. (6).
 s

4

3.5.1. Casing
The modified version of YAKE always considers the nouns

and verbs if they are starting from a capital letter or acronyms.
Therefore, we select the words starting with a capital letter,
acronyms, nouns, or verbs for casing. Another reason for their
selection is that most of them are important and required features
in the requirement documents. The weight of the casing step is
calculated as follows,

CW =
max(TF (U(wi)), TF (A(wi), TF (N(wi)), TF (V (wi))))

log2(TF (wi))
(8)

where CW is the casing weight of wi, TF (U(wi)) is the frequency
of wi starting with an uppercase letter, TF (A(wi)) is the frequency
of wi defined as an acronym, TF (N(wi)) is the frequency of wi
efined as a noun, TF (V (wi)) is the frequency of wi defined as
verb, and TF (wi) is the frequency of wi.

.5.2. Positioning
Unlike the YAKE, all the words are considered equal and no ex-

ra weight is assigned to wi based on its position. The dependent
eatures of the requirement document are not considered in the
odified YAKE.
The positioning weight is calculated as in Eq. (9)

W =

∑
Senwi

T−Sen
(9)

where PW is the positioning weight of wi, Senwi is the position
of the set of sentences in which wi occurs, and T -Sen is the total
number of sentences in which wi occurs.

.5.3. Frequency
In this step, the frequency of each wi is computed under the

ssumption that higher the frequency, more important is wi. This
tep similar to that in YAKE and the frequency weight is computed
s given below

W =
TF (wi)

MeanTF + 1 ∗ σ
(10)

where FW is the frequency of wi and MeanTF is the means of wn
frequencies, and σ is their standard deviation.

3.5.4. Relatedness
Unlike the YAKE, it is not necessary to compute the relatedness

of wi to the context as the stop-words have been removed in
the preprocessing step of the proposed approach. Therefore, there
is no point to quantify the extent to which a wi resembles the
properties of a stop-word.

3.5.5. Frequency in different sentence
In this step, the frequency of wi appearing within different

sentences is calculated

FDW =
SF (wi)

#Sentences
(11)

where FDW is the frequency weight of wi in different sentences
and SF (wi) is the sentence frequency of the word wi.

3.6. Ranking of extracted keywords

Based on the four characteristics (relatedness is ignored as
clarified in Section 3.5.4) of wi, the rank R of wi can be assigned
as in Eq. (12)

Rwi =
PW

CW + FW + FDW
(12)

For the illustrating example presented in Section 3.2, YAKE
returns keywords website, seek,, dotnetnuke with their ranking
cores 0.0147, 0.0211,, 0.1194.

I. Illahi, H. Liu, Q. Umer et al. The Journal of Systems & Software 178 (2021) 110965

3

p
n
o
c
d

k

w
k

k

.7. Feature modeling

Finally, a high dimension matrix is created wherein each
roject is a row of the matrix. The columns of the matrix are the
umber of required days d, technologies t , platforms p, length
f the requirement document l, and extracted keywords of a
omplete set of project. A feature vector of a project k can be
efined as in Eq. (13)

= ⟨d, t, p, l, f1, f2, f3,, fn⟩ (13)

here, f1, f2, f3, and fn are the ranking scores of the extracted
eywords. For the example presented in 3.2, we have

e = ⟨9, 237, 4, 1, website, seek,, dotnetnuke⟩ (14)

where website, seek,, dotnetnuke are the extracted keywords.
For each project, we use a ranking score to represent a feature

in the feature vector. If a keyword is not found in the project, we
mark it 0. Otherwise, we assign its ranking score to a keyword.
For the illustrating example presented in Section 3.2, we have the
following feature vector.

k′

e = ⟨9, 237, 4, 1, 0.0147, 0,⟩ (15)

where 0.0147, 0, are assigned values based on the existence
of keyword (features).

3.8. Training and prediction

The proposed approach utilizes the support vector machine
(SVM) to capture the relationship between the features and the
success status of projects. SVM can handle the high dimensional
feature space and removes the irrelevant features (Umer et al.,
2018). The SVM classification depends on the principle of Struc-
tural Risk Minimization (SRM) principle that comes from com-
putational learning theory (Vapnik, 2000), where SRM finds a
hypothesis to guarantee the lowest true error. To seek a decision
surface, SVM requires a binary training set and separates both
classes into n-dimensional space called hyperplane (Umer et al.,
2018). As SVM has a significant impact on the classification of
the documents (Scholkopf et al., 1999; Vapnik, 1999), we train it
using the feature set of each project that is tagged during feature
modeling using Eq. (4). We test the trained model to predict the
success status of a new project.

Training

To construct a classification model that assigns an unlabeled
project to a class c as defined in the Eq. (4), a set of projects
K is given. Each project contains its classification category c
and set of features as mentioned in Eq. (13). We train SVM and
use success/failure projects to seek the decision surface for the
prediction. The decision surface is a hyperplane that is used for
training of the proposed approach. Given the project ki labeled
into specified binary categories yi, find a weight vector w such
that discriminant function separates the categories for i = 0, 1
and can be formalized as in Eq. (16)

f (ki) = w⊤ki + b (16)

where f is a discriminant function that computes the decision
surface for the training data ki, w is a weight vector that repre-
sents the normal to decision surface and b is bias.

Prediction

Once the vector is defined with the training set, each project
from the testing dataset may be succeeded (success) if

w⊤k + b > 1 (17)
or failure otherwise.

5

4. Evaluation

In this section, we evaluate the proposed approach on the
crowdsourcing projects collected from TopCoder.

4.1. Research questions

The evaluation investigates the following research questions:

• RQ1: How accurate is the proposed approach in success
prediction of projects?

• RQ2: Does re-sampling influence the performance of the
proposed approach? If yes, to what extent?

• RQ3: Does SVM outperform other machine learning algo-
rithms in predicting the success of projects?

• RQ4: Does preprocessing influence the performance of the
proposed approach? If yes, to what extent?

• RQ5: What is the most influential input to the proposed
approach?

• RQ6: Does the contest’s prize significantly influence the
success’ change of the contest?

The first research question (RQ1) computes the accuracy of the
proposed approach. We compare the proposed approach against
the two baseline prediction algorithms: random prediction al-
gorithm and zero rule algorithm. Both algorithms are the most
commonly used ones when the researchers do not have any
baseline approach for comparison while working on very uncom-
mon or rare problem. Random prediction algorithm requires the
distinct actual outcome values from the training data and predicts
the random outcome values for the testing data. Whereas, zero
rule algorithm predicts the most frequently occurring classifica-
tion in a set of data. To answer the second research question
(RQ2), we investigate the effect of re-sampling as our dataset is
skewed to favor accepted successful projects (4 times more ac-
cepted projects than rejected projects). There are three different
ways to perform re-sampling: under-sampling, over-sampling,
or by setting the different value of classifier threshold. Data is
added and reduced in an imbalanced dataset for over-sampling
and under-sampling, respectively. Similarly, the dataset could
be balanced using the threshold value of classifier that assigns
weight of each class. Note that we balance our dataset using both
over-sampling and under-sampling to investigate the effect of
re-sampling.

The third research question (RQ3) compares the performance
of different machine learning and deep learning algorithms. The
comparison may reveal whether SVM outperforms other machine
learning and deep learning algorithms in predicting the success of
projects.

To answer the fourth research question (RQ4), we investigate
the impact of the preprocessing on the given inputs. We pro-
vide two inputs: preprocessed text of requirement documents
and keywords (extracted by applying the state of the art model
explained in Section 4.3) to the machine learning model for the
success prediction.

To answer the fifth research question (RQ5), first, we compute
the performance of the proposed approach by eliminating the
textual and non-textual features from the feature vector. Then,
we compare their results to figure out the most influential input
factor in the proposed approach.

To answer the sixth research question (RQ6), first, we compute
the performance of the proposed approach by including/excluding
the contest prize as feature. Then, we compare the result to check

the influence of contest’s prize on the proposed approach.

I. Illahi, H. Liu, Q. Umer et al. The Journal of Systems & Software 178 (2021) 110965

T
D

4

f
q
q
t
d
T
s

m
t
w

4

p

p

p
a
m
p
p
t
w

able 1
escription of dataset.
Total number of projects 16190

Success projects 13113 (81%)
Failure projects 3077 (19%)
Duration of projects Up to July 2018

Fig. 3. Evaluation process.

.2. Dataset

The history data of software development projects is extracted
rom TopCoder. We use TopCoder Rest API.2 to extract the re-
uired attributes, such as project starting date, ending date, re-
uired technologies and platforms, requirements, and status of
he publicly available projects till July 2018 and save into the
atabase. The overview of the dataset is presented in Table 1
he status attribute of a project returned from TopCoder API
pecifies whether a project is completed or not. Since the status
can have different values for instance completed, canceled-winner
unresponsive, canceled-failed screening , canceled-failed review, we
reduce this multi-class classification problem to a binary classifi-
cation problem. To this end, we classify (label) the completed-
projects having accepted-submissions as positive, whereas the
completed-projects having rejected-submissions are classified as
negative. The total numbers of projects are 16190, out of which
81% are successful and 19% are failed. The projects whose sub-
mission is incomplete or status attribute is not defined or the
requirements attribute is empty or referring to another web link
are not included.

4.3. Process

The evaluation of the proposed approach is performed as
follows. First, we extract the projects K from TopCoder, sort them
by date, and apply natural language processing technologies for
preprocessing mentioned in Section 3.4. Next, we perform the
hold-out validation technique on K and split K into 80%–20%.
Where 80% of all sorted projects are taken as training set Ktrain.
20% of recent projects are taken as testing set Ktest . Notably,
the reason behind the selection of hold-out validation instead
of k-fold cross-validation is that we would like to leverage the
history data to new projects. If k-fold validation was employed,
the prediction of a given project (noted testProj) may leverage
the project histories that are not yet available when testProj is
proposed on the platform. However, we cannot leverage histories
of projects that do not yet exist when the to-be-predicted project

2 https://tcapi.docs.apiary.io.
 t

6

comes in. To this end, we first sort the extracted TopCoder data
in the ascending order year-wise. Then, we train the machine
learning classifier on first 80% data (the elder data) and test it on
the other data (more recent data) as shown in Fig. 3. As a result,
while making prediction on a given project testProj, we only
leverage the project histories that was available when testProj
was proposed on the crowdsourcing platform. We split the testing
projects into ith combinations notated as mi(i = 1...4) and m1, m2,

3, and m4 contain recent 5%, 10%, 15%, and 20% projects out of
he total testing projects. Finally, we validate the trained classifier
ith each ith combination of the testing set.
For each mi, a step by step process is as follows:

• First, we select the training set Ktrain.
• Second, a Multinomial Naive Bayes classifier (MNB) is

trained on Ktrain.
• Third, a Linear Regression classifier (LR) is trained on Ktrain.
• Fourth, a Random Forest Classifier (RF) is trained on Ktrain.
• Fifth, a Support Vector Machine (SVM) classifier is trained

on Ktrain.
• Sixth, a Convolutional Neural Network (CNN) classifier is

trained on Ktrain.
• Seventh, a Long Short Term Memory (LSTM) classifier is

trained on Ktrain.
• Eighth, for each ith combination of testing set Ktest , we

predict the success status of each project from Kitest using
trained classifiers (NB, MNB, LR, RF, SVM, CNN, and LSTM),
respectively.

• Finally, we calculate the precision, recall, and f-measure for
each classifier to compare their performances.

.4. Metrics

To evaluate the approach, we apply most widely used metrics
recision, recall, and f-measure for binary classification:

recision =
TP

TP + FP

recall =
TP

TP + FN

f−measure =
2 ∗ precision ∗ recall

precision + recall
where precision, recall, and f -measure are respectively, precision,
recall, and f-measure of the approach for success prediction of
the projects K. TP is the number of the projects that are truly
predicted as success, TN is the number of projects that are cor-
rectly predicted as fail, FP is the number of the projects that are
incorrectly predicted as success, and FN is the number of projects
that are incorrectly predicted as fail.

4.5. RQ1: Accuracy of the proposed approach

To answer the research question RQ1, we compare the pro-
osed approach with two baseline algorithms (random prediction
nd zero rule). Both algorithms are used alternatively as a bench-
ark to check the accuracy of the proposed approach. As the
roposed approach does not have any existing approach for the
erformance comparison, it is the first approach for predicting
he success of projects to the best of our knowledge. Therefore,
e choose these algorithms for the performance comparison of
he proposed approach.

https://tcapi.docs.apiary.io

I. Illahi, H. Liu, Q. Umer et al. The Journal of Systems & Software 178 (2021) 110965

T
C

z

able 2
omparison against alternative approaches.

Proposed approach Random prediction Zero rule

Testing data Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure

Latest 5% 96.15% 98.63% 97.38% 51.49% 51.65% 51.57% 84.92% 100.00% 91.84%
Latest 10% 92.76% 99.33% 95.93% 85.89% 87.03% 86.46% 82.58% 100.00% 90.46%
Latest 15% 94.27% 99.56% 96.84% 51.29% 51.32% 51.31% 95.93% 100.00% 97.92%
Latest 20% 94.94% 99.68% 97.25% 64.23% 64.57% 64.40% 91.84% 100.00% 95.75%

Average 94.53% 99.30% 96.85% 63.23% 63.64% 63.43% 88.82% 100.00% 93.99%
4.5.1. Results
Evaluation results of proposed approach, random prediction, and

ero rule are presented in Table 2. The first column presents
the testing iterations. We evaluate each of the classifiers on ith
iteration (where i = 1, 2, 3, 4) using 5%, 10%, 15%, and 20% recent
projects from the dataset. Columns 2–10 present the performance
results of precision, recall, and f-measure for each classifier, re-
spectively. Rows present the performance of a particular classifier
on each iteration, respectively. The last row presents the average
results.

The average precision, recall, and f-measure of the proposed
approach, random prediction, and zero rule are (94.53%, 99.30%,
and 96.85%), (63.23%, 63.64%, and 63.43%), and (88.82%, 100.00%,
and 93.99%), respectively. Note that we have not found overfitting
problem during the evaluation of the proposed approach as the
variation between the training and testing accuracies is minor.

4.5.2. Observations
From Table 4, we make the following observations:

• The proposed approach outperforms the random prediction
and zero rule classifiers.

• In precision, the performance improvement of the proposed
approach upon random prediction and zero rule is 49.50%
= (94.53%–63.23%) / 63.23% and 16.96% = (94.53%–80.82%) /
80.82%, respectively.

• In recall, the performance improvement of the proposed
approach upon random prediction and zero rule is 56.03% =
(99.30%–63.64%) / 63.64% and % = (−0.07%–100.00%) / 100.00%,
respectively. The reason of performance decrease of the
proposed approach in recall against zero rule is that zero rule
always predicts the majority class (class of successful project
in our case).

• In f-measure, the performance improvement of the proposed
approach upon random prediction and zero rule is 52.69%
= (96.85%–63.43%) / 63.43% and 3.04% = (96.85%–93.99%) /
93.99%, respectively.

4.5.3. Impact of sorting
We perform an additional experiment to compare the eval-

uation techniques (cross-validation and hold-out). To this end,
we evaluate the proposed approach on both evaluation tech-
niques with and without sorting. The average precision, recall,
and f-measure of hold-out validation with and without sorting
are (94.53%, 99.30%, and 96.85%) and (92.95%, 97.82%, and 95.32%),
respectively. The performance improvement of the proposed ap-
proach with sorted dataset in precision, recall, and f-measure is
1.70% = (94.53%–92.95%) / 92.95%, 1.51% = (99.30%–97.82%) / 97.82%,
and 1.61% = (96.85%–95.32%) / 95.32%, respectively.

The results suggest that the proposed approach works better
on hold-out validation with sorting.

The reason behind that is the selection hold-out validation
to leverage the history data to new projects as discussed in
Section 4.3.

Consequently, both validation approaches perform better with
sorting of the projects, however, hold-out validation technique
7

Table 3
Impact of re-sampling.
Re-sample Precision Recall F-Measure

No 94.53% 99.30% 96.85%
Under-sampling 96.55% 99.42% 97.96%
Over-sampling 95.18% 99.37% 97.23%

is significant among them. The reason of this significance is that
most of the iteration of 10-fold cross-validation train the machine
with features that are related to new technology and do not
have impact while testing old projects. Notably, based on this
experiment, we select the hold-out validation for the remaining
analysis.

4.5.4. Misclassification
We also observed that the proposed approach shows many

false positive and false negative results. For example, failed
projects (30064333 and 30062477) are predicted as successful
projects. Whereas, the successful projects (30064319 and
30056740) are predicted as failed projects. A comprehensive key-
word extraction tool specific to software engineering text may
avoid such misclassification and improve the performance of
the proposed approach. However, we have not yet fully under-
stood the rationale of the misclassification. In future, we shall
investigate the rationale for misclassification, and figure out the
measures to reduce the misclassification.

Based on the preceding analysis, we conclude that the pro-
posed approach is accurate in success prediction of projects.

RQ2: Impact of re-sampling

Re-sampling adjusts the class distribution and corrects the
bias within an imbalanced dataset. To investigate the impact
of re-sampling, we use both over-sampling and under-sampling.
We adopt the synthetic minority over-sampling approach for the
over-sampling of the insignificant class, whereas we randomly se-
lect n-samples from the significant class for under-sampling. No-
tably, we use an equal number of accepted and rejected projects
in order to avoid bias. Moreover, we sort the dataset by date to
create real testing condition.

Evaluation results of with and without re-sampling are pre-
sented in Table 3. The first column presents the re-sampling set-
tings. Columns 2–4 present the performance results of precision,
recall, and f-measure on different re-sampling settings, respec-
tively. Each row presents the average performance against each
re-sampling setting. The average precision, recall, and f-measure
the proposed approach with under-sampling and over-sampling
are (96.55%, 99.42%, and 97.96%) and (95.18%, 99.37%, and 97.23%),
respectively. Table 3 shows the difference in performance be-
tween balanced and imbalanced datasets. It suggests that both
techniques of re-sampling does improve the overall performance
of the proposed approach.

For further performance evaluation of the proposed approach,
we also plot a receiver operation characteristics (ROC) curve
(shown in Fig. 4) on different under-sampling rates of majority

I. Illahi, H. Liu, Q. Umer et al. The Journal of Systems & Software 178 (2021) 110965

c
i
a
o
s
a
t
e

4

c
t
e
C
c

4

i
t
a
i
t
b
B
v
a

(
5
t
i
c

S
(
(
f
p
t
c
o

4

p
C
a
t
p
a
a
8
8
s

f

b
m
b
o

4

Fig. 4. ROC on different re-sampling rates.

Fig. 5. RF convergence against learning rates.

lass and over-sampling rates of the minority class. The ROC curve
llustrates the trade-off between true positive rate (sensitivity)
nd specificity (1 - false positive rate). The performance curve
f an approach that is closer to the top-left corner indicates its
ignificance. The average value of the ROC curve (AUC = 0.99)
gainst the ratio 1:1 of accepted/rejected projects suggests that
he proposed approach has the best measure of separability with
qual distribution of input projects.

.6. RQ3: Performance comparison of machine learning algorithms

To answer the research question RQ3, we apply widely used text
lassification algorithms (MNB, LR, RF, SVM, CNN, and LSTM) due
o their competitive performance (Wu et al., 2008; Sohrawardi
t al., 2014; Ramay et al., 2019). We also exploit the mentioned
NN and LSTM models as these are reported effective for text
lassification (Ramay et al., 2019).

.6.1. Parameter tuning of classification algorithms
The tuning the parameters of machine learning algorithms

s usually used in the context of statistical model fitting. To
une the above mentioned classification algorithms, we train
nd evaluate them with different internal parameter settings to
dentify the best parameter settings. Furthermore, we compare
he performances of the above classification algorithms with the
est parameter settings. We select the MNB among Multinomial,
ernoulli, and Gaussian Naive Bayes because it considers a feature
ector where a given term represents the number of times it
ppears or very often i.e. frequency. Notably, MNB is not only best
8

in performance (as shown in Table 4) but also suitable for feature
modeling of the proposed approach (as mentioned in Section 3.7).
In contrast, Bernoulli Naive Bayes is a binary algorithm used when
the feature is present or not and Gaussian Naive Bayes is based on
continuous distribution.

Moreover, we train and evaluate LR on different learning rates
0.5, 0.1, 0.01, 0.001, 0.0001) and number of iterations (25000,
0000, and 150000), respectively. From Fig. 5, it can be observed
hat with the given data, learning rate (0.5) converges after 25000
terations, whereas learning rate (0.0001) takes more time and
ost for the convergence after 150000 iterations. Similarly, we set
the max_depth = 3, min_sample_split = 2, and max_terminal_nodes
= 25 for RF. It is observed that the increase in max_depth and
min_sample_split decreases the performance of the proposed ap-
proach. However, the tree is underfitting when the value of
max_terminal_nodes is very small, whereas the performance of the
tree increases as the value of max_terminal_nodes increases. No-
tably, the tree starts to overfit as the value of max_terminal_nodes
goes beyond 25. Furthermore, the proposed approach (SVM) is
tested with different kernel parameter settings: kernel = linear for
linear classification and kernel = (rbf, poly, or sigmoid) for the non-
linear classification. We select the kernel = linear because of its
best performance on the proposed approach.

For the deep learning approaches, we use three layers of
CNN with filter size = 128, kernel size = 1, and activation = tanh.
imilarly, our LSTM model contains embedding layer, LSTM layer
dropout = 0.2 and recurrent dropout = 0.2), and dense layer
activation = sigmoid). We use the binary crossentropy as a loss
unction. Notably, although the change in the performances of
roposed approach is minor across different parameter values of
he classification algorithms, we select the best parameter values
ollected from the parameter tuning process for the comparison
f the classification algorithms.

.6.2. Results
Evaluation results of SVM, LR, RF, MNB, CNN, and LSTM are

resented in Table 4. The first column presents the classifiers.
olumns 2–4 present the performance results of precision, recall,
nd f-measure of each classifier, respectively. Each row presents
he average performance of a particular classifier. The average
recision, recall, and f-measure of the SVM, LR, RF, MNB, CNN,
nd LSTM are (94.53%, 99.30%, and 96.85%), (93.96%, 98.27%,
nd 96.06%), (93.86%, 97.49%, and 95.64%), (91.75%, 84.46%, and
7.94%), (82.64%, 86.16%, and 84.36%), and (78.34%, 85.52%, and
1.69%), respectively. The results of applying these classifiers
uggest that SVM yields most accurate results on our dataset.
We also present the f-measure distribution of validation results

or SVM, LR, RF, MNB, CNN, and LSTM using beanplot (Fig. 6).
A beanplot combines the boxplot, denstity plot, and rug plot.
It shows the density curve which is more informative than a
boxplot. We compare the f-measure distributions by plotting one
bean for each classifier that represents its density. Across a bean,
each short horizontal line represents the f-measure on a single
classifier, whereas the long horizontal line represents the aver-
age f-measure. Notably, we implement the beanplot in R using
eanplot package. From Fig. 6, we observe that the average f-
easure (long horizontal line) of the proposed classifier SVM is
etter than the highest f-measure (short horizontal lines) of all
ther classifiers.

.6.3. Observations
From Table 4, we make the following observations:

• SVM outperforms the LR, RF, MNB, CNN, and LSTM in pre-
cision, recall, and f-measure, respectively. Notably, boosting
algorithms are not exploited to correct the classification er-
rors due to required additional computational cost, sensitive
to noisy data, e.g., AdaBoost, and less susceptible to the
overfitting problem than most learning algorithms.

I. Illahi, H. Liu, Q. Umer et al. The Journal of Systems & Software 178 (2021) 110965

T
C

able 4
omparison against Different Machine Learning Algorithms.

Precision Recall F-measure

SVM 94.53% 99.30% 96.85%
LR 93.96% 98.27% 96.06%
RF 93.86% 97.49% 95.64%
MNB 91.75% 84.46% 87.94%
CNN 82.64% 86.16% 84.36%
LSTM 78.34% 85.52% 81.69%

Fig. 6. Distribution of accuracy.

• The SVM achieves best results for different reasons. First,
SVM creates a hyperplane in feature space (Li et al., 2009;
Khan et al., 2010). The hyperplane has maximum margin for
all projects (outliers are exceptions). For text classification,
it helps SVM in better generalization of the testing data in
contrast to distance-based and similarity-based algorithms
such as RF (Cristianini and Shawe-Taylor, 2000). Second,
linear SVM helps it to search different combinations within
features and performs classification with low computational
complexity in contrast to other kernel options of SVM (Li
et al., 2009). Moreover, SVM works better than other ma-
chine learning classifiers for long text classification, e.g., LR,
RF, and MNB) (Khan et al., 2010).

• LR outperforms MNB and its performance is very close to
the proposed classifier SVM. The possible reason behind
this difference is large features set of projects of LR. LR
is a discriminative model that performs better with large
training feature size in contract toMNBwhich is a generative
model (Ng and Jordan, 2002). It is reported that LR works
same as SVM when the kernel of SVM is Linear (Li et al.,
2009). Therefore, LR may outperform the proposed classifier
SVM with large dataset.

• LR also outperforms RF. The possible reason behind this is
LR’s fast training attribute and its execution on the sparse
features (a feature having almost zero values represents a
sparse feature). We observe that the difference between the
performances of LR and RF is not significant. However, the
curse of dimensionality (Ng and Jordan, 2002; Khan et al.,
2010) in LR may increase its performance significantly on a
larger dataset. Because the degree of freedom in RF makes
9

it inappropriate for high dimensional features in success
prediction of projects.

• Although deep learning algorithms, such as CNN and LSTM,
achieve better results in comparison to machine learning al-
gorithms for different classification problems (Ramay et al.,
2019), however, they do not outperform the proposed ma-
chine learning classifier (SVM). A possible reason is that we
have a small size dataset for the evaluation of the proposed
approach and deep learning classifiers perform better with
large training datasets (Ramay et al., 2019). Another rea-
son is the unsupervised nature of the deep learning classi-
fiers. It is important to find the key functionalities/keywords
from the textual documents of projects to predict their
success. However, the deep learning classifiers perform clas-
sification on the whole text by finding a relationship and
it decreases the performance of deep learning classifiers.
Therefore, we propose the keywords as features (mentioned
in Section 3.5), which is gist of our proposed approach.

Moreover, we perform Wilcoxon test in Stata software with its
built-in settings to calculate the difference between approaches
and analyze these differences. The results suggest p-value < (al-
pha = 0.05) is true for f-measure, where p-values for SVM against
LR, RF, MNB, CNN, and LSTM are 0.038, 0.037, 0.029, 0.025, and
0.024, respectively.

Furthermore, we compute the effect size to investigate the
difference between approaches by employing Cohen’s delta d,
where d >= 0.2, d >= 0.5, and d >= 0.8 indicates the difference
as small, medium, and large, respectively. Result suggests that
the difference of the proposed approach is small in contrast to
LR and RF, whereas the difference of the proposed approach is
medium with the remaining approaches. Notably, we apply the
Wilcoxon test and effect size pairwise as both tests are used for
comparison of two distributions. To this end, we select SVM and
one from other algorithms alternatively as two populations to
apply Wilcoxon test and effect size.

Based on the preceding analysis, we conclude that the results
of the proposed approach are significant with the SVM classifier.

4.7. RQ4: Influence of preprocessing

The requirement document of each project contains some
irrelevant and meaningless data e.g., punctuation and stop-words
(as mentioned in Section 3.4). Passing such data to machine
learning algorithms is an overhead. It reduces their performance
and increases the computational cost. To answer the research
question RQ4, we compare the results of the proposed approach
by enabling and disabling preprocessing.

4.7.1. Results
The evaluation results are presented in Table 5. The first

column of the table presents the preprocessing input settings.
Columns 2–4 present the performance results of precision, recall,
and f-measure. Rows present the performance of the proposed
approach with different preprocessing input settings. The last
row presents the performance improvements of the proposed
approach with different preprocessing input settings.

The average precision, recall, and f-measure of the proposed
approach by enabling preprocessing are (94.53%, 99.30%, and
96.85%) and disabling preprocessing are (93.64%, 74.90%, and

83.23%).

I. Illahi, H. Liu, Q. Umer et al. The Journal of Systems & Software 178 (2021) 110965

T
I

p
o
a

4

t
f
9

4

able 5
nfluence of Preprocessing.
Preprocessing Precision Recall F-measure

Enabled 94.53% 99.30% 96.85
Disabled 93.64% 74.90% 83.23
Improvement 0.95% 32.58% 16.36%

Table 6
Comparison of Different Input Factors.

Precision Recall F-measure

Default 94.53% 99.30% 96.86%
Disabling Non-textual Features 92.50% 98.13% 95.23%
Disabling Textual Features 86.21% 89.87% 88.00%

4.7.2. Observations
From Table 5, we make the following observations:

• The proposed approach with preprocessing layers attains
significant improvement in performance. The evaluation re-
sults suggest that the performance improvement in pre-
cision, recall, and f-measure is 0.95%, 32.58%, and 16.36%,
respectively.

• Disabling preprocessing significantly decreases the perfor-
mance in recall of the proposed approach from 99.30% to
74.90%. One possible reason for the decrease in performance
is that applying the proposed approach without prepro-
cessing may include unwanted words (stop-words or un-
stemmed words) as features, affecting the efficiency and
processing time of the proposed approach.

Based on the preceding analysis, we conclude that the deep
reprocessing layers of the textual information (requirements)
f the projects is an essential and vital step for the proposed
pproach.

.8. RQ5: Influence of different input factors

To answer the research question RQ5, we compare the results
of the proposed approach by enabling and disabling different
inputs.

4.8.1. Results
The evaluation results are presented in Table 6. The first col-

umn of the table presents the input settings. Where, columns
2–4 present the performance results of precision, recall, and f-
measure. Rows present the performance of the proposed approach
upon different input settings, respectively. The average precision,
recall, and f-measure of the proposed approach with different set-
ings (default, disabling non-textual features, and disabling textual
eatures) are (94.53%, 99.30%, and 96.85%), (92.50%, 98.13%, and
5.23%), and (86.21%, 89.87%, and 88.00%), respectively.

.8.2. Observations
From Table 6, we make the following observations:

• Textual features alone (i.e., without non-textual features)
is often insufficient for success prediction. Compare to de-
fault settings (i.e., enabling both textual and non-textual
features), disabling non-textual features decrease precision
significantly from 94.53% to 86.21%, recall from 99.30% to
89.87%, and f-measure from 96.86% to 88.00%.

• Second, disabling textual features (i.e., non-textual features
alone) also results in a significant reduction in performance
of the proposed approach. It significantly decreases precision
from 94.53% to 92.50%, recall from 99.30% to 98.13%, and
f-measure from 96.86% to 95.23%.
10
From the preceding analysis, we conclude that both textual
and non-textual features are critical for the success prediction of
projects, and disabling one out of both will reduce the perfor-
mance significantly of the proposed approach.

To investigate why the textual features are so useful in suc-
cess prediction, we manually analyze the textual features. The
in-depth manual analysis suggests that some keywords may in-
fluence the success/failure of the projects. To illustrate the ob-
servation, consider the following example (snippet) from success
projects:

"This application will integrate with the existing FMS system to
get the achievement and payment data from the system batch
validation against a set of pre-defined rules (that is external). The
GUI of this application will provide simple, but useful screens that
will allow filtering and viewing/validating of the batch validated
achievements and payments. After the employees and validation
attributes are selected and displayed, the authorized users can
review and validate and log validation actions to the web appli-
cation. The users do no update the achievements and payments
on the web application, the users only log the actions to be taken
on the web application, the adjustment of each and payments are
done outside the tool’’.

In the example above, we find the candidate keyword val-
idate. This word often suggests that the specification of the
project has explicitly specified the requirements as well as the
test criteria. We find that most of (91%) the projects whose
textual specification contain keyword validate succeed finally.
Notably, lemmatization converts the words validation, validating,
and validated into validate as mentioned in Section 3.4.

The following example (snippet) is a typical failure project:

"Simple e-mail component to be used by visual basic 6 is a simple
component to be used by applications written in visual basic 6
to send unlimited numbers of e-mails along with attached files
limited by a configurable maximum size, the component func-
tions provide the simple mail transfer protocol (SMTP) to send
the e-mails, also should provide the SSL as a security protocol.
The component will receive in run time (each time a new mail
is created): Mail server information. Mail message information
(including attachments). The component writes all the successful
and unsuccessful processes to a log. The component is compatible
with Windows XP, Vista, 7 in both platforms 32 and 64 bit"

Within this specification, we find two keywords: SSL and
compatible. Such keywords specify the security and compatibil-
ity criterion. Such criterion, however, requires significant efforts
to accomplish, especially with a stringent time constraint. As a
result, most of the developers withdraw from such projects or
fail to accomplish such projects.

Based on the manual analysis of the textual features, we
observed that inclusion of the security and compatibility re-
lated keywords decreases the success rate of projects and re-
stricts novice developers to participate because security and com-
patibility features are bit hard to explain and require signifi-
cant efforts and time to accomplish. The existing literature also
shows (Fitzgerald and Stol, 2015; Stol et al., 2018) that in CCSD
services like Topcoder, a significant amount of time of stackhold-
ers is wasted in explaining the requirements to the competitive
software developers. Moreover, most of the senior developers do
not make the essential contributions especially for the complex
task (Illahi et al., 2019). The preemptive measures against such
occurrences may attract more senior software developers and
use of simple and plain words for explaining requirement may
increase the success rate of projects.

I. Illahi, H. Liu, Q. Umer et al. The Journal of Systems & Software 178 (2021) 110965

T
I

h
k
t
q
(
(
c
w
s
t
f
(

L

w
p
i
p

4

c
c
f
c
m
o

4

t

c
p

5

5

b
r

H
m

o
o
w
c
t
s

k
t
Y
e
H
e

o
s
e

o
s
f
p

p
l
p

p
r
r
s

6

c
i
d
p
t
b

a
d
T
s
c
h
c
c
n

a
m
o
C
T
n
r
C
e
s
a

able 7
nfluence of Contest’s Prize.
Contest’s prize Accuracy Precision Recall F-measure

Included 95.08% 94.84% 99.56% 97.25%
Excluded 94.49% 94.53% 99.30% 96.85%

Furthermore, we investigate the significance of each keyword
aving discriminating effect on predicting success. The list of the
eywords that are most associated with the accepted projects and
he rejected projects are (validate (91%), configuration (92%), se-
uence (95%), edit (94%), and documentation (92%)) and (ultimate
90%), secure (91%), realtime (90%), compatible (92%), and protect
89%)), respectively. We leverage TF/IDF to measure the signifi-
ance of keywords in a project and sort the significant keywords
ith the highest occurrences in the projects. We combine all the
uccessful projects to compute the term frequency (TF) and take
he complete set of projects to compute the inverse document
requency (IDF). The likelihood of a keyword in success prediction
reject prediction) can be formalized as,

(ki, sp) =
count(dsp, ki)
count(dtotal, ki)

(18)

here, L(ki, sp) is the likelihood of keyword K − i is successful
roject sp, count(dns, ki) is the number of successful projects that
ncludes keyword ki, and count(dtotal, ki) is the total number of
rojects that includes keyword ki.

.9. RQ6: Influence of contest’s prize

To investigate the reasons of misclassifications, we further
ompare the results of the proposed approach by introducing the
ontest’s prize as feature. The reason of selecting contest’s prize
or the investigation of misclassification is that it can distort the
lassification, as it increases the success’ chances (as it attracts
ore developers and motivates them) when it is high and the
ther way around.

.9.1. Results and observations
The evaluation results are presented in Table 7. From this

able, we make the following observations:

• First, introducing contest’s prize slightly reduces misclas-
sification. Comparing against the default setting, including
contest’s prize slightly increases accuracy from 94.49% to
95.08%. We also notice that the same is true for other
performance metrics, i.e., precision, recall, and F-measure.

• Second, introducing contest’s prize could not significantly
reduce misclassification. One possible reason is that con-
test’s prize is time dependent, e.g., old projects have lower
prize in contrast to new projects. Another possible reason
is that as suggested by existing survey (Illahi et al., 2019),
participants on TopCoder often pay scant attention to the
prize. Consequently, increasing prize has little impact on the
success of projects.

From the preceding analysis, we conclude that introducing
ontest’s prize has minor influence on the performance of the
roposed approach.

. Threats

.1. Threats to validity

The metrics which are chosen to evaluate our approach can
e a threat to construct validity. We have used the precision,
ecall, and f-measure for the evaluation of the proposed approach.
11
owever, these metrics are the most widely used and adopted by
any researchers (Tian et al., 2015).
Another threat to validity is related to the parameter values

f the classification algorithms. We did experiments to find the
ptimal parameter settings instead of using default ones. Notably,
e select the best parameter settings for the comparison of the
lassification algorithms as specified in Section 4.6.1. However,
he results may decrease with the change in selected parameter
ettings.
A constructive validity threat is the adoption of YAKE for

eywords extraction and assigning their corresponding scores to
he keywords. There are few other tools available but we select
AKE as it is the latest model and its results outperform other
xisting models. Although we modify YAKE to mitigate this threat.
owever, comprehensive keywords extracting tool for software
ngineering text may decrease the performance of the approach.
An internal validity threat is related to the implementation

f the approach. To mitigate the threat of implementation, re-
ults are cross-checked. However, there could be some unnoticed
rrors.
A threat to external validity is related to the generalizability

f our approach. We have only considered and analyzed the
oftware development projects from TopCoder platform. Projects
rom other crowdsourcing platforms may increase or decrease the
erformance of the approach.
An external validity threat to the approach is, it may not

erform well or may not work for the projects written in other
anguages. The proposed approach is trained and evaluated on
rojects written in English.
Another threat to external validity is a small number of

rojects. Therefore, we use traditional machine learning algo-
ithms to evaluate the proposed approach. Deep learning algo-
ithms allow many parameters to be adjusted and mostly require
ignificant training data.

. Related work

CCSD has significantly gained the attention of the research
ommunity in recent years. Researchers have explored CCSD from
ts model to domain application (Mao et al., 2015). However,
espite the importance of resolution prediction of project com-
letion, there are only a few studies that focus on project comple-
ion issue. However, some state-of-the-art studies are discussed
elow.
Prediction of project similarity: a cluster-based calcification

nd competitive network boosting approach (CBC-CN) is intro-
uced by Fu et al. (2017) that routes a project to a right developer.
heir approach selects the most similar projects, builts a clas-
ifier based on these similar projects, and recommends a list of
andidates. They employ a cluster-based classification method to
andle the local characteristics in CCSD projects. The technique
onsiders similar projects together based on the similarity of
ontent. From historical activities, they construct the competitive
etwork of developers and re-rank the initial order.
Prediction of project developers: a machine learning based

pproach (PREM) introduced by Mao et al. (2016) that actively
atches the best suitable developer to the available project
n TopCoder. They identify two typical types of developers in
CSD and observe their behavior to construct a prestige network.
hey employ a multi-class and single-label classification tech-
iques (Mao et al., 2015). Similarly, they employ content-based
ecommendation techniques and develop a framework named
rowdRex. The framework automatically recommends develop-
rs for newly arriving CCSD projects. They employ multi-class,
ingle-label classification technique where a developer is treated
s a class. Based on the historical activities of the developers, the

I. Illahi, H. Liu, Q. Umer et al. The Journal of Systems & Software 178 (2021) 110965

m
a
p

4
p
i
t
p
y
c
t
p
p
f
o
e
w
d
f
s
q
o
d

o
f
d
b
t
i
t
n
w
t
a
b
F
b
a
i
d

7

c
f
m
p
w
c
e
p
s
p
a
e
t
a
h
p
o
a

s

achine learner captures the characteristics of each developer
nd recommends the best-matched developers to newly added
rojects.
Prediction of influential factors: Khanfor et al. (2017) used

,872 TopCoder’s projects from Jan 2014 to Jan 2015 and ap-
lied traditional machine learning techniques to identify the most
nfluential factors of the project outcomes. The framework de-
ects cancelation-prone projects that facilitate management to
revent potential delay. Based on three different types of anal-
sis, i.e., market analysis (number of projects created), project
ompletion analysis (percentage of completed projects), and at-
ractiveness analysis(average number of crowd applying for a
roject) (Dubey et al., 2016), they identify factors that influence
roject completion on TopCoder and Upwork. They also identify
actors that influence the quality of the completed projects. More-
ver, a decision support system (DCS-DS) introduced by (Yang
t al., 2016), investigates the influencing factors of crowd soft-
are developer’s behaviors in a CCSD context. They introduced
ynamic features extracted to characterize dynamic competition
actors and proposed an analytics-based dynamic worker deci-
ion support framework. Saremi et al. (2017) proposed a set of
uestions to improve team elasticity in adaptive software devel-
pment on TopCoder that impacts workers’ performance with
ifferent skill and experience.
Moreover, not limited to CCSD, some studies are conducted

n micro crowdsourcing platforms. For instance, based on matrix
actorization, (Yuen et al., 2012) also proposed a task recommen-
ation framework for task preference modeling and preference-
ased task recommendation for Amazon MTurk, which is a micro-
ask crowdsourcing platform. Similarly based on Matrix factor-
zation, (Jung, 2014) proposed methods to rout a crowdsourcing
ask to a most appropriate worker to maximize accuracy on the
ew task of Amazon MTurk. Moreover, to prone out the dishonest
orker on Amazon Turk, (Ye et al., 2015) proposed two classifica-
ions based on task type and task reward amount. They proposed
trust evaluation model that consists of two types, i.e., task type
ased trust (TaTrust) and reward amount based trust (RaTrust).
inally, they introduced an evolutionary algorithm MOWS-GA
ased on NSGA-II, which effectively differentiate honest workers
nd dishonest workers. Although, the studies we have discussed
n this section are focused on CCSD. However, these studies are
ifferent from our proposed approach.

. Conclusion and future work

CCSD paradigm is widely employed that promises innovative,
ost-effective and high-quality solutions on time. However, it
aces some key challenges such as low rate of solution sub-
issions. Consequently, a significant number of crowdsourcing
rojects did not get any satisfying solution and ended up with the
asting of time and efforts of the developers, CCSD platform and
ompanies who crowdsourcing their software projects. To this
nd, we propose a machine learning based approach for success
rediction of a CCSD project that whether it may get a satisfactory
olution or not. We perform preprocessing using natural language
rocessing technologies, employ the modified keyword ranking
lgorithm to identify the keywords and their ranking scores for
ach CCSD project, model the each CCSD project as a vector, and
rain a support vector machine classifier that predicts whether
given CCSD project will receive its solution or not. This will
elp companies in saving their time and efforts. The proposed ap-
roach is evaluated with history data of CCSD projects. The results
f hold-out validation suggest that the average precision, recall,
nd f-measure are up to 94.53%, 99.30%, and 96.85%, respectively.
The impact of our work is to show that the requirement de-

cription of projects significantly helps in their success prediction.
12
However, it would be interesting to find out the impact of project
description in the success prediction of project if reworded. Fur-
thermore, we would also like to explore other metadata features
of projects to improve the performance of the proposed approach
using deep learning approaches.

CRediT authorship contribution statement

Inam Illahi: Methodology, Data curation, Formal analysis,
Writing - original draft. Hui Liu: Conceptualization, Methodology,
Paper revision, Response to reviewers. Qasim Umer: Algorithm
implementation and evaluation. Nan Niu: Conceptualization, Pa-
per revision.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

The work is supported by the National Natural Science Foun-
dation of China (61690205, 61772071).

References

Campos, R., Mangaravite, V., Pasquali, A., Jorge, A.M., Nunes, C., Jatowt, A.,
2018. Yake! collection-independent automatic keyword extractor. In: Pasi, G.,
Piwowarski, B., Azzopardi, L., Hanbury, A. (Eds.), Advances in Information
Retrieval. Springer International Publishing, Cham, pp. 806–810.

Cristianini, N., Shawe-Taylor, J., 2000. An Introduction to Support Vector Ma-
chines and Other Kernel-based Learning Methods. Cambridge University
Press, http://dx.doi.org/10.1017/CBO9780511801389.

Dubey, A., Abhinav, K., Taneja, S., Virdi, G., Dwarakanath, A., Kass, A., Kuri-
akose, M., 2016. Dynamics of Software Development Crowdsourcing. In: 2016
IEEE 11th International Conference on Global Software Engineering (ICGSE),
pp. 49–58. http://dx.doi.org/10.1109/ICGSE.2016.13.

Fitzgerald, B., Stol, K.-J., 2015. The Dos and Don’ts of Crowdsourcing Software
Development, Vol. 8939. http://dx.doi.org/10.1007/978-3-662-46078-8_6.

Fu, Y., Sun, H., Ye, L., 2017. Competition-aware task routing for contest based
crowdsourced software development. In: 2017 6th International Workshop
on Software Mining (SoftwareMining). pp. 32–39. http://dx.doi.org/10.1109/
SOFTWAREMINING.2017.8100851.

Goldberg, Y., 2016. A primer on neural network models for natural language
processing. J. Artif. Int. Res. 57 (1), 345–420, http://dl.acm.org/citation.cfm?
id=3176748.3176757.

Hu, Z., Wu, W., 2015. Game theoretic analysis for offense-defense challenges
of algorithm contests on topcoder. In: 2015 IEEE Symposium on Service-
Oriented System Engineering. pp. 339–346. http://dx.doi.org/10.1109/SOSE.
2015.44.

Illahi, I., Liu, H., Umer, Q., Zaidi, S.A.H., 2019. An empirical study on competitive
crowdsource software development: Motivating and inhibiting factors. IEEE
Access 7, 62042–62057. http://dx.doi.org/10.1109/ACCESS.2019.2915604.

Jung, H.J., 2014. Quality assurance in crowdsourcing via matrix factorization
based task routing. In: Proceedings of the 23rd International Conference on
World Wide Web. In: WWW ’14 Companion, ACM, New York, NY, USA, pp.
3–8. http://dx.doi.org/10.1145/2567948.2567951, http://doi.acm.org/10.1145/
2567948.2567951.

Khan, A., Baharudin, B., Lee, L.H., Khan, K., Tronoh, U.T.P., 2010. A review of
machine learning algorithms for text-documents classification. J. Adv. Inf.
Technol..

Khanfor, A., Yang, Y., Vesonder, G., Ruhe, G., Messinger, D., 2017. Failure
prediction in crowdsourced software development. In: 2017 24th Asia-Pacific
Software Engineering Conference (APSEC). pp. 495–504. http://dx.doi.org/10.
1109/APSEC.2017.56.

Lakhani, K.R., Lohse, P.A., Panetta, J.A., Karim, C., Lakhani, R., Lohse, P.A.,
Panetta, J.A., Lakhani, K.R., Lohse, P.A., Panetta, J.A., 2006. The value of
openness in scientific problem solving.

Li, Y., Bontcheva, K., Cunningham, H., 2009. Adapting SVM for data sparseness
and imbalance: a case study in information extraction. Nat. Lang. Eng. 15
(2), 241–271. http://dx.doi.org/10.1017/S1351324908004968.

Mao, K., Capra, L., Harman, M., Jia, Y., 2017. A survey of the use of
crowdsourcing in software engineering. J. Syst. Softw. 126, 57–84. http:
//dx.doi.org/10.1016/j.jss.2016.09.015, http://www.sciencedirect.com/science/
article/pii/S0164121216301832.

http://refhub.elsevier.com/S0164-1212(21)00062-5/sb1
http://refhub.elsevier.com/S0164-1212(21)00062-5/sb1
http://refhub.elsevier.com/S0164-1212(21)00062-5/sb1
http://refhub.elsevier.com/S0164-1212(21)00062-5/sb1
http://refhub.elsevier.com/S0164-1212(21)00062-5/sb1
http://refhub.elsevier.com/S0164-1212(21)00062-5/sb1
http://refhub.elsevier.com/S0164-1212(21)00062-5/sb1
http://dx.doi.org/10.1017/CBO9780511801389
http://dx.doi.org/10.1109/ICGSE.2016.13
http://dx.doi.org/10.1007/978-3-662-46078-8_6
http://dx.doi.org/10.1109/SOFTWAREMINING.2017.8100851
http://dx.doi.org/10.1109/SOFTWAREMINING.2017.8100851
http://dx.doi.org/10.1109/SOFTWAREMINING.2017.8100851
http://dl.acm.org/citation.cfm?id=3176748.3176757
http://dl.acm.org/citation.cfm?id=3176748.3176757
http://dl.acm.org/citation.cfm?id=3176748.3176757
http://dx.doi.org/10.1109/SOSE.2015.44
http://dx.doi.org/10.1109/SOSE.2015.44
http://dx.doi.org/10.1109/SOSE.2015.44
http://dx.doi.org/10.1109/ACCESS.2019.2915604
http://dx.doi.org/10.1145/2567948.2567951
http://doi.acm.org/10.1145/2567948.2567951
http://doi.acm.org/10.1145/2567948.2567951
http://doi.acm.org/10.1145/2567948.2567951
http://refhub.elsevier.com/S0164-1212(21)00062-5/sb10
http://refhub.elsevier.com/S0164-1212(21)00062-5/sb10
http://refhub.elsevier.com/S0164-1212(21)00062-5/sb10
http://refhub.elsevier.com/S0164-1212(21)00062-5/sb10
http://refhub.elsevier.com/S0164-1212(21)00062-5/sb10
http://dx.doi.org/10.1109/APSEC.2017.56
http://dx.doi.org/10.1109/APSEC.2017.56
http://dx.doi.org/10.1109/APSEC.2017.56
http://refhub.elsevier.com/S0164-1212(21)00062-5/sb12
http://refhub.elsevier.com/S0164-1212(21)00062-5/sb12
http://refhub.elsevier.com/S0164-1212(21)00062-5/sb12
http://refhub.elsevier.com/S0164-1212(21)00062-5/sb12
http://refhub.elsevier.com/S0164-1212(21)00062-5/sb12
http://dx.doi.org/10.1017/S1351324908004968
http://dx.doi.org/10.1016/j.jss.2016.09.015
http://dx.doi.org/10.1016/j.jss.2016.09.015
http://dx.doi.org/10.1016/j.jss.2016.09.015
http://www.sciencedirect.com/science/article/pii/S0164121216301832
http://www.sciencedirect.com/science/article/pii/S0164121216301832
http://www.sciencedirect.com/science/article/pii/S0164121216301832

I. Illahi, H. Liu, Q. Umer et al. The Journal of Systems & Software 178 (2021) 110965

M

M

M

N

R

R

R

S

S

S

S

S

S

T

U

V
V

V

W

W

ao, K., Wang, Q., Jia, Y., Harman, M., 2016. RN / 16 / 06 PREM : Prestige network
enhanced developer-task matching for crowdsourced software development
august 9 , 2016.

ao, K., Yang, Y., Wang, Q., Jia, Y., Harman, M., 2015. Developer recommendation
for crowdsourced software development tasks. In: 2015 IEEE Symposium
on Service-Oriented System Engineering. pp. 347–356. http://dx.doi.org/10.
1109/SOSE.2015.46.

ihalcea, R., Tarau, P., 2004. Textrank: Bringing order into text. In: Proceed-
ings of the 2004 Conference on Empirical Methods in Natural Language
Processing. http://aclweb.org/anthology/W04-3252.

g, A.Y., Jordan, M.I., 2002. On discriminative vs. Generative classifiers: A
comparison of logistic regression and naive Bayes. In: Dietterich, T.G.,
Becker, S., Ghahramani, Z. (Eds.), Advances in Neural Information Processing
Systems 14. MIT Press, pp. 841–848, http://papers.nips.cc/paper/2020-
on-discriminative-vs-generative-classifiers-a-comparison-of-logistic-
regression-and-naive-bayes.pdf.

ago, A., Diaz-Pace, J.A., Marcos, C., 2019. Do concern mining tools really help
requirements analysts? An empirical study of the vetting process. J. Syst.
Softw. 156, 181–203. http://dx.doi.org/10.1016/j.jss.2019.06.073, http://www.
sciencedirect.com/science/article/pii/S0164121219301359.

amay, W., Umer, Q., Yin, X.C., Zhu, C., Illahi, I., 2019. Deep neural network-
based severity prediction of bug reports. IEEE Access 7, 46846–46857. http:
//dx.doi.org/10.1109/ACCESS.2019.2909746.

ose, S.J., Engel, D.W., Cramer, N.O., Cowley, W.E., Automatic Keyword Extraction
from Individual Documents.

aremi, R., Yang, Y., Ruhe, G., Messinger, D., 2017. Leveraging crowdsourcing for
team elasticity: an empirical evaluation at topcoder. In: 2017 IEEE/ACM 39th
International Conference on Software Engineering: Software Engineering in
Practice Track (ICSE-SEIP). pp. 103–112. http://dx.doi.org/10.1109/ICSE-SEIP.
2017.2.

cholkopf, B., Burges, C.J.C., Smola, A.J. (Eds.), 1999. Advances in kernel methods:
Support vector learning. MIT Press, Cambridge, MA, USA.

ohrawardi, S., Azam, I., Hosain, S., 2014. A comparative study of text classi-
fication algorithms on user submitted bug reports. In: Ninth International
Conference on Digital Information Management (ICDIM 2014). pp. 242–247.
http://dx.doi.org/10.1109/ICDIM.2014.6991434.

tol, K., Caglayan, B., Fitzgerald, B., 2018. Competition-based crowdsourcing
software development: A multi-method study from a customer perspective.
IEEE Trans. Softw. Eng. http://dx.doi.org/10.1109/TSE.2017.2774297, 1–1.

tol, K.-J., Fitzgerald, B., 2014. Two’s company, three’s a crowd: A case study of
crowdsourcing software development. In: Proceedings of the 36th Interna-
tional Conference on Software Engineering. In: ICSE 2014, ACM, New York,
NY, USA, pp. 187–198. http://dx.doi.org/10.1145/2568225.2568249, http://
doi.acm.org/10.1145/2568225.2568249.

tol, K.-J., Fitzgerald, B., 2014. Two’s company, three’s a crowd: A case study of
crowdsourcing software development. In: Proceedings of the 36th Interna-
tional Conference on Software Engineering. In: ICSE 2014, ACM, New York,
NY, USA, pp. 187–198. http://dx.doi.org/10.1145/2568225.2568249, http://
doi.acm.org/10.1145/2568225.2568249.

ian, Y., Lo, D., Xia, X., Sun, C., 2015. Automated prediction of bug report priority
using multi-factor analysis. Empir. Softw. Eng. 20 (5), 1354–1383. http://dx.
doi.org/10.1007/s10664-014-9331-y, http://dx.doi.org/10.1007/s10664-014-
9331-y.

mer, Q., Liu, H., Sultan, Y., 2018. Emotion based automated priority prediction
for bug reports. IEEE Access 6, 35743–35752. http://dx.doi.org/10.1109/
ACCESS.2018.2850910.

apnik, V.N., 1999. The Nature of Statistical Learning Theory.
apnik, V., 2000. The nature of statistical learning theory. Stat. Eng. Inf. Sci. 8,

1–15. http://dx.doi.org/10.1007/978-1-4757-3264-1_1.
ergara, S., El-Khouly, M., Tantawi, M.E., Marla, S., Sri, L., 2017. Building cognitive

applications with IBM watson services: Volume 7 natural language under-
standing. In: Building Cognitive Applications with IBM Watson Services:
Volume 7 Natural Language Understanding. https://www.redbooks.ibm.com/
redbooks/pdfs/sg248398.pdf.

itten, I.H., Paynter, G.W., Frank, E., Gutwin, C., Nevill-Manning, C.G., 1999.
KEA: Practical automatic keyphrase extraction. In: Proceedings of the Fourth
ACM Conference on Digital Libraries. In: DL ’99, ACM, New York, NY,
USA, pp. 254–255. http://dx.doi.org/10.1145/313238.313437, http://doi.acm.
org/10.1145/313238.313437.

u, X., Kumar, V., Ross Quinlan, J., Ghosh, J., Yang, Q., Motoda, H., McLach-
lan, G.J., Ng, A., Liu, B., Yu, P.S., Zhou, Z.-H., Steinbach, M., Hand, D.J.,
Steinberg, D., 2008. Top 10 algorithms in data mining. Knowl. Inf. Syst. 14 (1),
1–37. http://dx.doi.org/10.1007/s10115-007-0114-2, https://doi.org/10.1007/
s10115-007-0114-2.
13
Wu, W., Tsai, W.-T., Li, W., 2013. An evaluation framework for software
crowdsourcing. Front. Comput. Sci. 7 (5), 694–709. http://dx.doi.org/10.1007/
s11704-013-2320-2, http://dx.doi.org/10.1007/s11704-013-2320-2.

Yang, Y., Karim, M.R., Saremi, R., Ruhe, G., 2016. Who should take this task?:
Dynamic decision support for crowd workers. In: Proceedings of the 10th
ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement. In: ESEM ’16, ACM, New York, NY, USA, pp. 8:1–8:10. http:
//dx.doi.org/10.1145/2961111.2962594, http://doi.acm.org/10.1145/2961111.
2962594.

Ye, B., Wang, Y., Liu, L., 2015. Crowd trust: A context-aware trust model for
worker selection in crowdsourcing environments. In: 2015 IEEE International
Conference on Web Services. pp. 121–128. http://dx.doi.org/10.1109/ICWS.
2015.26.

Yuen, M.-C., King, I., Leung, K.-S., 2012. Task recommendation in crowdsourcing
systems. In: Proceedings of the First International Workshop on Crowd-
sourcing and Data Mining. In: CrowdKDD ’12, ACM, New York, NY, USA,
pp. 22–26. http://dx.doi.org/10.1145/2442657.2442661, http://doi.acm.org/
10.1145/2442657.2442661.

Inam Illahi graduated from University of Sargodha,
Pakistan 2007. He completed his MS degree in 2010
from Chalmers University of Technology, Sweden. He is
pursuing his PhD from the School of Computer Science
and Technology, Beijing Institute of Technology, China.
He is particularly interested in software maintenance,
crowdsourcing and machine learning.

Hui Liu is a professor at the School of Computer
Science and Technology, Beijing Institute of Technology,
China. He received BS degree in control science from
Shandong University in 2001, MS degree in computer
science from Shanghai University in 2004, and PhD
degree in computer science from the Peking University
in 2008. He was a visiting research fellow in centre
for research on evolution, search and testing (CREST)
at University College London, UK. He served on the
program committees and organizing committees of
prestigious conferences, such as ICSME, RE, ICSR, and

COMPSAC. He is serving as associate editor for IEEE Access and IET Software,
and guest editor for Empirical Software Engineering and Journal of Systems and
Software. He is particularly interested in software refactoring, AI-based software
engineering, and software quality. He is also interested in developing practical
tools to assist software engineers.

Qasim Umer received the BS degree in computer
science from Punjab University, Pakistan in 2006, MS
degree in .net distributed system development from
University of Hull, UK in 2009, and MS degree in
computer science from University of Hull, UK in 2012.
He is currently perusing PhD degree in computer sci-
ence from Beijing Institute of Technology, China. He is
particularly interested in machine learning, data mining
and software maintenance.

Nan Niu is an Associate Professor in the Department of
Electrical Engineering and Computer Science, Univer-
sity of Cincinnati, USA. His research interests include
software requirements engineering, scientific software
development, and human-centric computing. He re-
ceived the Ph.D. degree in Computer Science from the
University of Toronto in 2009. He is a member of ACM
and ASEE, and a Senior Member of IEEE. Contract him
at nan.niu@uc.edu.

http://refhub.elsevier.com/S0164-1212(21)00062-5/sb15
http://refhub.elsevier.com/S0164-1212(21)00062-5/sb15
http://refhub.elsevier.com/S0164-1212(21)00062-5/sb15
http://refhub.elsevier.com/S0164-1212(21)00062-5/sb15
http://refhub.elsevier.com/S0164-1212(21)00062-5/sb15
http://dx.doi.org/10.1109/SOSE.2015.46
http://dx.doi.org/10.1109/SOSE.2015.46
http://dx.doi.org/10.1109/SOSE.2015.46
http://aclweb.org/anthology/W04-3252
http://papers.nips.cc/paper/2020-on-discriminative-vs-generative-classifiers-a-comparison-of-logistic-regression-and-naive-bayes.pdf
http://papers.nips.cc/paper/2020-on-discriminative-vs-generative-classifiers-a-comparison-of-logistic-regression-and-naive-bayes.pdf
http://papers.nips.cc/paper/2020-on-discriminative-vs-generative-classifiers-a-comparison-of-logistic-regression-and-naive-bayes.pdf
http://papers.nips.cc/paper/2020-on-discriminative-vs-generative-classifiers-a-comparison-of-logistic-regression-and-naive-bayes.pdf
http://papers.nips.cc/paper/2020-on-discriminative-vs-generative-classifiers-a-comparison-of-logistic-regression-and-naive-bayes.pdf
http://dx.doi.org/10.1016/j.jss.2019.06.073
http://www.sciencedirect.com/science/article/pii/S0164121219301359
http://www.sciencedirect.com/science/article/pii/S0164121219301359
http://www.sciencedirect.com/science/article/pii/S0164121219301359
http://dx.doi.org/10.1109/ACCESS.2019.2909746
http://dx.doi.org/10.1109/ACCESS.2019.2909746
http://dx.doi.org/10.1109/ACCESS.2019.2909746
http://dx.doi.org/10.1109/ICSE-SEIP.2017.2
http://dx.doi.org/10.1109/ICSE-SEIP.2017.2
http://dx.doi.org/10.1109/ICSE-SEIP.2017.2
http://refhub.elsevier.com/S0164-1212(21)00062-5/sb23
http://refhub.elsevier.com/S0164-1212(21)00062-5/sb23
http://refhub.elsevier.com/S0164-1212(21)00062-5/sb23
http://dx.doi.org/10.1109/ICDIM.2014.6991434
http://dx.doi.org/10.1109/TSE.2017.2774297
http://dx.doi.org/10.1145/2568225.2568249
http://doi.acm.org/10.1145/2568225.2568249
http://doi.acm.org/10.1145/2568225.2568249
http://doi.acm.org/10.1145/2568225.2568249
http://dx.doi.org/10.1145/2568225.2568249
http://doi.acm.org/10.1145/2568225.2568249
http://doi.acm.org/10.1145/2568225.2568249
http://doi.acm.org/10.1145/2568225.2568249
http://dx.doi.org/10.1007/s10664-014-9331-y
http://dx.doi.org/10.1007/s10664-014-9331-y
http://dx.doi.org/10.1007/s10664-014-9331-y
http://dx.doi.org/10.1007/s10664-014-9331-y
http://dx.doi.org/10.1007/s10664-014-9331-y
http://dx.doi.org/10.1007/s10664-014-9331-y
http://dx.doi.org/10.1109/ACCESS.2018.2850910
http://dx.doi.org/10.1109/ACCESS.2018.2850910
http://dx.doi.org/10.1109/ACCESS.2018.2850910
http://refhub.elsevier.com/S0164-1212(21)00062-5/sb30
http://dx.doi.org/10.1007/978-1-4757-3264-1_1
https://www.redbooks.ibm.com/redbooks/pdfs/sg248398.pdf
https://www.redbooks.ibm.com/redbooks/pdfs/sg248398.pdf
https://www.redbooks.ibm.com/redbooks/pdfs/sg248398.pdf
http://dx.doi.org/10.1145/313238.313437
http://doi.acm.org/10.1145/313238.313437
http://doi.acm.org/10.1145/313238.313437
http://doi.acm.org/10.1145/313238.313437
http://dx.doi.org/10.1007/s10115-007-0114-2
https://doi.org/10.1007/s10115-007-0114-2
https://doi.org/10.1007/s10115-007-0114-2
https://doi.org/10.1007/s10115-007-0114-2
http://dx.doi.org/10.1007/s11704-013-2320-2
http://dx.doi.org/10.1007/s11704-013-2320-2
http://dx.doi.org/10.1007/s11704-013-2320-2
http://dx.doi.org/10.1007/s11704-013-2320-2
http://dx.doi.org/10.1145/2961111.2962594
http://dx.doi.org/10.1145/2961111.2962594
http://dx.doi.org/10.1145/2961111.2962594
http://doi.acm.org/10.1145/2961111.2962594
http://doi.acm.org/10.1145/2961111.2962594
http://doi.acm.org/10.1145/2961111.2962594
http://dx.doi.org/10.1109/ICWS.2015.26
http://dx.doi.org/10.1109/ICWS.2015.26
http://dx.doi.org/10.1109/ICWS.2015.26
http://dx.doi.org/10.1145/2442657.2442661
http://doi.acm.org/10.1145/2442657.2442661
http://doi.acm.org/10.1145/2442657.2442661
http://doi.acm.org/10.1145/2442657.2442661
mailto:nan.niu@uc.edu

	Machine learning based success prediction for crowdsourcing software projects
	Introduction
	Background
	Competitive Crowdsourced Software Development (CCSD)
	CCSD process

	Approach
	Overview
	Illustrating example
	Problem definition
	Preprocessing
	Keywords extraction
	Casing
	Positioning
	Frequency
	Relatedness
	Frequency in different sentence

	Ranking of extracted keywords
	Feature modeling
	Training and prediction
	Training
	Prediction

	Evaluation
	Research questions
	Dataset
	Process
	Metrics
	RQ1: Accuracy of the proposed approach
	Results
	Observations
	Impact of sorting
	Misclassification

	RQ2: Impact of re-sampling
	RQ3: Performance comparison of machine learning algorithms
	Parameter tuning of classification algorithms
	Results
	Observations

	RQ4: Influence of preprocessing
	Results
	Observations

	RQ5: Influence of different input factors
	Results
	Observations

	RQ6: Influence of contest's prize
	Results and observations

	Threats
	Threats to validity

	Related work
	Conclusion and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

