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Abstract. The Systems Modeling Language (SysML) represents a sig-
nificant and increasing segment of industrial support for building critical
systems. The Object Management Group (OMG) has been releasing and
revising the formal specification of SysML since 2007, with version 1.6
recently formalized in November 2019. However, little is known about
what OMG specifies and how the official specification influences model-
driven engineering (MDE). To fill the gap, we present a new way of ana-
lyzing the OMG SysML specification (version 1.6) to uncover reusable
guidelines and constraints for safe MDE practice. We illustrate our app-
roach with the discovery of the recurring “Asset Leakage” safety pattern
and the development of a semantic-role-based theory to support practi-
tioners’ identification, formulation, and verification of critical properties
in their modeling contexts.

Keywords: Systems Modeling Language (SysML) - Systems reuse *
Specification patterns - Temporal constraints - Semantic roles -
Grounded theory

1 Introduction

The Systems Modeling Language (SysML), first adopted by the Object Man-
agement Group (OMG) in 2006, is a general-purpose, visual modeling language
for systems engineering [32]. It builds on UML as its foundation and provides
additional extensions to facilitate the communication and collaboration among
various stakeholders who participate in the model-driven engineering (MDE)
activities. SysML is designed to equip MDE practitioners with simple but pow-
erful constructs for modeling a wide range of problems in different application
domains, including aerospace, automotive, energy, healthcare, manufacturing,
and telecommunications.

In safety-critical domains, crucial properties—such as “a vehicle’s revolu-
tions per minute (RPM) shall never exceed 4,000”—must be checked. The MDE
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literature distinguishes two modes of checking: offline verification and online
monitoring. In offline settings, techniques like model checking [11] are employed
to formally examine whether the models satisfy a given property, e.g., the LTL
formula “[]'(RPM > 4000)” expresses the aforementioned safety requirement.
In contrast, online monitoring deploys techniques like observer automata [31]
to detect property violations for models at runtime [6]. A key difference is that
runtime monitoring focuses on the current run of the deployed models, whereas
model checking analyzes all the runs [8].

Researchers have addressed reusability and scalability issues in order for these
property-checking mechanisms to be readily adopted in practice. For instance,
Dou et al. [18] proposed a model-driven approach to generating diagnostic infor-
mation for temporal properties, and further used synthesized data with millions
of events to show that the approach grew linearly with respect to the size of the
events logging the execution of a system. Besnard and colleagues [8] developed
the observer automata in the same language as the models (i.e., by using UML),
and their simulation on a STM32 discovery board showed that the runtime over-
head of the monitoring based on observer automata was 6.5% for the embedded
target.

Despite these advances, an inherent challenge facing MDE practitioners is to
specify the critical properties, e.g., those related to safety, security, and depend-
ability [39]. Not only is expertise required to identify important concerns in a
specific domain, but the concerns also have to be formulated in ways amenable
to the particular machinery (e.g., TemPsy temporal formulas [18] or UML state
invariants [8]). The engineers are left with many questions: which properties to
begin with, how to assess the validity of the properties, and realistically speaking,
how others specify properties in their work.

In their seminal work, Dwyer and his colleagues [19] surveyed 555 tempo-
ral logic specifications and showed that an overwhelming majority (92%) fell
into eight highly reusable patterns: Response, Universality, Absence, etc. While
we review Dwyer et al.’s work in more detail in the next section, their pat-
terns have had extensive influence in software and systems engineering: query-
ing model histories [17], developing a UML interpreter [7], debugging declarative
models [26], discovering latent behavior of UML models [20], model-based test-
ing from UML/OCL [15], to name a few. However, like Dwyer et al.’s patterns,
the MDE extensions stay mainly at a syntactic level. Take “[]/(RPM > 4000)”
as an example, although it is an instance of the globally-scoped Absence pattern
([1('P)) [19], the modeler has to semantically map P without much guidance.

If the RPM case seems too straightforward, consider the requirement of a
cruise control system: “When the system is engaged, the cruise speed should be
defined [8].” Here, should P in [](!P) be instantiated with “systemEngaged &
unknownCruiseSpeed”, or with “systemFEngaged — unknownCruiseSpeed”? Or
should a completely different pattern, namely Response ([](Q —<>R)) [19], be
applied where @ =“systemEngaged” and R=*! unknownCruiseSpeed”? Unfor-
tunately, syntactic patterns offer little help.
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In this paper, we propose to reduce the semantic gap by taking a fresh look
at what OMG specifies. In particular, we manually analyze the OMG specifica-
tion [33] to search for recurring and reusable patterns that guide SysML-based
software and systems engineering practices. We pay special attention to the parts
of the specification where the integrity of SysML is discussed. We therefore call
our results safety patterns to indicate the risk or danger of violating them. We
further codify the semantic roles of each pattern to ease the mapping of syntactic
structures in the modeler’s MDE contexts.

The contributions of our work lie in the analysis of the OMG SysML specifi-
cation as a new way to guide MDE practices. Our work is particularly valuable
for the practitioners who are required or recommended to adhere to OMG spec-
ifications, and our results on safety patterns offer concrete insights into the kind
of critical properties subject to be verified in all SysML models. The remainder
of the paper is organized as follows: Sect. 2 provides background information and
discusses related work, Sect. 3 presents our research methodology for analyzing
the OMG SysML specification, Sect. 4 describes our results by detailing the
“Asset Leakage” pattern, Sect. 5 elaborates our vision about semantics-enriched
support for MDE and systems reuse, and finally, Sect. 6 concludes the paper.

2 Background and Related Work

2.1 Property Patterns in MDE

The seminal work by Dwyer et al. [19] tackled the challenge concerning practi-
tioners’ unfamiliarity with temporal logic notations. They developed a pattern-
based approach to ease the specification of informal requirements into temporal
logic formulas. Eight reusable patterns were reported in [19]: Absence, Bounded
Existence, Chain Precedence, Chain Response, Existence, Precedence, Response,
and Universality. Figure 1 organizes these patterns based on occurrence and
order. A survey of 555 specifications from over 35 sources showed that 92% were
instances of the eight patterns shown in Fig. 1, with the top three accounted
for 80% of the sample: Response (222 = 44%), Universality (32 = 21%), and

555 555
Absence (22 = 15%) [19]. The results provided empirical evidence of human

specifiers’ %5556 and reuse of common formalisms to express behavioral aspects of
their subject systems.

Inspired by these patterns, MDE extensions are made. An important task of
offline checking is trace diagnostics, i.e., providing the modeler with the relevant
information in case a property fails to hold. When checking the logged events
of a system’s execution, some tools pinpoint the last log entry (i.e., the last
event) read before detecting the property violation. However, the usefulness of
the traces truncated in this manner is limited, because a property can be vio-
lated in different ways and the last read event may not necessarily be the event
responsible for the violation. To provide relevant diagnostic information, Dou
et al. [18] developed algorithms and their development was guided directly by
Dwyer et al.’s work [19]. As shown in the left column of Table 1, six patterns were
presented to classify the violation of a property: two on occurrence and four on
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Universality Absence Response Precedence
Occurrence — Property Order
/ \ Patterns / \
Bounded : Chain Chain
. Existence
Existence Response Precedence

Fig. 1. Temporal property patterns by Dwyer et al. [19] (figure adopted from [17]).

Table 1. Illustrating the MDE Extensions of Dwyer et al.’s Reusable Patterns [19]

Property violations [18] Model histories [17] (# of OCL operations)

1) unexpected occurrence (i) basic version traversal (7)
2
3

E ) no-show occurrence (ii) temporal assertions (5)
(3)
(4) wrong temporal order
(5)
(6)

no-show order (iii) predicate-based version scoping (3)

5) wrong temporal chain (iv) context-based version scoping (2)

6) wrong temporal order and chain | (v) version unscoping (1)

order [18]. The trace diagnostics algorithms were then informed by the patterns,
two of which (diagnostic information of Existence and that of Precedence) were
explained in detail in [18].

Another extension was made by Garcia-Dominguez et al. [17] to allow a
model’s histories to be queried online. Five groups of querying [17] are listed in
the right column of Table 1. In each group, one or more OCL operations are
defined to instrument the temporal assertions. For example, to check model
x’s property p within predicate-based version scoping, three operations are
added: one for the versions since p (z.since(v|p), z.after(v|p)), the second
until p (z.until(v|p), z.before(v|p)), and the third with the matching of p
(z.when(v|p)). Garclfa-Dominguez et al. [17] showed that all the order patterns
and all the five scopes (i.e., globally, before @, after R, between R and @, and
after R until Q) by Dwyer et al. [19] were mapped to one or more of the 18 OCL
operations.

The patterns of property violation [18] and time-aware querying [17] illus-
trate the MDE extensions of Dwyer et al.’s work [19]. These patterns offer much
syntactic help, as the chief intent is to assist practitioners in understanding the
scope of temporal logic modalities encapsulated in each pattern’s generalized
description of permissible state/event sequences [19]. Having only syntactic sup-
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port can be limited, e.g., the main query of the remote data mirroring case
study in [17] was a composition of ten OCL primitives and two OCL opera-
tions involving four syntactic structures, i.e., (i), (iii), (iv), and (v) of Table 1.
Semantic support bridging the syntactic structures and the practical modeling
concerns can be complementary and lead to enhanced benefit. Next we describe
the major source from which we derive the semantic knowledge.

2.2 OMG SysML Specification

The OMG SysML specification, like all other OMG specifications (e.g., UML
and CORBA), addresses vertical (application domain independent) practices to
promote interoperability, portability, and reusability. Because SysML reuses a
subset of UML, the specification facilitates systems engineers modeling with
SysML and software engineers modeling with UML to be able to collaborate on
models of software-intensive systems [3]. In addition, OMG specifies the language
so that modeling tool vendors can implement and support SysML [5,40].

Being a standards consortium, OMG has an open process allowing all the
specifications to undergo continuous review and improvement. There is no excep-
tion for the SysML specification [33]. Version 1.0 of the formal specification was
adopted in September 2007. Since then, OMG has made six revisions, each tak-
ing an average of 24.3 months to be released. The most recent version—released
in November 2019—is the formal SysML specification version 1.6 [34] which we
use in our study. Throughout this paper, we simply refer to [34] as the “OMG
SysML specification”.

This specification is a 398-page PDF document containing 17 sections and
7 annexes [34]. The main contents can be divided into general principles (e.g.,
conformance and language formalisms), model elements (covering both struc-
tural and behavioral constructs), and crosscutting topics (e.g., extending meta-
model via stereotypes). While the contents of such an international standard are
expected to evolve in an incremental and stable fashion, we next present the
strategies for analyzing the OMG SysML specification.

3 Research Methodology

Our goal is to discover useful and reusable pattern-oriented knowledge from
the OMG SysML specification so as to ease the MDE practitioners’ identifica-
tion and formulation of critical properties. To that end, we develop a research
methodology based on grounded theory [37]. Figure 2 overviews the process of
our approach. Our underlying research question is to explore commonly occur-
ring guidelines and constraints from the OMG SysML specification. We rely on
the specification descriptions, but also go beyond the syntactic layer to uncover
semantic patterns to inform the MDE practices. While our approach of Fig. 2
takes the OMG SysML specification as the input, the output is a theory pro-
viding new ways of formulating critical properties in the modeling contexts that



24 N. Niu et al.

OMG SysML sample
specification statements
manual search —
>
keyword Data_ open
search Collection coding
5\ s @ \
. <7 S ;
o > “3"’\ categories
) 4 & concepts
™\
theoretical axial
sampling Theoretical coding
Saturation

J

THEORY legkage
] <
(\“ RACTICE selective coding DEASLOCL

theory of safety patterns
semantic roles of SysML

Fig. 2. Analyzing the OMG SysML specification informed by grounded theory.

can be reused across different domains (e.g., automotive, energy, manufacturing,
etc.).

The process of Fig. 2 consists of two cycles. The first cycle is concerned
with data collection. Initially, we manually search the OMG SysML specification
for the statements that express rules of thumb or impose limiting powers in
modeling. For example, one of the statement samples is:

“...control can only enable actions to start. SysML extends control to
support disabling of actions that are already executing. This is accomplished
by providing a model library with a type for control values that are treated
like data” (§11.1.1 “Control as Data” page 155 [34])

We then apply open coding [37] to explicitly annotate the categories and concepts
from the sample statements. For the above example, the category “Activities”
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(as a diagram element) and the concepts “disabling” and “executing” are coded.
The open coding results are fed back to the specification to enrich the data
collection. Here, keyword search based on “disabling”, “executing”, and their
lexical variants like “disable” and “disables” is performed, and more focused
manual search of §11 on “Activities” is conducted. As a result, the following
statement, among others, is selected and coded:

“...when an activity invokes other activities, they can be associated by a
composition association, with the invoking activity on the whole end, and
the invoked activity on the part end. If an execution of an activity on the
whole end is terminated, then the executions of the activities on the part
end are also terminated” (§11.3.1 “Diagram Extensions” page 164 [34])

When no new categories or concepts are generated, our data collection comes
to a fixed point and we proceed to the second cycle of Fig. 2. This cycle first
involves axial coding [37] where the categories and concepts are related and pos-
sibly combined. This allows us to synthesize the core variable. In our study, for
instance, an essential dependency emerges from the codes of the above two state-
ments: “data depends on control” and “part depends on whole”. Any SysML
modeling that violates this class of dependencies is then unsafe. Such depen-
dencies form what we call a safety pattern of SysML, which we further apply
selective coding [37] to build a theory. In selective coding where the tentative
core has already been established, we deliberately code data without bothering
about concepts with little importance to the safety patterns. If necessary, selec-
tive coding leads us to go back to the OMG specification, further improving our
data collection. Once our codified semantic roles of each safety pattern are able
to incorporate most selective coding results, theoretical saturation is reached
and our theory shall be put into use.

4 Results and Analysis

We share the analysis results by first describing our effort level, followed by a
detailed account of the top safety pattern from our work (“Asset Leakage”). We
then demonstrate our application of the “Asset Leakage” pattern to a SysML
model, and conclude this section by discussing the threats to validity affecting
our results.

Effort. Three researchers spent a total of about 40h in analyzing the OMG
SysML specification [34]. The data collection phase of our process, as shown in
the top cycle of Fig. 2, involved two researchers working independently to identify
sample statements and to code categories and concepts. These individual sessions
totaled approximately 30 h.

A two-hour meeting was held among the three researchers to merge the col-
lected data, perform axial coding, formulate safety patterns, and build a the-
ory to offer semantic support for SysMIL-based MDE. This was followed by
selective coding done individually, occasionally collecting more data from the
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OMG specification. The entire theory building cycle of Fig. 2 took around 10h
in total. Although our manual analysis effort was not negligible, we expect this
cost would be amortized over the application of our theory to all SysML models
and potential reuse of our results in other MDE tasks (e.g., trace diagnostics [18],
requirements discovery [9,21], visual analytics [29, 35], obstacle and mistake anal-
ysis [2,4], and so on).

Asset Leakage. Our most prominent result is what we call the “Asset Leakage”
pattern. Table 2 provides the details of this safety pattern. We express the pat-
tern in LTL as: “[] ((p — ¢) U lg)”, which is interpreted as: “it is always the case
that if p is running/executing, then (it is because that) ¢ is running/executing,
and this will hold until ¢ stops running/executing”. In this pattern, p can be
thought of as an asset which is guarded by ¢, and if the specified property fails
to hold, then asset leakage occurs. Although the pattern positively prevents the
asset from leaking, we negatively name the pattern to alert what will go wrong
if SysML is unsafely practiced. Our naming convention is in line with such terms
as “segmentation fault” and “buffer overflow” [42].

We were able to identify ten instances of “Asset Leakage” from the OMG
specification. Table 2 lists the ten statements resulted from our axial coding, as
well as the categories and concepts of each statement. The keywords underlying
the concepts show strong connections with p and/or ¢’s creation (e.g., “start”)
and termination (e.g., “destroying”). In addition, the dependency between the
two are important (e.g., “invokes”). Some keywords like “dependency” return
many automatically searched results, which suggests weighting the keywords
may be more effective to automate data collection. Some statements, such as
#9 and #10 in Table 2, do not contain any keyword, which implies that manual
search is indispensable.

Table 2 sorts the ten statements based on their page numbers, and the cat-
egory column of the table shows that six “Asset Leakage” instances appear in
the OMG specification’s behavioral constructs (§11—§14), one in the structural
constructs (§7—=§10), one in the crosscutting constructs (§15—%§17), and two in
the annexes. Unsurprisingly, more than half of the statements tie directly to
the behavioral aspects of SysML as “Asset Leakage” concerns more about func-
tions and responses; however, structural integrity like #1 shall not be ignored.
Although §C defines SysML elements that are deprecated, statements #9 and
#10 are of relevance when modelers or tool vendors face backward compatibility
issues.

As our overarching goal is to support MDE practice, we are building a theory
that not only raises the modelers’ awareness of SysML safety patterns, but also
shields them from the complexity of the formal notations like “[] ((p — ¢) U lg)”.
We thus develop a theory of semantic roles to guide practice and promote reuse
in systems engineering. Our idea is inspired by frame semantics [16] arguing
that one cannot understand a word’s meaning without access to all the essential
knowledge that relates to that word. Better understanding is gained once a frame
of semantic knowledge which the word evokes is teased out.
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Table 2. “Asset Leakage” safety pattern grounded in the statements of the OMG
SysML specification [34]

No. Statement (concepts are underline) Category (enclosing Instantiation of
section & page #) [1((p—>qUlq)
« o . « . | [1((fullSpecialization
If the general ports had binding connectors to internal parts, then the full spe- | “Proxy and Full Ports o
! cialization would be invalid.” (§9.4.4 & page 139) - ! bindingConnector)
— 44 pag U bindingConnector )
“...control can only enable actions to start. SysML extends control to support « » [1( (dataActive —
P . . . . Control as Data X

2 disabling of actions that are already executing. This is accomplished by pro- (§11.1.1 & page 155) controlActive)
viding a model library with a type for control values that are treated like data” Al pag U ! controlActive )

3 “Destroying an instance of an activity terminates the corresponding execution “Diagram Extensions” | [] ( (activity — exe-
L7 (§11.3.1.1.1 & page 164) | cution) U ! execution )

4 “Terminating an execution also terminates the execution of any other activi- “Diagram Extensions” | [] ( (sub-exec — main
ties that it invoked synchronously ...” (§11.3.1.1.1 & page 164) | -exec) U ! main-exec )

5 “Composition means that destroying an instance at the whole end destroys “Diagram Extensions” | [] ( (composedPart —
instances at the part end.” (§11.3.1.1.1 & page 164) | whole) U ! whole )
“...when an activity invokes other activities, they can be associated by a

. ?omio.;itio: aisociairn, Wi:h tZeIinvoking atc.tivity on thte. u./[hole etnhd, ar;zdlthe “Diagram Extensions” | [] ((composedPart —
invoked activity on the part end. fan execu tonvoffm activity on the whole (§113.11.1 & page 164) | whole) U ! whole )
end is ter) ted, then the executions of the activities on the part end are
also terminated”

7 “if an instance of Operating Car is destroyed, terminating the execution, “Usage Examples” [ ((sub-exec — main
the executions it owns are also terminated.” (§11.4 & page 176) -exec) U ! main-exec )
“When a Copy dependency exists between two requirements, the require « N [ ] ((clientReqReadOnly

— = i k Stereotypes K X
8 | -ment text of the client requirement is a read-only copy of the require- — supplierReqCopied)
. . » (§16.3.2.2 & page 217) . .
ment text of the requirement at the supplier end of the dependency. U ! supplierReqCopied )
“The isConjugated attribute inherited from UML port is interpreted in the
following way: ... if the direction of every flow property specified in the [] ( (nonatomicFlow-

9 flow specification is reversed (IN becomes OUT and vice versa). If set to “FlowPort” Reversed —

True, then all the directions of the flow properties specified by the flow (§C.3.2.2 & page 260) | isConjugated)

specification that types a nonatomic flow port are relayed in the opposite U !isConjugated )
direction ...”

« . . . . “Semantic Variation [1(('isBehavior —
If t s d t t, B cm

10 b{:@{lf‘:vtfuir” is not connected to an internal part, then isBehavior shall Point” (§C3.2.3 & flowPortConnected)

. page 261) U ! flowPortConnected )

We made an initial attempt to build a semantic frame for the “Asset Leakage”
pattern. Table 3 shows our results where the three “semantic roles” (or three
pairs of roles) are what we believe to best guide reusable MDE practice. To
understand and apply each role-pair, “key relationship” and “action trigger”
provide further hints, as they are evoked by the given roles. Table 3 also links each
role-pair to the OMG specification’s statements listed in Table 2. We elaborate
the semantic roles as follows.

Table 3. Semantic Roles of “Asset Leakage”

Semantic Key Action Examples

Roles (p—q) Relationship | Trigger (cf. Table 2)

delegate- invoked terminate | #2, #3,

constituency execution H#H4, #7

part—whole composite destruction | #5, #6, #8
binding

value—condition | special setup #1, #9, #10
configuration
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delegate—constituency captures a dynamic relationship driven by con-
stituency’s invocation of delegate’s execution, e.g., main invokes sub, or con-
trol enables data. The safety concern here is triggered by constituency’s ter-
mination of the delegate, and if delegate’s execution is not properly halted,
then the asset leaks.

part—whole binds a composition or a client-supplier relationship. Once the
whole or the supplier is destructed, the part or the provided service must
follow the same course; otherwise, the binding is breached.
value—condition allows special setup and configuration to be defined. This
pair of roles can be used to enforce prohibitions (#1), behaviors (#9), and
default values (#10).

Demo. We illustrate how our theory of semantic roles might be applied in
practice via a state machine model adopted from the cruise control system (CCS)
study presented in [8]. As SysML reuses UML’s state machine diagram, the
model shown in Fig. 3 is syntactically sound in SysML. Figure 3 models how the
cruise speed manager (CCM) and the pedals manager (PM) set, reset, increase,
or decrease the cruise speed (CS).

In this safety-critical scenario, our “Asset Leakage” pattern is readily appli-
cable. The SysML modeler can be prompted with the three pairs of semantic
roles of Table 3 to identify whether any would apply to the state machine dia-
gram. Suppose “Lock” is recognized by the modeler as the “delegate” to sta-
bilize the CS. Then, the formulation and the model checking of the property,
[] (“Lock” — “Engaged”) U ! “Engaged”), can be done automatically with-
out the modeler’s input. The result—in this case, a failed model checking and
a counterexample—can be presented to the modeler for further investigation.
With the assistance of our semantic roles in Table 3, the modeler notices an
important value-condition constraint (i.e., “Lock” is enabled upon “Pause”) and
adds it to the delegate-constituency relationship. The property is automatically
updated to, [] ((“Lock” — (“Engaged” | “Pause”) U! (“Engaged” | “Pause”)), and
this time, model checking successfully verifies that the state machine of Fig. 3
has no “Asset Leakage”.

Threats to Validity. We followed grounded theory [37] to design and execute
our research, driven by the question seeking for recurring themes from the OMG
SysML specification to guide safe MDE practice. A threat to construct valid-
ity hinges on our integrity-focused, and admittedly temporal-property-biased,
interpretation of safety, exemplified by the “Asset Leakage” pattern. Safe SysML
practice may also be explained from a more structural point of view; however,
our study focuses more on the model behaviors.

We mitigate threats to internal validity by explicitly defining our overall pro-
cess (cf. Fig. 2) as well as protocols to the concrete qualitative data analysis:
open, axial, and selective coding. We also made sure that each phase and activity
of our study were carried out jointly rather than by a single researcher. Neither
of these steps removes researcher bias entirely; only replications (including the
theoretical ones [23,28]) can address this issue. An important threat to external
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Fig. 3. State machine of the cruise control system (CCS) example (figure adopted
from [8]).

validity is that our results may not generalize beyond the OMG SysML spec-
ification. While this is a comprehensive document, it is the only data source
of our study. Therefore, it is not clear how generalizable our safety patterns
and semantic roles are if additional sources are considered (e.g., the OMG UML
specification).
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5 Discussion

Inadequacies in the State-of-the-Art. Our work addresses two major gaps
in the literature. For systems engineers, SysML has become a de facto choice [1,
36]. As more industries and organizations adopt SysML, rigorous MDE that is
capable of handling safety, security, and other dependability concerns will be of
crucial significance. As pointed out by Dou et al. [18]: “... our industrial partner,
which uses a software development methodology that requires all solutions to
adhere to OMG specifications.” To our surprise, researchers have not attempted
to analyze arguably the most authoritative documentation: the OMG SysML
specification [33]. Our work therefore fills a much-needed gap.

Secondly, the contemporary support for MDE practitioners to formulate crit-
ical properties mainly stays at a syntactic level. While syntactic patterns like
those pioneered by Dwyer et al. [19] offer insights into how often the modal
operators have been used, we take a step toward codifying what p and ¢ mean
in the syntactic structures. With our semantic layer of support, not only can the
complexity of syntactic notations be hidden from the modelers, but the support
can better relate to their modeling concerns. We thus hypothesize that semantic-
enriched support like ours could shorten practitioner’s cognitive distance toward
critical requirements formalization thereby improving reusability. We posit this
closer distance is manifested in both term acquaintance (e.g., “Asset Leakage”
sounds more familiar than “Universality”) and application closeness (e.g., “Asset
Leakage” tends to encapsulate domain characteristics at a proper level of abstrac-
tion). We plan to build upon the recent literature [12-14] to further test our
hypothesis empirically.

Pertinence and Correctness. Three strands of work help establish the perti-
nence of our development of a semantic-role-based theory. Liaskos et al. [24]
applied frame semantics to identify variability from natural language docu-
ments and then to incorporate the semantically framed variability as OR-
decompositions into requirements goal modeling. Niu and Easterbrook [27] used
semantic frames to characterize the functional requirements in software prod-
uct lines [38]. Breaux et al. [10] reported their experience of deriving generaliz-
able natural language patterns to aid engineers in mapping frequently recurring
requirements phrases from policy and regulatory descriptions, and showed that
these patterns’ reuse level was above 50% when Internet privacy policies and the
U.S. HIPAA Privacy Rules were analyzed.

Correctness can be backed up by the negative results. For example, we were
tempted to create semantic roles for what we call the “Deadlock” safety pattern.
We had already formalized the LTL expression as: “[] ( (p & q) — <> r)”,
and found a couple of instances from the OMG SysML specification. Due to
this, “Deadlock” was part of our axial coding results as illustrated in Fig. 2.
However, we were unable to find more instances during selective coding, leading
us to put a hold on this particular tentative core at the moment. Because our
theory, especially the development of our theory, is refutable, correctness of our
results can be evaluated on more solid grounds.
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Potential Impacts. We discuss our work’s impacts from three angles. For MDE
practitioners, the theory of semantic roles, exemplified by “Asset Leakage”, offers
practical and reusable guidance to uncover important modeling concerns without
them being bogged down in the syntactic complexity or formal methods unfa-
miliarity. For SysML tool builders, recognizing the semantic roles and associated
frames allows more effective and robust configurations to be set up, and more
pertinent properties to be verified offline or monitored online. For researchers,
our study illustrates grounded theory in action, encouraging more effort to under-
stand and analyze MDE assets like the OMG specifications in a principled way.

6 Conclusions

In MDE, critical concerns such as safety and security must be ensured. SysML
represents a significant and increasing segment of industrial support for building
critical systems that are interdisciplinary, complex, and constantly evolving. We
have presented in this paper a new way of analyzing the OMG SysML speci-
fication in order to support the identification, formulation, and verification of
critical properties, which are codified in reusable safety patterns like “Asset Leak-
age” and further encapsulated via semantic roles, such as delegate—constituency,
part—whole, and value—condition.

Our future work includes expanding the data sources to include the relevant
documentation like the OMG UML specification or industry-specific standards,
e.g., functional safety for road vehicles (ISO 26262 [22]). Our current safety
patterns and their semantic roles are likely to be updated by the vertical or
horizontal expansions. In light of the possible expansions, we are also interested
in keyword weighting mechanisms for potentially speeding up the search and
data collection over natural language documents [25,30,41]. Finally, we want to
explore synergies of our patterns and the syntactic ones like “Bounded Existence”
by Dwyer et al. [19]. We anticipate such synergies as: “access to the asset shall be
bounded to n times without any leakage” would offer a wider range of guidance
and assistance to the MDE practitioners.

Acknowledgments. We thank Raj Desai and Mounifah Alenazi from the University
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