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ABSTRACT

Traceability plays an essential role in assuring that software and

systems are safe to use. Automated requirements traceability faces

the low precision challenge due to a large number of false positives

being returned and mingled with the true links. To overcome this

challenge, we present a mutation-driven method built on the novel

idea of proactively creating many seemingly correct tracing targets

(i.e., mutants of a state machine diagram), and then exploitingmodel

checking within process mining to automatically verify whether

the safety requirement’s properties hold in the mutants. A mutant

is killed if its model checking fails; otherwise, it is survived. We

leverage the underlying killed-survived distinction, and develop

a correlation analysis procedure to identify the traceability links.

Experimental evaluation results on two automotive systems with

27 safety requirements show considerable precision improvements

compared with the state-of-the-art.
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• Software and its engineering → Requirements analysis;

Traceability; System modeling languages.
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1 INTRODUCTION

When engineering safety-critical systems like medical devices, it is

of vital importance to ensure the system design meets the safety

requirements. For example, one such requirement for a therapeutic

robotic arm [25] concerns: “Automatic stoppage of the robotic arm
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if arm velocity sensors disagree on current velocity by more than x
mps [40]”. Design reviews, sometimes carried out by independent

inspectors, are one of the main methods for ascertaining the satis-

faction of safety requirements. In fact, one of the most widely used

industrial standards for embedded systems—IEC 61508 [31]—rates

design reviews as Highly Recommended (the highest importance

rating) for all systems at all criticality levels.

The design of a software-intensive system often involves model-

ing. Modeling techniques have received wide industry acceptance,

especially in critical domains like avionics and telecommunications,

where state-based models are prevalent for describing system be-

haviors. These models consist of a finite set of states including the

start state(s), a set of events (or “inputs”), and a transition func-

tion that determines the next state based on the current state and

event [9]. Many variants exist, e.g., Statecharts specifying “Remote

Identification” and other features at AT&T [45], RSML (require-

ments state machine language) adopted by the FAA to regulate

collision avoidance installed on commercial aircrafts [36], etc.

With the use of model-driven engineering being on the rise,

state-based models become larger and more complex. This presents

a significant challenge for design reviews, where the inspector may

have to browse through the models and manually analyze large

numbers of links between safety requirements and design mod-

els [11]. Automated requirements traceability [18, 30] can alleviate

this challenge, e.g., information retrieval algorithms rely on the

textual information of requirements and that of model elements to

establish plausible traceability [10].

In model-rich but not necessarily text-rich situations, researchers

have developed slicing techniques to automatically identify those

model elements related to a given interest (e.g., an event or a chang-

ing requirement) [9]. For instance, the seminal work by Korel et

al. [35] analyzed data and control dependencies for backward slic-

ing, and more recently, Nejati et al. [44] used reachability analysis

to perform forward slicing. While the resulting slice (trace) typi-

cally bears a recall value close to 100%, the precision level is very

low. For example, forward slicing combined with natural language

processing achieved the best performance in tracing 16 require-

ments changes to the designmodels, and even this best performance

had an average precision of only 29.4% [44], meaning that a large

number of false positives were generated.

In this paper, we present a novel approach to tackling the false

positives that have plagued automated traceability research for

decades [10, 18, 30, 49, 67]. The idea is to intentionally generate

many “false positives” from a state-based model (i.e., the tracing

target) and then to check whether a safety requirement (i.e., the

tracing source) is met in them in order to find the actual slice-

trace. Our key insight is that false positives are “close” to the model
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Figure 1: State machine diagram (SMD) of the water distiller example (adapted from [24]).

elements in the real trace, but that “closeness” turns out to be

quite faulty after some tracing is done, e.g., measuring textual

similarity or performing dependence analysis. This faulty closeness

is the main reason causing false positives to be mingled with real

elements, hurting precision. If we can exploit faulty closeness before

tracing, then this proactive approach will provide new capabilities

of addressing the low precision challenge of automated traceability.

To investigate the notation of “faulty closeness”, our work lever-

ages mutation analysis. Mutation analysis is commonly used as a

fault-based software testing technique [32]. Given a program, mu-

tants are created by simple changes that are intended to represent

the mistakes often made by programmers. In our work, we define

the mutants of a state-based design model based on the common

modeling mistakes surveyed in the literature. Each mutant thus

encapsulates the “faulty closeness” in some form. We then trace

the safety requirement by analyzing how the mutants satisfy it.

This step is carried out by manually formulating temporal logic

formulas to capture the safety properties and employing an LTL

model checker for automated verification. A mutant is killed if its

model checking fails; otherwise, it is survived. We determine the

final trace by examining the co-occurrence patterns of model ele-

ments (i.e., states and their transitions) in the killed mutants versus

their patterns in the survived ones.

The contributions of this paper are threefold: (1) an innovative

approach to exposing a great number of model mutants in support

of safety requirements tracing, (2) an automated implementation

of our approach based on model checking within process mining,

and (3) an experimental evaluation of two subject systems with 27

requirements showing considerable precision improvements. The

rest of the paper is structured as follows. We introduce the back-

ground of our work via a running example in Section 2. Section 3

describes our traceability information model. Section 4 details our

mutation-inspired approach and process-mining-based implemen-

tation. We present the experimental results in Section 5, discuss

related work in Section 6, and conclude the paper in Section 7.

2 BACKGROUND

This section uses a water distiller example adapted from [24] to

illustrate the functional safety requirements that are to be traced.

We also describe the syntax of the tracing target, which is rooted in

the state machine diagram (SMD) of Systems Modeling Language

(SysML) [53]. Finally, we show a couple of state-of-the-art meth-

ods [35, 44] in establishing the candidate traceability links of the

running example, motivating our new tracing approach.

Consider a water distiller intended for use in remote, undevel-

oped regions where water is generally available but seldom safe

to drink, possibly because of viral and bacterial contamination. A

distiller unit purifies water via heating; however, an actual solution

must consider broad issues like environmental protection, energy

conservation, installation cost, and functional safety [24].

IEC 61508 [31] defines functional safety as part of the overall

safety relating to the equipment under control (e.g., the water dis-

tiller). The goal is to ensure that any safety-related system must

work correctly or fail in a predictable, safe way. In our running

example, a fault of heated water running low may cause the hazard

of leakage or explosion, and a functional safety requirement miti-

gating the fault can implement the proper safeguards to prevent

the water level from staying low.

Tracing functional safety requirements supports critical needs

such as inspections, assurance, and certification [55]. For the tracing

target, we concentrate on the SMD modeled in SysML. SysML rep-

resents a significant and increasing segment of industrial support

for building critical systems [59, 60, 68]. SMD is one of SysML’s

behavioral models, and the SMD considered in our work follows the

syntax of an extended finite state machine (EFSM) [9]. Specifically,

an EFSM consists of states (including an initial state and an exit
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state) and transitions between states. A transition is triggered when

an event occurs and the guard (condition predicate) associated with

the transition is evaluated to be true. During a transition, some

action (input/output operation, variable manipulation, etc.) may be

performed.

Figure 1 shows a SysML SMD design depicting the intended

behavior of the water distiller. In this particular design with 9 states

and 15 transitions, the real trace of the requirement, “preventing

the water level from staying low,” consists of only three states (i.e.,

s4, s5, and s7) and two of their transitions: t5 and t9. In other words,

an inspector who is tasked with assuring the requirement would

want to focus on these model elements because they provide the

measures in the design, s4
t5−−→s5 and s4

t9−−→s7, to safely guard against
the distiller’s low water level.

The model elements in the real trace (also known as the answer

set1) is typically determined manually and shall be driven by the

safety requirements rather than by the design. For example, an in-

dependent inspector not involved in the construction of the SysML

models would be interested solely in “water level being low or not”

without concerning (or knowing) whether any check on sludge is

performed or if there is a shutdown state in the SMD design. In the

running example, therefore, we designate “water level” to be the

only point of interest and explain how backward slicing [35] and

forward slicing [44] work based on this point of interest (slicing

criterion).

• Backward slicing (BS) identifies those model elements that

affect “water level” by analyzing the define-use dependen-

cies of this interested data variable. Beginning with the exit

state of Figure 1, the BS algorithm [35] traverses the SMD

backward and selects {s6,s5,s4,s3,s2} to be the model slice.

• Forward slicing (FS) identifies those model elements that

are being affected by “water level” via reachability analy-

sis. Beginning with the initial state, the FS algorithm [44]

traverses the SMD in a forward manner and returns the

reachable subset of {s3,s4,s5,s6,s7,s8,s9} as the model slice.

It is important to point out that, given the safety requirement

of “preventing the water level from staying low”, we follow the

essences of the state-of-the-art [35, 44] to generate the candidate

traceability links. With {s4,s5,s7} serving as the answer set of the
running example, BS achieves the recall=67% and precision=40%,

whereas FS’s recall=100% and precision=43%. Applying our ap-

proach to the running example returns {s4,s5,s6,s7}, resulting in
the recall=100% and precision=75%. While the details of our ap-

proach will be presented in Section 4, we next define the context

and scope of the traceable artifact types and their relations.

3 TRACEABILITY INFORMATION MODEL

Strategically, defining a traceability information model (TIM) is key

to the development of safety-critical systems [40]. A TIM explicitly

records what artifacts are important and what others are not under

1We define the answer set to be the set of relevant states by excluding the transitions,
e.g., {s4, s5, s7}—rather than {t5, t9} or {s4, s5, s7, t5, t9}—is the answer set of our
running example shown in Figure 1 with respect to the safety requirement: “preventing
the water level from staying low.” We discuss the threats to construct validity of this
choice in Section 5.
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Figure 2: Traceability information contextualizing the arti-

facts and relations relevant to our approach.

the current traceability consideration. In addition, the traceable

artifacts’ relations are expressed in the TIM. In practice, depicting

the planned, permitted trace paths in a TIM offers at least two

benefits [39]:

• As tracing is a complex task, a TIM provides a guideline to

ease its set up and allows for the validation of changes; and

• As traceability is also used by people who did not create it,

these people need to know how it has been defined and what

to expect from it.

Figure 2 presents the TIM underlying our work. While “require-

ment” is a central artifact type, the “tracing source” of Figure 2

shows it is the mitigation of “hazard”-contributing “fault” that

gives rise to this specific type of functional safety “requirement”.

Referring to the example mentioned earlier, “automatic robotic arm

stoppage” (requirement) is needed to mitigate the “velocity sensor

failure” (fault), which in turn contributes to the danger of “moving

the patient’s arm at an excessive velocity” (hazard) [25, 40]. This

shows the human-centric nature surrounding the “tracing source”

of Figure 2, as the causal chain of reasoning involved in this thera-

peutic robotic arm case requires domain knowledge and relevant

expertise. Methods like fault tree analysis (FTA) [58] and failure

modes and effects analysis (FMEA) [64] can facilitate but cannot

replace the manual work in safety requirements engineering.

Since requirements engineering must span the gap between

the informal world of stakeholder needs and the formal world of

software systems behavior, the key question over the use of formal

methods is not whether to formalize, but when to formalize [52].

SysML’s SMD, practiced in the context of model-driven engineering,

embraces the formalization of systems behavior in the design. We

thus use one such formal method (namely, model checking [15]) to
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Figure 3: Overview of our mutation-driven traceability approach where mutants are created by modifying the tracing target

in small ways to mimic typical modeling errors ( 1©); mutants are then model checked ( 2©) to identify the slice-trace ( 3©).

link the “tracing source” and “tracing target” of Figure 2. In our TIM,

each SMD design “verifies” one or more “safety properties”. These

properties are derived from the functional safety requirements and

are formulated into temporal logic formulas amenable to model

checking. Our TIM places the derivation and formulation of the

safety properties inside “tracing source”, emphasizing the human-

centric nature of these activities.

On the “tracing target” side of Figure 2 is the SMD, which is

typically used in SysML to model the behavior of critical compo-

nents, such as hardware, software, data, personnel, procedures, and

facilities [53]. When inspecting functional safety does not require

an entire SMD design, it becomes valuable to identify the specific

model elements (i.e., the subset of states and their transitions). This

subset represents a model slice of a whole SMD, and in this paper,

we refer to the subset as the trace and the elements of the subset as

the traceability links with respect to a given safety requirement.

Although tracing is aimed at identifying the specific states and

transitions, Figure 2 shows that the SMD semantics are defined

also by “trigger”, “guard”, and “effect”. In our running example

of Figure 1, water temp = 100 is a “change event” and shutdown

command is a “signal event”, both triggering the water distiller to

alter its behavior. A “time event”, for instance, could trigger the

scheduled maintenance at noon, September 1, 2019 (not shown in

Figure 1), and in many occasions, “guard” like ! sludge ok specifies

the condition that must be true for a transition to happen. Finally,

“effect” in Figure 2 represents an action invoked directly on the

object that owns the state machine as a result of transitioning into

a state [53], e.g., open drain or shut valves.

The TIM of Figure 2 delineates the focuses of our work pre-

sented in this paper. For example, it is beyond our current scope to

trace a single safety property over multiple SMDs or over different

types of SysML models like internal block and activity diagrams.

With manual effort in specifying safety properties, our objective is

to automatically and accurately slice the SMD design to find the

traceability links for the critical requirements.

4 MUTATION-DRIVEN TRACEABILITY

We tackle the low precision challenge faced by contemporary trac-

ing algorithms from a new angle: Rather than striving for defining

an accurate tracing mechanism which often ends up with many

imperfect links, our core idea is to create many imperfect tracing

targets and then take full advantage of them to discover the links.

These imperfect tracing targets are mutants of the SMD design, and

our entire approach shown in Figure 3 is driven by them.

An important check is performed before the mutants are gener-

ated. This is represented by the decision node (diamond) in Figure 3.

For a safety property P, making sure that the to-be-traced SMD M

satisfies P is of great practical value. In our running example of the

water distiller, if the analyst writes the following LTL formula:

[] ((state == “Level low”→ !(<> (state == “Level low”)))) (1)

trying to express that, “it is always ([]) the case once the water level

is low it will eventually (<>) not be low,” then the SMD of Figure 1

fails to satisfy this property. A counterexample, . . . s4→ s5→ s4 . . . ,
shows the looping structure in the SMD design, and thus formula

(1) fails the LTL model checking. In these situations, the human

analyst shall refine P orM, and here, a new property is written:

[] ((state == “Level low”→ (<> (state != “Level low”) /\
(state == “Level low”) ∪ (state != “Level low”)))) (2)
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Table 1: State Machine Diagram (SMD) Mutation Operators

Category ID Mistake Description Sample Mutation Operation on the SMD of Figure 1

mo1 a state is subsumed by another state
adding an “ensuring off” state (s0) right after the initial

state causes s0 to be subsumed by s1
state mo2 a state that should be modeled is missing removing s5

mo3 a state has incorrect transition(s) adding a self-looping transition to s1

mo4 a transition comes from or goes into a wrong place changing the direction of t5, i.e., flipping t5
mo5 a transition that should be modeled is missing removing t9

transition
mo6 a transition is subsumed by another transition

adding a “!water level low” transition (t16) from s6 to s5
causes t16 to be subsumed by t8

mo7 a transition is modeled without trigger removing “shutdown command” on t13

mo8 a guard has incorrect condition changing “!sludge ok” to “sludge ok” on t9
guard

mo9 a guard refers to an undefined variable
adding “humidity ok” to t9 with “humidity” undefined in

SysML’s block definition diagram

mo10 expression is incorrect changing “water temp = 100” to “water temp < 100” on t4

mo11 time event is incorrect
changing scheduled maintenance from “noon, September

trigger
1, 2019” to “every 30 minutes” (not shown in Figure 1)

mo12 signal event is incorrect
changing “power on command” to “power off command”

on t2
mo13 change event is incorrect changing “water temp = 100” to “water temp != 100” on t4

mo14 effect refers to an undefined variable
adding “open humidifier” to s6 with “humidifier” undefined

effect in SysML’s block definition diagram

mo15 state invariant, do, entry and/or exit are incorrect changing “open drain” to “close drain” on s7

to assert: “once the water level is low, it always becomes not low

eventually after being low for some time.” This property is now

met by the SMD of Figure 1, leading our approach to the creation

of SMD mutants. The main reason of checking P andM is that, if

M fails P, then M already does not implement the requirement, so

no tracing should be performed.

Our automated implementation is built with the help of the ProM

tool [56], especially its LTL model checker operated on the logged

events in a .csv file. In Figure 3, model checking P on bothM and

M’ is therefore performed with ProM. Our own implementations

include a Python script to mutateM in its xmi form [3] and a diff

procedure to generate the candidate traceability links. Next, we

discuss in more detail the three major steps shown in Figure 3.

4.1 Creating SMD Model Mutants

In software testing, mutants are results of deliberately seeding

faults into the original program. The mutants can then be used to

assess the quality of a test set: the more faults detected (or the more

mutants killed), the more effective the test set. In mutation testing,

only faults constructed from several simple syntactic changes are

applied. A key tenet here is that [23]: “Test data that distinguishes

all programs differing from a correct one by only simple errors

is so sensitive that it also implicitly distinguishes more complex

errors.” One of the first set of mutation operators was implemented

in the Mothra system [34] and contained 22 operators, ranging

from logical connector replacement to statement deletion. At any

rate, mutants of a program are created based on a few simple faults

representing the mistakes that programmers often make [32].

Extending mutation analysis, we survey the literature to identify

the mistakes commonly made in SMD modeling [4]. Our survey

Table 2: Mutation Operators of Table 1 Grounded in the Lit-

erature of SMD Modeling

Source
Domain Mutation

(model size) Operators

Aichernig Automotive (19 states, mo8, mo10, mo11,

et al. [1] 39 transitions) mo15
Video Conferencing (13

mo1—mo6, mo8,

Ali et al. [7]
states, 18 transitions) &

mo10, mo12, mo13,Elevator Control (10
mo15states, 14 transitions)

Briand Production Cell System
mo2—mo5, mo7,

et al. [11] (8 states, 10 transitions)
mo8, mo11—mo13,

mo15
Choppy and Library System (6 mo1, mo2, mo7,

Reggio [14] states, 9 transitions) mo9, mo10, mo15
Mi and Control System (32 mo1, mo3—mo6,

Ben [42] states, 45 transitions) mo8, mo13, mo15

focuses on practices over sizable models relevant to critical domains.

We also favor the mistakes reported in common by different studies.

We define 15 mutation operators and list them in Table 1. These

operators are drawn from the SMD modeling mistakes discussed in

five papers. Table 2 maps the sources with the operators.

We group the 15 mutation operators into five categories accord-

ing to the “tracing target” of our TIM in Figure 2. For “state”, “tran-

sition”, “guard”, “trigger”, and “effect”, there exist three, four, two,

four, and two operators respectively. These categories show where

to mutate, whereas the “mistake description” column of Table 1

explains how to mutate. The rightmost column of Table 1 illustrates

852



ICSE’20, May 23–29, 2020, Seoul, Republic of Korea M. Alenazi et al.

…

…

Figure 4: Event log snippet showing: (1) the SMD of Figure 1 (top records whose case ID=“original”), (2) the mutant resulted

from flipping t5 (shaded records whose case ID=“mo4_t5”), and (3) the syntactic change of t5 flipping (dotted box).

each mutation operator with a sample operation performed on the

SMD design of the water distiller running example.

Similar to mutating a program, the SMD mutation operators of

Table 1 are syntactic modifications of insertion (adding), replace-

ment (changing), or deletion (removing). Different from mutating

a program that is textual, we automatically mutate the graphical

SMD by first exporting the model into an xmi file. We perform this

step in the Cameo MagicDraw tool [51].

We developed a Python script to modify M.xmi: Removing an

existing model element (mo2, mo5, or mo7), changing its syntactic

property (mo4, mo8, mo10, mo11, mo12, mo13, or mo15), and adding

an incorrect one (mo3, mo9, or mo14). Due to the rather complex

subsumption relations involved in mo1 and mo6, they are not im-

plemented in our current Python script. Each resulting M’.xmi

corresponds to one single syntactic change in one location (i.e.,

applying only one mutation operator), though the same operator

at one location may generate more than one mutant, e.g., mo10
applied to t4 (“water temp = 100”) of Figure 1 outputs five mu-

tants by replacing “=” with “<”, “≤”, “!=”, “≥”, and “>”. Our current

SMD mutation implementation is trying to be comprehensive as

our goal is to use M’ for tracing; selective mutation is investigated

experimentally in Section 5.

4.2 Verifying Model Mutants

Once the SMD mutants are created, they undergo model checking

so as to automatically verify the safety property P. An innovative

aspect of our implementation is to leverage LTL model checking

within process mining (i.e., the ProM tool [56, 66]). Process mining

employs data mining algorithms to extract operational knowledge

from event logs [65]. These event logs record instances (or “cases”)

of some underlying process (e.g., that of granting sabbatical), but

automatically extracting that process is difficult when there is a

lot of flexibility [66]. Our model mutants are a good fit to process

mining in that flexibility of each mutant is restricted to a single,

simple, and syntactic change over the original SMDM.

Figure 4 shows a sample event log recording our running exam-

ple’s SMD, and for comparison purposes, one mutant’s records are

also displayed (namely, mo4 applied to t5). Figure 4 highlights the
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Input: original SMD M, process model of killed mutants K,

process model of survived mutants S

Output: set of candidate traceability links L

Procedure

1. L← all the states of M

2. For each pair of states <si , sj> ∈ M with

correlation_K(<si , sj>) > 0

3. If correlation_K(<si , sj>) > threshold_K AND

correlation_K(<si , sj>) − correlation_S(<si , sj>) > 1

4. Mark both states <si , sj> with “remove”

5. Else

6. Mark both states <si , sj> with “do-not-remove”

7. L← L \ states being marked AND being marked

only with “remove”

8. Return L

Figure 5: Identifying model elements from the SMD design

to be the candidate traceability links.

way that our implementation uses “case ID” to group all the activi-

ties belonging to the same SMD. With this “case ID” mechanism,

we convert M’.xmi into an event log fileM’.csv without including

the original SMD model M in it.

Although process mining techniques such as the alpha algorithm

can extract one model directly from M’.csv in forms like a Petri

net [65], we are interested in obtaining two models based on ProM’s

LTL model checking of P on M’.csv [66]: one underlying all the

killed mutants (K) and the other for all the survived ones (S). We

mark a mutant is killed if its model checking fails (i.e., the injected

fault causes P to no longer be satisfied2); otherwise, the mutant is

survived.

One of the killed mutants in the running example is “flipping

t5” shown in the bottom of Figure 4. Compared to M that allows

the water level to be low for some time before not being low even-

tually, the “flipping t5” mutant fails to meet the safety property

P expressed in formula (2). For instance, a traversal containing

“. . . s4→ s5→ s4→ s7 . . . ”, which is permitted inM, is no longer

valid due to the injected fault. Thus, model checking P on M’ effec-

tively distinguishes the faults directly violating the safety property

from the remaining faults whose negative effects are not observed

via automated verification.

4.3 Identifying Slice-Trace

Recognizing killed versus survived mutants allows for our ap-

proach’s final step to identify the candidate traceability links. For

a given requirements specification expressed in LTL, we refer to

its links as the set of corresponding states in the SMD. Figure 5

presents our algorithm to sliceM by contrasting K and S. We rely

on ProM’s correlation analysis over a mined process model3: For

a pair of states <si , sj>, a correlation score between −1 and 1 is

2Recall that the original SMD M satisfies P with the same ProM-based LTL model
checking mechanism; otherwise, no mutant will be created. Such a control is elaborated
by the decision node of Figure 3.
3ProM’s correlation calculation automatically decides four relations between each
state pair <si , sj>: (i) sj directly follows si , (ii) sj sometimes follows si but never

(a) Killed mutants K

(b) Survived mutants S

Figure 6: Correlation analysis of the running example’s SMD

mutants (black cell shows the correlation is unknown).

produced, and if the score is greater than 0, less than 0, or equal to

0, then it indicates the co-occurrence of si and sj is strong, weak, or
unknown respectively. Figure 6 visualizes the correlation analysis

results over our running example’s K and S.

We illustrate our slice-trace identification with the correlation

analysis results of Figure 6. To maintain a high recall value, our

tracing algorithm initializes L with all the states of M, i.e., after

line #1 of Figure 5, L={s1, s2, . . . , s9}. We then check the pair of

states having only positive correlation in the killed mutants (K)

and ignore all the other pairs. The rationale is to focus only on

the commonly occurred state-pair causing the property to fail. For

Figure 6a, line #2 selects the following pairs to examine: <s1, s2>,
<s2, s3>, <s3, s4>, <s4, s5>, <s4, s6>, <s5, s1>, <s5, s6>, <s6, s5>,
<s6, s7>, <s7, s8>, <s8, s5>, and <s8, s9>.

For each of the above selected state pairs, we mark both states

with “remove” if the two conditions shown in line #3 of Figure 5

are met:

• The correlation score of <si , sj> in K is greater than a posi-

tive degree (i.e., threshold_K), implying that si and sj tend
to co-occur in the killed mutants; and

• Such co-occurrence is significantly weaker among the sur-

vived mutants S.

We operate the latter condition by checking if the difference be-

tween the correlation score of <si , sj> in K and that in S is larger

than 1, as this difference is sufficient to reverse the correlation

strength in the [−1, 1] scale. Note that if <si , sj> has a correlation

the other way around, (iii) sj sometimes follows si and sometimes the other way

around, and (iv) si and sj do not follow each other [65].
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score of 0 (unknown co-occurrence) in either K or S, then line #3

of Figure 5 is evaluated to be false, i.e., {si , sj } are marked with “do-

not-remove”. For Figure 6, the results of adopting threshold_K=0.5

as in ProM are:

• s1 is marked with “remove” from <s1, s2> and with “remove”

from <s5, s1>;

• s2 is marked with “remove” from <s1, s2> and with “remove”

from <s2, s3>;

• s3 is marked with “remove” from <s2, s3> and with “remove”

from <s3, s4>;

• s4 is marked with “remove” from <s3, s4>, with “do-not-

remove” from <s4, s5>, and with “do-not-remove” from <s4,
s6>;

• s5 is marked with “do-not-remove” from <s4, s5>, with “re-

move” from <s1, s5>, and with “do-not-remove” from <s5,
s6>;

• s6 is marked with “do-not-remove” from <s4, s6>, with “do-

not-remove” from <s5, s6>, with “do-not-remove” from <s6,
s5>, and with “do-not-remove” from <s6, s7>;

• s7 is marked with “do-not-remove” from <s6, s7> and with

“remove” from <s7, s8>;

• s8 is marked with “remove” from <s7, s8>, with “remove”

from <s8, s5>, and with “remove” from <s8, s9>; and

• s9 is marked with “remove” from <s8, s9>.

Having made the marks on the examined states, we remove from

L those states received marks and only “remove” marks. Line #7

of Figure 5 therefore removes {s1, s2, s3, s8, s9} and line #8 returns

L={s4, s5, s6, s7}. The candidate traceability links returned by our

algorithm lead to recall=100% and precision=75%; however, this

performance is achieved only for tracing the property of formula

(2) to the SMD design of Figure 1. The next section evaluates our

approach quantitatively.

5 EXPERIMENTAL EVALUATION

5.1 Research Questions

We set out to answer three research questions.

RQ1:How accurate is our proposed mutation-driven traceability

approach?

While overcoming the low precision challenge is our primary

goal, we do not want our approach to hurt recall. Our measures

for RQ1 also include F1 which is the harmonic mean of recall and

precision defined as F1 = 2 × precision× recall
precision+ recall . We use the state-of-

the-art BS [35] and FS [44] algorithms introduced in Section 2 as

baselines for accuracy comparisons.

RQ2: How to best operate our approach in practical settings?

When no answer set is available, fully automated solution is

preferred. As our automated implementation is built upon the ProM

tool, we investigate here the influence of threshold_K value on

tracing accuracy. In our tracing algorithm presented in Figure 5,

threshold_K is a key condition to identify potentially removable

states. Discovering an optimal threshold range can readily transfer

our approach into ProM tooling, especially in terms of delivering a

new traceability service with a calibrated correlation analysis.

RQ3: How can selective mutation be instrumented in our ap-

proach?

Because mutation’s cost is not negligible, reducing effort is of

practical value. RQ3 thus examines one way toward selective mu-

tation informed by feature ablation [26]: by removing the mutation

operators in a specific category (e.g., “state”), we are interested in

how the tracing accuracy changes.

5.2 Subject Systems

Our experiments are carried out in the context of two subject sys-

tems from the automotive domain. We choose these systems due to

the relevant discussions of the safety requirements, the availability

of the SMD design models, and our recent experience of using them

in the research work [3–6].

• Adaptive Cruise Control (ACC) [43] of a vehicle consists of

several components that interact in real time. A critical com-

ponent of the ACC is the speed controller whose function is

to take over the task of maintaining a constant speed at the

driver’s request. Once the speed controller is adjusted, the

ACC is activated and supports the throttle control. After the

ACC is activated, it can be suspended and restarted by the

driver through pressing the suspend/resume button, or the

brake pedal. While suspended, the system must memorize

the desired speed. In ACC, the user data and the sensor data

are read at the input. These data are used to set the new

value of the desired speed, which will be compared to the

current speed. The result of this comparison is used to define

the adjustment value of actuator output.

• Power System (PS) [61] of a vehicle consists of mechanical

and electronic components. Among the critical parts under

PS’s control are the gearbox and the switch between gears

based on input frommultiple sensors as well as data provided

by the control module of the engine. The control module

of the PS then processes these inputs to calculate how and

when to shift gears in the transmission and generates the

signals that drive actuators to perform this shift.

The traceability-related characteristics of the two subject sys-

tems are shown in Table 3. On the “tracing source” side, we manu-

ally performed a FMEA analysis and identified a few hazards and

several contributing faults of those hazards. We further derived

functional requirements to mitigate the faults and formulated LTL

properties based on the safety requirements. In ACC, for instance,

[]!(speed>160 ∧ state==“set speed”) assures the cruise value can-
not be set while the vehicle’s speed is high, which mitigates the

risk of accident.

The “tracing target” parts of Table 3 show that the average size

of the SMD designs of ACC and PS is about 14 states and 17–22

transitions. Compared to the SMD sizes listed in Table 2, our subject

systems’ models are similar to the models studied in Ali et al. [7],

and notably the video conferencing models of [7] were successfully

applied at Cisco for the purpose of robustness testing. One of the

855



A Novel Approach to Tracing Safety Requirements and State-Based Design Models ICSE’20, May 23–29, 2020, Seoul, Republic of Korea

Table 3: Subject System Characteristics (integers represent total numbers whereas decimal numbers represent the averages)

Tracing Source Tracing Target
states per

Subject System
hazards faults req.s

properties variables
SMD

states transitions properties
answer set

per req. per property per SMD per SMD per SMD

Adaptive Cruise
3 6 10 2.90 2.09 11 13.63 21.81 2.72 4.40

Control (ACC)

Power System (PS) 5 11 17 1.88 2.28 15 14.25 17.33 2.07 4.85

Figure 7: One SMD design of the adaptive cruise control (ACC) under our study.

representative SMD designs of ACC is shown in Figure 7. For each

SMD in our study, Table 3 shows that around 2–3 safety properties

are verified via model checking.

Finally, a software and systems expert working in the safety

engineering domain who has more than 15 years of industrial expe-

rience manually constructed the answer set for each of the checked

properties. This was done not as a vetting task [22, 41, 47] but as

an independent design review task without input from any auto-

mated traceability tools. The rightmost column of Table 3 suggests

that, averagely speaking, only about one third of the states are the

real traces. The main objective of automated tracing methods is

therefore to identify all the real traces and only the real traces.

5.3 Results

The answers to RQ1 on tracing accuracy are summarized in Table 4

where the average recall, precision, and F1 values are reported.

The BS algorithm [35] misses a few true links in ACC and quite

some in PS. One reason is that, when a state has multiple outgoing

transitions, slicing backward from the exit state often fails to cover

those branches that require forward tracing. For example, in PS’s

tracing of a liveness property ensuring braking is applied when

RPM is close to 4000, BS is unable to reach the braking paths of

the SMD and covers only the paths by following RPM’s define-

use dependencies. In contrast, the FS algorithm [44] achieves 100%

recall based on its reachability analysis; however, its results are

Table 4: TracingAccuracy (BS refers to backward slicing [35],

FS refers to forward slicing [44], and MD refers to our

mutation-driven approach)

ACC PS

recall precision F1 recall precision F1
BS 92.3% 39.1% 54.90% 74.5% 45.8% 56.70%

FS 100% 37.6% 54.65% 100% 34.1% 50.85%

MD 100% 48.9% 65.68% 100% 50.6% 65.68%

noisy by not halting the forward propagation early enough. Our

approach does not rely on structural dependencies and therefore

does not face the challenges of which direction to slice and when to

stop slicing. As shown by the comparisons with FS in Table 4, using

model checking to dynamically verify the SMD and its mutants

improves the average precision by over 10% without compromising

the tracing coverage at recall=100%.

The key question RQ2 addresses is which value threshold_K

of Figure 5 should be in practical settings when no answer set

is available. To this end, we calibrate threshold_K and measure

how it impacts the tracing accuracy. As recall is maintained at

the 100% level throughout the calibration, Figure 8 plots the im-

pacts only on precision. Using ProM’s default value of 0.5 to iden-

tify the positively correlated states from the killed mutants K
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0

400,000

800,000

1,200,000

0

20

40

60

80

100

All State
removed

Transition
removed

Guard
removed

Trigger
removed

Effect
removed

precision (%) # mutants

Figure 9: Ablation results of removing one and only one cat-

egory of mutation operators.

turns out not to be threshold_K’s optimal value. Figure 8 sug-

gests threshold_K’s range of [0.6, 0.8] further improves the av-

erage precision to 75.4% for ACC and 72.8% for PS. An explanation

is that higher values of threshold_K facilitates the condition, cor-

relation_K(<si , sj>)−correlation_S(<si , sj>)>1, to be met; how-

ever, too high of a value will cause few states to satisfy: correla-

tion_K(<si , sj>)>threshold_K. Therefore, to fully capitalize on our
mutation-driven traceability approach, one can try to set thresh-

old_K∈[0.6, 0.8], especially practiced to a high degree of automa-

tion in the ProM tool chain.

RQ3 is aimed at exploring ways to reduce the cost of our ap-

proach. As our current implementation favors comprehensiveness,

close to one million mutants are generated for the 26 SMDmodels in

our study. In our experiments, creating a million mutants with our

Python script took about 9 days, and model checking them within

ProM took roughly 2 hours. If less numbers of mutants could deliver

comparable tracing accuracies, then the findings would have both

theoretical and practical implications. To investigate selective mu-

tation empirically, we adopt the idea of feature ablation. In machine

learning, feature ablation is designed to assess the informativeness

of a feature group by quantifying the change in predictive power

when comparing the performance of an approach trained with all

the feature groups versus the performance without a particular

feature group [26].

Following the SMD mutation operators defined in Table 1, we

remove the category (feature group) one at a time and the ablation

results are shown in Figure 9. When all the operators are applied in

ACC and PS, the average precision is at the 74% level with the opti-

mal threshold_K for each subject system. Using the same optimal

values of threshold_K, Figure 9 depicts the precision drop as well

as the drop in the number of mutants. Unsurprisingly, these two

drops are proportional: the less number of mutants generated, the

lower precision the tracing results. This reinforces the cost-benefit

tradeoff: the more savings in cost, the worse the performance be-

comes. Surprisingly, even though the tracing performance in our

study is measured according to the subset of states, removing “state”

operators results in the least precision decrease. This shows the im-

portance of tracing context, i.e., in order to find the model elements

of interest (e.g., subset of the states), it could be more cost-effective

to mutate other elements (especially “transition” and/or “trigger”

according to Figure 9) which provide the semantics of the interested

ones (“states”).

5.4 Threats to Validity

We discuss some of the most important factors that must be con-

sidered when interpreting our experimental results. A threat to

construct validity is our choice of measuring the tracing accuracy

based only on the relevant states; in particular, we exclude the tran-

sitions in the answer set definition. The states and their transitions

are clearly related, and our rationale is not to over-penalize an auto-

mated and scalable method for missing correct model elements or

returning incorrect ones. The feedback from the expert devising the

answer set recommends using transitions as anchoring constructs

because “they inject the state machine with life stories.”

A threat to internal validity concerns the quality of the safety

properties expressed in LTL formulas. As we manually performed

this task, we relied on the decision node of “model checking P

on M” in Figure 3 to make sure the SMD design models [43, 61]

met the LTL properties. A confounding factor is the number of

variables (e.g., “speed”, “RPM”, etc.) expressed in the properties, as

the variables play a key role in our operations of the BS [35] and

FS [44] algorithms. Table 3 shows that each LTL property contains

an average of two variables; however, the tracing accuracy of BS,

FS, and our own approach is likely to be influenced by this number

and our results must be interpreted with this in mind.

As far as the external validity is concerned, our experimental

subjects are both drawn from the automotive domain, and therefore

applying our approach to systems in other safety-critical domains

will be valuable. Another threat here is the specific class of state-

based design models being traced, namely EFSMs. This is one of the

simplest classes in that EFSMs do not support some of the advanced

behavioral modeling features, such as concurrency and hierarchy. It

is future work to expand our mutation-driven approach for tracing

safety requirements to Statecharts [45], RSML models [36], or other

behavioral models in SysML like activity diagrams.

6 RELATEDWORK

To position our work in the existing literature, we review three

strands of research: tracing safety-critical requirements, slicing

state-based design models, and mutation analysis.

Traceability is essential for assuring software and systems are

safe to use. However, gaps exist between what is prescribed by the
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safety regulations/guidelines and how traceability is implemented

in practice [57]. To reduce manual effort, machine learning meth-

ods have been applied to automatically trace regulatory codes [17],

and more recently, Guo and her colleagues [29] created a deep

learning tracing architecture by leveraging Word Embedding and

Recurrent Neural Network to better capture the requirements se-

mantics in safety-critical domains. In these domains, the interviews

by Goodrum et al. [27] with 14 experienced developers and by Chen

et al. [13] with nine safety experts advanced our understandings

about practitioners’ views and needs of traceability. To address

some of the needs, a family of reusable traceability queries was

codified [19], a visual language hiding complex details in querying

traceability was proposed [38], and new ways of managing safety

stories in agile projects were developed [16, 20]. Mäder et al. [40]

provided an actionable checklist to best practice requirements trace-

ability in safety-critical projects. Among the checklist’s ten items,

our approach explicitly considers six by clearly defining the TIM,

offering tool support, and generating traces as slices.

Slicing has been mostly applied to source code in order to locate

the parts of the program that affect a user-specified point of inter-

est (known as the slicing criterion) [63]. Since Weiser’s seminal

work on program slicing [70], researchers have investigated slicing

in state-based models [9]. Of particular relevance to our work is

applying model slicing to support safety inspections. Nejati and her

colleagues [46] presented a comprehensive framework with con-

crete procedures to manage the traceability information between

safety requirements and SysML models. A controlled experiment

quantified the benefits of using design slices in terms of increasing

the correctness of conformance decisions from 50% to 63% and

reducing the effort of safety inspections by 27% [11]. To improve

the automated traceability, Nejati et al. [44] used reachability anal-

ysis to perform forwarding slicing. This state-of-the-art serves as a

baseline in our evaluation, though two important differences shall

be noted. First, the TIM of [44] includes SysML’s block definition

diagrams and activity diagram, whereas our tracing target is fo-

cused on SMD models. Second, the slicing criterion of [44] consists

of a specific requirements change, whereas our slicing criterion is

given in an LTL formula capturing requirements safety. Although

LTL formula and model checking have been used in model slic-

ing [21, 54], to our best knowledge, none of the existing slicing

approaches performs model checking on millions of mutants.

In mutation analysis, faults are automatically seeded into the

software artifacts (in most cases, the source code), and the survey by

Jia and Harman [32] provides evidence of applicability and maturity

for the technique used in software testing. Two main applicabilities

exist: measuring a test set’s ability to detect faults and generating

additional test cases. In both cases, the distinction between killed

and survived mutants is important. If the result of testing a mutant

is different from the result of testing the original program, then the

mutant is classified as killed; otherwise, it is survived. Our approach,

especially the decision on “modeling checking P onM”, aligns with

this distinction. A test set’s effectiveness can then be scored on the

proportion of the killed mutants, and additional test cases can be

generated to kill the survived mutants. At model levels, researchers

have also applied mutation analysis to reveal faults and to guide

the generation of new test cases [2, 8, 28, 62]. Our work differs

fundamentally from prior research in that our intention is not to

kill as many mutants as possible, but to use the killed-survived

distinction to automatically trace safety requirements.

7 CONCLUSIONS

We have presented a mutation-driven approach to tracing safety

requirements and SMD in SysML modeling. Not only is the concep-

tual framework depicted, but an automated implementation based

on model checking within process mining is developed. Experi-

mental results show the precision improvements, and the practical

support that can be delivered as ProM plug-ins (especially our SMD

mutation script and calibrated correlation analysis).

The novelty of our work lies in our creation of many imper-

fect tracing targets, leading to new ways of establishing traceabil-

ity links. Our future work includes expanding the TIM to han-

dle more complex requirements with socio-technical interdepen-

dencies [12, 50], improving the usability of the model slices with

visualization and executability [38, 48], and integrating the new

generation of deep learning based refactoring methods for intelli-

gently identifying mutation locations or mutant names [33, 37, 69]

to further enhance tracing capabilities.
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