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ABSTRACT

Feature envy is one of the well-recognized code smells that should

be removed by software refactoring. A major challenge in fea-

ture envy detection is that traditional approaches are less accurate

whereas deep learning-based approaches are su�ering from the lack

of high-quality large-scale training data. Although existing refactor-

ing detection tools could be employed to discover real-world feature

envy examples, the noise (i.e., non-feature envy) within the result-

ing data could signi�cantly in�uence the quality of the training

data as well as the performance of the models trained on the data.

To this end, in this paper, we propose a sequence of heuristic rules

and a decision tree-based classi�er to �lter out non-feature envy

reported by state-of-the-art refactoring detection tools. The data

after �ltering serve as the positive items in the requested training

data. From the same subject projects, we randomly select methods

that are di�erent from positive items as negative items. With the

real-world examples (both positive and negative examples), we

design and train a deep learning-based binary model to predict

whether a given method should be moved to a potential target class.

Di�erent from existing models, it leverages additional features, i.e.,

coupling between methods and classes (CBMC) and the message

passing coupling between methods and classes (MCMC) that have

not yet been exploited by existing approaches. Our evaluation re-

sults on real-world open-source projects suggest that the proposed

approach substantially outperforms the state of the art in feature

envy detection, improving precision and recall by 38.5% and 20.8%,

respectively.
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1 INTRODUCTION

The term code smells was coined by Beck and Fowler [23] to repre-

sent bad designs in source code that may reduce the readability and

maintainability of software projects. Di�erent categories of code

smell, e.g, duplicated code, lazy class, and long method have been

proposed and intensively studied in both industry and academic

community [15, 20]. Considering the prevalence and impact of code

smells, hundreds of automated or semi-automated approaches have

been proposed to identify and resolve such code smells [3, 18].

Code smells also widely serve as a useful indicator of software

quality [70] and pilot lamps for software refactorings [69].

Feature envy is one of the most well-known and well-studied

code smells [17, 49]. Methods associated with feature envy smells

are often called feature envy methods or misplaced methods [4, 10].

Such methods are more interested in (features of) other classes than

their enclosing classes, and thus they should be moved from their

enclosing classes to those classes that they are interested in. The

movement is known asmove method refactorings [46]. Feature envy

methods often result in unnecessary coupling between classes, in-

creasing the di�culty of maintenance [62]. To this end, researchers

have proposed dozens of approaches/tools to detect feature envy

methods automatically [50, 52] and to recommend solutions (i.e.,

move method refactorings) [5, 66].
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The most simple and intuitive way to identify feature envy meth-

ods is to manually design a sequence of heuristic rules and to detect

feature envy methods with such prede�ned rules. Well-known ex-

amples include JDeodorant [17] and JMove [64]. Although such

heuristics-based approaches are simple and intuitive, it is di�cult

to de�ne comprehensive and accurate heuristics and it is also dif-

�cult to �nd the optimal setting of the thresholds that are often

indispensable for heuristic rules [25]. To this end, researchers lever-

age traditional machine learning techniques, like SVM [32] and

decision trees [2], to automatically learn rules for feature envy

detection. Although such traditional machine learning techniques

have the ability to learn simple rules from small labeled datasets,

complex mappings (especially nonlinear mappings) from complex

features of source code to the prediction are often beyond the reach

of such techniques [13, 53]. To learn such complex mappings (rules),

more advanced deep learning techniques have been applied to the

detection of feature envy smells [41]. Although deep learning tech-

niques have the potential to learn complex mappings, they often

request a large number of labeled high-quality training data that

are di�cult to obtain [58]. The size and quality of the training

data can signi�cantly in�uence the performance of the resulting

models [33]. To this end, Liu et al. [41] collected negative items

(i.e., methods not associated with feature envy smells) by randomly

sampling methods in high-quality open-source projects, assuming

that all such methods are well-placed and are not associated with

feature envy smells. Based on the same assumption, Liu et al. [41]

generated positive items (i.e., feature envy methods) by randomly

moving methods within high-quality open-source projects, and

the resulting methods (after move method refactorings) envy their

original enclosing classes (where they were placed before move

method refactorings), and thus they could be taken as feature envy

methods. Although this novel approach to generating training data

has successfully increased the size of training datasets, it also raises

serious concerns about the quality of the generated data: The ar-

bitrarily and intentionally created feature envy smells could be

essentially di�erent from those in real-world projects that are cre-

ated organically by developers. As a conclusion, the challenge in

feature envy detection is that traditional approaches are less accu-

rate whereas deep learning-based approaches are su�ering from

the lack of high-quality large-scale training data.

In this paper, we boost deep learning-based feature envy de-

tection by real-world examples. Although existing refactoring de-

tection tools, e.g., RefactoringMiner [67], could be employed to

discover real-world move method refactoring examples, the noise

(i.e., non-feature envy) within the resulting data could signi�cantly

in�uence the quality of the training data as well as the performance

of the models trained on the data. The evaluation results in Section 4

con�rm that directly employing the output of RefactoringMiner

as training data would result in a substantial reduction in perfor-

mance. To this end, we propose a sequence of heuristic rules and

a decision tree-based classi�er to �lter out potential move method

refactorings that are not associated with feature envy smells.

Another contribution of the paper is that we design a new deep

learning-based model by leveraging features, i.e., coupling between

methods and classes (CBMC) and message passing coupling between

methods and classes (MCMC) that have not yet been exploited by ex-

isting approaches for feature envy detection. The third contribution

is that we design and leverage a sequence of heuristics rules besides

the deep learning-based classi�er to make the �nal decisions in

feature envy detection. We evaluate the proposed approach on �ve

real-world open-source projects. Our evaluation results suggest

that the proposed approach substantially improves the state of the

art, improving precision and recall by 38.5% and 20.8%, respectively.

The paper makes the following contributions:

• An automated approach to collecting real-world feature envy

examples, and a publicly available large-scale high-quality dataset

of real-world feature envy methods.

• A deep learning-based approach (called feTruth) to detecting

and resolving feature envy smells, leveraging new features not

yet employed for this task.

• An initial evaluation of the proposed approach.

2 RELATED WORK

2.1 Heuristics-Based Approaches

Structural information of source code, especially dependencies, is

widely used in heuristics-based detection of feature envy smells. For

example, Tsantalis and Chatzigeorgiou [66] proposed a distance-

based approach to identify move method refactoring opportunities

and integrated the approach into the well-known refactoring tool

JDeodorant [17]. They rede�ned the Jaccard distance [61] to mea-

sure the distance between methods and classes. If a method is closer

to a class than its enclosing class, and it satis�es a set of precon-

ditions that enable a legal move method refactoring, the method

should be moved. Sales et al [56, 64] proposed a similarity-based ap-

proach JMove to suggest movemethod refactorings. They computed

the average similarity between a method and a class according to

their dependencies. If a method is more similar to a class than its

enclosing class, it should be moved. Mayvan et al. [45] proposed a

metric-based approach to identify feature envy smells. They sum-

marized code metrics that have already been exploited by existing

approaches for feature envy detection. Based on the resulting met-

rics, they de�ned the formal speci�cation of feature envy smells

and detected smells according to the metrics-based speci�cation.

Textual information is also useful for feature envy detection

because the semantic information embedded in identi�ers (e.g.,

method names and class names) represents the roles of software

entities (e.g., methods and classes) and such roles are critical factors

for feature envy detection. For example, Bavota et al. [5] leveraged

Relational Topic Models (RTM) to recommend move method refac-

toring opportunities by exploiting both textual information and

structural information to derive semantic and structural relation-

ships between methods. Based on such relationships, the approach

(called Methodbook) identi�es feature envy smells and suggests

destinations for the feature envy methods. Palomba et al. [52] pro-

posed a text-based approach to detecting code smells (including

feature envy smells). They extracted textual contents (i.e., identi-

�ers and comments) and normalized them by a typical information

retrieval normalization process. The normalized textual content

was employed to compute the textual similarity between methods

and classes. If a method is more similar to a class than its enclosing

class, it should be moved.

Evolution histories and refactoring histories could be exploited

for the detection of feature envy smells. For example, Palomba et
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al. [50, 51] exploited change histories to detect feature envy smells.

They assumed that a method a�ected by feature envy smells should

changemore frequently together with the envied class thanwith the

class where it is actually placed. Consequently, if a method changes

more frequently together with a class than with its enclosing class,

the method is a feature envy method. Liu et al. [42] proposed an

approach to identify move method refactoring opportunities based

on refactoring histories. Once developers move method� out of

class � , the approach recommends moving such methods in � that

have the strongest relationship and greatest similarity with�.

2.2 Machine Learning-Based Approaches

Kreimer [36] employed decision tree-based classi�cation to de-

tect design �aws (including feature envy smells). Fontana et

al. [19, 21, 22] conducted an empirical study comparing the per-

formance of di�erent machine learning techniques in detecting

code smells. Their evaluation results suggest that machine learning

techniques can signi�cantly improve the performance of code smell

detection. Similarly, Amorim et al. [2] evaluated the performance

of decision tree-based detection of code smells. Their experiment

results suggest that decision trees result in the best performance.

Nucci et al. [13] replicated the study by Fontana et al. [19] with

a more realistic dataset. However, their evaluation results revealed

that the high performance achieved in the previous study [19]

was due to the speci�c characteristics (e.g., unrealistically bal-

anced dataset and biased validation methods) of the selected limited

dataset. In contrast, the e�ect of traditional machine learning tech-

niques in code smell detection is limited.

2.3 Deep Learning-Based Approaches

Liu et al. [41, 43] are the �rst to apply deep learning techniques

(more speci�cally, CNN and fully connected networks) to the detec-

tion and resolution of feature envy smells. They exploited textual

information and code metrics (i.e., the distance between methods

and classes [66]) as input to a neural network-based classi�er whose

output indicates whether a given method should be moved from

its enclosing class to another given class. They realized that ex-

isting datasets are too small for deep learning-based techniques,

and thus they proposed a novel approach to create large-scale la-

beled datasets automatically by randomly moving methods in high-

quality open-source projects. Their evaluation results suggest that

the deep learning-based approach signi�cantly outperforms the

state of the art in detecting feature envy smells and in recommend-

ing solutions for feature envy methods. Barbez et al. [4] applied

multi-layer perceptions (i.e., fully connected feed forward neural

networks) to the detection of feature envy smells. Besides CNN and

fully connected networks, other deep-learning techniques have also

been applied to the detection and resolution of feature envy smells.

Hadj-Kacem and Bouassida [27] adopted coding criterion [54] and

a variational autoencoder to extract the semantic features hidden

in the source code, which are fed to a logistic regression classi-

�er to detect feature envy smells. Kurbatova et al. [37] exploited

code2vec [1] to compute the similarity between software entities,

which improves the performance of feature envy detection.

Cui et al. [9] proposed an approach to recommend move method

refactoring opportunities named RMove by exploiting structural

and semantic representations of code snippets. They investigated

the performance of various code embedding and graph embedding

techniques and di�erent machine/deep learning classi�ers in recom-

mending move method refactorings. Sharma et al. [58] conducted

an empirical study on deep learning-based detection of code smells.

They found that CNN, RNN, and Autoencoder have been widely

used in this �eld, and thus compared the performance of these deep

learning techniques in detecting feature envy smells.

The proposed approach di�ers from such approaches introduced

in the preceding paragraphs in that it automatically collects large-

scale real-world examples as training data to boost the detection and

resolution of feature envy smells. Besides that, it also exploits new

features, i.e., CBMC and MCMC, that have not yet been exploited

by existing approaches.

2.4 Discovering Applied Software Refactorings

Automated discovery of software refactorings is to uncover refac-

torings applied by developers in real-world projects. The bene�ts

of discovering such refactorings are twofold. First, it facilitates the

understanding of software evolution, i.e., what kind of changes

have been made and the rationale for the changes. Second, the dis-

covered refactorings may serve as a benchmark for the evaluation

of approaches in refactoring recommendations. To this end, Dig et

al. [14] proposed the �rst approach (called RefactoringCrawler)

to discover software refactorings. It exploits Shingles encoding [7]

to match software entities between two successive versions of

the same project and identi�es moved/deleted/added/modi�ed/un-

touched software entities. It then leverages pre-de�ned heuristic

rules to identify refactorings based on the matched software en-

tities. For example, if a method � in the older version matches

method�′ in the later version but their enclosing classes (noted as

classes � and �) do not match, RefactoringCrawler would report

that there is a move method refactoring moving method� from its

enclosing class � to class �.

Prete et al. [35, 55] proposed a logic programming-based ap-

proach, called Ref-Finder, to discover software refactorings.

Ref-Finder encodes refactoring types into template logic rules

and extracts logic facts concerning two successive versions into a

logic database. A logic programming engine [11] is then employed

to identify refactorings by converting the logic rules into logic

queries and executing the queries on the logic database. RefDiff

proposed by Silva et al. [59, 60] is a similarity-based approach to

discovering software refactorings. It di�ers from other approaches

in that it computes the similarity between software entities (i.e.,

two successive versions) with a variation of the TF-IDF weighting

scheme [57] and a weighted Jaccard coe�cient [8].

RefactoringMiner, proposed by Tsantalis et al. [67, 68], is

a state-of-the-art approach to discovering refactorings. The key

to this approach is an AST-based statement matching algorithm

that does not request any user-de�ned thresholds. The algo-

rithm accurately and automatically matches software entities be-

tween two successive versions. Based on the matched entities,

RefactoringMiner exploits pre-de�ned rules (similar to those used

by RefactoringCrawler [14]) to detect refactorings. Their eval-

uation results suggest that RefactoringMiner can signi�cantly

improve the state of the art in refactoring detection.
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Figure 1: Overview of the Proposed Approach

3 APPROACH

3.1 Overview

An overview of the proposed approach is presented in Fig. 1. For

convenience, we call the proposed approach feTruth where "fe"

is the abbreviation of "feature envy" and "Truth" suggests that

the approach is boosted by the truth (i.e., real-world examples) and

it could tell you the truth of feature envy.

feTruth takes as input the evolution histories of open-source

projects stored in version control systems (e.g., GitHub), extracts

real-world feature envy examples, and trains a deep learning-based

prediction model with the extracted examples. In the testing phase,

feTruth takes as input the source code of a software project and

generates a list of feature envy smells associated with methods in

the project, as well as suggested refactoring solutions to resolve the

feature envy smells. The overall process of feTruth is as follows:

• feTruth mines for potential move method refactorings by apply-

ing RefactoringMiner [67] to the evolution histories of open-

source projects.

• feTruth removes non-feature envy from the potential refactor-

ings by heuristics-based �ltering and learning-based �ltering.

The methods moved by the remaining move method refactorings

are taken as positive samples.

• Methods not involved in any potential move method refactorings

are taken as negative samples.

• With such positive and negative samples collected in the pre-

ceding steps, feTruth trains a neural network-based classi�er

to predict whether a given method should be moved to another

class.

• feTruth leverages the trained classi�er as well as a sequence of

heuristic rules to predict whether a given method in the testing

project is associated with feature envy smells. If yes, feTruth also

suggests which class the method should be moved to.

Details of the key steps are presented in the following sections.

3.2 Mining for Move Method Refactorings

Feature envy smells are often resolved by move method refactor-

ings [17]. Consequently, it is practical to discover methods as-

sociated with feature envy smells by mining for move method

refactorings in open-source projects. To this end, we employ

RefactoringMiner [67] to discover potential move method refac-

torings. RefactoringMiner is selected because it is well-known,

widely-used, and representing the state of the art in automated

discovery (mining) of software refactorings. It takes as input two

versions (i.e., a commit and its parent in the commit history) of

the same project, compares and matches software entities between

the two versions, and generates a list of potential move method

refactorings (as well as other categories of refactorings that are

ignored by feTruth) by a sequence of pre-de�ned detection rules.

Although RefactoringMiner represents the state of the art, not

all of the identi�ed move method refactorings are associated with

feature envy smells, and it also results in some false positives (i.e.,

the actual changesmade are not movemethod refactorings). Accord-

ing to our empirical study in Section 4.5, up to 43.8% of the reported

potential move method refactorings are not associated with feature

envy smells or are false positives. For convenience, we call such

potential refactorings as non-feature envy in the rest of this paper.

To guarantee the quality of collected real-world examples, feTruth

leverages heuristics-based �ltering and classi�cation-based �lter-

ing to identify and remove such non-feature envy. Details of the

�ltering are presented in Section 3.3 and Section 3.4, respectively.

3.3 Heuristics-Based Filtering

The proposed approach is to identify feature envy methods that

should be moved from their enclosing classes to other classes
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that they envy. Consequently, for a given feature envy method,

it should explicitly have its enclosing class (where it is) and its tar-

get class (where it should be moved) in the same version. However,

RefactoringMiner often reports potential move method refactor-

ing where the target class of the movement does not exist in the old

version (i.e.,��) or the source class does not exist in the new version

(i.e., ��+1). A typical example is that when a class is moved to a

di�erent package, RefactoringMiner may report methods within

the class as moved methods where the class in the old version is

noted as the source class and the same class in the new version

is noted as the target class. In this case, the target class does not

exist in the old version. Consequently, it is unlikely for feature

envy detection algorithms (including the proposed approach) to

identify them as feature envy methods because the algorithms can-

not recommend moving a method to a nonexistent class. Another

typical example is that when a class (noted as �) is merged into

another class (noted as �), RefactoringMiner may report that the

methods within � have been moved to the merged class (i.e., class

�). In this case, the source class (i.e., class �) of the move method

refactorings do not exist in the new version (��+1). Such detection

is not appropriate as feature envy examples because it is a merge

class refactoring or inline class refactoring, instead of a sequence of

move method refactorings. Therefore, these potential move method

refactorings should not be part of the training data because they

are not associated with feature envy smells.

To exclude such potentital refactorings, we exclude a potential

move method refactoring if:

(1) The source class of the potential refactoring does not exist in

the new version (we note this heuristic rule as �1) or

(2) The target class of the potential refactoring does not exist in

the old version (we note this heuristic rule as �2).

Besides the heuristic �ltering rules proposed in the preceding

paragraph, we also leverage another rule (noted as �3) to exclude

testing methods, constructors, overriding methods, and overrid-

den methods: If the method is moved by a potential move method

refactoring is a testing method, a constructor, an overriding method

or an overridden method, the method should not be taken as a fea-

ture envy method. Testing methods are excluded because the pro-

posed approach is specially designed for production code. Notably,

testing methods are often substantially di�erent from methods in

production code. A testing method, located in a testing class, fre-

quently calls methods and accesses �elds from the class (noted as

ProductClass) it is testing. As a result, it inherently envies the

ProductClass, and it may be misclassi�ed by feature envy detec-

tion tools as a feature envy method. To this end, the proposed

approach, as well as other existing approaches (e.g., feDeep pro-

posed by Liu et al [41]), excludes testing methods. Constructors

are excluded because they cannot be moved at all. Overriding and

overridden methods are excluded because they cannot be moved

across inheritance hierarchies, and moving between ancestors and

descendants are often taken as pull up (or push down) method refac-

torings instead ofmove method refactorings. Pull up (and push down)

method refactorings are designed to share (or conceal) functionality

and interfaces among sibling classes, instead of removing feature

envy smells. Consequently, the involved methods are often not

associated with feature envy smells.

3.4 Learning-Based Filtering

Besides the heuristics introduced in the previous section, we also

leverage a learning-based approach to further �lter out non-feature

envy. More speci�cally, we leverage a decision tree-based classi�er

to distinguish false positives from true positives according to a

sequence of features of the potential move method refactorings.

A potential move method refactoring is represented as:

�	
� =< �,�′, �
, �
 > (1)

where� and�′ refer to the method before and after refactoring

whereas �
 and �
 represent the source class and the target class of

the movement. Methods calling� and�′ are noted as ������ (�)

and ������ (�′), respectively.

The exploited features of a potential move method refactoring

are explained as follows:

(1) ��
: The ratio of callers to the original method that survived

the movement, i.e.,

��
 =
|������ (�) ∩������ (�′) |

|������ (�) |
(2)

A caller to the original method� survives the movement if and

only if it calls�′ after the movement.

(2) ��
′: The number of survived callers divided by the number of

callers to�′, i.e.,

��
′ =
|������ (�) ∩������ (�′) |

|������ (�′) |
(3)

(3) 
�� : The number of common statements (matched statements

according to RefactoringMiner) appearing in both� and�′,

i.e.,


�� = |���������� (�) ∩ ���������� (�′) | (4)

where ���������� (�) represents all statements within method

�.

(4) �
�� : The number of common statements divided by the total

number of statements in�, i.e.,

�
�� =

��

|���������� (�) |
(5)

(5) �
�� ′: The number of common statements divided by the total

number of statements in�′, i.e.,

�
�� ′ =

��

|���������� (�′) |
(6)

Features ��
 and ��
′ concern to what extent � and �′ share

the same callers whereas features 
�� , �
�� , and �
�� ′ concern the

similarity between the method bodies of� and�′. Such outside

features (concerning the callers to the methods) and inside features

(concerning the method bodies) together may help identify whether

�′ is an evolved version of�. Notably, most of the false positives

reported by RefactoringMiner are caused by incorrect matching

between� and�′:�′ is somewhat similar to� (which results in

incorrect matching), but�′ is not an evolved version of�, and thus

they do not form a move method refactoring.

With the extracted features, we train a decision tree to learn how

to classify potential refactorings into false positives and true pos-

itives. It takes < ��
, ��
′, 
��, �
��, �
�� ′ > as input, and generates

a binary output that suggests whether the given potential move

method refactoring is associated with feature envy smells. Decision

trees [6] are one of the most popular and commonly used machine
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learning techniques for classi�cation [63]. Compared to other ma-

chine learning techniques, decision trees are intuitive, interpretable,

and adjustable (via manual pruning to optimize classi�cation). We

do not employ more powerful deep learning techniques because

they request a large number of labeled training data that we do not

have. In contrast, decision trees work well on small datasets.

3.5 Collecting Negative Samples

In the previous sections, we collect real-world samples of feature

envy methods with RefactoringMiner and a sequence of �lters as

introduced in Sections 3.3–3.4. In this section, we explain how we

collect negative samples, i.e., methods not associated with feature

envy smells. Such negative examples together with the positive

samples constitute the complete labeled training data for feature

envy detection.

We �rst collect all methods in subject projects where positive

samples are collected. From suchmethods, we exclude the following

methods:

• Methods that cannot be moved across inheritance hierarchies,

e.g., constructors, overriding methods, and overridden methods;

• Testing methods that are out of the scope of the proposed ap-

proach;

• Methods that violate move method refactoring preconditions

provided by Eclipse JDT [28, 29] (e.g., the target class should

not inherit a method having the same signature of the moved

method);

• Methods that have been moved by potential move method refac-

torings according to the detection results of RefactoringMiner.

The remaining methods are noted as candidate negative samples.

Considering that in most high-quality projects negative samples

are often signi�cantly more popular than positive samples (feature

envy methods), we conduct undersampling [44] so that the total

number of negative examples equals the number of positive samples.

To maximize the diversity of the negative examples, we sample no

more than a single method from each class and keep the same

sample rate on all subject projects.

3.6 Detection and Resolution of Feature Envy

First, the following methods are automatically predicted as negative

(i.e., methods not associated with feature envy smells): Construc-

tors, overriding methods, and overridden methods. These methods

are predicted as negative because they cannot be moved across

inheritance hierarchies. For other methods, we leverage a neural

network-based classi�er for automated prediction. An overview of

the classi�er is presented in Fig. 2 and its details are discussed as

followings.

3.6.1 Input of the Classifier. The classi�er takes as input a method

(noted as�) and a potential target class (noted as �� ) to which the

method could be legally moved. It generates a binary prediction

to suggest whether � should be moved to �� . Notably, existing

tools, like Eclipse JDT, can automatically and accurately validate

whether� could be legally moved to target class�� . Consequently,

we reuse Eclipse JDT to collect all potential target classes for a

given method� and leverage the classi�er to predict whether�

should be moved to any of the potential target classes.

Figure 2: Neural Network Based Classi�er

The input of the classi�er consists of both textual features and

structural features (code metrics):

����� = < �����,�����
� > (7)

where ����� consist of three identi�ers:

����� = < ���� (�), ���� (�� ), ���� (�� ) > (8)

where ���� (�), ���� (�� ), ���� (�� ) represent the name of the

method to be tested, the name of its enclosing class, and the name

of the potential target class. Structural features�����
� consist of a

sequence of code metrics:

�����
� = < ���� (�,�� ), ���� (�,�� ), 
��
 (�,�� ),


��
 (�,�� ),�
�
 (�,�� ),�
�
 (�,�� ) >

where ���� (�,�) is the Jaccard distance between method � and

class� [61, 66]. Let �� be the entity set of method� and �� be the

entity set of class � , the distance between� and � is de�ned as

follows:

���� (�,�) = 1 −
|�� ∩ �� |

|�� ∪ �� |
(9)

Notably, the entity set of a software entity (e.g., a method or a class)

includes all methods and �elds accessed directly by the entity. Be-

sides the distance (as de�ned by Equation 9) that has been exploited

by existing deep learning-based approaches [41, 43], our approach

also exploits CBMC andMCMC. 
��
 (�,�) is the number of meth-

ods from class � that are called directly by� divided by the total

number of methods directly called by�:


��
 (�,
) =
|methods called by� ∩ methods of� |

|methods called by� |
(10)

�
�
 (�,�) is the frequency of invocations from method� to class

� divided by the total frequency of invocations from�:

�
�
 (�,
) =
|method invocations from� to � |

|method invocations from� |
(11)
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3.6.2 Architecture of the Classifier. The architecture of the clas-

si�er is presented in Fig. 2. The textual features are �rst fed into

an embedding layer to convert them into numerical vectors. We

leverage the well-known and widely-used word2vec [47, 48] as

the embedding layer, and reuse the publicly available pre-trained

word2vec model [40]. The outputs of the embedding layer, together

with other structural features, are fed into convolutional neural

networks (CNN). The outputs of the CNN layers are transformed

into one-dimensional vectors by the following �atten layers. Such

vectors are merged into a single one-dimensional vector by the

following merge layer, and the resulting vector is fed into a dense

layer. The output layer generates the binary prediction, i.e., whether

� should be moved from its enclosing class to the target class �� .

3.6.3 Classifier-Based Prediction. For each method to be tested

(noted as�), feTruth �rst leverages Eclipse JDT [28, 29] to collect

potential target classes to which the method could be legally moved.

Notably, from the potential target classes, we remove all data classes

that do not contain any methods or contain getter/setter methods

and constructors only (we note this heuristic rule as �4). Such

classes are specially designed to store data (variables) only, and

moving methods to such classes may break the principle. Besides, if

� is an instance method (i.e., a non-static method) and its a target

class is composed of only static members, we remove this class from

the target classes (we note this heuristic rule as �5). Consequently,

we exclude them from potential target classes.

If a method does not have any potential target class, themethod is

deemed negative, not associated with feature envy smells (we note

this heuristic rule as �6). Otherwise, feTruth leverages the neural

network-based classi�er represented in Fig. 2 to predict whether

the method should be moved to the given potential target class. The

prediction is often interpreted as positive (and the potential target

class is called candidate target class) if the output is greater than

0.95 [34]. Otherwise, it is interpreted as negative. If the prediction is

negative for all potential target classes, the method is not associated

with feature envy smells. Otherwise, it is a feature envy method.

For methods predicted as positive, feTruth also suggests solu-

tions, i.e., where they should be moved. If method � has only a

single candidate target class, feTruth suggests moving the method

to this class. If it has multiple candidate target classes, feTruth

suggests moving� to the candidate target class that results in the

largest output of the classi�er.

4 EVALUATION

4.1 Research Questions

The evaluation was designed to answer the following research

questions:

RQ1. Can feTruth improve the state of the art in feature envy

detection?

RQ2. Are the �lters proposed in Sections 3.3–3.4 accurate in exclud-

ing non-feature envy in potential move method refactorings

reported by RefactoringMiner?

RQ3. To what extent can data �ltering improve the performance

of feTruth?

RQ4. To what extent can real-world examples outperform ran-

domly generated training data in boosting feTruth?

Table 1: Subject Projects (Part2)

Projects Snapshot NOC NOM LOC

Jsoup 9b40b7b 90 1,317 9,763

Csv 989c495 15 158 2,125

Compress 231a466 81 664 8,534

Cli 7d1363e 41 343 4,460

Time b9a83fb 317 9,290 79,036

RQ5. How does the size of training data in�uence the performance

of feTruth?

Research question RQ1 concerns whether feTruth can substan-

tially outperform existing approaches in feature envy detection. To

answer this question, we compare feTruth against the approach

proposed by Liu et al. [41], JDeodorant [17] and JMove [64]. Since

Liu et al. [41] did not explicitly name their approach, we call it

feDeep for convenience in the rest of this paper. Such baseline

approaches are selected for comparison because they represent the

state of the art. Research question RQ2 concerns the accuracy of

the �ltering introduced in Sections 3.3–3.4 whereas RQ3 concerns

its in�uence on the performance of the proposed approach. RQ4

concerns the bene�ts of replacing randomly generated training

data with real-world examples whereas RQ5 concerns the impact

of the size of the training data.

4.2 Subject Projects

The subject projects are divided into two parts. The �rst part (noted

as Part1), consisting of 500 Java projects, was used to discover

real-world feature envy examples (i.e., collection of training data).

The second part (noted as Part2), consisting of 5 open-source Java

projects, was used to evaluate the proposed approach and the se-

lected baseline approaches. The 500 projects in the �rst part were

selected from GitHub: We selected the top 500 most popular Java

projects (with the largest numbers of stars) to constitute the �rst

part of the subject projects. The 5 projects in the second part were

selected from Defects4J [31]. These projects were selected because

they are from di�erent domains and are developed/maintained by

di�erent teams, which may help to reduce the potential bias in

the evaluation. Besides, all of them are well-known and widely-

used open-source projects. Table 1 presents an overview of the 5

Java projects in the second part where the snapshot speci�es the

version of the selected projects, NOC and NOM represent the num-

ber of classes and the number of methods within the projects. LOC

represents the number of source code lines.

4.3 Process

First, we applied RefactoringMiner to the 500 selected subject

projects (in Part1), and it reported 30,599 potential move method

refactorings. From them, we randomly sampled 600 potential move

method refactorings, and requested three experienced developers

who were familiar with move method refactorings and feature envy

smells to independently and manually marked them as true posi-

tives (i.e., move method refactorings associated with feature envy

smells) or non-feature envy. All of the participants were required
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Table 2: Improving the State of the Art

Approach Project #Reported #Accepted #Accepted targets Precision Accuracy (destination)

feTruth

Jsoup 16 12 11 75% 91.67%

Csv 3 2 2 66.67% 100%

Compress 13 8 7 61.54% 87.5%

Cli 1 1 1 100% 100%

Time 8 6 6 75% 100%

Total 41 29 27 70.73% 93.1%

feDeep

Jsoup 19 10 8 52.63% 80%

Csv 0 0 0 0% 0%

Compress 14 7 6 50% 85.71%

Cli 1 1 1 100% 100%

Time 13 6 6 46.15% 100%

Total 47 24 21 51.06% 87.5%

JDeodorant

Jsoup 14 5 5 35.71% 100%

Csv 1 1 1 100% 100%

Compress 4 2 1 50% 50%

Cli 1 1 1 100% 100%

Time 3 1 0 33.33% 0%

Total 23 10 8 43.48% 80%

JMove

Jsoup 5 2 2 40% 100%

Csv 0 0 0 0% 0%

Compress 1 1 1 100% 100%

Cli 2 1 1 50% 100%

Time 2 0 0 0% 0%

Total 10 4 4 40% 100%

to have Java background. They had a median of 6 years of pro-

gramming experience and 3.5 years experience with software refac-

toring. In case of inconsistent labeling, the potential refactorings

were discussed together by the participants to reach an agreement,

which resulted in 600 consistently labeled samples. Notably, the

three developers achieved high consistency with a Fleiss’ kappa

coe�cient [16] of 0.81. The size of the sample (600) guaranteed a

con�dence level of over 95% and a margin of error of 5% [30].

Second, we trained the decision tree-based �lter (as presented

in Section 3.4) with the 600 manually labeled samples. After that,

we leveraged the resulting decision tree-based �lter and heuristics-

based �lter (as presented in Section 3.3) to identify all positive

examples reported by RefactoringMiner, which resulted in 14,209

real-world feature envy methods. We also collected 14,209 negative

examples as introduced in Section 3.5 tomake up a balanced training

dataset (called rw-Dataset).

Third, we trained the proposed approach (feTruth) with the

training data collected in the preceding paragraph. We trained the

baseline approach (feDeep) with equally sized training data (called

rg-Dataset), where positive examples were randomly generated by

feDeep [41] on the same subject projects, and negative examples

were consistent with those in rw-Dataset. After that, we applied

the resulting models and other selected baseline approaches, i.e.,

JDeodorant [17] and JMove [64] to the �ve projects in Part2 and

requested three experienced developers to independently and man-

ually validate all of the reported feature envy smells. To reduce

the threats to validity, the participants did not know which of the

feature envy smells were reported by the proposed approach or the

baseline approaches. In case of inconsistency, they were requested

to discuss together, and they reached an agreement on all items.

Based on the manual validation, we computed the performance of

the evaluated approaches.

4.4 RQ1: Improving the State of the Art

The evaluation results are presented in Table 2. #Reported

presents the total number of potential feature envy smells re-

ported by the evaluated approaches whereas #Accepted presents

how many of them were con�rmed according to the given

ground truth. #Accepted targets presents how many of the

target classes recommended by the approaches were con�rmed.

Precision presents the precision in smell detection. Accuracy

(destination) presents the accuracy of the approaches in recom-

mending target classes for the con�rmed feature envy methods.

From Table 2 we make the following observations:

• feTruhwas accurate in detecting feature envy smells. Among the

41 items reported by feTruh, 29 have been manually con�rmed,

resulting in a precision of 70.73%. feTruh was also accurate in

suggesting target classes for feature envy methods. For 29 feature

envy methods, it succeeded in recommending target classes for

27 of them, resulting in a precision of 93.1%.

• feTruh substantially outperformed the state of the art in fea-

ture envy detection. It resulted in the highest precision (70.73%),
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1 private void populateProviderWithExtraProps(PoolingConnectionProvider cp,
Properties props) throws Exception {

2 Properties copyProps = new Properties();
3 copyProps.putAll(props);
4 ...
5 if (cp instanceof C3p0PoolingConnectionProvider) {
6 copyProps.remove(C3p0PoolingConnectionProvider.

DB_MAX_CACHED_STATEMENTS_PER_CONNECTION);
7 copyProps.remove(C3p0PoolingConnectionProvider.

DB_VALIDATE_ON_CHECKOUT);
8 copyProps.remove(C3p0PoolingConnectionProvider.

DB_IDLE_VALIDATION_SECONDS);
9 copyProps.remove(C3p0PoolingConnectionProvider.

DB_DISCARD_IDLE_CONNECTIONS_SECONDS);
10 }
11 setBeanProps(cp.getDataSource(), copyProps);
12 }

Listing 1: Example False Positive Reported by feDeep

substantially higher than that of feDeep (51.06%), JDeodorant

(43.48%), and JMove (40%). The minimal improvement is 38.5%

(70.73%-51.06%)/51.06%. feTruh also led to the largest number

(29) of accepted items (i.e., true positives), substantially larger

than that of feDeep (24), JDeodorant (10) and JMove (4).

• The proposed approach feTruh is accurate in suggesting desti-

nation classes for feature envy methods. Its accuracy (93.1%) is

higher than that of JDeodorant (80%), and comparable to that

of feDeep (87.5%) and JMove (100%).

Note that all of the evaluated approaches were evaluated on

the same dataset, and thus they should have the same number of

positives (i.e., the total number of feature envy smells). As a result,

the improvement in the number of accepted items (#true positives)

equals the improvement in recall because recall = #true positives÷

#positives. Consequently, compared to feDeep, JDeodorant, and

JMove, feTruh improved the recall by 20.8%=(29-24)/24, 190%=(29-

10)/10, and 625%=(29-4)/4, respectively.

We conclude based on the preceding analysis that feTruth sub-

stantially improved the state of the art in detecting and resolving

feature envy smells. In the following paragraphs, we explain with

examples why feTruth can outperform baseline approaches.

The example code in Listing 1 explains why feTruh suc-

ceeded in avoiding some false positives reported by feDeep. The

method populateProviderWithExtraProps is from the class Std-

SchedulerFactory in open-source project quartz [12]. feDeep re-

ported it as a feature envy method because it accesses four

�elds of class C3p0PoolingConnectionProvider (Lines 6-9), and thus

it suggested moving it to class C3p0PoolingConnectionProvider.

However, original developers refused to move the method.

The relationship between class StdSchedulerFactory and class

C3p0PoolingConnectionProvider follows the widely-used factory

pattern [24] where the factory is responsible for creating objects

whereas providers are responsible for providing requested data.

The involved method populateProviderWithExtraProps initializes

�elds of the created object with data from providers (including the

target class C3p0PoolingConnectionProvider and other providers).

Consequently, the current decision well follows the widely-used

factory pattern and there is no need to move the method. Be-

sides, the target class C3p0PoolingConnectionProvider is designed

to provide static �elds only, and it should not contain complex

operations on such �elds.

1 boolean isEndOfFile(int c) {
2 return c == ExtendedBu�eredReader.END_OF_STREAM;
3 }
4

5 class ExtendedBu�eredReader extends Bu�eredReader {
6 static �nal int END_OF_STREAM = −1;
7 ...

Listing 2: Example True Positive Missed by Baseline
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Figure 3: Filtering of Potential Move Method Refactorings

Our approach feTruth did not report the method in Listing 1 as a

feature envy smell because its training data did not contain any real-

world feature envy methods that should be moved from a factory

class ("*Factory") to a provider class ("*Provider"). It may suggest

that methods are rarely misplaced (by developers) between factories

and providers. However, the training data automatically generated

by feDeep did contain four arti�cial ‘feature envy methods’ that

should be moved from factories to providers. Such unreal training

data resulted in incorrect prediction on the method in Listing 1.

The example code in Listing 2 explains why feTruth succeeded

in identifying some true positives missed by the baseline ap-

proaches. The method isEndOfFile is from the class Lexer in open-

source project commons-csv [26]. feTruth reported the method in

Listing 2 as a feature envy smell because its training data contained

common patterns, i.e., a boolean method ("isEndOf*") was moved

to the class to which the �eld accessed in its conditional expression

belongs [65]. However, the training date generated randomly by

feDeep did not contain such patterns. Notably, the heuristic-based

baseline approaches also missed the method presented in Listing 2.

4.5 RQ2: Accurate Filtering of Move Methods

To answer RQ2, we randomly sampled and validated 379 (out of

29,999) items that have been fed into the �lters. The size of the

sample guaranteed a con�dence level of 95% and a margin of error

of 5% [30]. The manual checking was conducted by three experi-

enced developers in the same way as they labeled training data (as

introduced in the �rst paragraph of Section 4.3). They achieved high

consistency with a Fleiss’ kappa coe�cient [16] of 0.87. Notably,

while labeling the items, the participants did not know the rationale

of the �lters or the results of the �lters, which might help to reduce

potential bias. The manually created labels served as the ground

truth for the evaluation of the accuracy of the �lters.

The evaluation process and evaluation results are plotted in

Fig. 3 where negative samples are those that were reported by

RefactoringMiner as potential move method refactorings but

were denied manually by the participants. Such negative samples
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Table 3: Performance of feTruth with/without Data Filtering

Metrics
Without

Filtering

With

Filtering

#Reported 52 41

#Accepted 28 29

#Accepted targets 26 27

Precision 53.85% 70.73%

Accuracy (destination) 92.86% 93.1%

should be identi�ed and �ltered out by the proposed �lters. In

contrast, the positive samples are those that were reported by

RefactoringMiner as potential move method refactorings and

were con�rmed manually by the participants. Ideally, all of the

positive samples should pass the �lters.

From Fig. 3 we make the following observations:

• First, a large percentage of the potential move method refac-

torings reported by RefactoringMiner was not associated

with feature envy smells. The negative items account for

43.8%=166/(166+213) of the reported samples.

• Second, the heuristics-based �lter was e�ective and accurate. It

successfully identi�ed 121 out of the 213 negative items whereas

none of the 166 positive items were �ltered out by mistake.

• Third, the decision tree-based �lter was accurate aswell. It �ltered

out 42 out of the 45 negative items fed into the �lter whereas

only 12 out of the 213 positive items were misclassi�ed.

• Finally, the two �lters together �ltered out 98.2%=(121+42)/166

of the negative samples whereas only 5.6%=(0+12)/213 of the

positive examples were �ltered out by mistake.

Based on the preceding analysis, we conclude that the �lters

proposed in this paper have the potential to �lter out most of the

negative samples accurately without signi�cant loss in positive

samples. Consequently, with RefactoringMiner and such �lters,

it is practical to construct a large-scale and high-quality dataset

of feature envy smells, which in turn may boost learning-based

approaches to detecting and resolving feature envy smells.

4.6 RQ3: Impact of Example Filtering

To evaluate the e�ect of example �ltering, we disabled the �ltering

and repeated the evaluation (keeping the testing data unchanged).

The evaluation results are presented in Table 3.

From Table 3 we make the following observations:

• The �ltering had a substantial and positive impact on the per-

formance in detecting feature envy smells. Enabling it improved

the precision by 31.3%=(70.73%-53.85%)/53.85%. The number of

true positives (#Accepted) also increased slightly from 28 to 29.

• The �ltering substantially reduced the number of false positives

(i.e., #Reported - #Accepted) from 24=52-28 to 12=41-29, with a

substantial reduction of 100%=(24-12)/24.

• The �ltering also had a positive impact on the accuracy of the

approach in suggesting destinations for feature envy methods.

The accuracy was slightly improved from 92.86% to 93.1%.

We conclude from the preceding analysis that simply employing

the refactoring histories from refactoring miners without essential

Table 4: E�ect of Real-World Examples

Metrics
Randomly

Generated Data

Real-World

Examples

#Reported 49 41

#Accepted 25 29

#Accepted targets 22 27

Precision 51.02% 70.73%

Accuracy (destination) 88% 93.1%

�ltering may result in a substantial reduction in the performance

of feature envy detection. This reduction stems primarily from the

failure to �lter out movemethod refactorings that are not associated

with feature envy smells and are false positives. Consequently, it

becomes evident that the un�ltered move method refactorings not

only introduce noise into the training dataset but also hamper

the model’s ability to generalize accurately, thereby reducing the

performance of feature envy detection.

4.7 RQ4: E�ect of Real-World Examples

To investigate the e�ect of real-world examples, we replaced such

examples with randomly generated training data (i.e., rg-Dataset)

and repeated the evaluation. Notably, in contrast to answering RQ1,

we employ the same neural network architecture (i.e., feTruth)

for this evaluation. Testing data were kept untouched as well. The

evaluation results are presented in Table 4. From this table we make

the following observations:

• Exploiting real-world examples substantially improved the preci-

sion of the proposed approach. The improvement in precision is

38.6%=(70.73%-51.02%)/51.02%.

• Exploiting real-world examples improved the number of true pos-

itives (#Accepted) from 25 to 29, with a substantial improvement

of 16%=(29-25)/25.

• Replacing random examples with real-world examples improved

the performance in the recommendation of target classes. The

accuracy was improved from 88% to 93.1%.

We conclude that real-world examples are more e�ective than

randomly generated training data. This conclusion arises from the

observation that applying models trained on randomly generated

data to real-world examples results in a substantial reduction in

performance. The reduction can be attributed to the fact that ran-

domly generated data often do not align with real-world examples.

Consequently, when these models, trained on such randomly gen-

erated data, are tested on real-world examples, they tend to identify

fewer instances of feature envy methods and their suggested target

classes are less accurate.

4.8 RQ5: Impact of Data Size

Fig. 4 presents how the size of the training data in�uences the

performance of the proposed approach. From this �gure we make

the following observations:

• The precision of the approach in both detecting feature envy

smells and recommending solutions (target classes) keeps in-

creasing with the increase in training data. It may suggest that
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Figure 4: Performance of feTruth vs. Size of Training Data

the performance of the proposed approach has the potential to

be further improved with additional training data in future.

• The number of con�rmed feature envy smells and the number

of accepted target classes keeps increasing when the data size

increases. However, when the size reaches 80% of the current

size, the rate of increase in the number becomes relatively slow.

Based on the analysis we conclude that collecting additional

training data may further improve the proposed approach. This

conclusion aligns with the underlying principle that as the training

data expands, the model’s performance progressively improves.

This phenomenon underscores the fundamental nature of neural

networks, which rely on large amounts of data for e�ective training.

4.9 Threats to Validity

The �rst threat to external validity is that only a limited number

of subject projects were used for the evaluation. Only 500 subject

projects were used for the mining of refactorings, and only �ve

projects were used for testing. Note that manual validation of the

detection results was tedious and time-consuming, which signif-

icantly limited the size of the testing data. To reduce the threat,

we collected projects from di�erent domains and di�erent devel-

opment teams. We also publish the implementation [38] of the

proposed approach to facilitate further validation on additional

subject projects.

The second threat to external validity is that the evaluation

is con�ned to Java projects only. It is unclear how the proposed

approach works on other programming languages although the

proposed approach is expected to work with any object-oriented

programming languages because it does not depend on any special

characteristics of Java. The evaluation is con�ned to Java because

1) the prototype implementations of the proposed approach and

the baseline approach feDeep are con�ned to Java projects only,

and 2) RefactroingMiner is con�ned to Java projects.

A threat to construct validity is that the manual labeling of po-

tential move method refactorings, the manual checking of reported

feature envy smells, and the manual checking of suggested target

classes could be inaccurate. It might in turn result in inaccurate cal-

culation of the performance of the evaluated approaches. To reduce

the threat, we requested multiple participants to label (check) the

same items and computed the consistency among the participants.

The resulting kappa coe�cients suggest that they resulted in a high

level of consistency. Besides, we did not tell them the rationale of

the proposed approach, and they did not know which approaches

had reported the potential smells or suggested the target classes.

All of these might help reduce the bias.

5 CONCLUSIONS AND FUTUREWORK

Detection and resolution of feature envy smells have been well-

studied, and dozens of such approaches have been proposed. Al-

though deep learning techniques have been proven useful in au-

tomated detection and resolution of feature envy smells [41], the

quality of the randomly generated training data is preventing them

from reaching the maximal potential. To this end, in this paper, we

boost deep learning-based feature envy detection approaches with

real-world examples. We propose a heuristics-based �lter and a

learning-based �lter to exclude false positives reported by refactor-

ing miners, and manage to generate high-quality and large-scale

training data for feature envy detection. We design a new deep

learning-based classi�er leveraging new features not yet exploited

by existing approaches, and employ the resulting classi�er as well

as a sequence of heuristics rules to detect feature envy smells and

to generate solutions for detected smells. Our evaluation results

on real-world open-source projects suggest that the proposed ap-

proach substantially outperforms the state of the art in the detection

and resolution of feature envy smells, improving the precision and

recall in feature envy detection by 38.5% and 20.8%, respectively.

Similar to the state-of-the-art feature envy smell detection tools

(e.g., feDeep, JDeodorant, and JMove), feTruth only detects mis-

placed methods that should be moved from their enclosing classes

to other classes they envy. Although such feature envy methods are

the key concern for current feature envy detection and resolution

tools/algorithms, there is another category of feature envy: Only a

small part of the method should be extracted and moved outside

the enclosing class. We plan to generalize the proposed approach

to deal with such feature envy smells in future.

feTruth was sponsored by Huawei, one of the leading IT com-

panies in the world, and it has been successfully deployed in the

company. Notably, we adopt a client-server architecture, putting

all deep-learning related models on a server (deployed within the

company) and integrating other models into a plug-in of the IDE,

to avoid any deep learning computation on client sides (i.e., PCs of

software developers). As a result, for the end users, feTruth is as

simple as the traditional heuristics-based detection tools, and no

deep learning libraries or devices are required. We would like to re-

port detailed usage of the tool within the company (and potentially

other companies) in the near future.

The large-scale high-quality dataset of real-world feature envy

examples constructed in this paper is an important contribution of

this paper. It may inspire and boost other learning-based approaches

to feature envy detection in future. We also plan in future to further

enlarge the dataset by mining additional evolution histories of

high-quality open-source projects.

6 DATA AVAILABILITY

The replication package, including the tools and the data, is publicly

available [38, 39].
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